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SETS OF DETERMINATION FOR HARMONIC FUNCTIONS

STEPHEN J. GARDINER

Abstract. Let h denote a positive harmonic function on the open unit ball B

of Euclidean space R" (n > 2). This paper characterizes those subsets E of

B for which sup£ H/h = supB H/h or inf£ H/h = infa H/h for all harmonic
functions H belonging to a specified class. In this regard we consider the classes

of positive harmonic functions, differences of positive harmonic functions, and

harmonic functions with a one-sided quasi-boundedness condition. We also

consider the closely related question of representing functions on the sphere

dB as sums of Poisson kernels corresponding to points in E .

1. INTRODUCTION AND MAIN RESULTS

Let B(X, r) denote the open ball in R" with center X and positive radius

r, and define B = B(0, 1), where O denotes the origin of R" . The Poisson

kernelfor B with pole Y in dB isgivenby P(Y, X) = o~x(l-\X\2)\X-Y\-n ,
where an is the surface area of dB . For any h in the class ß?+ of all positive

harmonic functions on B, let ph denote the corresponding measure on dB

such that h(X) = ¡dBP(Y, X)dph(Y).
Let h 6 ß?+ . The main purpose of this paper is to establish necessary and

sufficient conditions on a subset E of B for the equality sup£ H/h = supÄ H/h
(or infs H/h — infB H/h) to hold for all harmonic functions H belonging to

certain classes. It will be shown that what is required is that there is "enough

of E" near every, or almost every (///,), Y in dB, depending on the class

considered. More precisely, if E C B and 0 < p < 1, we define a set Ep =

\JX&EB(X, p(l - \X\)), where \X\ denotes the Euclidean norm of X, and a
function

E*JY)= [  \X-Y\-"dX       (Y£dB),
Jep

which takes values in [0, oo].   By "enough of E" near Y in dB we mean

E*(Y) = oo for some p. The significance of E*(Y) is shown by the following

result.

Theorem A. Let E ç B and Y £dB. The following are equivalent:

(ii) F*(Y) = oo    for some p in (0, 1) ;

(iii) E*(Y) = oo    for all p in (0,1).
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Theorem A is essentially due to Beurling [2] when n = 2 and was established

for higher dimensions by Dahlberg [6]. An alternative proof has been given by

Sjögren [13]. A further equivalent condition, involving "separated sequences"

of points in E, can also be found in the cited papers. We remark that, of

course, the value of the infimum in (i) above is ¡Ih({Y}).

It is an interesting fact that the characterization of sets E which determine

supß H/h is closely related to the representation of functions on the sphere

dB in terms of Poisson kernels corresponding to points in E. Thus we also

consider representations of positive continuous functions f on dB, and of

functions / in Lx(ph), of the form

f = YJhPi-,xk)„

where {Xk} ç E .
Let SP%? denote the class of all subharmonic functions 5 on B such that

s+ has a harmonic majorant on B , and let £? denote the subclass of harmonic

members of 5?%?. Thus %? consists of the harmonic functions on B which

can be written as Hi~H2, where Hi, H2 £ <%*+ . Also, let sf(f; X, r) denote
the mean (when defined) of a function / over the ball B(X, r).

Theorem 1. Let E ç B. The following are equivalent:

(i) sup H(X) = sup H(X)    for all H in ß?' ;
XeE X<EB

sf{s;X,K(l-\X\)) s(X)      .     ,,    .    _,_„
n        sup        : ;—l_hz = sup v¿  for all s in ^Xj

X€E h(X) xeßh(X)

all h in ß?+, and all k in (0, 1);

(iii)        there exists p in (0, 1) such that E*(Y) = oo for all Y in dB;

(iv)      for every positive continuous function f on dB there exist se-

quences (Xk) in (0, +oo) and (Xk) in E such that

oo

f(Y) = YlhP(Y,Xk)       (Y£dB).
k=\

Theorem 1 (equivalence of (i), (iii), and (iv)) was recently established when

n = 2 by Hayman and Lyons [12, Theorems 2, 3]. Bonsall and Walsh [5,
Theorem 10], also working in the plane, established the equivalence of (i) and

(iv) using a different approach, and asked [5, p. 432] if this could be extended to

give a short proof of the Hayman-Lyons result. The proof of Theorem 1 (given

in §3) answers their question affirmatively, as well as extending the contents

of [12] to higher dimensions. The extra condition (ii) contains the statement

"sup£ H/h = supa H/h for all H in ¿T and all h in <%"+," because of the
mean value property of harmonic functions. We note that Essén [9] (n = 2)

and Dudley-Ward [8] (n > 2 and more general domains) given proofs of the

equivalence of (i), (iii), and (iv) independently of our work.

