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RIGIDITY OF INVARIANT COMPLEX STRUCTURES

ISABEL DOTTI MIATELLO

Abstract. A Kahler solvmanifold is a connected Kahler manifold (M, j, ( , ))

admitting a transitive solvable group of automorphisms. In this paper we study

the isomorphism classes of Kahler structures (j, ( , )) turning M into a

Kahler solvmanifold. In the case when (M, j, ( , )) is irreducible and simply

connected we show that any Kahler structure on M , having the same group of

automorphisms, is isomorphic to (j, ( ,  )).

1. Introduction

A Kahler solvmanifold is a connected Kahler manifold (M, j, ( , )) which

admits a transitive solvable group R of automorphisms (= holomorphic isome-

tries). Two Kahler solvmanifolds (M, j, ( , )) and (M, j, {( , ))) will be
considered isomorphic if there exists a biholomorphic map <p : (M, j, ( , )) —►

(M, j, {{ , ))). Since the pullback, by a diffeomorphism, of a Kahler structure

is again a Kahler structure we will often say that two pairs (j, ( , )), (j, {( , )))

(on a fixed M) are isomorphic if the corresponding solvmanifolds (M, j, ( , ))

and (M, j, (( ,  ))) are isomorphic.

The problem we will consider in this paper is related to the number of iso-

morphism classes of Kahler structures (Jt(i )) on M turning it into a Kahler

solvmanifold.
There are two basic types of Kahler solvmanifolds: (i) locally flat homoge-

neous Kahler manifolds (C"xTk as Cl manifolds), (ii) homogeneous bounded

domains. Moreover, it was proved by Dorfmeister in [4] that every Kahler solv-

manifold fibers over a homogeneous bounded domain and each fiber is a locally
flat Kahler manifold. Concerning the question we posed above it is known: (i)

in C" all invariant complex structures are equivalent and in Tk there exist

nontrivial deformations of invariant complex structures; (ii) irreducible homo-

geneous bounded domain have, up to conjugation, a unique isomorphism class

of Kahler structure with a fixed group of automorphisms [5].

It is well known (see [7]) that every Kahler solvmanifold (M, j, ( , )) ad-

mits an almost simply transitive solvable group of automorphisms. Thus we may

identify (M, j, ( , )) with (R/T, j, ( , )) where R is a simply-connected

solvable group, j is an invariant complex structure, ( ,   ) is a left invariant
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160 I. D. MIATELLO

Kahler metric and T is a discrete subgroup of

{x £ R: Ad(x) is orthogonal and complex linear}.

In particular, simply-connected Kahler solvmanifolds can be identified with

solvable Kahler algebras (see §2) and irreducible and simply connected Kahler

solvmanifolds can be identified with solvable Kahler algebras that cannot be

decomposed into a sum of j invariant ideals. We call such algebras irreducible.

The main purpose of this paper is to prove

Theorem 6.1. Let (M, j, ( , )) be an irreducible Kahler solvmanifold with

M simply connected and G the group of automorphisms of M. Then any other

Kahler structure {j, {( , ))) on M with group of automorphism G is isomorphic

to (j,( , ».

The proof of the above theorem reduces to the case when (t, j, ( , )), the

solvable Kahler algebra associated to (M, j, ( , )), satisfies that the eigenval-

ues of ad* are real numbers, that is t is a split solvable Lie algebra. This is so,

since solvable Kahler algebras are normal modifications of split solvable ones

by a result of Dorfmeister (see [4]). For irreducible and split solvable Kahler

algebras, with no restriction on the group of automorphisms of the correspond-

ing solvmanifold, we prove that every Lie algebra isomorphism gives rise to a

complex (up to conjugation) isomorphism (Corollary 5.1).

2. Basic notation and results

A solvable Kahler algebra (t, j, ( , )) is a solvable Lie algebra t together

with an inner product ( ,  ) and an orthogonal map j : t -* x satisfying

(i) ;2 = -id,

(2) j[x, y] = [jx, y] + [x, jy] + j[jx, jy],

(3) ([x, y], jz) + ([y, z], jx) + ([z, x], jy) = 0.

A solvable Kahler algebra is said to be irreducible if it cannot be decomposed

into a sum of ^-invariant ideals. A split solvable Kahler algebra is a solvable

Kahler algebra such that the eigenvalues of adjc, x £ x, are real numbers. A

normal j-algebra is a split solvable Kahler algebra such that (x, y) — co[jx, y],

x, y £ r, where oí is a linear form on r. Normal j-algebras will be denoted

(x, j, co). We note that normal j-algebras do not possess ./-invariant abelian

ideals. Also, if <f>(x, y) = -(x, jy) is the Kahler form then (3) says that </>
is closed. On the other hand normal y-algebras are the split solvable Kahler

algebras whose Kahler form <f> is exact.
Given a real vector space V with an endomorphism j satisfying j2 = - id

and a skew-symmetric bilinear form p, (V, j, p) is a symplectic space if for

any u, v £ V,

(4) p{ju, jv) = p{u,v),        p(ju,u)>0,        u^O.

