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MIXING PROPERTIES OF A CLASS OF BERNOULLI-PROCESSES

DORIS FIEBIG

Abstract. We prove that stationary very weak Bernoulli processes with rate

0(1/n) (VWBO(1/b)) are strictly very weak Bernoulli with rate 0(\/n).

Furthermore we discuss the relation between VWB 0(1/n) and the classical

mixing properties for countable state processes. In particular, we show that

VWB 0(1 /n) implies ^-mixing.

0. Introduction

Let X¡: (Q, sf, p) —► (S,38), i £ Z, be a stationary sequence of ran-

dom variables on a probability space (£2, sf , p) with values in a Polish space

(5, 38). In this setting we define very weak Bernoulli processes with rate e(n),

denoted by VWBe(w), and strictly VWBe(n) processes. It was shown by
Dehling, Denker and Philipp [D.D.P] that 0(1/n) is the fastest rate for which
nonindependent VWB-processes exist. We show that (X¡)¡ez is VWBO(l/«)

iff (Xi)i€Z is strictly VWB 0(1/n). This strengthens the result of Eberlein, that
real-valued strictly VWB 0(1/n) processes with certain moment conditions sat-

isfy an almost sure invariance principle [E]. Then we restrict ourselves to the

discrete case, i.e., we assume S to be countable and that 38 is generated by the

discrete metric. Our main result in this case is that VWB 0(1/n) implies re-
mixing, which improves an earlier result of [D.D.P]. We show that VWB 0(l/n)

gives no constraints on the </5-mixing rate, and that VWB 0(1/n) does not imply

^/-mixing. After that we give a new upper bound for the Wasserstein-distance,

which implies that a (/»-mixing process with r/3-mixing rate <f>(i) is strictly VWB

with rate -}- ̂T"=1 <f>(i) ; in particular </>-mixing processes with summable rates

are VWBO(l/n).

1.   VWBO(l/w)  IMPLIES STRICTLY VWB0(l/tt)

Let X¡: : (Q, s/ , p) —> (S, 38), i £ Z, be a stationary sequence of random

variables. Let cr:S'x,S'->Rbea metric, such that 38 is generated by o and 5

is a Polish space. For -oo < m < n < oo let s/£ =sf(X¡, m < i < n) be the

cr-algebra generated by X¡ with indices between m and n . For two probability

measures vx, v2 on (Sn, Bn) let Pn(vi, v2) = {X: B" x B" -+ [0, 1]: X is a

probability measure with ith marginal u¡, i = 1, 2}. So P„(ui, v2) is the set

of joinings of vi  and v2.  Then, for Z £ s/^x with p(Z) > 0, define the
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Wasserstein-distance

f        1   "
p„(p, p(-/Z)) :=inf /        -Ya(x',y¡)dX(xi, ..., xn, yx,..., yn)

JS"xS" n /=1

where the infimum is taken over X £ Pn((X\, ... , X„)p , (X\, ... , X„)p(-/Z)).

Definition 1 [E].   (Xj)iez is very weak Bernoulli with rate e(n)  (VWB £(77)) iff

(1) e(n) —> 0, n —► oo,

(2) VneN VmeZ+   37) = D(m, n) £ s/^m with

(1.1) p(D)>l-e(n),

(1.2) AcD, A£S/_°m,    p(A)>0^Pn(p,p(-/A))<e(n).

Definition 2 [E]. (X,)l€Z is strictly VWBe(«) iff (X¡)ia is VWBe(n) and all

sets D(m, n) can be chosen to be Q, i.e., p„(p, p(-/A)) < e(n) y A £ sf^ .

We shall tacitly assume p(A) > 0 when dealing with conditional probabilities

as p(-/A).
In [D.D.P] it was shown that a VWBê(tî) process with liminf«e(/i) = 0

is already independent. This means that e(n) = 0(1 ¡n) is the fastest rate

for which one can possibly have a nonindependent VWBe(Tz) process. Var-

ious classes of examples for VWB 0(1/n) processes are given in [F]. They

include m-dependent processes, finite state mixing Markov chains and con-

tinuous factors of finite state mixing Markov chains. There it was shown that

the VWB 0(l/n)-property is not preserved under finitary factor maps, not even

if the coding length of the factor map has moments of all orders [F].

Our main interest is the examination of VWB 0(1 /n) processes. The fun-

damental observation is the following:

Theorem 3 [F]. Let (Xj)i€z be a stationary sequence of random variables with

values in a Polish space. Let 0 < M < oo. Then:

(Xj)i€Z is VWB with rate M/n   iff  (A,)/eZ is strictly VWB with rate M/n.