Let <I> denote the class of all convex strictly increasing functions 4>: [0, oc) ->

[0, oo) such that (f>(x)/x —> oo as x —> oo . (Doob [7] describes these as uniform

integrability test functions. An example is the function (f>(x) - xp when p > 1 .)
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Further, if h £ ß?+ , let S^^h^ denote the class of all subharmonic functions

s on B such that h(f>(s+/h) has a harmonic majorant on B for some <j> in O.

(We recall [10] that the convex increasing property of 0 ensures that h(f>(s+/h)

is itself subharmonic on B.) As before, %h,<s> denotes the class comprising

the harmonic members of ¿72?\ <j,. In particular, ^ $ contains all harmonic

functions H on B such that H/h is bounded above.

Theorem 2. Let E ç B and let h be a positive harmonic function on B with

corresponding measure pf,. The following are equivalent:

(i) inf %$■ = inf ^l    for all H in X+ ;
v ' X€E h(X)     xeB h(X)

(ii) sup -7-^ = sup -j-y-    for allHin&hi<»\
X€E h(X)     xeB h(X)

..... s/(s;X,k(1-\X\)) s(X)
(m) sup —i-j-±-L_ü¿ = sup -A-J-

xcE h(X) xeßh(X)

for all s in J^^,,* and all k in (0, 1);

(iv) there exists p in (0, 1) such that E*(Y) = oo

for almost every (ph) Y in dB.

We note that Theorem 2 (equivalence of (i) and (iv)) is a generalization of

Theorem A. It is not hard to see that the value of the infimum in (i) is equal

to the essential infimum of the Radon-Nikodym derivative of the absolutely

continuous component of pa relative to pk • (See [7, 1.XII. 19].)

Corollary 1. Let E ç B and let h be a positive harmonic function on B with

corresponding measure p^. If there exists p in (0, 1) such that E*(Y) = oo

for almost every (pn) Y in dB, then for every f in Lx(ph) there exist (Xk)

in /i(C) and a sequence (Xk) of points in E suchthat

(1) f = YJhP(-,Xk)/h(Xk)
k=\

(convergence in the sense of Lx(ph)). Further,

\\f\\v(nh) = inf{^I^A:l: (1) holds for some sequence (Xk) in E\ .

The converse of Corollary 1 is false in general, as can easily be seen by

considering the case h = P(Z, •) for any Z in dB. However, more can

be said when h = 1. Let a denote surface area measure on dB. A positive

harmonic function on B is called quasi-bounded if it is the limit of an increasing

sequence of bounded positive harmonic functions.

Corollary 2. Let E ç B. The following are equivalent:

(i) inf H(X) = inf H(X)     for all H in ¿F+ ;
XÇlE XÇ.B

(ii)        supjg^ H(X) = supxeB FI(X) for all harmonic functions H
which have a quasi-bounded harmonic majorant on B ;

(iii)       supA-6£ H(X) - sup^gg H(X) for all bounded positive harmonic

functions H on B ;
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(iv)       there exists p in (O, I) such that E*(Y) = oo for almost every

(a) Y in dB ;

(v)       for almost every (a) Y in dB there is a sequence of points in

E which converges to Y nontangentially ;

(vi)      for every f in Lx(a) there exist (Xk) in /[(C) and a sequence

(Xk) of points in E such that

oo

(2) f=Y,hPi-,Xk),
k=\

and, further,

II/IIl'î*) = mi"{X] l^l' i^ holds for some sequence (Xk) in E> .

Corollary 2 extends a recent result of Bonsall [4], who showed in the case

of the unit disc that (v) and (vi) are both equivalent to saying that sup£ \H\ =

supB \H\ for all bounded harmonic functions H. The equivalence of (iv) and

(v) when n = 2 is due to Walsh and Hayman (see [11]).

Finally we add below a further equivalent condition to Theorem A.