Let r be a solvable Kahler algebra and let u be an abelian j-invariant ideal.

Then s, the orthogonal complement of u is a y-invariant subalgebra (by using

(3)) hence a solvable Kahler algebra and for every x £ s ,

(5) j ad* - ad,-* = adA j + j adjx j
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when restricted to u. Furthermore, (u, j:, p) is a symplectic space and for

every x £ s, ad* is a symplectic transformation of u. In fact, it follows from

(3) that if u, v £u, x £x,

p{adxu,v) + p{u,adxv) = ([x, u],jv) + {[x, v],ju) = 0.

Conversely, let (u, j, p) be a symplectic space, let (s,;',(,)) be a solvable

Kahler algebra and let p: s —► gl(u) be a representation by symplectic transfor-
mations such that ad* u = fi(x)(u) satisfies (5). Then u©s inherits a structure

of solvable Kahler algebra with u as a ./-invariant abelian ideal.

Moreover, it was proved by Gindikin, Vinberg and Pyatetskii-Shapiro that

this construction is general, that is, every split solvable Lie algebra can be ob-

tained as above. We state their theorem and some consequences. All proofs can

be found in [6].

Theorem 2.1 (Gindikin, Vinberg, Pyatetskii-Shapiro). Every split solvable Kahler

algebra (x, j, ( , )) can be decomposed into a semidirect sum

x = u©s

where u is a commutative j-invariant ideal and s is a normal j-algebra. Every

normal j-algebra has an element s with the following properties:

1. [;'s,s] = 5,

2. the operator ad;i |„ is semisimple and has eigenvalues 0, 1, \ with eigen-

spaces bo , si, si respectively,

3. jso = si, jsi = s0, jsi = si.

2.1 Some consequences.   See [6] for the proofs of the statements below.

1. The operator adyi |u is semisimple and has eigenvalues 0, ±j with eigen-

spaces uo, u±i satisfying jux - u_x ■ k-0, ±\ .

2. [u0,si] = 0, [u0,s0] = 0.

3. The decomposition of

r = u0 © Ui © u_i © sj © so © si

is orthogonal with respect to ( ,  ).

4. 3, the center of r, is a j-invariant ideal.

2.2 Decomposition of normal y-algebras. Let (x,j,( , )) be a split solvable

Kahler algebra with decomposition t = u © s (given by Theorem 2.1) with

u abelian and s a normal j-algebra. According to the structure theorem of

Pyatetskii-Shapiro [8], a normal j-algebra (s, j, <y) can be decomposed s =

0 © n (an orthogonal direct sum of vector spaces) where a is abelian and n =

[s, s]. Moreover (i) the subalgebra n can be represented as an orthogonal direct

sum of the root spaces nQ = {x £ n: [h, x] = a(h)x, h £ a} with respect to the

adjoint action of a on n ; (ii) there are roots £■ , ... , er, r = dim a, such that

ja c n is the direct sum of the one dimensional root spaces n£;, i = \, ... , r,

and with proper labelling all other roots are of the form   \ek ,   \{ek ± em),

1 < k < m < r (although not all these need be roots). Also jniek = nuk and

Jn\(ek±em) = n{(ekTem) •

The following notation will be used frequently in this paper.

If (s, j, a») is a normal j-algebra we will let a denote the orthogonal com-

plement of n = [s, s] with respect to the inner product induced from co . Since
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&kUHsm) = 0• m ^ k and &kUl!Uk) ¥" 0• (see [2]) we will fix xk e nEk satisfying

£i(JXk) = Sik .

3. Complementary results

Keeping the notation of the previous section we prove now a series of lemmas.

First we note that given a split solvable Kahler algebra t — u © s,

(6) o c u for any abelian j-invariant ideal d .

In fact, given v £ o , write v = vu + vs with respect to the decomposition given

in Theorem 2.1. Now

0 = [jv , v] = [jvu, vB] + [jva, vu] + [jvs, vs]

implies vs = 0 (since (vB, v3) — œ[jvB ,v„]). In particular the decomposition

of Theorem 2.1 is unique.

Lemma 3.1. If (x, j, ( , )) is a split solvable Kahler algebra then js £ a and

uo © a is an abelian subalgebra which coincides with its own centralizer.