We need

Lemma 4 [S]. Let Mn = {u: (Sn , Bn) —> R : v probability measure} with weak

topology. Then

npn : M„ x Mn —> R

(v\, v2) -* npn(vi, v2)

is a lower semicontinuous function.

Proof of Theorem 3. Let 0 < M < oc . Let (X,)/€Z be VWB with rate M/n .
Then for all /leN, m £ Z+ sets D(m, n) £ sffm can be chosen such that

(1.1), (1.2) hold for e(n) = M/n. We show that the process is strictly VWB

M/n. Let n £ N, m £ Z+ and choose a set A £ sf2m with p(A) > 0.
Now pick k0 > n such that p(A n D(m, k)) > p(A)/2 > 0 Vtc > k0. Then
p(-/AnD(m, k)) —> p(-/A) in weak topology. Because Af)D(m, k) c D(m , k)

and A n D(m, k) £ s/^mMk , (1.2) implies

M
Pk(p,p(-/AnD(m,k)))<—   \/k>k0.
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Since /i < /Co we have

M
p„(p,p(-/AnD(m,k)))< —   Vk>ko-

By Lemma 4 this implies pn(p, ß(-/A)) < M/n, so the process is strictly

VWB M/n . The converse is trivial.   D

Theorem 3 does not hold for rates slower than 0(1/n). This was shown in

[F] and we recall here the example:

Let (Xi)iez be a Markov chain with state space Z+ and transition probabil-

ities
( 1,     i = j+l, j >0,

Pu = \ CJ,    ' = °> 7^0,
I 0,     otherwise,

where (cn)n>o is a sequence with c¡ > 0 V/, c¡ > 0 infinitely often, Yl%\Jcj <

oo. Then the (p¡j)ijez+ define a stationary Markov chain. For stationary

Markov chains one can calculate the exact value of pn(p, ß(fXo = i)) for all

n £ N, i £ Z+ (by Theorem 6). This gives the possibility by choosing (cj)j>o

to achieve a given VWB rate e(n) with ne(n) —> oo . In [F] it was shown that

the Markov chain above is not strictly VWB, i.e., there is no rate e(n) for which

(Xj)iez is strictly VWBe(n).

2. Relating VWBO(1/t?.) to the classical mixing properties

Now we want to examine the mixing properties of VWB 0(1 /n) processes.

Because e(n) = 0(1/n) is the fastest rate for which one can have nonindepen-

dent VWBe(n) processes, and because of Theorem 3, one expects that these

processes have good mixing properties, but this depends strongly on the state

space S and the metric o. There exists a stationary VWBO(l/n) process

with uncountable state space S cR, where o is the Euclidean metric, which

is not even a-mixing [Bl], but on the other hand finite state VWB 0(1/n) pro-

cesses are always weak Bernoulli [D.D.P]. From now on we restrict ourselves
to stationary processes with at most countable state space, endowed with the

discrete metric. For Z e ^_°oo , p(Z) > 0 and 1 < /' < n < oo we define the

distribution distance of names by

\distX?p-distX?p(-/Z)\

■= 2 Y \p(X„=y„, ... ,X,=y¡)-p(X„=yn, ... , X,=y¡/Z)\.
(y,,...,y„)£S'-<+>

With this notation we have the simple, but extremely useful

Lemma 5. Let («,),eN be a strictly increasing sequence of natural numbers with

n0:=0. Let Z £ s/^ with p(Z) > 0. Then for all A e N

TV

nN+iPnN+l(p,p(-/z)) > £|distx£;> - dist^;;>(./Z)|.
;=0

(If S is countable and the metric o is bounded below by e , i.e., a(x, y) >

e > 0 Vjc t¿ y, then this lemma holds with the RHS multiplied by e). The

next theorem gives a new upper bound for the Wasserstein-distance.
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Theorem 6. Let n £ N, Z £ sf^ with p(Z)>0. Then-oc

n

npn(p, p(-/Z)) <Y\tistX?p-disiX?p(-/Z)\.
1=1

The proof of Theorem 6 is deferred to the Appendix. It depends on the

construction of a joining v„ of (X\, ... , Xn)p and (Xx, ... , X„)p(fZ) such

that

,„,, /       o(Xi, yi)dvn((x\, ... ,x„), (yi, ... ,y„))
(2.1) Js»xS"

< IdistX,"// - distX>(-/Z)|   VI < i < n.