Theorem 3. Let E Ç B and Y £dB. Then E*(Y) = oo for some p in (0,1)

if and only if

lim inf t^tQ- = lim inf ̂ §j    for all H in X + .
x^Y   1 - \X\      x^y   1 - \X\
X€E '     ' XeB '     '

Theorems 1-3 are proved in §§3-5, and the two corollaries are deduced in

§6.

2. Preliminary material

In this section we record several facts that will be used in the proofs of the

main results. The first is simply a version of Harnack's inequality: if H £ ^+

and p £ (0, 1 ),then

(3)     (TTTF^fiySif^  »"^^.'('-izi)).
The second is an estimate used by Beardon [1, Lemma 3.2] to prove an

analogue of Harnack's inequality applicable to volume means of positive super-

harmonic functions. We give a proof here for the sake of completeness.

Lemma 1. Let u be a positive superharmonic function on B(Z, R), let

r £ (0, R) and S £ (0, 1). If X £ B(Z, min{R - r, or}), then u(X) >
(l-S)nsf(u;Z,r).

In fact,

u(X)>stf(u;X,r)>no-xr-"( u(X)dX
JB(Z,(\-S)r)

= (l-Ô)ntf(u;Z, (l-ô)r)>(l - 6)nsí(u; Z , r).
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The next result is due to Dahlberg [6, Theorem 2] when n > 3. A closely

related result had previously been established for n = 2 by Beurling [2, Lemma

I]. An alternative proof, valid when n > 2, can be found in Sjögren [13, The-

orem 2]. We express it here in terms of the minimal thinness. (An account of

the minimal fine topology can be found in Doob [7,1.XII].)

Theorem B. Let Y £ dB. If E is a measurable subset of B such that

JE \X - Y\~n dX = oo, then E is not minimally thin at Y.

Our final main tool, which is true more generally than stated below, can be

found in Doob [7, 1.XII. 17, Application].

Theorem C. Let h be a positive harmonic function on B with corresponding

measure p^ , and let E be a subset of B such that almost every (p^) Y in dB

is a minimal fine limit point of E. If u is a positive superharmonic function on

B such that u> Ch on E, where C > 0, then u> Ch on B.

3. Proof of Theorem 1

3.1. We begin by showing that (iii) implies (ii). Suppose that (iii) holds, that
5 £ 5?%? and that k , ô £ (0, 1). We can write s as H - u, where H £ ß?+

and « is a positive superharmonic function on B . By Theorem A, E*(Y) — oo

for all Y in dB , where p = min{l - k, ok} . If X £ B(Z , p(l - \Z\)), then
Lemma 1 applied to u on B(Z, 1 - |Z|) shows that

(4) sf(u;Z,K(l - \Z\)) < (l-ô)-"u(X).

Let /¡e/+.We define

sZ(s;Z,k(1-\Z\)) s(Z)
c = sup —i-t-^t—¡—^    and    d = sup -^-/- .

z&E h(Z) zeßh(Z)

If d < oo, then s < dh in B , so

s/(s;Z,k(1 - \Z\)) < dsf (h; Z , k(1 - \Z\)) = dh(Z)       (Z £ B),

and hence c < d . Thus, if c = oo , we must have d = oo also.

Now suppose that 0 < c < oo . Clearly

(5) H(Z)<ch(Z)+sf(u;Z,K(l-\Z\))       (ZeE).

Applying (3) to h and H, and using (4) and (5), we have

(1 - o)n (1 + p)n
W        K-Y^H(X)<c{-r^ß-h(X) + (l-o)-»u(X)       (X£EP).

From Theorem B, every Y in dB is a minimal fine limit point of Ep . Thus,

by Theorem C, (6) holds for all X in B . Letting S tend to 0 (so that p -» 0
also), we deduce that s = H - u < ch on B . Thus d < c. From the previous

paragraph we now have d = c.

If c < 0, an analogous argument can be applied to the inequality

H(Z)-ch(Z)<s/{u;Z,K(l-\Z\))       (Z£E)

in place of (5). We have now established (ii).

3.2. The mean value property of harmonic functions shows that (ii) (with

h = 1) implies (i).
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3.3. An argument of Bonsall and Walsh [5, Theorem 10 (ii)=>(i)] (originally

stated for n = 2, but valid also in the present context) establishes that (i)
implies (iv).

