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THE WEIGHTED HARDY'S INEQUALITY
FOR NONINCREASING FUNCTIONS

VLADIMIR D. STEPANOV

Abstract. The purpose of this paper is to give an alternative proof of recent

results of M. Arino and B. Muckenhoupt [1] and E. Sawyer [8], concerning

Hardy's inequality for nonincreasing functions and related applications to the

boundedness of some classical operators on general Lorentz spaces. Our ap-

proach will extend the results of [ 1, 8] to the values of the parameters which

are inaccessible by the methods of these papers.

1. Introduction

The Hardy's inequality of the form

aoo   /   px \<? \ '/« if00 \llp
[J   f(t)dtj  u(x)dxj     <c(jf    f(x)v(x)dxj

is well known. The problem of determining weights u and v for fixed p and

Q, 1 < P, Q < oo, has been investigated by many authors [3, 5, 6, 12, 13];
furthermore, the important case 0<^<l<p<oo has recently been studied

by G. Sinnamon [9, 10] (see , also [11]). The final form of these results may be

summarized as follows.

Theorem 1. Necessary and sufficient conditions for the validity of the inequality

(1) with weights u, v > 0 for all f > 0 such that the right side of (I) is finite,
and constant C independent of f are

(a) Let 1 < p < q < oo,  l/p + l/p' = 1. Then (1) holds iff

aoo \ I/? / ft \ Up'
u(x)dx)      ( /  v]-p'(x)dx\      < oo.

Moreover A < C < a(p, q)A .

(b)Let 0<q <p<oo, p> 1,  i/r=l/q-l/p,  l/q+l/q' = 1. Then (1)
holds iff
(3)

Í/.00   ["   /    fOO \   1/?    /ft \   Ul'~

I (/uMdx) {r'~'ix)d\B

and ßi(p,q)B<C<ß2(p,q)B

Ur

>l-p'(t)dt\     <oo
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174 V. D. STEPANOV

The constants a, ßi, ß2 depend only on p, q .

Several authors [1, 7, 8] have recently considered inequality

aoo /1   çx \q \Uq        / r°° \Up
[-J   f(t)dtj  w(x)dx)     <C(J    f(x)v(x)dxj

where / is a nonnegative and nonincreasing function.

Necessary and sufficient conditions are known for (4) if 1 <p - q < oo , w =

v. These can be derived using the so called "dilation function." Specifically,

let V(r) — /J v (x) dx . Then the inequality

aoo   / i     /or \ P \l/P /   /»oo \ Up
[-J   g(t)dtj   v(x)dx)      <C(J    g»(x)v(x)dxj

is valid for nonincreasing functions g > 0 iff for some e > 0

(6) sup^ = 0(T'-£), t>1.
i>0    v \S)

This was shown by D. W. Boyd [2]. S. G. Krein and E. M. Semenov [4, Chapter
2, Theorem 6.6].

Recently M. Arino and M. Muckenhoupt [1] have shown that (5) is equivalent

to v satisfying the condition

(7) /   x~pv(x)dx< - ( v(x)dx
Jt tp Jo

where the constant D does not depend on / e (0, oo). They have also pointed

out the application of this criterion to a similar problem for Hardy-Little wood's

maximal function on general Lorentz spaces.

E. Sawyer [8] has extended the above results to cases of different weights

v , w and exponents 1 < p , q < oo . Sawyer's approach is quite general and

reduces the problem to Hardy's inequality with arbitrary functions by means of

duality. His method relies upon a proof of the reverse Holder inequality of the
form

'( riifY (ix vdx)
<Jo    \Jo

Io8f * r([xfY (í-Xvdx) + Ff
g>°:*i (¡0°° gpvfp      [Jo    \JoJ)    \V)   VdX)      + (£•„)"'

where g J. means that the function g is nonincreasing. If T is the operator

defined by Tf(x) = J0°° k(x, y)f(y) dy where k(x, y) is a nonnegative kernel

and if for simplicity we assume that /0°° v — oo, one can apply this result to

obtain the equivalence

aoo \ i/t? / /-oo       \ Up
(Tg)'w)     <clj    g'vj        W<gi

e(r(iV/)' [v]'vdx) "¿c{[f,'w^T vf>-°-

For instance, if Tf(x) - j ¡^ f(t) dt, then

fx fx f°°       dt
(8) /   T*f= /   f + x       f(t)^.