Proof. We note first that a c so since by Theorem 2.1, [js, s{ © si] = s- © si

and the decomposition si © so © si is orthogonal. Because [uo,s0] = 0 it

follows that u0 © a is abelian.

We verify next that s given in Theorem 2.1 satisfies js £ a. It is clear that
js £ so thus s £ s. Now

([xa, yß], js) = -([s, xa], jyß) - {\yß , s), jxa) = 0

since a+ 1 and ß+ 1 are not roots. To prove the last assertion let u + x £ u©s

be an element centralizing uo © a. In particular x centralizes o and by the

structure theory of normal ;'-algebras it follows that x £ a. Using that js £ a

one obtains that u £ u0 as claimed.

Lemma 3.2. If (t, j, ( , )) is a split solvable Kahler algebra then 3 © a is the

orthogonal complement of [t, t].

Proof. Clearly (3, [r, r]) = (73, [r, r]) = 0 (see 2.1), thus 3 © a is orthogonal

to [r, r]. Conversely if {ju + x ,[x, x]) = 0, u £ u, x £ s then u £ uo and

x £ a. Furthermore {ju, [u, t]) = 0 if and only if for every v £u and x £x,

0 = (ju, [v,x]) = ([u,x], jv)

or equivalently u (hence ju) is in the center 3.

We observed that, as a consequence of (6), the decomposition r = u © s

of a split solvable Kahler algebra was unique. The following lemma shows in

particular that, up to an element in the center, there exists a unique 5 with the

properties listed in Theorem 2.1.

Lemma 3.3. Let (x, j, { , )) be a split solvable Kahler algebra and let s £ x,

set satisfying
(j) s is a subalgebra of x such that x = u ©s (not necessarily orthogonal).

(jj) adfi\j is semisimple with eigenvalues 0,l,j. If Sx, k = 0, 1, ¿,
denotes the corresponding eigenspaces then jso = si, jsL = sx.

Then s - s £ 3 and s, = s,.

Proof. We assume first J 6 s- . Since u is j-invariant, r/u inherits a structure

of a normal j-algebra.   Moreover, if n : x —> t/u is the quotient map, then
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n(s) and n(s) satisfy (i), (ii) and (iii) of Theorem 2.1. It follows from [6, p.

41], that n(s) = n(s) hence s = u + s,u£u. In particular ad^ |u - ad7i |u •

Since [js, s] = s and [js, s] = s it follows that [ju, s] + [js, u] = u. If
u — uo + u\ + u_\  then it follows from 2.1 that [ju, s] = [jui, s] and from

(2) that [jui, s] = Ui. Thus u = [ju, s] + [js, u] = U\ + \uL - \u_\_ implies

u £ uo . On the other hand if x £ s, and u £ uo then,

0 = (Us, x], ju) + ([u, js], jx) - ([x,u],s) = (x, ju) - ([x,u],s).

Since [js[x, u]] = [x, u] and 1 is not an eigenvalue of ad^ in u it follows

that (I, uo) = 0 thus u = 0 and s = s.

If 5 6 r then s = v + s with v £ u, jes. Since adj : s —> s, s is a

subalgebra and u is abelian it follows that v £ 3. Moreover, if js = ao+ai+ai

with respect to the decomposition s0 ©!■ ©Ii then 0 = öi + \a±. Thus J 6 s-

and j satisfies (j) and (jj) of the lemma.

The proof of s, = s, is immediate from the fact s - s £ 3.

Remark i. It follows from (6) and Lemma 3.3 that if (x, j,{,)), (x, j,(( , )))

are split solvable Kahler algebras with decompositions

t=u©s=ïï©s

given by Theorem 2.1 then u = ïï and s, = s,.

Remark 2. It was proved in [3] that the orthogonal complement of [r, r] in a

normal j-algebra does not depend on the metric. This fact together with the

previous remark and
<J3,[t,r]> = «J3,[r.t]»

imply that the same result holds for split solvable Kahler algebras.

3.1 Decomposition of split solvable Kahler algebras. The next proposition is a

consequence of Theorem 2.1, the structure theorem of Pyatetskii-Shapiro and

Lemmas 3.1 and 3.2.

Proposition 3.1. If x = u © s is a split solvable Kahler algebra and s = 0 © n is

a normal j-algebra with fundamental set of roots A = {ei, ..., er} then

U = U0©^U±i£.

ieJ

where J c {1, ... , r},   [a,uo] = 0,   [jx,-, u] = ±jSiku,   u £ u±iEi   and

[Xj, u] = ju,   u G u_ie..   Furthermore, the previous decomposition satisfies

[u_ie/, niE ] = 0, /' t¿ k, hence, u0 decomposes orthogonally

teJ

Proof. Set rj, = span{ jx,-, x¡},  i — 1, ... , r.   Assume ad;*,: u —> u is not

trivial and let u = un © u', © u' .  be the decomposition of u given by Theorem

2.1 when considering the split solvable Lie algebra u©h,,. If u £u'_L, [jx¡, u] =
2

-\u and the Jacobi identity imply [x¡, u] £ u\  and [x,, ju] = 0. Thus, using
2

(2) one obtains

(7) [x¡, u] = ju.

