MIXING PROPERTIES OF A CLASS OF BERNOULLI-PROCESSES

DORIS FIEBIG

ABSTRACT. We prove that stationary very weak Bernoulli processes with rate O(1/n) (VWB O(1/n)) are strictly very weak Bernoulli with rate O(1/n). Furthermore we discuss the relation between VWB O(1/n) and the classical mixing properties for countable state processes. In particular, we show that VWB O(1/n) implies ϕ -mixing.

0. Introduction

Let $X_i: (\Omega, \mathcal{A}, \mu) \to (S, \mathcal{B}), i \in \mathbb{Z}$, be a stationary sequence of random variables on a probability space $(\Omega, \mathcal{A}, \mu)$ with values in a Polish space (S, \mathcal{B}) . In this setting we define very weak Bernoulli processes with rate $\varepsilon(n)$, denoted by VWB $\varepsilon(n)$, and strictly VWB $\varepsilon(n)$ processes. It was shown by Dehling, Denker and Philipp [D.D.P] that O(1/n) is the fastest rate for which nonindependent VWB-processes exist. We show that $(X_i)_{i \in \mathbb{Z}}$ is VWB O(1/n)iff $(X_i)_{i \in \mathbb{Z}}$ is strictly VWB O(1/n). This strengthens the result of Eberlein, that real-valued strictly VWB O(1/n) processes with certain moment conditions satisfy an almost sure invariance principle [E]. Then we restrict ourselves to the discrete case, i.e., we assume S to be countable and that \mathcal{B} is generated by the discrete metric. Our main result in this case is that VWB O(1/n) implies ϕ mixing, which improves an earlier result of [D.D.P]. We show that VWB O(1/n)gives no constraints on the ϕ -mixing rate, and that VWB O(1/n) does not imply w-mixing. After that we give a new upper bound for the Wasserstein-distance, which implies that a ϕ -mixing process with ϕ -mixing rate $\phi(i)$ is strictly VWB with rate $\frac{1}{n}\sum_{i=1}^{n}\phi(i)$; in particular ϕ -mixing processes with summable rates are VWB $\tilde{O}(1/n)$.

1. VWB O(1/n) implies strictly VWB O(1/n)

Let $X_i: (\Omega, \mathcal{A}, \mu) \to (S, \mathcal{B})$, $i \in \mathbb{Z}$, be a stationary sequence of random variables. Let $\sigma: S \times S \to \mathbb{R}$ be a metric, such that \mathcal{B} is generated by σ and S is a Polish space. For $-\infty \le m \le n \le \infty$ let $\mathcal{A}_m^n = \mathcal{A}(X_i, m \le i \le n)$ be the σ -algebra generated by X_i with indices between m and n. For two probability measures ν_1 , ν_2 on (S^n, B^n) let $P_n(\nu_1, \nu_2) = \{\lambda: B^n \times B^n \to [0, 1]: \lambda \text{ is a probability measure with } i\text{th marginal } \nu_i, i = 1, 2\}$. So $P_n(\nu_1, \nu_2)$ is the set of joinings of ν_1 and ν_2 . Then, for $Z \in \mathcal{A}_{-\infty}^0$ with $\mu(Z) > 0$, define the

Received by the editors February 5, 1990 and, in revised form, April 13, 1991. 1980 Mathematics Subject Classification (1985 Revision). Primary 60G10; Secondary 60F99.

Wasserstein-distance

$$\rho_n(\mu, \mu(\cdot/Z)) := \inf \int_{S^n \times S^n} \frac{1}{n} \sum_{i=1}^n \sigma(x_i, y_i) \, d\lambda(x_1, \dots, x_n, y_1, \dots, y_n)$$

where the infimum is taken over $\lambda \in P_n((X_1, \ldots, X_n)\mu, (X_1, \ldots, X_n)\mu(\cdot/Z))$.

Definition 1 [E]. $(X_i)_{i \in \mathbb{Z}}$ is very weak Bernoulli with rate $\varepsilon(n)$ (VWB $\varepsilon(n)$) iff

- (1) $\varepsilon(n) \to 0$, $n \to \infty$,
- (2) $\forall n \in \mathbb{N} \ \forall m \in \mathbb{Z}^+ \ \exists D = D(m, n) \in \mathscr{A}_{-m}^0 \text{ with}$

(1.2)
$$A \subset D, A \in \mathcal{A}_{-m}^0, \quad \mu(A) > 0 \Rightarrow \rho_n(\mu, \mu(\cdot/A)) \leq \varepsilon(n).$$

Definition 2 [E]. $(X_i)_{i \in \mathbb{Z}}$ is strictly VWB $\varepsilon(n)$ iff $(X_i)_{i \in \mathbb{Z}}$ is VWB $\varepsilon(n)$ and all sets D(m, n) can be chosen to be Ω , i.e., $\rho_n(\mu, \mu(\cdot/A)) \le \varepsilon(n) \ \forall A \in \mathscr{A}_{-\infty}^0$.