Jo Jo Jx '
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Sawyer then proved the following theorem via the corresponding Hardy's in-

equalities for the operators on the right side of (8) using Theorem 1 and its

dual.

Theorem 2. Necessary and sufficient conditions for the validity of (4) with the

weights w > 0 and v > 0 for all nonincreasing functions f > 0 with finite

right side of (4) and constant C independent of f are

(a) Let 1 < p < q < oo. Then (4) is valid iff

(9) Aq = sup ( / w(x)dx)      ( / v(x)dx)        <oo,

Ui / rt
(10)       Ai=%\xo(rx-qw(x)dx\      (f xp'V-p'(x)v(x)dx\

and ai(p, q)(A0 + Ai) < C <a2(p, q)(A0 + Ai).

(b) Let 1 < q <p < oo,  l/r = l/q - l/p. Then (4) is valid iff

Up'
< oo

(11)    ßo=ir   (íw(x)dx\     (ív(x)dx)

(12)

■W l/r

w(t)dt < 00 ,

ß, - u; x qw(x)dx
1/9

/ xp'V-p'(x)v(x)dx
Jo

W
l/r

tp'V-p'(t)v(t)dt\     <oc

and also ß^(p, q)(Bo+Bi) <C< ß$(p, q)(Bo+Bi). The constants ai, a2, /?3,

ßi, depend only on p, q .

In §2 we shall give an alternative proof of Theorem 2. The main new result

of the paper is the following extension of Theorem 2 to the case 0 < q < 1 <

p < oo , and 0 < p < q < oo , 0 < p < 1.

Theorem 3. Let the assumptions of Theorem 2 hold. Then

(a) Assertion (b) of Theorem 2 holds if 0 < q < 1 < p < oo.
(b) Let 0 < p < q < oo, 0 < p < I. Then (4) is valid iff Aq < oo and

a°° \ Xlq ( f' \~Up
x~Qw(x)dx\      Í /  v(x)dx\        < oo

andyi(p, q)(A0+J^i) <C< y2(p, q)(Ao + M)- The constants yi, y2 depend
only on p, q.

The proof of Theorem 3 is given in §3; at the end of this section we state and

prove a new sufficient condition (Proposition 2) for (4) when 0 < q < p < 1 .

The following notations will be employed in the paper.

V(t)= [ v(x)dx;        W(x)= [ w(x)dx;        %-p'
Jo Jo

(x)=xp V-P (x)v(x).
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A -c B means the inequality A < cB with the constant c depending on
oo     0

'    oo '  0
p, q only. Products and quotients of the forms 0 • oo , ^ , k are taken to be

0.
The author expresses his deep gratitude to Professors H. P. Heinig and

E. T. Sawyer for the opportunity to visit McMaster University and for fruit-

ful discussions concerning these results. He also wishes to thank Professor R.

C. Brown for editorial assistance in the preparation of the final English draft of
the paper.

2. Proof of Theorem 2

2.1.  First we consider the characterization problem for the inequality

1/9 /   /»oo \ 1/p

<14) U f,w) £CU f'v

We need the following preliminary results.

Lemma. If0<q<p<oo,  l/r = l/q - l/p, then A0 < B0 and

aoo \ q/r /   yoo \ \/r
WrlP V-r/pw \        <oo^^0=U       Wr'" V-r'"v 1        < 00.

Moreover, B0 « ¿%o <C B0.

Proof. First we show " =>• ". Let Bq < oo, then

V-rlp(x)Wrlq(x) = V-rlp f  dW'lo < [   V-rlpdWrlq -> 0,        x -> 0.
Jo Jo

This implies that Ao <C Bo and integration by parts yields

oo>Bro = - [  v-ripdwriq > ^ /  wiid(-v-rip) = -mz.
r J0 - r J0 p

The proof of " <= " is similar.

Proposition 1. Necessary and sufficient conditions for the validity of (14) for all

nonincreasing / > 0 are as follows.