Also, from §2.1, [x¡, v] = 0 if v £ u'Q .
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Let now k ^ i. Since [jxk, jx¡] = [xk, jx¡] — 0, we may consider the

split solvable Lie algebra u', © u[_, © \)k  and apply again Theorem 2.1.   If
2 2

x+ + x_ £ u\ © u' ,  is an eigenvector of ad7*.  with eigenvalue \ , since ad ■•*
2 2

preserves u', and u! , we have [jxk, x+] = \x+ and [jxk, x_] = ix_. If

x+ ^ 0, then 1 will be an eigenvalue of adjiXj+Xk). We thus get a contradiction

by considering the split solvable Kahler algebra u', © u' , © h, k where
2 2

hi:,jt = span{j(x, + xk), x¡ + xk}.

Analogously, the eigenvectors of ad;X/t with eigenvalue —\ are in u^ . Thus

ui = u^i © "ó* '        uí_ i = "i* © mók(u'ifc = Ju-L ) •
2 2 2 2 2 2

Let u £ u'kL. By (7), [xk , u] = ju and [x¿, ju] = -u . Then
2

0 = [Xi[Xk , «]] + [xk[u, X¡]] + [u[Xj, xk]] = -u

since [Xj, xk] = 0 and [w, x¡] = 0. In particular we have proved that ad7*t |u'±
2

ffiu^ is trivial hence u0 contains the ±5 eigenspace of ad;*t . By repeating

this process we obtain the claimed decomposition where the set J — {i —

\,...,r: ad;*,^0}.
To prove the last assertion we first note that

[u_,£;, n,J C [u_i,si]cu0.

Thus, if « G u_i£ , x £ nÍ£t , [jxk[u, x]] = 0 since, by Lemma 3.1, [a, uo] =

0. On the other hand, by the Jacobi identity, if i ^ k , [jxk[u, x]] = ¿[u, x].
Hence [u_if. , ni, 1 = 0.   In particular, if x £ nip , v £ u_ip , y £ n¡, , it

"■ 2   ' 2ck 2   ' 2   k 2  «

follows that [[w,y]x] = [y[x, v]] + [v[y, x]] = 0 thus ([y, x], j[v , y]) =

([[v , y]x], ju) = 0. But, using (2) one shows that [u_Í£ , nÍ£ ] is j-invariant.

Thus, the previous relation imply  ([u_±£ , nÍ£], [u_L   , nL   ]) = 0,   / / k.
2   ' 2   ' 2   « 2   "■

Finally, because of Lemma 3.2 it follows that the decomposition uo = 3 ©

["i, si] = 5Z[u_i£ , ni£ ] is orthogonal as claimed.

4. Varying the complex structures

Assume now that there exist two pairs (j, ( , )) and (j, (( , ))) turning

(r, j, ( , )) and (r, j, (( , ))) into split solvable Kahler algebras. Then,

according to Theorem 2.1,

t=u©s=u©s

where u (resp. ü) is an abelian j-invariant (resp. j-invariant) ideal and s

(resp. s) is a normal j-algebra. Let a (resp. à) be the orthogonal complement

of [s, s] = n in s (resp. [s, s] = ñ in s). The main purpose of this section is

to understand the relation between u and ü, s and s. The next proposition

shows that uq determines u.
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Proposition 4.1. Let (r, j, ( , )) and (r, j, {( , ))) be two split solvable Kahler

algebras with uo = üo • Then u = ù.

Proof. Decompose r, according to Theorem 2.1, into the eigenspaces of ad75,

r = (u0©so) ©Si ®(ut ©Si)©u_i = r0©ti ©ti ©r_i

and let ü be a j-invariant abelian ideal. We will show that ù c u. By reversing

the roles of j and j the lemma will follow.

If x £ ü, then with respect to the above decomposition

X = Xo -+- Xi + Xi + X_ i , [jS , X] = Xi + 2 Xi — 2 X_ i ,

[js[js, x]] = xi + \x^ + ±x_i,        [js[js[js, X]]] = Xi + |xi - |x_i.

Hence

\xi - |x_i = [js, x] - [js[js, X]] £ Ù

and

\xi + |x_i = 2([js[js,x]] - [js[js[js, X]]]) £ Ü.

It then follows that all of the components of x are in ù or equivalently

ü = un to© un ti ©ünti ©ünr_i.