We shall tacitly assume $\mu(A) > 0$ when dealing with conditional probabilities as $\mu(\cdot/A)$.

In [D.D.P] it was shown that a VWB $\varepsilon(n)$ process with $\liminf n\varepsilon(n) = 0$ is already independent. This means that $\varepsilon(n) = O(1/n)$ is the fastest rate for which one can possibly have a nonindependent VWB $\varepsilon(n)$ process. Various classes of examples for VWB O(1/n) processes are given in [F]. They include m-dependent processes, finite state mixing Markov chains and continuous factors of finite state mixing Markov chains. There it was shown that the VWB O(1/n)-property is not preserved under finitary factor maps, not even if the coding length of the factor map has moments of all orders [F].

Our main interest is the examination of VWB O(1/n) processes. The fundamental observation is the following:

Theorem 3 [F]. Let $(X_i)_{i \in \mathbb{Z}}$ be a stationary sequence of random variables with values in a Polish space. Let $0 \le M < \infty$. Then:

 $(X_i)_{i \in \mathbb{Z}}$ is VWB with rate M/n iff $(X_i)_{i \in \mathbb{Z}}$ is strictly VWB with rate M/n.

We need

Lemma 4 [S]. Let $M_n = \{\nu : (S^n, B^n) \to R : \nu \text{ probability measure} \}$ with weak topology. Then

$$n\rho_n: M_n \times M_n \to \mathbf{R}$$

 $(\nu_1, \nu_2) \to n\rho_n(\nu_1, \nu_2)$

is a lower semicontinuous function.

Proof of Theorem 3. Let $0 \le M < \infty$. Let $(X_i)_{i \in \mathbb{Z}}$ be VWB with rate M/n. Then for all $n \in \mathbb{N}$, $m \in \mathbb{Z}^+$ sets $D(m,n) \in \mathscr{A}_{-m}^0$ can be chosen such that (1.1), (1.2) hold for $\varepsilon(n) = M/n$. We show that the process is strictly VWB M/n. Let $n \in \mathbb{N}$, $m \in \mathbb{Z}^+$ and choose a set $A \in \mathscr{A}_{-m}^0$ with $\mu(A) > 0$. Now pick $k_0 \ge n$ such that $\mu(A \cap D(m,k)) > \mu(A)/2 > 0 \quad \forall k \ge k_0$. Then $\mu(\cdot/A \cap D(m,k)) \to \mu(\cdot/A)$ in weak topology. Because $A \cap D(m,k) \subset D(m,k)$ and $A \cap D(m,k) \in \mathscr{A}_{-m}^0 \forall k$, (1.2) implies

$$\rho_k(\mu, \mu(\cdot/A \cap D(m, k))) \le \frac{M}{k} \quad \forall k \ge k_0.$$

Since $n \le k_0$ we have

$$\rho_n(\mu, \mu(\cdot/A \cap D(m, k))) \leq \frac{M}{n} \quad \forall k \geq k_0.$$

By Lemma 4 this implies $\rho_n(\mu, \mu(\cdot/A)) \leq M/n$, so the process is strictly VWB M/n. The converse is trivial. \square

Theorem 3 does not hold for rates slower than O(1/n). This was shown in [F] and we recall here the example:

Let $(X_i)_{i \in \mathbb{Z}}$ be a Markov chain with state space \mathbb{Z}^+ and transition probabilities

$$p_{ij} = \begin{cases} 1, & i = j+1, \ j \ge 0, \\ c_j, & i = 0, \ j \ge 0, \\ 0, & \text{otherwise}, \end{cases}$$

where $(c_n)_{n\geq 0}$ is a sequence with $c_j\geq 0 \ \forall j$, $c_j>0$ infinitely often, $\sum_{j=1}^{\infty} jc_j<\infty$. Then the $(p_{ij})_{i,j\in \mathbb{Z}^+}$ define a stationary Markov chain. For stationary Markov chains one can calculate the exact value of $\rho_n(\mu,\mu(\cdot/X_0=i))$ for all $n\in \mathbb{N}$, $i\in \mathbb{Z}^+$ (by Theorem 6). This gives the possibility by choosing $(c_j)_{j\geq 0}$ to achieve a given VWB rate $\varepsilon(n)$ with $n\varepsilon(n)\to\infty$. In [F] it was shown that the Markov chain above is not strictly VWB, i.e., there is no rate $\varepsilon(n)$ for which $(X_i)_{i\in \mathbb{Z}}$ is strictly VWB $\varepsilon(n)$.