The joining u„ is a generalisation of a construction in [F], and shows that for

Markov chains
n

npn(p, p(-/X0 = x)) = Y \distXip - distXip(-/X0 = x)\.
;=1

We use the following mixing coefficients:

a(n) :=   sup    sup  |/i(5nyl)-/i(5)/i(^)|,
A€Jf-?x Best™

WB(7i):=   sup     Y      E   ß(A)-\p(B\A)-p(B)\,

where 3°nn+k (resp. 3°^m) is the finest partition of Qinto sets B £ s/nn+k

(resp. A £ sf®m).

<p(n):=   sup    sup  \p(B/A) - p(B)\,

y/(n):=   sup     sup   \p(B/A)/p(B) - 1|
A€^°00 Bes/„°°

(where as always p(A) > 0 is assumed, if necessary). (X¡)¡&z is said to be

a-mixing (weak Bernoulli (= WB), 0-mixing or ^-mixing) iff a(n) —> 0

(WB(n) —► 0, (¡>(n) -» 0, y/(n) —► 0), respectively. From the definitions of

the mixing coefficients it is clear that

^-mixing =>■ 0-mixing => WB =>■ a-mixing.

The reverse implications do not hold. For general background on the properties

of these mixing coefficients see [B3]. We first strengthen the result of [D.D.P]

to

Theorem 7. Let (Xj)¡ez be a stationary process with at most countable state

space S and discrete metric (or a metric bounded away from zero). Then

(*/)«6Z VWB 0(1/72) =» {Xt)t& ¿-mixing.

For the proof we need the following Lemma 8, which is an easy consequence

of the observation that VWB with rate M/n implies (m £ A)

M>(Nm)pNm(p,p(-/D))

N

> Y I distX[^i)m+iP - distX^i)m+ip(-/D)\   by Lemma 5.
<=i
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So that, given s > 0, there is an A e N such that for any set

D £ sf^ , p(D) > 0 there is an i < A with

(22'} \distXÍHi)m+iP-distXlr_i)m+iP(-/D)\<s.

Lemma 8. Let (X;),eZ be VWB with rate e(n) = M/n,  0 < M < oo.   Let
0 : Sz —> Sz be the shift map, i.e., o((s¡)j€z)í - s¿+i Vi E Z. Fix r e N,

m £ N. Choose Ax, ... , Ar£ s/xm with p(As) >0 Vi. Fix à > 0. Then there

is k = k(mini<s<r p(As), S) £ N such that:

V7) e sf^, p(D) >0 30<i<k(i depends on D) with

\p(o-imAs/D) - p(As)\ < Sp(As)   Vs < r.

Proof. Choose e < ô min^^,. p(As), and apply the observation (2.2) above, us-

ing the fact that \p(o-""As/D)-p(As)\ < \distX^I\mp-distX{^Hmp(-/D)\. D

Remark. Lemma 8 remains valid for strictly VWBe(«) processes, for all rates

£(72).

Proof of Theorem 1. Let (Xj)iez be VWB £(72) , £(72) = M/n , M < 00 . Assume

(Xi)i€z is not f/j-mixing.

Claim 1. V/m e N Ve > 0 31 = /0 < h < l2 < ■■ ■ < lm < 00 3k £ N

3Bj £ s/,'¡_~x, 1 < i < m and 3C £ sf\ , p(C) > 0, such that p(B¡) > 1 - e ,

p(Bj/C)'<e  V/G {1, ... , m}.
We prove this claim by induction on m . For m = 1, we apply Theorem 1

of [B2], so iXi)iez not </>-mixing means 4>(l) = 1. This implies the claim for

m = 1, because one can approximate sets in sfx°° (resp. sf®^) arbitrarily well

by sets in s/xl (resp. s/^k) for / (resp. k) large enough.

Let £ > 0 and pick 0 < â < e/3 .

By hypothesis there are 1 — /o < h < ■ ■ ■ < lm < °o and sets B¡ £ s/tl>'x,

1 < i < m, C £ j/° , p(C) > 0 with p(Bi) > 1 - Ô, p(B¡/C) < Ô. We
shall show that there are sets Bm+{ and E and that Bx, ... , Bm, Bm+X and

E satisfy the claim for m + 1 and £ . Let I := {i £ {I, ... , m} : p(B¡/C) >
0}, A¡ := o-s~x(Bir\C), 1 < i < m. Then A, £ s/Jm+s\li. We apply

Lemma 8 to the {A¡, i £ 1} U {a~s~xC} with m' := lm + s. So we get

k = k(p(C), (p(Ai))ieI; i) such that for any set D £ s/^30 < j < k such
that

\p(o-im'Al/D)-p(Al)\<x2p(Al)   Vi£l,

\p(o-im'-s-xC/D)-p(C)\<x2p(C).