(a) Let 0 < p < q < oo . Then (14) holds iff A0 < oo.
(b) Let 0 < q < p < oo. Then (14) holds iff B0 < oo.

Remark. For 1 < p , q < oo Proposition 1 is contained in Remark (i) of [8].

Proof, (a) The necessary part is trivial by substituting in the inequality f -

ft = X[0,t], where Xe(x) = 1 for x £ E and Xe(x) — 0 for x £ E. To prove

sufficiency we proceed as follows. Let h > 0, supp/* c (0, oo), f(x) = J^° h

and /0°° fpv < oo . Integration by parts and Minkowski's inequality yields

/»oo /»oo /»oo

/ pw = / wd(-n < a% / v'"d(-r
Jo Jo Jo

(   /-oo   /   /.oo \P/q     \q/p /   ^.oo \

SA°\l U d{-ft)) "  -<LfPv)

)
P/1    \ql" /   /-oo \q/p

The proof is complete if /0°° v = oo.   If f0°° v < oc, then we modify the

argument by taking f(x) - c + J^° h .
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We next consider Proposition 1(b). Let us assume J0°° v = oo . The necessary

part proceeds as follows.

/»OO /»00 rOO /»OO

&¿=        W'lqV-rlqv = \    v(x)dx        ivr'"V-^^-lv=        fpv
Jo Jo Jx Jo

where j¿ is defined by the left side. Let us assume temporarily that B0 < oo,

then using Lemma (14) with f = fo yields

CqBqr/p > Cq (ï-X PmqTlP > H w(x) (T wr'«V-Wti-lvX " dx

/•OO

> /    wWrlpV-r'p = Br0.

Jo

This implies that C > B0 and the temporary assumption B0 < oo can be

removed in the usual way.

To prove sufficiency, let h > 0,  supp/z c (0,oo),  f(x) = /x°° h  and

/0°° f"v<oo. We have

/•oo /-oo   /   /-oo    \ q

/    f«w=        (       AJ  w(s)ds

JO       \\Js I      < r°° W"/»T/-r/ii..\«/'(fj00IF'-/í'F-'-/Pí;)í

/  /»oo \ 9/r>

wx-qlp(s)[j    W'pV-r/iv\

(apply Holder's inequality with p/q, r/q),

<(fer*y_■""■"  ,) rr-wi.rv^-".»
aoo   /   /»oo     \/>   /   /»oo \~P/r \ 9/P

(/       A)     (/       ̂ "^M rf^(i))

(integrating by parts)

p-l /   /-oo \-p/r \ «/"/    /»oo   /   /»oo     \p-i /   /»oo \~P/r >

«^f    /    (/    A)      A(j)(/    W/PV-^v)       W(s)ds

aoo   /    /»oo     \ p-1 \ ^
^    Aj      A(i)K(j)rfij      ,

because
\-Wr       i//,,

W'/'V-'/iv)       «
H/(S)

Consequently

/•oo /   /-oo   /   /-oo     \P \ 9/P /   /-oo \ 9/P
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and Proposition 1 (b) is proved under the assumption /0°° v = oo .

In the case /0°° v < oo we have to change the weight v to v + e, e>0.

The result follows from the previous case, by obtaining uniform estimates with

respect to e and then applying Fatou's lemma. For instance, if ( 14) holds and

/0°° v < oo then the inequality (/0°° ßw)1'« < C(/0°° fp(v + e))1'» is also valid

with the same constant C. It implies 5n, e < C, where

5,0,e

,oo / ft \ -Up ]l/r

/    Wr'p(t) I      v + e)       w(t)dt

By Fatou's lemma, we get Bo < C. Conversely, if Bq < oo and /0°° v < oo,

then Boy£<Bo and we get Ccßo,e< #o by the above arguments.