2. Relating VWB O(1/n) to the classical mixing properties

Now we want to examine the mixing properties of VWB O(1/n) processes. Because $\varepsilon(n)=O(1/n)$ is the fastest rate for which one can have nonindependent VWB $\varepsilon(n)$ processes, and because of Theorem 3, one expects that these processes have good mixing properties, but this depends strongly on the state space S and the metric σ . There exists a stationary VWB O(1/n) process with uncountable state space $S \subset \mathbf{R}$, where σ is the Euclidean metric, which is not even α -mixing [B1], but on the other hand finite state VWB O(1/n) processes are always weak Bernoulli [D.D.P]. From now on we restrict ourselves to stationary processes with at most countable state space, endowed with the discrete metric. For $Z \in \mathscr{A}_{-\infty}^0$, $\mu(Z) > 0$ and $1 \le i \le n < \infty$ we define the distribution distance of names by

$$|\operatorname{dist} X_i^n \mu - \operatorname{dist} X_i^n \mu(\cdot/Z)|$$

$$:= \frac{1}{2} \sum_{(y_i, \dots, y_n) \in S^{n-i+1}} |\mu(X_n = y_n, \dots, X_i = y_i) - \mu(X_n = y_n, \dots, X_i = y_i/Z)|.$$

With this notation we have the simple, but extremely useful

Lemma 5. Let $(n_i)_{i \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers with $n_0 := 0$. Let $Z \in \mathscr{A}_{-\infty}^0$ with $\mu(Z) > 0$. Then for all $N \in \mathbb{N}$

$$n_{N+1}\rho_{n_{N+1}}(\mu, \mu(\cdot/Z)) \ge \sum_{i=0}^{N} |\operatorname{dist} X_{n_{i}+1}^{n_{i+1}} \mu - \operatorname{dist} X_{n_{i}+1}^{n_{i+1}} \mu(\cdot/Z)|.$$

(If S is countable and the metric σ is bounded below by ε , i.e., $\sigma(x, y) \ge \varepsilon > 0 \quad \forall x \ne y$, then this lemma holds with the RHS multiplied by ε). The next theorem gives a new upper bound for the Wasserstein-distance.

Theorem 6. Let $n \in \mathbb{N}$, $Z \in \mathscr{A}_{-\infty}^0$ with $\mu(Z) > 0$. Then

$$n\rho_n(\mu, \mu(\cdot/Z)) \leq \sum_{i=1}^n |\operatorname{dist} X_i^n \mu - \operatorname{dist} X_i^n \mu(\cdot/Z)|.$$

The proof of Theorem 6 is deferred to the Appendix. It depends on the construction of a joining ν_n of $(X_1, \ldots, X_n)\mu$ and $(X_1, \ldots, X_n)\mu(\cdot/Z)$ such that

(2.1)
$$\int_{S^n \times S^n} \sigma(x_i, y_i) d\nu_n((x_1, \dots, x_n), (y_1, \dots, y_n)) \\ \leq |\operatorname{dist} X_i^n \mu - \operatorname{dist} X_i^n \mu(\cdot/Z)| \quad \forall 1 \leq i \leq n.$$

The joining ν_n is a generalisation of a construction in [F], and shows that for Markov chains

$$n\rho_n(\mu, \mu(\cdot/X_0 = x)) = \sum_{i=1}^n |\operatorname{dist} X_i \mu - \operatorname{dist} X_i \mu(\cdot/X_0 = x)|.$$

We use the following mixing coefficients:

$$\begin{split} &\alpha(n) := \sup_{A \in \mathscr{A}_{-\infty}^0} \sup_{B \in \mathscr{A}_n^{\infty}} \left| \mu(B \cap A) - \mu(B)\mu(A) \right|, \\ &\operatorname{WB}(n) := \sup_{m, k \geq 0} \sum_{B \in \mathscr{P}_n^{n+k}} \sum_{A \in \mathscr{P}_{-\infty}^0} \mu(A) \cdot \left| \mu(B|A) - \mu(B) \right|, \end{split}$$

where \mathscr{P}_n^{n+k} (resp. \mathscr{P}_{-m}^0) is the finest partition of Ω into sets $B \in \mathscr{A}_n^{n+k}$ (resp. $A \in \mathscr{A}_{-m}^0$).

$$\begin{split} \phi(n) &:= \sup_{A \in \mathscr{A}_{-\infty}^0} \sup_{B \in \mathscr{A}_{n}^{\infty}} \left| \mu(B/A) - \mu(B) \right|, \\ \psi(n) &:= \sup_{A \in \mathscr{A}_{-\infty}^0} \sup_{B \in \mathscr{A}_{n}^{\infty}} \left| \mu(B/A) / \mu(B) - 1 \right| \end{split}$$

(where as always $\mu(A) > 0$ is assumed, if necessary). $(X_i)_{i \in \mathbb{Z}}$ is said to be α -mixing (weak Bernoulli (= WB), ϕ -mixing or ψ -mixing) iff $\alpha(n) \to 0$ (WB $(n) \to 0$, $\phi(n) \to 0$, $\psi(n) \to 0$), respectively. From the definitions of the mixing coefficients it is clear that

$$\psi$$
-mixing $\Rightarrow \phi$ -mixing $\Rightarrow WB \Rightarrow \alpha$ -mixing.