Now, because not r/j-mixing means in particular cj)(n) = 1 "in, we find for

0 < ¿1 < S with 2ôiIp(C) < ö a number L > (2/c + l)m' + 2 and sets

(2.4) 75 e ^4+i)W',     D £ s/\   with p(B) > 1 - cî, ,     0(5/0) < 5,.

Let E := Cf)oJm'+s+xD where ; is according to (2.3). Then E £ s/\_jm,_s_x ,

and p(E) = p(D)p(o-Jm'-s-xC/D) > \p(D)p(C) > 0 by (2.3). Let Bm+] :=

ajm'+s+iB f so Bm+l 6 ^L-_7W-,-i and (2k-j)m' > km' > l„ , so for /m+, :=

L - ;m' - s - 1 we have

(2.5) Bm+X £ s/¿m+l    and   p(Bm+i) > 1 - Ô.
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For i £ {I, ... , m} - I we have

For i £ I we have

/7(7i,nCnc7^m'+i+17)) _ p(D)p(o-Jm'Al/D)
p(Bi/E)

p(E) p(E)

p(a-Jm'Ai!D)

- j

and

pto-jm'-s-ic/D)

3-ß(At)

2ß(C)
< ^^ = 3p(Bj/C) < 30   (because of (2.3))

p(o^'^+xBnCnoJm'+s+xD) ^     p(B/D)p(D)
p(Bm+i/L) = -../^„.w+.+ im- ^//(Cncr7m'+s+i£)) -/i(Cn(7im'+s+lö)

< -¡-^— < S   (because of (2.3), (2.4)).
p(o-Jm'-s-lC/D)      \p(D)

Because 3<S < £ we have sets Bi, ... , Bm+i and E which satisfy Claim 1 for

m + 1 and e . This proves Claim 1.

Now we choose s < ¿ and m £ N such that m(l - 2e) > M.  Then we

choose sets B¡, C from Claim 1 to obtain by Lemma 5 the estimate

M>lmPlm(p,p(-/C)) > ¿|dist^-V-dist|Af_-V(./C)|
i=i

m

> Y\V-iBi)- ß(Bi/C)\ >m(l -2e) > M.
(=i

This contradiction shows, (X¡)¡€z was, in fact, (7>mixing and proves the theo-

rem.   D

Remark. The key to the proof of Theorem 7 is Claim 1. In fact, one can prove

Claim 1 for all strictly VWBe(«) processes, but of course, the fastest rate

e(n) = 0(1 ¡n) was needed to produce a contradiction from Claim 1. We show

in §3 that for each sequence e(n), ns(n) —> oo, e(n) —> 0 there is a strictly

VWBe(n) process which is not r/j-mixing.

Theorem 7 is the strongest possible, since there exists VWBO(1/t2) , a finite

state process, which is not 0-mixing (see [F]).

Example 9. There exist a VWB 0(1/n) process with countable state space which

is not (¿/-mixing. Let 0 < p < 1 and for i, j £ Z+ let

{p, if j = i + 1, / > 0,

1-/7,    if/>0, 7 = 0,

0, otherwise.

This stochastic matrix defines a stationary Markov chain  (X,)iç.z with state

space Z+ and invariant measure p , where p(Xq = i) = ( 1 - p) • p', / > 0.

(Xj)iez is not (//-mixing, because p(X„ = n + l/X0 = 0) = 0 Vt2 .
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(X¡)i£z is (^-mixing, as an easy calculation shows, so (X¡)i&z is VWB 0(1/«),
see Corollary 13.

The next theorem shows that VWB 0(1/72) has no constraints on the ¿-
mixing rate.

Theorem 10. Let (X„)n>i be a sequence with Xi < 1, (Xn)n>i nonincreasing,

Xn -» 0 as n —► 00 and — log( 1 - Xn) is convex on the set {k : Xk < 1}.

Then there exists a countable state process (Xi)ieZ which is VWB 0(1 /n) and

¿-mixing with jXn < (f>(n) < Xn .

Proof. Kesten and O'Brien have constructed an example in [K.O'B] (which we

discuss in §3), where one easily checks that Xn = pi\Jk>n{Uk > k}). So X„ -> 0

means EUo < 00 in their construction. Apply Theorems 14 and 15.   O

We do not expect the converse of Theorem 7 to be true, but we do have the
following corollary from Theorem 6.

Corollary 11. Let (X¡)iez be ¿-mixing with ¿-mixing rate ¿(n), then (X¡)iez

is strictly VWBfi(n) for e(n) = ± £"-1 ¿(i).