Let x G ü n ri and y G ù n r^ , k £ {0, 1, \, -\). Then

0 = (iUs, x], j» + (([y, js], jx)) = «x, ~jy)) - k((y, jx)).

Since 1 + k t¿ 0 it then follows that ù n ri = 0.
Let us now consider ünti =ün(ui©si). IfxGünti, and x = u + y

2 2 1 2

with « Eiii and y G si then jx = ju + jy G u_i © si and [x, jx] =

[" • jy] + [y > M + [y, jy] is in ù. Now, since [u, jy] = 0, [y, ju] £ u0 = ù0

it then follows [y, jy] G ù n ti = 0. From (3)

([y, jy], s) = (Us, y], jjy) + {[jy, js], jy) = -(y,y)

one obtains y = 0 hence ù n ti cui .

Finally we show that ùnr0 c u0. If x G ùnr0 then x = u+y, y G uo, y G s0 .

As above, by considering [x, jx] = [u, jy] + [y, ju] + [y, jy] £ ü and using

that [u,jy] = [y, ju] = 0 (see 2.1) one thus obtains [y, jy] e ü n ti = 0.
Arguing as above one shows that y = 0 and the proposition follows.

If (r, j, ( , )) and (r, ], ({ , ))) are two split solvable Kahler algebras we

let

U = U0 ©Uj. ©U_l , S = So ©S]© Si
2 2 2

respectively

Ü = Üo©Üi©Ü_i, S — So ©Si ©Si
2 2 2

be the decompositions of u, s (respectively, ù, s) into eigenspaces of ad7i

(respectively &d-jS).

Proposition 4.2. Let (x,j,(, )) and (x,j,{{, ))) be two split solvable Kahler

algebras with uo © a = ùo © à. Then

(i) uo = ùo (hence u = ü),
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(ii) ui©u_i =üi ©ü_i , the orthogonal complement of \xo in u with respect
2 2 2 2

to both metrics coincide,

(iii) js G3©o, js ejeä,
(iv) (s,,u) = 0.

Proof, (i) Decompose orthogonally with respect to ( , ),uo©a = 3©o©a and

with respect to (( ,  )), üo © à = 3 © ö © à. If x G t> then x = z + v + a with

respect to the last decomposition, hence, since x and v are in [t, t] one has

z + a = 0 thus 0 c ö . Similarly ö c 0 hence uo = 3©o = 3©ö = üo.
(ii) Decompose u with respect to both metrics

U = Uo©Ui   ©U_i   =Ü = Üo©Üi   ©Ü_i  .
2 2 2 2

Let x G u±i and y G uo . From (3) and using the fact that u is abelian one has

0= ((Us, x],]y)) + (([y,js],]x)) = ±((x,]y)).

Now, since uo = üo is j-invariant (ii) follows.

(iii) We note that 0 , the orthogonal complement of 3 in u0 , coincides with

[u_i , Si]. By (i) above 0 = [ü_i, Ii] thus if u £ ü_i , y G §1  then by (3)

([js, u], jy) + ([y, Js], ju) + {[u, y], jjs) = {[u, y], jjs),

thus (js, 0) = 0. Since js G uo © a it follows that js G 3 © a as claimed.

(iv) if x G si, y G üx , k G {0, 1,5} then

0 = ([Js, x], jy) + ([y, js], jx) + ([x, y], jjs)

= (1 + k)(x, jy) + ([x, y], jjs).

Since js G 3 © a (by (iii)) the last term above vanishes hence (sj, ü) = 0.

By (i) above, u = ü, thus the proposition follows.

We showed in §3 that uo©a is abelian and coincides with its own centralizer,

hence it is a Cartan subalgebra. It follows from [1] that two Cartan subalge-

bras of a solvable Lie algebra are conjugated. Hence this fact together with

Proposition 4.2 imply

Corollary 4.1. If(x,j,{ , )) and (x,j,(( , ))) are two split solvable Kahler

algebras then there exists an automorphism a of x such that a(u) — ü. In

particular, in any split solvable Kahler algebra the dimension of the abelian j-

invariant ideal does not depend on the complex structure.

We are now in a position to prove the main result of this section.

Theorem 4.1. Let (x,j,( , )) and (x,],({ , ))) be two split solvable Kahler

algebras with uo © a = üo © à. Then js -]se¡. In particular

ux = üx,        k£{0,±±]   and   sx = h,        Ag{0, 1,3}.

Proof. By Proposition 4.2, js £ 3 © a hence ad^ preserves s. We consider

next the decomposition of s into eigenspaces of ad^ , s = so © Ii © s^ © s_i .