The reverse implications do not hold. For general background on the properties of these mixing coefficients see [B3]. We first strengthen the result of [D.D.P] to

Theorem 7. Let $(X_i)_{i \in \mathbb{Z}}$ be a stationary process with at most countable state space S and discrete metric (or a metric bounded away from zero). Then $(X_i)_{i \in \mathbb{Z}} \text{ VWB } O(1/n) \Rightarrow (X_i)_{i \in \mathbb{Z}} \phi\text{-mixing}$.

For the proof we need the following Lemma 8, which is an easy consequence of the observation that VWB with rate M/n implies $(m \in N)$

$$M \ge (Nm)\rho_{Nm}(\mu, \mu(\cdot/D))$$

 $\ge \sum_{i=1}^{N} |\operatorname{dist} X_{(i-1)m+1}^{im} \mu - \operatorname{dist} X_{(i-1)m+1}^{im} \mu(\cdot/D)|$ by Lemma 5.

So that, given $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that for any set

(22.)
$$D \in \mathscr{A}^{0}_{-\infty}, \ \mu(D) > 0 \text{ there is an } i \leq N \text{ with } |\operatorname{dist} X^{im}_{(i-1)m+1} \mu - \operatorname{dist} X^{im}_{(i-1)m+1} \mu(\cdot/D)| < \varepsilon.$$

Lemma 8. Let $(X_i)_{i \in \mathbb{Z}}$ be VWB with rate $\varepsilon(n) = M/n$, $0 \le M < \infty$. Let $\sigma: S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ be the shift map, i.e., $\sigma((s_j)_{j \in \mathbb{Z}})_i = s_{i+1} \ \forall i \in \mathbb{Z}$. Fix $r \in \mathbb{N}$, $m \in \mathbb{N}$. Choose $A_1, \ldots, A_r \in \mathscr{A}_1^m$ with $\mu(A_s) > 0 \ \forall s$. Fix $\delta > 0$. Then there is $k = k(\min_{1 \le s \le r} \mu(A_s), \delta) \in \mathbb{N}$ such that:

$$\forall D \in \mathscr{A}^{0}_{-\infty}, \ \mu(D) > 0 \ \exists 0 \le i \le k \ (i \ depends \ on \ D) \ with$$

 $|\mu(\sigma^{-im}A_s/D) - \mu(A_s)| < \delta\mu(A_s) \quad \forall s \le r.$

Proof. Choose $\varepsilon < \delta \min_{1 \le s \le r} \mu(A_s)$, and apply the observation (2.2) above, using the fact that $|\mu(\sigma^{-im}A_s/D) - \mu(A_s)| \le |\operatorname{dist} X_{im+1}^{(i+1)m} \mu - \operatorname{dist} X_{im+1}^{(i+1)m} \mu(\cdot/D)|$. \square

Remark. Lemma 8 remains valid for strictly VWB $\varepsilon(n)$ processes, for all rates $\varepsilon(n)$.

Proof of Theorem 7. Let $(X_i)_{i \in \mathbb{Z}}$ be VWB $\varepsilon(n)$, $\varepsilon(n) = M/n$, $M < \infty$. Assume $(X_i)_{i \in \mathbb{Z}}$ is not ϕ -mixing.

Claim 1. $\forall m \in \mathbb{N} \ \forall \varepsilon > 0 \ \exists 1 = l_0 < l_1 < l_2 < \cdots < l_m < \infty \ \exists k \in \mathbb{N} \ \exists B_i \in \mathscr{A}_{l_{i-1}}^{l_i-1}, \ 1 \leq i \leq m \ \text{and} \ \exists C \in \mathscr{A}_{-k}^0, \ \mu(C) > 0, \ \text{such that} \ \mu(B_i) > 1 - \varepsilon, \ \mu(B_i/C) < \varepsilon \ \forall i \in \{1, \ldots, m\}.$

We prove this claim by induction on m. For m=1, we apply Theorem 1 of [B2], so $(X_i)_{i\in \mathbb{Z}}$ not ϕ -mixing means $\phi(1)=1$. This implies the claim for m=1, because one can approximate sets in \mathscr{A}_1^{∞} (resp. $\mathscr{A}_{-\infty}^0$) arbitrarily well by sets in \mathscr{A}_1^l (resp. \mathscr{A}_{-k}^0) for l (resp. k) large enough.

Let $\varepsilon > 0$ and pick $0 < \delta < \varepsilon/3$.