Proof. Theorem 6 yields

n

sup npn(p, p(fZ))<   sup   y]|distA>-distJTX-/Z)|
z&*L°=o z^-o* 1=1

<    sup   \Y(\p(Bt)-p(Bt/Z)\ + \p(B;)-p(B-/Z)\)
ze*-0« l /=i

<Y¿u)
;=1

where

73+ := {(y¡ ,...,yn): p(X¡ = y,, ... , Xn = y„) > p(X¡ = y,,..., Xn= y„/Z)}

and

B~ := {(y¡, ... ,y„): p(X, = y¡,... , X„ = yn)

<p(Xl=yi,...,Xn=yn/Z)}.    D

In particular, we have the following consequences.

Corollary 12. If (Xj)iez is ¿-mixing with Y^h=i¿(i) < °°> men (X¡)¡ez is

VWB 0(1/«).

Corollary 13. Let (X,)/ez be a stationary Markov chain with at most countable

state space. Then (X,),ez is VWB 0(1/n) iff (Xj)iez is ¿-mixing.

Proof. If (Xi)iez is ^-mixing then ¿(n) = 0(Xn) for a 0 < X < I [R]. Apply
Corollary 12.   D

3.  SOME ASPECTS OF STRICTLY  VWBf(«)   PROCESSES

We want to discuss a class of examples, which was given by Kesten and

O'Brien in its original form. These examples will show that £(72) = 0(1 /n) is

the only VWB rate which forces the process to be (/>mixing.
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We use the notation of [K.O'B].

Let (Ui)iez be i.i.d. with values in Z+ .

Let (V¡)iez be i.i.d. with values in {0, 1}, p(V0 = 0) = \ .
Let (U¡)iez be independent from (K);eZ.

The process which Kesten and O'Brien constructed is X„ := (U„ , Vn , Vn-vn),

n £ Z. In this section (X,)iez is always this process.
Kesten and O'Brien proved

Theorem 14 [K.O'B]. If ¿(n) is the ¿-mixing coefficient for (A",)/eZ then

\ß(\J{Uk>k})< ¿(n) < p ( [J {Uk > k)
\k>n j \k>n

In particular (X¡)i&z is ¿-mixings EUo < oo .

We prove an analogous estimate for the VWB-rate.

Theorem 15.  (X¡)iez is strictly VWBe(n) where

^ Yp(Uk >k)< £(72) <   X-Yp(Uk > k).
k=\ k=\

Proof. First we observe that

n

npn(p, p(-/Z)) > Y I distXip - distX,p(-/Z)\
i=\

by Lemma 5. Thus

n

ne(n) >    sup   Y \distXjp - distXjp(-/Z)\
Z^o» ,= i

n

> sup   V 1^(17/ > i, Vi-V, = l)-p(Ui>i, Vi-V, = 1/Z)|
zwz~ i=\

> ij^MUi > i)        ( ZN = f]{ V.j■ = 0},  let A - oo j .

So

1    "

;=i

For proving the upper bound we cannot apply Theorem 6, because for large n

we have for p(Uk = k) := l/k(k + I), k > 1 ,

n .     n i

sup   Y I dist^> - distX?p(-/Z)\ > - V/7    M U, > i I
26«L8»tí %=1      \i>k

Because j¡ ¿~J"=1 //(Í7,- > /') —► 0 if « —» oo , we have for large n

¿¿Mt/, >/) <-U i sup ¿|distx,n/2-distjr>(./z)|.
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Thus Theorem 6 is not strong enough in this case, because it gives a trivial upper

bound. So we have to construct a measure

X £ Pn((Xi ,..., Xn)p(-/Z) ,(Xi,..., Xn)p).

Fix n, m £ Z+ and Z e s/®m of the form Z = {Uo = uo, V0 = v0, Vo_Uo =

w0, ... , U-m = u-m, V_m = v-m, V_m-u_m = w-m} such that p(Z) > 0.

First we have, because (U¡)¡ez, (K)iez are i.i.d.,

(3.1)
npn((Ui,..., Un,Vi,..., V„)p, (£7, , ... , Un,Vi,... , Vn)p(fZ)) = 0.

If Uk < k or (Uk> k + m and k-Uk^ -i- £/_,• V0 < /' < m) then Vk_Uk is

independent of Z £ s?®m , and it is this property which helps us to find a good

joining.