3.4. It remains to show that (iv) implies (iii). We fix Z in dB, H in %"",

and define c = inf£ H/P(Z , •). Now fix X in B . By (iv) there exist sequences

(Xk) in (0, oo) and (Xk) in E suchthat

oo

P(Y,X) = J2hP(Y,Xk)       (Y£dB).
k=\

Integrating with respect to dpn(Y) we have, by monotone convergence,

oo oo

H(X) = £XkH(Xk) > c £ XkP(Z , Xk) = cP(Z , X).
k=\ k=\

Since X was an arbitrary point of B, we now have inf# H/P(Z, •) - c.

Since H was an arbitrary member of ß?+, it follows from Theorem A that

E*(Z) = oo for all p in (0,1). Since Z was an arbitrary point of dB, (iii)

is proved.

4. Proof of Theorem 2

4.1. Let S £ 5^2ífh^. Then there exists <p in <P and H0 in X+ such that

h(j)(s+/h) < Ho on B. Hence s+ is majorized on B by h<f>~x(Ho/h), which is a

superharmonic function (cf. the argument in [10]). Let H be the least harmonic

majorant of s+ on B. Then s+ < H < h(f)~x(Ho/h), whence h(¡>(H/h) < Ho

on B. It follows (see [7, 1.IX.12]) that pn is absolutely continuous with

respect to Ph on dB. Thus we can write s = H - u, where u is a positive

superharmonic function on B and H is as above.
With this extra ingredient, the proof that (iv) implies (iii) follows the pattern

of §3.1. (Almost every (pu) Y in dB is a minimal fine limit point of Ep

since almost every (ph)   Y in dB is.)

4.2. It follows from the mean value property of harmonic functions that (iii)

implies (ii).

4.3. If H £ ß?+ , then -H £ ^;0 , so (ii) implies (i).

4.4. It remains to prove that (i) implies (iv). Suppose that (iv) does not hold.

If E is empty, then (i) fails since inf^ H/h = oo. Thus we can assume that

£/0. If E ç B, let H be any member of ß?+ which is not a multiple of
h , and put c = inf£ H/h . Applying the minimum principle to H - ch , it is

clear that (i) fails. In what follows we can thus assume that E is not compactly

contained in B. Further, it is enough to show that (i) fails when E is replaced

by E\B(0, R) for some R less than 1.
Let e be a fixed positive number and define

fk(Y)= ! \X-Y\-"dX       (Y£dB)
JE!,\B(0,\-\lk)

when k = 2,3,.... Since (fk ) decreases to the zero function on a set of

positive Ph -measure, we can choose k£ large enough so that the set D = {Y £

dB: fkc(Y) < e} has positive ph-measure. Thus, replacing E by E\B(0, R)
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for a suitably chosen R in (0, 1), we can assume that E*(Y) < e for all Y in

a set D of positive pf, -measure. Further, by choosing e to be sufficiently small
we can ensure that TY n Ep = 0 for all Y in D, where

TY = {X: l-\X\> \X-Y\/2}.

We now define a measure X on the Borel subsets A of dB by putting X(A)

equal to the «-dimensional Lebesgue measure of {X £ Ep: X/\X\ £ A} . For
each Y in D let

HY(X)= [   \Y -Z\~nP(Z,X)dX(Z)       (X£B).
Job

Since TY <~)EP = 0 we have

(7) /   \Y-Z\-"dX(Z)<C(n)E*p(Y)<C(n)s< 00,
JdB

(we use C(n) to denote a positive constant depending on n, not necessarily

the same on any two occurrences) and so HY is harmonic on B for each Y in

D. Also, if X e E, then

Hy(X) > C(n)(l - \X\)X~"\X - Y\~" i dZ
(8) Jb(x,P(i-\x\))

>C(n)p"P(Y,X).

We now define

H,{X)= IP(Y,X)dph(Y),        H2(X)= [      P(Y,X)dph(Y),
JD JdB\D

and

(9) H3(X) = [ Hy(X) dph(Y) = f   f(Z)P(Z, X) dX(Z),
JD JdB

where

(10) f(Z)= [ \Y-Z\-"dph(Y)       (Z£dB).
Jd

(The change in order of integration in (9) is valid because the integrand is

positive.) Clearly Hi and H2 are harmonic functions on B. Since

/   f(Z)dX(Z)=   [ if   \Y-Z\-"dX(Z))dph(Y)
(11) Job Jd UdB J

< C(n)eph(D) < 00,

by (7), so too is H3. We define H = H2 + 7/3. If X £ E, then (8) shows that
Hi(X) > C(n, p)Hi(X), and so

H{X)     H2{X) + C{n,p)Hi(X)
W)--W)-^c("'/>)    (XeEï>

since h = Hi + H2.