2.2.    Next we prove the necessary part of Theorem 2.   Let us assume that

/0°° v = oo and start with case (a), 1 < p < q < oo . Let 0 < t < oo and

/t(i)= (l\P'V-p'-\x)v(x)dx\       X[0,r)(s),

then f is nonincreasing and

/•OO fX

I    fpv=      xpl V~p' (x)v(x)dx.
Jo Jo

Inequality (4) with f = f yields

Up
V~p'(x)v(x)dx

{!?'"'
Up - l,q

-   ir \X £ (is   yP'V~Pl~iiy)Viy)dy)        X[°'r]{S)dS)    W^dX

aoo \  1/9     fX    /    /•! \   1/p
x-?u;(x)iixj      /   í /  y^V-^-'ív^^úíyj     ds.

Changing the order of integration we have

i/p ft / ¡-i \ Up
l   Í /  yp'v-p'-l(y)v(y)dy\     ds >      sp'lp[      V-p'-\y)v(y)dy\     ds

= p Csp'lp f (Cv-p'-xv\        V-p'-\y)v(y)dyds

= P f V-p'-\y)v(y)( isp,'pds) ( Í V-p'~lv\        dy

fX /   foo \ -l/p'

>(p-\)      V-p'-\y)v(y)yp' Í /     V-p'-{v\ dy

= (p')-"pP fyp'v-p\y)v(y)dy.
Jo

This shows that C > Ai when /0°° v = oo. This case J0°° v < oo can be easily

proved by the arguments at the end of the previous section.
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2.3.   Let us note before proving the necessary part of case (b) that the following

conditions are equivalent Bi < oo •»

l/r

t~qw(t)dt\       < oo
Up / r'/      /»oo      /    /»OO \   IIP   /   ft i

m = [ [       x-"w(x)dx\     ( / T¿-p (x)dx

and, in particular, âg{ > (q/p'y/rBi.

We write

Up'

« = f(f,
/»OO    /     /»OO     /     /»

JO      \Jy      \Jt

x qw(x)dx
\Uq'

1-P'  1 VI/1-P'/-*M/-1/
^

0
%-p(t)V~\t)V(t)dt

\ r/q

x~qw(x)dx

r/q'

Of4'"-'')   v¿"''wK"1wrfíj ^^
/•oo

where the function j¿ is again determined by the left side. Then fo is nonin-
creasing and (4) yields

«.;»=c(f^)'*>(f (!{/„)* .Wa) "*
aoo \ 1/9

*«(j)j-«u>(í)</j)     .

As usual we assume that /0°° v = oo and 2?i < oo and will prove that C > B{ .

We have

*(J) > fQ  (f (1°°x-<w(x)dxy \j^o~P')  " K~"\t)V-\t)d)\     dy

aoo \ r/qp
x-qw(x)dx\      J(s),

J(s) = jf US (l^o'"')   q %-p\t)V-\t)dt\      dy.

where

Also we have for 1 < q < p < oo the lower bound.

J(s) > l%p'lp US (ji'^o"'')   q V-p'-\t)v(t)dt\      dy

= P[^'''dy f [[{[X¥lP')  " V-p'-\t)v(t)dt

-Up'

>y

Uq'ax \r/q' /   fS \ -r/q'p'
%-»)      V-p'-l(r)v(t)dT>p^l%-pj Ms),
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where
-Up'

Ji(s) s  Í'yp'lpdy f ( Í V-p'-\t)v(t)dt\

ax \r/q'
yi-p \      v-"'-l{x)v(T)dx.

Changing the order of integration we get

r/q'

MS)= loilo^0")      fV_1(t)w(t)

x (fyp'lPdy\ (jSV-p'-\t)v(t)dt\        dx

-\'ÏoXP\Ï^PY V~P'~l^vW (jfV-p'-\t)v{t)dt^     P d

= (PT1/Pf (f%~"')r Q <~P'(*)d* = (p')l/p'(Ur) (f^o'"'

Putting these lower bounds on Ji(s) and J(s) into the estimate for ®(s) we

have
aoo \r/qp   /  fS ,\r/p'4

x-'w(x)dx)       ( /  Vq-" J

This implies

/•oo   /   /-oo \ r/p   /   fS \ rjp'

[CB^]« » /    l       x-«w(x)dx)     Í      %'" )     s-qw(s)ds

= <%[>(qlp')B\.

Hence C » Bx in the case 1 < q < p < oo and /0°° v = oo . As before the case

J0°° v < oo follows by the arguments used at the end of §2.1.