Let C = {Í7[ = u,, Vi = Vi, ... , Un — un, V„ = vn}. (3.1) implies p(C) =

p(C/Z).
Let J(C) be the indices where C does not hit Z , so J(C) := {1 < / < n :

Ui < I ox (u¡ > l + m and l-u¡ ^ -i-u-, V0 < /' < m)}. Then J(C) = 0 or

J(C) = Oi,..., ;,} and (Xh ,..., Xjr)p('/C) = (Xh ,..., XjM'/C n Z).
If /(C) = {1, ... , 72} then there is Xc:{0, I}" x {0, 1}" -^ R suchthat

(1) pr,Ac((*i, •■• , xn)) = p(Vi^Ut =xi, ... , V„-u„ =x„/CnZ),
(2) vx2Xc((y\, ... , yn)) = p(Vi-V] =yi,... , Vn-u„ =yn/C) and

Í "/ Y aix> - M) ̂c = 0.
•^  i=i

If J(C)¿{l,...,n} then {1,... , /t}-/(C) = {/,, ...,/,}, s> 1. Then
let

f 27/   „  ,    if /,■ - uh > -m ,
w¡ := { '

{ W-r,      if /, - «/. = -r - w_r for r G {0, ... , m}.

So we have (Ü7., ... , to,) e {0, 1}*. Let Ac:{0, l}nx{0, 1}" ̂ R be defined

by

Xc((xi, ... , x„), (yi, ... , y„)) := 0 if (xh , ... , xls) ¿ (W,, ... , ws) or

y¡ t¿ x, for some / £ J(C),

Xc((xi,..., x„), (yi,... ,y„)) :=p(VX-Uy =xx, ... , Vn-u„ =xn/Cr\Z)

• p(Vh_u^ = yh , ... , Vis-vJC) otherwise.

Then one calculates

pr,Ac((*i, ••• > x„)) = p(Vi-Ux =xi, ... , Vn-u„ =x„/Cr\Z),

pr2Xc((yi, ... , y„)) = p(Vi_Ut =yi,..., V„-Un = y„/C), and
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f    -/ Yaix', y¡)d^c
J ¡=i

n

¿2 zZ        £*(■*<. yo
{(x\.x„) : xi.=w¡i<s} {(yi.y„) : y¡=x¡ if ieJ{C)} ¡=1

• p(Vi_Vl =Xi, ... , Vn-u„ = Xn/C H Z)

E E !>(*/,> ?/,)
{(jCi ,...,jc„) : JC;.=ffi,i<s} {(y, ,... ,y„) :y,=*, if i€J(C)} r=l

• piVi-Vl =Xi, ... , Vn-ü„ = xn/C n Z)

• M^-Ot, =}>/,,..., ^-r/fc = n/C)

< Y Sp(Vi_Vx=Xi,... ,Vn-vn=Xn/CC\Z)
{(x¡ ,...,x„) :xi.=w,i<s}

<s = caxdJ(C)c.

So we get with X: (Z+x{0, l}x{0, 1})" x (Z+ x {0, l}x{0, 1})" -* R defined

by

X(((ui ,vi,wi), ... ,(Un,vn, wn)) x ((ai, bi, ci), ... , (a„ , bn, c„)))

:= p(C) • Xc((wi,... ,wn),(ci, ... , cn)),

C as above, if u¡ = a¡, v¡ = b¡ V/ and

À(((ui,vi, wi),..., (u„,v„, wn)) x ((ai, b\,C\),..., (a„,b„, c„))) := 0

otherwise, a probability measure X £ P„((X\, ... , Xn)p(-/Z), (Xt, ... , Xn)p)

by (3.1) and

/n .   n
Y °ixi, yi) dx = Y mo / Y CT(X( ' y) dx<=
1=1 C J   1=1

< ^/i(C)-card/(C)c<^/z(C)-card({/<72: U, > i} n C)

c c
n

;=1

Remark. One can actually strengthen this last construction and prove that if

iU¡)iez is a stationary process with values in Z+ and (J'/J/ez is a stationary

process with values in {0, 1} and Xn := (Un , V„, Vn-un) then

(1) (Xi)iez   ¿-mixings EUo < ex, (t7,-)/eZ   (/»-mixing, (V¡)iez   (/»-mixing,

(2) (Xi)l&   YWBO(l/n)^EU0<oo, (t/,),eZ  VWBO(l/«),

(Vi)i€Z  VWB 0(1/72).

For this one needs a Borel-Cantelli-Lemma for (/»-mixing sequences.

We get as corollaries of Theorems 14 and 15:
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Corollary 16. X„ := (Un, V„, Vn-un) as above. Then

(Xi)iez ¿-mixings (Xi)i€ZVWBO(l/n) & EU0 < oo.

Corollary 17. For any rate e(n) with (n + l)e(n + 1) - ne(n) < ns(n) -

(n - l)e(n - 1) V«, e(n) —► 0, ne(n) —► oo and ne(n) < n \fn there is a

process (X¡)¡€z which is strictly VWB£(«) and not ¿-mixing.