The proof will be complete if we can show that inf# H/h = 0. To do this, we

apply the Fatou-Naïm-Doob boundary limit theorem [7, 1.XII. 19] to observe

that

(12) mnim^||| = 0    for a.e. (ph) Y in D
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so that

(13) mf Um j^ = 1    for a.e. (ph) Y in D,

where the prefix "mf ' signifies that the attached limit is with respect to the

minimal fine topology on B. Also, the function / defined in (10) is valued

oo at almost every (ph) Z in D. (To see this, apply [7, I.V. 11] to the set

D x {(0, 0)}, which is polar in R"+2.) Thus, from (11), the measure X is

singular with respect to the restriction of Ph to D, and so

(14) mnim^||| = 0    fora.e. (ph) Y in D.

Combining (12), (13), (14), we have

mf lim T7?l = mf Hm (HllHl~ï"'IHx) iX) = 0
x-*y h(X) x^y \ h/Hi J

for a.e. (ph) Y in D.

Since Ph(D) > 0, it follows that infBH/h — 0, as required. The proof of
Theorem 2 is now complete.

5. Proof of Theorem 3

5.1. The only if part of Theorem 3 will be proved first. Suppose that E*(Y) =
oo for some p in (0, 1). By Theorem A, E*(Y) — oo for all p in (0,1).

Let H £ ¿r+ and define F(X) = H(X)/(l - \X\). From (3), F(X) >
(1 - p)(l + p)-"F(Z) for X in B(Z , p(l - \Z\)) and so

( 15) lim inf F(X) > ,} ~ .   lim inf F(X).
K     ' X^Y       K    ' - (1 + p)n    X-*Y       V     '

xeE„ v       r'     xeE

Since (by Theorem B) Ep is not minimally thin at Y, we have

(16) mflimsupF(A')>liminfF(X).
y—.v x—>y*     r X€E„

Let t7(-, •) denote the Green function for B. For any positive superharmonic

function u on B it is known (see [7, 1.XII. 14]) that u/G(0, •) has minimal

fine limit at Y equal to its lower limit there. Since G(0, X)/(l - \X\) has a

positive limit as X —► Y, it follows from (15) and (16) that

liminfF(X) >    * ~ .   lim inf F(X) > ,} ~ P.   liminfF(X).
X_y       V    >-l\+p)n    x-,Y ' -  (I + p)"    X^Y
xeB r'     xeE v      r>     xeB

The argument is completed by letting p tend to 0.

5.2. To prove the if part of Theorem 3, suppose that E*(Y) < oo for some p

in (0, 1). If Y is not a limit point of E, then we interpret the lower limit of

any function as X —» Y along E as oo . In this case, if we take Z in dB\{Y}

and define H = P(Z , •), we have

lim inf H(**l  = (2/on)\Y - Z\~n < lim inf H{'
x-*Y   \-\X\     w   "" ' x^y   \-\X\
xeB '    ' xeE '   '
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We now assume that Y is a limit point of E. Since E*(Y) < oo , there is

no sequence of points in E which converges nontangentially to Y . It follows

that Y is not a limit point of TY n Ep . Thus we can assume, without loss of

generality, that TY n Ep — 0 .

Since E*(Y) < oo, there exists a decreasing function /: (0, oo) —> (0, oo)

such that f(t) -> oo as í —► 0+ and

(17) /  \X-Y\-nf(\X-Y\)dX<oo.
JE„

Now let X be the measure defined on the Borel subsets A of dB by

X(A)= [ f(\X-Y\)dX,
JiXeEp :   X/\X\eA}

and define H(X) = J P(Z, X)dX(Z). Since Ty n £, = 0, it follows from
inequality (17) that / \Z-Y\~" dX(Z) < oo . Hence, by dominated convergence,

H(X)/(l - \X\), has a finite radial limit at Y .
It is now sufficient to show that H(X)/(l - \X\) —> oo as X approaches Y

along E. In fact, if X £ E, then

H(X)>C(n)(l-\X\)x~" [ f(\Z-Y\)dZ
Jb(X,p(\-\x\))

>C(n)pn(l-\X\)f((l+p/2)\X-Y\).