2.4.   Now we prove the sufficient part of Theorem 2. Let us assume at first that

/0°° v = oo ; we take as before

/•OO fOO

f(x)= /    A,    A>0,    suppA c (0, oo),      /    f"v<oo.
Jx Jo

We will get an upper bound on the expression

We have

;jf™*-;jf(fO*-f*+îjf'*,')*-
consequently

(/»oo \ 1/9

1/9
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The first term on the right side has been bounded in the proof of the Proposition

1. Let us bound the second term. We have, setting H — hV,

F?si{u*sh{s)ds)'wix)dx=r(UêWdsywMdx-

Integrating by parts and setting /J H = G, we get

fxsH(s),       fx    s    ._. ,     xG(x)      fx G(s)  ,       [xsv(s)„...
/   -17^-ds= f   —-dG(s) =  T„v / - /   -^ds+      -j^rG(s)ds
Jo    y is) Jo   Vis) V(x)     Jo   Vis) Jo   V2(s)

^ xG(x)      fx sv(s) „. . ,

This implies

(16)
F^r(ïïw+r^i'PS)Gis)dsïw(x]dx

= Fq+Fq.

Integrating by parts we have

<">  F'-riy)'-r(j)'^r^
Now we have to consider separately the cases 1 < p < q < oo and 1 < q < p <

oo. If 1 < p <q < oo then (9) yields

F> °"r
2   -qA0Jo     Vt^-llP'

We have

G(s)= ChV= ív(x)(íh\dx< Ífv.

Consequently

Fq < qAq
v(s)dsi:u>2 -   °Jo  \JoJ"J v^-«ip(Sy

It is easy to show that

(fÄf(f)1''-^,
therefore applying Theorem 1 we get

aoo \ q/p
fpvj     -

Denoting sv(s)G(s)/V2(s) = <J>(s) and again applying Theorem 1 and (10) we
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find that

(19)

f*=r (x [m dt)q w{x)dx -a<,{p 'g)A" (i°° ^
q/p

„Apv(s)ds^q/P

< a«(p, q)a"(p, p)(p'/pfl" A\ (J°° fpv
q/p

Combining the estimates (15), (16), (18), and (19) we get the sufficient part of

Theorem 2(a).

The proof of the sufficient part of Theorem 2(b) is similar. Let 0 < q < p <

oo, then using (17) and Holder's inequality with exponents p/q and r/q we

get

F2q<q   '

<A[ w'nT {[ i$ï «)

q/p
nrm ■

Applying the lemma and the last part of (19) we find that

Fq < qa<(p , p)(p'/p)q'p(p/q)q'rBq QH fpv

The estimate of Ff in the case 0<í7</?<oo,/?>1  is produced using

Theorem 1 (b) exactly as above; we get

aoo        \ q/p
fpvj      .

Thus the sufficient parts of Theorem 2(b) and Theorem 3 are proved if /0°° v =

oo.

If O < J0°° v < oo, then the estimate must be slightly corrected. In this case

we have instead of (17)

Fq<
/•oo -| 9   /   /-oo     \ -q    foo foe   riq,..

I hv\ U •)  L w+"l v^w-
• right side of this inequality can be est

/•OO /"OO /    /-OO \   UP   f    /»oo      >

I    hV=       fv<[       fpv)        /    v
Jo Jo \Jo J      \Jo

in that

aoo \ q/p
fpv\ for 1 < p < q < oo

(/»oo \ q/p

/    f"v\ forO<q<p<oc,p>\,

The first term on the right side of this inequality can be estimated trivially since

Up / /»oo   \ Up'

hence we get again that

q/p

or
, q/p

because Ao < Bq .
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3. Proof of Theorem 3

3.1. The sufficient part of Theorem 3(a) has been proved in §2.4 above. We

will show the necessary part exactly by the method of §2.3. We only need to

modify the estimate of the term denoting J(s). \fO<q<l<p<oo, then

q' < 0 and we have

J(s) ee jf (j* (jf ̂ "'O   ' K~P'WXit)A     dy

OfS ,\rll'P

It has already been shown in §2.2 that

J2(s) = l*yS%-p'(x)V-i(x)dx

Thus we get

J(s)>p(p')-llP(j\-p'

and the rest of the reasoning is exactly the same as above in §2.3.