We would like to find an example of a process which is not VWB 0(1/n),

but (/»-mixing, but we have not yet been successful. We believe a good candidate

is the following:

Let (Ui)i€Z, (Vj)l€z as above. Let Yn := (Vn, Vn-Vn), n £ Z. Then it is

not hard to see that EUo = oo =>■ (T,),eZ is not VWB 0(1/n). The conjecture

is
oo

EUo = oo,     Y/^iUk > k)2 < oo => (Y/)/€Z is (/»-mixing.
k=\

Appendix

Proof of Theorem 6. Fix « e N, Z e sf^, p(Z) < 0. We will need some

elaborate notation. Let {Xf = 5f} := {Xi = si, ... , Xn = s„} .

Ii := {(si ,...,Sn)£Sn: p(Xx" = if) > p(Xnx = sn/Z)},

77 := {(si ,...,sn)£Sn: p(Xnx = if) < p(Xnx = sf/Z)},

Xi(si,...,sn):=p(X?=sï),    Xi(si,...,Sn):=p(Xnl=sni/Z),

Pi(sx,..., s„) := (p(X"x=snx)-p(Xnx=snx/Z)) - 17,(5,, ... , 5„),

Pi(si,..., s„) := (p(Xnx = snx/Z) - p(Xnx = sf )) - l7i(s,, ... , sn).

Then inductively for 1 < k < n - 1

TA:+l(5A:+l , ••• > 5n) ^=       Y      Pk(s\ , ■ ■ ■ , Sk , Sk+X , . . . , S„) ,

(Si,...,sk)

*k+lisk+l> •■■ , S„) :=      2^     /J^(5i , ... , 5¿t, Sjt+1 , ••■ , sn),

(s\ ,-,sk)

h+i = {isk+i, ••■ , sn) £ Sn~   : xk+i(sk+i, ... , s„) > xk+x(sk+i, ... , sn)},

Ik+\ = {(sk+\ , ■ ■ ■ , Sn) £ Sn       : Xk+i(sk+i , . . . , Sn) < tk+l(sk+\ , ••• , Sn)} ,

pk+l(si,...,sn):=pk(su...,s„) fl-!fc+1^+1' '•• '^ W,fo+1, ...,sn),
\       rk+l(Sk+\ , ■■■ , Sn) J

^+1(i1,...,in):=^(i1,...,i„)(l-^+1^+"---'^)l7t|(5fc+,,...,5„),
V *k+\\Sk+\ , -.. » Sn) /      k+l

Tfl+i := Y P»isï '     î"+1 := E ^(5)-

We want to define a probability measure on S" xSn , therefore we partition the
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set Sn x S" = W0 U Wi U • • • U W„ U 7? in disjoint sets, where

Wo = {(x,x):x£S"},

Wn = {((xi, ... ,x„), (yi, ... ,y„)) :x„^y„, p„(xx, ... , xn) > 0 and

Pniyx,... ,yn)>0},

Wi = {((xi ,...,x„),(yi, ..., y„)) :xi^yi,xr = yr,i<r<n,

min(Ti+i(*,-+., ... ,Xn), Xi+x(Xi+i, ... , xn)) >0}

for 1 < l < 72 - 1,
n

R := S" x S" - \J Wi.
i=0

Then we define vn : S" x S" —> R in the following way:

(1) ((su ... ,sn), (su ... ,s„)) £ W0:

u„((su ••• ,s„), (su ... ,s„)) :=min(Ti(5,, ... ,s„), t.(5i, ■■■ , s„)).

(2) ((au ... ,ai,Sj+u ... ,s„),(bu ... ,b¡,sl+u ... ,s„)) £ W¡, 1 < /
<n- 1:

Un((ai , ... , fl, , 5/+1 , ... ,S„),(bu ... ,bi, 5/+1 , • • - , sn))

_ min(T,-+i(i,-+i, ... ,s„), f,-+i(5,-+i, ... , s„))

Tf+l(i/+l , ■■• , Sn)ti+l(Si+i , ... , Sn)

• pi(ai, ... ,a¡, si+i, ... , s„)pi(bi, ... ,b¡, s,+i, • • • , s«).

(3) ((ai, ... ,a„), (bu ••• , ô»)) e ir„ :

i/„((ai,... ,a„), (bu •••, ô«))

.    „ /„           „u h           . ^min(Tn+i, î„+i)
:= pn(a{, ... , an)p„(b¡, ... , b„)-z-.

'iM-l'n+1

(4) v„((ax, ..., an), (b\, ... , b„)) := 0 if ((ai, ... , an), (bx, ... , b„)) £
R. We use the abbreviated notation s(,) := (s¡, ..., s„) £ S"~'+x , l < i < n.