Hence, as X approaches Y along E,

j^jl- > C(n)p"f((l + p/2)\X - T|) - oo,

as required.

6. Proof of Corollaries 1 and 2

6.1. The proof of Corollary 1 is based on the following result of Bonsall [3,

Theorem 1], and the application given in [3, Corollary 2].

Theorem D. Let (fk) be a sequence in a Banach space äf such that \\fk\\ < Ci

for all k in N and sup¿. \iy(fk)\ > C2||y|l for all i// in Sf*, where Ci, C2 > 0.
Then every f in Sf is of the form f — Yl^-kfk for some (Xk) in li(C), and
also

C2inf{^;|4|}<lt/ll<C,inf{£|A,|},

where the ínfima are taken over all possible choices of (Xk) in the representation

ofj.

Now let E and h be as in the statement of Corollary 1, let {Xk} be a

countable dense subset of E, and put fk(Y) = P(Y, Xk)/h(Xk) for Y in
dB. Clearly each fk has norm 1 in Lx(ph). Next, let y £ (Lx(ph))* . By the

Riesz representation theorem there exists g in L°°(pf,) such that

Vif)= [   f(Y)g(Y)dph(Y)        (f£Lx(ph))
JdB
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SUP|V(A)| = SUPJ-TTJT-[ = llsll/,«^») = \M

and ||i^|| = 11 g ||l°° (/*,,). Using first Theorem 2 ((iv) => (ii)) and then the fact [7,
1.XII. 19] that

mf Bm V{P^{x))] = g{Y)    a"e- {lih) YindB>

we obtain

\¥iPi-,X))\
ken xeB

Hence Theorem D can be applied, with Ci = 1 = C2, to obtain Corollary 1.

6.2. Corollary 2 will now be proved. If H is a harmonic function which has a

quasi-bounded harmonic majorant on B , then [7, 1.IX.12] there exists <f> in <I>

such that <p(H+) has a harmonic majorant on B . With this observation, the

equivalence of (i), (ii), and (iv) is immediate from Theorem 2 (with h = 1, so

that Ph = a). Further, it is easy to see that (v) implies (iv), and Corollary 1

shows that (iv) implies (vi). It remains to check that (vi) implies (iii) and that

(iii) implies (v).

So suppose that (vi) holds, let H be a bounded positive harmonic function

on B, and put c = sup£ H. Also, let e > 0. If we fix X in B, then there

exist (Xk) in /i(R) and a sequence (Xk) of points in E suchthat
oo oo

P(-,X) = Y/hP(-,Xk)     and     £|4|<l+e.
k=\ k=\

Integrating with respect to dph(Y) and using the monotone convergence theo-

rem, we have
oo oo

H(X)<J2KHiXk)<c¿ZK<ci1+£)-
k=\ k=\

Since X and e were arbitrary, we now have supB H = c, which proves (iii).
Finally, we prove that (iii) implies (v) using an argument similar to that in

Bonsall [4, Theorem 3]. Suppose that (v) fails. When Y £dB and 0 < a < 1 ,
let T'y denote the region {X: a > 1 - \X\ > \X - Y\/2}. By choosing a to

be sufficiently small we can select a subset D of dB, of positive (but not full)

surface area measure, such that T'yCiE = 0 for all Y in D. We define

H[A](X)= ¡P(Y,X)do(Y)       (XeB)
Ja

for any Borel subset A of dB, and

d = inf{H[dBnB(X,2(l -\X\))](X): 1 -a<\X\ < 1}.

Clearly d > 0. Hence H[D] is a bounded positive harmonic function on B

such that supß H[D] - 1 and

sup H[D] < max \ 1 - d,      sup      H[D] I < 1,
E [ EnB(0,\-a) J

contradicting (iii). This completes the proof of Corollary 2.

Added in proof. Professor Maz'ya has informed me that his paper, Beurling's

theorem on a minimum principle for positive harmonic functions (in Russian),

Zap. Nauch. Sem. LOMI 30 (1972), 76-90 (English transi, in J. Soviet Math. 4
(1976), 367-379) extended Beurling's minimum principle to higher dimensions;

cf. Theorems A and B above.
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