By hypothesis there are $1=l_0 < l_1 < \cdots < l_m < \infty$ and sets $B_i \in \mathscr{A}^{l_i-1}_{l_{i-1}}$, $1 \le i \le m$, $C \in \mathscr{A}^0_{-s}$, $\mu(C) > 0$ with $\mu(B_i) > 1-\delta$, $\mu(B_i/C) < \delta$. We shall show that there are sets B_{m+1} and E and that B_1, \ldots, B_m , B_{m+1} and E satisfy the claim for m+1 and ε . Let $I:=\{i\in\{1,\ldots,m\}:\mu(B_i/C)>0\}$, $A_i:=\sigma^{-s-1}(B_i\cap C)$, $1\le i\le m$. Then $A_i\in\mathscr{A}^{l_m+s}_1\forall i$. We apply Lemma 8 to the $\{A_i,\ i\in I\}\cup\{\sigma^{-s-1}C\}$ with $m':=l_m+s$. So we get $k=k(\mu(C),(\mu(A_i))_{i\in I};\frac{1}{2})$ such that for any set $D\in\mathscr{A}^0_{-\infty}\exists 0\le j\le k$ such that

(2.3)
$$|\mu(\sigma^{-jm'}A_i/D) - \mu(A_i)| < \frac{1}{2}\mu(A_i) \quad \forall i \in I,$$

$$|\mu(\sigma^{-jm'-s-1}C/D) - \mu(C)| < \frac{1}{2}\mu(C).$$

Now, because not ϕ -mixing means in particular $\phi(n) = 1 \ \forall n$, we find for $0 < \delta_1 < \delta$ with $2\delta_1/\mu(C) < \delta$ a number $L \ge (2k+1)m' + 2$ and sets

$$(2.4) \qquad B \in \mathscr{A}^{L}_{(2k+1)m'} \,, \quad D \in \mathscr{A}^{0}_{-L} \quad \text{with } \mu(B) > 1 - \delta_{1} \,, \quad \mu(B/D) < \delta_{1}.$$

Let $E:=C\cap\sigma^{jm'+s+1}D$ where j is according to (2.3). Then $E\in\mathscr{A}^0_{-L-jm'-s-1}$, and $\mu(E)=\mu(D)\mu(\sigma^{-jm'-s-1}C/D)>\frac{1}{2}\mu(D)\mu(C)>0$ by (2.3). Let $B_{m+1}:=\sigma^{jm'+s+1}B$, so $B_{m+1}\in\mathscr{A}^{L-jm'-s-1}_{(2k-j)m'}$ and $(2k-j)m'\geq km'\geq l_m$, so for $l_{m+1}:=L-jm'-s-1$ we have

(2.5)
$$B_{m+1} \in \mathcal{A}_{l_m}^{l_{m+1}} \text{ and } \mu(B_{m+1}) > 1 - \delta.$$

For $i \in \{1, ..., m\} - I$ we have

$$\mu(B_i/E) \leq \frac{\mu(B_i \cap C)}{\mu(E)} = 0 < \delta.$$

For $i \in I$ we have

$$\mu(B_{i}/E) = \frac{\mu(B_{i} \cap C \cap \sigma^{jm'+s+1}D)}{\mu(E)} = \frac{\mu(D)\mu(\sigma^{-jm'}A_{i}/D)}{\mu(E)}$$

$$= \frac{\mu(\sigma^{-jm'}A_{i}/D)}{\mu(\sigma^{-jm'-s-1}C/D)}$$

$$\leq \frac{\frac{3}{2}\mu(A_{i})}{\frac{1}{2}\mu(C)} = 3\mu(B_{i}/C) < 3\delta \quad \text{(because of (2.3))}$$

and

$$\mu(B_{m+1}/E) = \frac{\mu(\sigma^{jm'+s+1}B \cap C \cap \sigma^{jm'+s+1}D)}{\mu(C \cap \sigma^{jm'+s+1}D)} \le \frac{\mu(B/D)\mu(D)}{\mu(C \cap \sigma^{jm'+s+1}D)}$$

$$= \frac{\mu(B/D)}{\mu(\sigma^{-jm'-s-1}C/D)} < \frac{\delta_1}{\frac{1}{2}\mu(D)} < \delta \quad \text{(because of (2.3), (2.4))}.$$

Because $3\delta < \varepsilon$ we have sets B_1, \ldots, B_{m+1} and E which satisfy Claim 1 for m+1 and ε . This proves Claim 1.