First we want to prove that vn is a joining of

(Xu...,X„)p   and   (Xu...,Sn)p(-/Z).

One calculates

a(s^):=   Y v*isW,t{l))

= Vn(s{l) , 5(1)) + E E "«(í(,),í(,))

1=1 {t^eS" :(,&,, tl+l=sl+l,...,t„=s„}

+ Y »n(s^ , t[]))
{tmeS":t„*s„}

~J t/+lUW+    ')

+ mm(Tw+1,T»+1)/?w(^(1))

To calculate a(s(1)) we have to look for the set Ik that s{k) belongs to:
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Case 1.  5O) £ 7, . Then />,(s(1)) = 0 Vi > 1, so

a(s^) = Xi(s^) = p(Xi=Si,...,Xn=sn).

Case 2.  5O) e 7!, s<2) £ 72. Then />,(s(1)) = 0 Vi > 2, and

Q(5(1)) = f!(50)) + pi(s^) = p(Xi =Su-..,Xn = Sn).

General case. s(1) e 7!, ... , s^ £ Ik , 5<fe+1' £ Ik+] . Then the same ar-

gument as in Case 2 shows a(sw) = p(Xi = 51, ..., X„ = s„) and in the

case 5(1) £ lu ... , 5(n) £ In one uses the fact t„+] = xn+i to see a(s^x))

= p(Xi = su ... , X„ = s„). Similarly

Y   "niSW , í(1)) = KXl =ti,...,Xn = tn/Z).
sW£S"

For proving (2.1) we need an equivalent definition of the sets Ik .

Claim 2.   1 < k < n . Then

Ik = {S{k) : p(Xk =Sk, ... ,Xn=Sn)> p(Xk =Sk,...,X„ = Sn/Z)}.

Proof of the claim.

*kis{lc))=    Y    Pk-\(s\,--- ,sk_i,sk, ... ,s„)
s, ,...,sk_,

E irk-lis,Sk, ... ,S„)- tk_i(s,Sk, ... ,S„))

[s : {s,sk,...,s„)elk-,}

Y        (tk-i(s,s^)-tk_i(s,s^)).

{i:(i,iW)e4-i}

So we get

T*(5<*>) > Xk(s^)

# Y        (rk-i(s,s^)-xk_i(s,s^))

{s:(s,sW)€lk-,}

> Y (Tk-l(S,sW)-Xk„i(s,sW))

^Y^k-i(s,s^)>Y^k-ds,s^)
S€S s£S

<s>     E     *\{s\, ■■■ ,sk-i,s{k))>     Y     ¿l(Sl, ... ,Sk-i,S[k))

Si ,...,Sk-¡ 5, , ... ,Sfc_|

by repeating the argument

& p(Xk =Sk, ... , Xn=S„)> p(Xk =Sk, ... , Xn= Sn/Z)

by definition of Xi, X\.

This completes the proof of the claim.
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Now we compute for 1 < i < n

/        o(Xi,yi)dvn((xi
JS"xS"

..., x„), (yu ... ,yn))

= vn({isw,tw):s¡íti})

1-1

< 1 - Y VniiiS{X) , t{X)) : Sj+i = tj+i ,...,S„ = t„,Sj¿ tj})

7=0

= 1 -E E mrn(xJ+i(s^),xj+i(s^))
j=QsU+l)

= 1-E(E^a))+E^0))
7=1   \sMeIj sU)£Ij

E  E ä-i^+E  E a-ií^
\sWeii si. -. *<-1 i<''i7, ii ■ »., »i-1

= i-E(E^0))+E^0))

-  2 t,-,^'-»))-  E ^■-.(^-1))

J] (T/_,(í(,-,))-Ti_,(í<<-1)))
jWe/j,í('-')67i_i

x;   (T,-,^'-1))-^,^'-1)))

= i-EÍE^w)+E^ü))
7=1   \jO)g/y »Wig//

E    ti-i^1-")-    E    t!-,^'-»))
{,(!-« :SWei¡} {,(í-D :,(<)g/,}

= 1-      ^      T!(i(1))-      ^      Ti(5(1))    (by repeating the argument)

(i(') :í<<>€/¡} {s<» :»«£/,}

= 1 -   Y  P(Xi = Sj,... , X„= Sn/Z) -   Y  ^X' =Si,...,X„=Sn)
jOg/i s(»$I¡

=   ^ (jUfT; = 5/, ... , Xn = S„) - p(Xi =Si, ... , Xn= Sn/Z))
s('')€/,

= |distXf/i - distX?fi(>/Z)\    (by Claim 2).

So (2.1) is proved and therefore Theorem 6, also.   G
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