3.2. Now we consider Theorem 3(b), i.e., 0 < p < q < oo, 0 < p < 1.

The necessary part is trivial. The sufficient part is demonstrated as follows. As

above we use the notation
/•OO fOO

f(x) = /    A,     A>0,     supp A c (0, oo),      /    fpv<oo.
Jx Jo

If 0 < p < 1 then applying Minkowski's inequality we get

fX fX    /   fOC     \ fX        fOO    /    /«oo     \P-I

LM"-Lil. h)ds=p,"l I. U *) mdy

dy>p(p'TxlP ÍX
Jo

r/p'q

rX r   fX  f   /-oo    \ p—i

y

i Up

Up

ds

h(y)dy ds

+iff Of
p-\

h(y)dy
Up

ds

<2~Up'pUp( f (T hX    h(y)ypdy\     + 2~xlp'xf(x).

Now we have

/
0r°° í i   rx \9 \1^     / r°°      \xlq

I {-Jomd')alx)äx) «U s'w

+

= h + h

/•oo   /   fX   /   /.oo    \p-l \1IP

/    / (/ h)   hiy}y"dy)   x-qw(x)dx

1/9
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Proposition 1(a) yields

h<Ao(r f(x)v(x)dx

Applying Minkowski's inequality we find that

(/•oo   /   fOO     \p—i

I    (J    h)      h(y)V(y)dy

Up

\P-1 /   /»oo \p/q\ i/p

A ]      h(y)yp dy Í /    x~qw(x) dx)     dy]

B-\ Up

[ /    fp(x)v(x)dx
Up

Combination of these upper bounds on It and I2 completes the proof.

3.3.  The following result is a sufficient condition for (4) if 0 < q < p < 1.

Proposition 2. Let 0 < q < p < 1.   Then the inequality (4)  is valid for all
nonincreasing functions f >0, if Bo < oo and

Di = Í H ( rx~qw(x) dx)     V-r'"(t)tr-1 dt\     < 00.

Proof. Let us denote jt°° x qw(x)dx by Wo(i) and suppose that f(x) = J™h

as above. It has already been shown that

yX f(s)dx < 2-llp'pxlp (jX n°° hX    h(y)yp dy)     + 2~llp'xf(x).
10

Then we have as above

7 = i/" {x Í f{t) dt)  W{X) dX)     <<; h + h'

Applying Proposition 1 (b) we get

s  1/9

h^Botr fp(x)v(x)dx

An upper bound on I2 is obtained as follows.

/f «

Up

q/p
/•OO    /    fX    /    fOO      \P—1

/    / (/ h)   h^yPdy)  x~Qwix)dx

x  /  ,oo    xp-l y»

I    h\     h(y)ypdy\     x~q 'pwqlp(:
Jo      \Jo

• ([X%ror/P(t)v~r'"it)tr~ldt)

x-q^-qlpW-q'p(x) ( fX W0r'p(t)V-r'p(t)tr-1 dt)
Q/r

dx
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(applying Holder's inequality with exponents p/q, r/q),

- u°° u {Fhï h{y)yPdy) x~"w^

\-Plr       \q'p
W0r/p(t)V-rlp(t)tr-ldt\       dx\u

q/r

• (f   x-qw(x) f W¿lp(t)V-rlp(i)tr-xdt

(/»oo   /   /»oo    \P~ ' /»oo

h      \J 7 h{y)yPJ       X~"W{X)

f fx       . s -Pit \ qlp
•(/   W0rlP{t)V-'l*{t)f-ldt\       dxdy\

Let us note that

roo /  rx \ -P/r

yp Hx~qw(x) (FW0rlp(t)V-rlp(t)tr-ldt\       dx

<yp H''W0rlP(t)V-rlp(t)tr-ldt\ '   Wo(y)<ypV(y)(J' f~xdt\

= rplrV(y).

This implies the estimate

aoo \ q/p
f»V'2 ^^1

and ends the proof.
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