Now s_i = s nü_i and by 4.2 (ii), ù_i c u thus s_i =0. Also s» = s n si
2 2 2 _2

and since si c s (see 4.2) one has si = si . Thus s = so © si © s 1 .

Moreover, by the structure theorem of normal j-algebras (see 2.2), ad/,,

h £ a, is a selfadjoint transformation of s, hence the previous decomposition

is orthogonal with respect to ( ,  ).
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We show next that jsi = so (hence jso = si and jsi = si).

Let x G si, y G si. Then

3
0 = (US, x], jy) + {[y, js], jx) = - (x, jy)

since [¿i, it] = 0. If x, y G s- then

0 = (\]s, x], jy) + ([y, js], jx) = 2(x, jy)

since [si, si] = 0. Thus jsi = so as asserted. Applying now Lemma 3.3 we

obtain -jjs = s + z, z g 3 or js - js £ 3 as claimed.

5. Rigidity of complex structures

Given a solvable Lie algebra t admitting a structure of a solvable Kahler

algebra, it will be the purpose of this section to describe all pairs (j, ( , ))

up to isomorphism (equivalence) turning (t, j, ( , )) into a solvable Kahler

algebra.
We will say that (t, j, ( , )) and (x,j, (( , ))) are isomorphic if there exists

a Lie algebra isomorphism a such that jo = aj (i.e. a is complex linear).

When the Lie algebra isomorphism is complex linear and orthogonal, the

triples (t, j, ( , )) and (x, ], {{ , ))) will be said to be equivalent.

We will consider the cases t abelian then t a normal j-algebra, and finally

t a split solvable Kahler algebra.

5.1 t abelian, t = R2n. If we fix an almost complex structure j in R2" , (that

is, j2 = -id) then any other almost complex structure j satisfies j = t~'jt

for some x £ GL(R2n). If

GL(C") = {T£ GL(R2"): Tj = jT}

then t~'GL(C") is the set of complex linear isomorphisms of (R2n, j) —>

(R2", J) ■

5.2 x = (s, j, to) anormal j-algebra. Given (s,j,to) anormal j-algebra,

it follows from Corollary 4.1 that if (s, j, (( , ))) is a solvable Kahler algebra

then it must be a normal j-algebra. If the normal j-algebra is irreducible, it

was proved in [5] that, up to conjugation, there is only one isomorphism class of

j on s. In particular, irreducible homogeneous bounded domains admit only

one (up to conjugate) complex structure with a fixed group of automorphisms.

5.3 (t, j, { , )) a split solvable Kahler algebra. Let t be a split solvable Lie

algebra and let (j, ( , )) and (j, (( , ))) be two pairs such that (t, j, ( , ))

and (t, j, (( , ))) become split solvable Kahler algebras. If uo © a = ù0 © à

it follows from Theorem 4.1 that u¿ = ü¿, A G {0, 1/2, -1/2} and 5^ = 5^,
k £ {1, 0, 1 ¡2}, in particular a = à.

If A = {ei, ... , er} and A = {¿1, ... , ¿r} are the sets of fundamental roots

of (s, j, ( , )) and (s, j, (( , ))) we may fix a permutation p £ Sr (see

[5, Remark 1]) satisfying e^i¡) = e¡. Let xk, xk be the elements in n£; , n¿k

such that Si(jxk) = êj(jxk) = ô, k , k = 1, ... , r. Since jxk (resp. jxk),

k = 1, ... , r, is a basis of a (resp. à) it follows that jxk = Y^afjxi ■ Then
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Zß(i)Jxk = ofin\ and on the other hand e¡jxk = Sik.  Thus a^, = ôik or

equivalently

(8) JXk = jx^k) ■

Using the root space decomposition of a split solvable Kahler algebra one easily
verifies that

n«, = tig    ,     Hii, x, i = ii/.-    i ;    \,     ni. = ni a    ,     u± i „ = u± i ¿

In particular

(9) x^i) = HiX¡,        Pi¿0.

Furthermore, it is proved in [5],

(10) if j(e¡ + Cj) is a root then piPj > 0.

For any subset I c J = {I, ... , r} we set

di) i€/   '       ,e/ 2   /e/

¿6/ ijei,i<j

If 7+ corresponds to indices / such that p¡ > 0 and I~ = J — I we denote

t/+ = t+, t/- = t_ . It follows from (10) that if ^(e, + e,) is a root then the

indices i, j are in either I+ or I~ . Thus r+ n t_ = {0} .

Lemma 5.1.  -jj is a selfadjoint transformation on [u, s] © s, positive definite

on x+ and negative definite on t_ .