Now we choose $\varepsilon < \frac{1}{2}$ and $m \in \mathbb{N}$ such that $m(1 - 2\varepsilon) > M$. Then we choose sets B_i , C from Claim 1 to obtain by Lemma 5 the estimate

$$M \ge l_m \rho_{l_m}(\mu, \, \mu(\cdot/C)) \ge \sum_{i=1}^m |\operatorname{dist} X_{l_{i-1}}^{l_i-1} \mu - \operatorname{dist} |X_{l_{i-1}}^{l_i-1} \mu(\cdot/C)|$$

$$\ge \sum_{i=1}^m |\mu(B_i) - \mu(B_i/C)| \ge m(1 - 2\varepsilon) > M.$$

This contradiction shows, $(X_i)_{i \in \mathbb{Z}}$ was, in fact, ϕ -mixing and proves the theorem. \square

Remark. The key to the proof of Theorem 7 is Claim 1. In fact, one can prove Claim 1 for all strictly VWB $\varepsilon(n)$ processes, but of course, the fastest rate $\varepsilon(n) = O(1/n)$ was needed to produce a contradiction from Claim 1. We show in §3 that for each sequence $\varepsilon(n)$, $n\varepsilon(n) \to \infty$, $\varepsilon(n) \to 0$ there is a strictly VWB $\varepsilon(n)$ process which is not ϕ -mixing.

Theorem 7 is the strongest possible, since there exists VWB O(1/n), a finite state process, which is not ϕ -mixing (see [F]).

Example 9. There exist a VWB O(1/n) process with countable state space which is not ψ -mixing. Let 0 and for <math>i, $j \in \mathbb{Z}^+$ let

$$p_{ij} := \begin{cases} p, & \text{if } j = i+1, \ i \ge 0, \\ 1-p, & \text{if } i \ge 0, \ j = 0, \\ 0, & \text{otherwise.} \end{cases}$$

This stochastic matrix defines a stationary Markov chain $(X_i)_{i \in \mathbb{Z}}$ with state space \mathbb{Z}^+ and invariant measure μ , where $\mu(X_0 = i) = (1 - p) \cdot p^i$, $i \ge 0$.

$$(X_i)_{i \in \mathbb{Z}}$$
 is not ψ -mixing, because $\mu(X_n = n + 1/X_0 = 0) = 0 \ \forall n$.

 $(X_i)_{i \in \mathbb{Z}}$ is ϕ -mixing, as an easy calculation shows, so $(X_i)_{i \in \mathbb{Z}}$ is VWB O(1/n), see Corollary 13.

The next theorem shows that VWB O(1/n) has no constraints on the ϕ -mixing rate.

Theorem 10. Let $(\lambda_n)_{n\geq 1}$ be a sequence with $\lambda_1 \leq 1$, $(\lambda_n)_{n\geq 1}$ nonincreasing, $\lambda_n \to 0$ as $n \to \infty$ and $-\log(1-\lambda_n)$ is convex on the set $\{k: \lambda_k < 1\}$. Then there exists a countable state process $(X_i)_{i\in \mathbb{Z}}$ which is VWB O(1/n) and ϕ -mixing with $\frac{1}{2}\lambda_n \leq \phi(n) \leq \lambda_n$.

Proof. Kesten and O'Brien have constructed an example in [K.O'B] (which we discuss in §3), where one easily checks that $\lambda_n = \mu(\bigcup_{k \ge n} \{U_k \ge k\})$. So $\lambda_n \to 0$ means $EU_0 < \infty$ in their construction. Apply Theorems 14 and 15. \square

We do not expect the converse of Theorem 7 to be true, but we do have the following corollary from Theorem 6.

Corollary 11. Let $(X_i)_{i \in \mathbb{Z}}$ be ϕ -mixing with ϕ -mixing rate $\phi(n)$, then $(X_i)_{i \in \mathbb{Z}}$ is strictly VWB $\varepsilon(n)$ for $\varepsilon(n) = \frac{1}{n} \sum_{i=1}^{n} \phi(i)$.

Proof. Theorem 6 yields

$$\begin{split} \sup_{Z \in \mathscr{A}_{-\infty}^{0}} n \rho_{n}(\mu, \mu(\cdot/Z)) &\leq \sup_{Z \in \mathscr{A}_{-\infty}^{0}} \sum_{i=1}^{n} |\operatorname{dist} X_{i}^{n} \mu - \operatorname{dist} X_{i}^{n} \mu(\cdot/Z)| \\ &\leq \sup_{Z \in \mathscr{A}_{-\infty}^{0}} \frac{1}{2} \sum_{i=1}^{n} (|\mu(B_{i}^{+}) - \mu(B_{i}^{+}/Z)| + |\mu(B_{i}^{-}) - \mu(B_{i}^{-}/Z)|) \\ &\leq \sum_{i=1}^{n} \phi(i) \end{split}$$

where

$$B_i^+ := \{(y_i, \ldots, y_n) : \mu(X_i = y_i, \ldots, X_n = y_n) \ge \mu(X_i = y_i, \ldots, X_n = y_n/Z)\}$$

and

$$B_i^- := \{ (y_i, \dots, y_n) \colon \mu(X_i = y_i, \dots, X_n = y_n) \\ < \mu(X_i = y_i, \dots, X_n = y_n/Z) \}. \quad \Box$$

In particular, we have the following consequences.

Corollary 12. If $(X_i)_{i \in \mathbb{Z}}$ is ϕ -mixing with $\sum_{i=1}^{\infty} \phi(i) < \infty$, then $(X_i)_{i \in \mathbb{Z}}$ is VWB O(1/n).