Proof. Let u £ u  i. = u  i,     and v £ u¡, = u¡.    .  From ju = [x,, u] =

j\xß(i), u] = j¡)u and jv = /¿Jv we obtain

(12) ]j = -—i on u_,   ,        jj = -pj on ui   .
/*/

If y G nt(fj.), the integrability condition implies that [x;, y] = jy, [x^y-, y]

= jy. Hence on X)ni(£/±i.. we have

(13) Jj = -Pjl   onni(e.+t.},        jj = -—l   onn,(£._£j).

Moreover, it follows from (8) and (9) that

( 14) Jjxj = -pjXj,       ]j = - —jxj.
f*j

We show next that jj is selfadjoint on ni£ .

If x,y G tti£i , then (j]x,y) = -(]x,jy). From (3) ([y, ~jx],x¡) =

~(jx, jy) and from (2) [y, jx] = -[jy, x]. Hence

(jjx, y) = ([y, jx], Xi) = -{[]y, x], x,) = (x, jjy)

and jj (hence jj) is selfadjoint. Furthermore, from

[X , JX] = {[X , JX] , X¡) -^— ={{[X, JX] , Xpti)))       f]
oj(Xi) ujyx^i})
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we obtain

([X , JX], Xi) =    "*'     MUX , JX], X^i))) .
œ\X^(i))

Thus

(jjx, X) = -(JX , JX) = ([X , JX] , Xi) = -!**' ,Pi((]x, jx))
a>Kxii(i))

and the sign of jj on ni£   depends on p¡ as claimed.

According to Proposition 3.1, u0 = 3©2~Z[u-i£, • ni-e,] • Tnus ^ uq = [u, x]£

[u_i£., ni£.] and w £ uo one has jj[u, x] — [u, jjx], hence

(]j[u, x], jw) = ([u, jjx], jw) = ([w, jjx], ju).

Again, from j[w, jx] = [jw , jx] + [w , jjx] + ][]w, ]jx] one obtains

[w, jx] = [jw, jjx]   (both are in UiJ ,

[jw, jx] = -[w, jjx]   (both are in u_, £.).

If we substitute the last equality in ([w , jjx], ju) above, we obtain

Qj[u, x], jw) = - ([jw, jx], ju) = -([u, jx], jjw)

= - (j[u, x], jjw) = ([u, x], jjjw).

Thus jj is selfadjoint on 5ZEu-ie, > niCl] • Note that the eigenvalues of jj on

[u_ie., ni£ ] coincide with the eigenvalues on nl£; since jj[u, x] = [u, jjx].

Hence the lemma follows.

Remark 3. It is not true in general that given (C", j) and (C , j), the transfor-

mation jj is selfadjoint. For example, if n = 1, j = ( ? "q1 ) and T = ( ¿ ab ),

b ¿ 0, then considering j = TjT~l = (a~3~?1) one obtains jj = ( ~nr ~f ).

Remark 4. Let j and j" be two endomorphisms of a vector space V such that

j2 = j2 = -7. Assume -jj is selfadjoint and decompose,

l>0 k<0

where Vx stands for an eigenspace of -jj. Then V+ and F_ are j (resp.

j) invariant. (This is clearly so since from jjx = kx one obtains jx = -jjx

hence jj(jx) — \jx and jj(jx) = jjx.) Furthermore on V+ one has j

equivalent to - j. In fact, if x G Vj , k > 0,

J(-JJ)Í2X - Ai JX = -jjX , (-jj)Hjx) = TTJX

and similarly j is equivalent to - j on F_ .

Theorem 5.1. Let (t, j, ( , )) <z«ú? (t, j, (( , ))) be two split solvable Kahler
algebras. Then

(i) t s/?//¿s mío a sum of j and j invariant ideals, t = 3 © t+ © t_ .
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(ii) There exist a complex linear automorphism a+ : 3 © t+ —> 3 © t+ and a

conjugate linear automorphism a_ : 3 © t_ —> 3 © t_ .

Proof. If o is an automorphism of t such that cx(uo © a) = üo © à then

(t, j, (( , ))) is equivalent to its pullback via a. Thus we may assume

uo © a = üo © à.
Setting t+ and t_ as in 11, it follows from Remark 4 that both are j and j

invariant. Also, nonzero brackets may appear only when considering elements

of t+ or t_ hence t+ and t_ are ideals. Since 3 is also j and j invariant (see

2.1), (i) follows.
To prove (ii) there is no loss of generality in assuming 3 © t+ = t (since

we may change j by -j in t_ .) We will also assume that 3 = 0 and show

that there exists an automorphism a+ : t —> t such that ja+ = a+j . For that

purpose define a+ as follows

a+u=(-jj)iu, «en;

a+h =h , h £ a;

a+x¡ —piXj, x¡ £ nE/ ;

a + X  =  \p^)2X' X  6  n2-(£.-£,> ;

a+x=(piPj)l2X, xeni(!|+[jl;

a+X=pf(-jjpx,        XGn E¿

It is not hard to check using Remark 4 and equations (8), (9), (13) that

ja+ = a+j . We show next that a+ is an automorphism.

• If u £ ua , h £ a, a+[u, h] = a(h)a+(u) = [h, a+u] ;

• if u £ uÍ£., x G ni(£_£) then using (12) a+[u,x] = (p.¡)i[u,x] and

[a+u,a+x] = [p]u, (fj)ix];

• if u £ u_Í£ , x G ni/í+e.) then (3) implies [u,x] = [jf,jx] hence

a+[u, X] = a+[ju, jx] = [a+ju, a+jx] = [ja+u, ja+x] = [a+U, a+x];

• if u £ u_i£ , x G nÍ£   then a+[u, x] - [u, (—jjpx] = ~tjj[u , a+x] —

[a+u, a+x] (since jju = -j-u) ;

• if «o = [u, x], u £ u_i£ , x G rn£   and y G nÍ£   then a+[[w, x], y] =

(Pi)ï[[u, x]y] and

[a+[u, x], a+y] = pj[(-jj)>[u,x], (-jj)h] = a+[[u,x],y]

where the last equality follows from

((-jj)^uo, (-jj)L'x,jv) = ([v, (-jj)ix], j(-jj)ho)

= ((-jj)]i[v, x], j(-jj)iUo) = ([v,x], (-jj)ij(-jj)'Uo)

= ([v, x], j(-jj)uo) = ([v , X] , jUo) = ([Uo , x], jv).

It was proved in [5] that a+ is an automorphism when restricted to s thus

our assertion follows. If 3 ^ 0 we define a+ when restricted to the center, as

any complex linear transformation (compare §5.1).

From the previous theorem the next corollary follows immediately.
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Corollary 5.1. Let (x,j,( , )) and (x,j,(( , ))) be split solvable Kahler
algebras with (x, j, ( , )) irreducible and x isomorphic (as Lie algebras) to x.

Then either (x, j, ( , )) is isomorphic to (x, j, (( , ))) or it is isomorphic to

(i,-J,ii , )))•

6. Proof of Theorem 6.1

As we mentioned in the Introduction, the proof of Theorem 6.1 rests on

modifications of solvable Lie algebras. Many authors have previously used this

notion (see for example [1,4, 7]). We essentially follow [7].

Let (t, j, ( , )) be a solvable Kahler algebra, let (R, j, ( , )) be the cor-
responding simply-connected Kahler solvmanifold and let G be the group of

automorphisms of (R, j, ( , )) with isotropy subgroup K at the identity in

R. We denote by g and t the Lie algebras of G and K respectively.

Let <t> : x -> i be a linear map satisfying

1. Wt),t]ct,
2. (I + (f>)x is a solvable subalgebra of q ,
3. [0(t),(/ + 0)t]c(/ + 0)t.
The subalgebra (I + 4>)x is a normal modification of t and the map 0 is a

normal modification map. If R^ denote the connected subgroup of G with Lie

algebra (I + <j>)x then R^ is said to be a normal modification of R .

According to [7, (2.10)] and because R is simply connected, R^ acts simply

transitively on R. Thus (/ + (f>)x inherits a structure of a solvable Kahler

algebra; furthermore, if t is irreducible, its normal modification (/ + 4>)x is

also irreducible. If (j^, ( , }í¡,) denote the pullback to R^ of the Kahler
structure (j, ( , )) on R, it is clear that G can be identified with the group

of automorphisms of (R^, (j^, ( , ),/,).

According to Dorfmeister [4], every solvable Kahler algebra can be modified

to obtain a split solvable Kahler algebra. This result together with Theorem 5.1

imply

Theorem 6.1. Let (M, j, ( , )) be an irreducible Kahler solvmanifold with
M simply connected and G the group of automorphisms of M. Then any

other Kahler structure (j, ({ , ))) on M with group of automorphisms G is

isomorphic to (j, ( ,  )).

Proof. Since M is simply connected, it can be identified with a solvable

Lie group R. Thus we are reduced to consider the solvable Kahler algebras

(t,j,( , )),and (t,j,(( , ))) with (r, j, ( , )) irreducible. Furthermore,

after a series of modifications, we end with (tj, j, ( , )) and (t), j, (( , ))), ti

split solvable [5] and (t, j, ( , )) irreducible. By Theorem 5.1 there exists

a complex linear or conjugate linear isomorphism from (x{, j, ( , )) onto

(ci t j, ({ - ))) which can be lifted to a biholomorphic map from (M, j, ( , ))

onto (M,±j,(( , ))).
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