Corollary 13. Let $(X_i)_{i \in \mathbb{Z}}$ be a stationary Markov chain with at most countable state space. Then $(X_i)_{i \in \mathbb{Z}}$ is VWB O(1/n) iff $(X_i)_{i \in \mathbb{Z}}$ is ϕ -mixing.

Proof. If $(X_i)_{i \in \mathbb{Z}}$ is ϕ -mixing then $\phi(n) = O(\lambda^n)$ for a $0 < \lambda < 1$ [R]. Apply Corollary 12. \square

3. Some aspects of strictly VWB $\varepsilon(n)$ processes

We want to discuss a class of examples, which was given by Kesten and O'Brien in its original form. These examples will show that $\varepsilon(n) = O(1/n)$ is the only VWB rate which forces the process to be ϕ -mixing.

We use the notation of [K.O'B].

Let $(U_i)_{i \in \mathbb{Z}}$ be i.i.d. with values in \mathbb{Z}^+ .

Let $(V_i)_{i \in \mathbb{Z}}$ be i.i.d. with values in $\{0, 1\}$, $\mu(V_0 = 0) = \frac{1}{2}$.

Let $(U_i)_{i \in \mathbb{Z}}$ be independent from $(V_i)_{i \in \mathbb{Z}}$.

The process which Kesten and O'Brien constructed is $X_n := (U_n, V_n, V_{n-U_n})$, $n \in \mathbb{Z}$. In this section $(X_i)_{i \in \mathbb{Z}}$ is always this process.

Kesten and O'Brien proved

Theorem 14 [K.O'B]. If $\phi(n)$ is the ϕ -mixing coefficient for $(X_i)_{i \in \mathbb{Z}}$ then

$$\frac{1}{2}\mu\left(\bigcup_{k\geq n}\{U_k\geq k\}\right)\leq \phi(n)\leq \mu\left(\bigcup_{k\geq n}\{U_k\geq k\}\right).$$

In particular $(X_i)_{i \in \mathbb{Z}}$ is ϕ -mixing $\Leftrightarrow EU_0 < \infty$.

We prove an analogous estimate for the VWB-rate.

Theorem 15. $(X_i)_{i \in \mathbb{Z}}$ is strictly VWB $\varepsilon(n)$ where

$$\frac{1}{2n}\sum_{k=1}^n \mu(U_k \ge k) \le \varepsilon(n) \le \frac{1}{n}\sum_{k=1}^n \mu(U_k \ge k).$$

Proof. First we observe that

$$n\rho_n(\mu, \mu(\cdot/Z)) \ge \sum_{i=1}^n |\operatorname{dist} X_i \mu - \operatorname{dist} X_i \mu(\cdot/Z)|$$

by Lemma 5. Thus

$$n\varepsilon(n) \geq \sup_{Z \in \mathscr{A}_{-\infty}^{0}} \sum_{i=1}^{n} |\operatorname{dist} X_{i}\mu - \operatorname{dist} X_{i}\mu(\cdot/Z)|$$

$$\geq \sup_{Z \in \mathscr{A}_{-\infty}^{0}} \sum_{i=1}^{n} |\mu(U_{i} \geq i, V_{i-U_{i}} = 1) - \mu(U_{i} \geq i, V_{i-U_{i}} = 1/Z)|$$

$$\geq \sum_{i=1}^{n} \frac{1}{2} \mu(U_{i} \geq i) \qquad \left(Z_{N} = \bigcap_{j=0}^{N} \{V_{-j} = 0\}, \operatorname{let} N \to \infty \right).$$

So

$$\varepsilon(n) \geq \frac{1}{2n} \sum_{i=1}^{n} \mu(U_i \geq i).$$

For proving the upper bound we cannot apply Theorem 6, because for large n we have for $\mu(U_k = k) := 1/k(k+1)$, $k \ge 1$,

$$\sup_{Z\in\mathscr{A}_{-\infty}^0}\sum_{i=1}^n|\operatorname{dist} X_i^n\mu-\operatorname{dist} X_i^n\mu(\cdot/Z)|\geq \frac{1}{8}\sum_{k=1}^n\mu\left(\bigcup_{i>k}U_i\geq i\right)=\frac{1}{8}n.$$

Because $\frac{1}{n}\sum_{i=1}^n \mu(U_i \geq i) \to 0$ if $n \to \infty$, we have for large n

$$\frac{1}{n} \sum_{i=1}^{n} \mu(U_i \ge i) \le \frac{1}{8} \le \frac{1}{n} \sup_{Z \in \mathscr{A}_{\infty}^0} \sum_{i=1}^{n} |\operatorname{dist} X_i^n \mu - \operatorname{dist} X_i^n \mu(\cdot/Z)|.$$

Thus Theorem 6 is not strong enough in this case, because it gives a trivial upper bound. So we have to construct a measure

$$\lambda \in P_n((X_1,\ldots,X_n)\mu(\cdot/Z),(X_1,\ldots,X_n)\mu).$$

Fix $n, m \in \mathbb{Z}^+$ and $Z \in \mathscr{A}_{-m}^0$ of the form $Z = \{U_0 = u_0, V_0 = v_0, V_{0-U_0} = w_0, \ldots, U_{-m} = u_{-m}, V_{-m} = v_{-m}, V_{-m-U_{-m}} = w_{-m}\}$ such that $\mu(Z) > 0$. First we have, because $(U_i)_{i \in \mathbb{Z}}$, $(V_i)_{i \in \mathbb{Z}}$ are i.i.d., (3.1)

$$n \rho_n((U_1, \ldots, U_n, V_1, \ldots, V_n)\mu, (U_1, \ldots, U_n, V_1, \ldots, V_n)\mu(\cdot/Z)) = 0.$$

If $U_k < k$ or $(U_k > k + m \text{ and } k - U_k \neq -i - U_{-i} \ \forall 0 \leq i \leq m)$ then V_{k-U_k} is independent of $Z \in \mathscr{A}^0_{-m}$, and it is this property which helps us to find a good joining.

Let $C = \{U_1 = u_1, V_1 = v_1, \dots, U_n = u_n, V_n = v_n\}$. (3.1) implies $\mu(C) = \mu(C/Z)$.

Let J(C) be the indices where C does not hit Z, so $J(C) := \{1 \le l \le n : u_1 < l \text{ or } (u_l > l + m \text{ and } l - u_l \ne -i - u_{-i} \ \forall 0 \le i \le m \}$. Then $J(C) = \emptyset$ or $J(C) = \{j_1, \ldots, j_r\}$ and $(X_{j_1}, \ldots, X_{j_r})\mu(\cdot/C) = (X_{j_1}, \ldots, X_{j_r})\mu(\cdot/C \cap Z)$. If $J(C) = \{1, \ldots, n\}$ then there is $\lambda_C : \{0, 1\}^n \times \{0, 1\}^n \to \mathbb{R}$ such that

(1)
$$\operatorname{pr}_1 \lambda_C((x_1, \ldots, x_n)) = \mu(V_{1-U_1} = x_1, \ldots, V_{n-U_n} = x_n/C \cap Z)$$
,

(2)
$$\operatorname{pr}_2 \lambda_C((y_1, \ldots, y_n)) = \mu(V_{1-U_1} = y_1, \ldots, V_{n-U_n} = y_n/C)$$
 and

$$\int \sum_{i=1}^n \sigma(x_i, y_i) \, d\lambda_C = 0.$$

If $J(C) \neq \{1, ..., n\}$ then $\{1, ..., n\} - J(C) = \{l_1, ..., l_s\}$, $s \ge 1$. Then let

$$\overline{w_i} := \begin{cases} v_{l_i - u_{l_i}}, & \text{if } l_i - u_{l_i} \ge -m, \\ w_{-r}, & \text{if } l_i - u_{l_i} = -r - u_{-r} \text{ for } r \in \{0, \dots, m\}. \end{cases}$$

So we have $(\overline{w}_1, \ldots, \overline{w}_s) \in \{0, 1\}^s$. Let $\lambda_C : \{0, 1\}^n \times \{0, 1\}^n \to \mathbf{R}$ be defined by

$$\lambda_{C}((x_{1}, \ldots, x_{n}), (y_{1}, \ldots, y_{n})) := 0 \text{ if } (x_{l_{1}}, \ldots, x_{l_{s}}) \neq (\overline{w}_{1}, \ldots, \overline{w}_{s}) \text{ or }$$

$$y_{i} \neq x_{i} \text{ for some } i \in J(C),$$

$$\lambda_{C}((x_{1}, \ldots, x_{n}), (y_{1}, \ldots, y_{n})) := \mu(V_{1-U_{1}} = x_{1}, \ldots, V_{n-U_{n}} = x_{n}/C \cap Z)$$

$$\cdot \mu(V_{l_{1}-U_{l_{1}}} = y_{l_{1}}, \ldots, V_{l_{s}-U_{l_{s}}}/C) \text{ otherwise.}$$

Then one calculates

$$\operatorname{pr}_{1} \lambda_{C}((x_{1}, \ldots, x_{n})) = \mu(V_{1-U_{1}} = x_{1}, \ldots, V_{n-U_{n}} = x_{n}/C \cap Z),$$

 $\operatorname{pr}_{2} \lambda_{C}((y_{1}, \ldots, y_{n})) = \mu(V_{1-U_{1}} = y_{1}, \ldots, V_{n-U_{n}} = y_{n}/C),$ and

$$\int \sum_{i=1}^{n} \sigma(x_{i}, y_{i}) d\lambda_{C}$$

$$= \sum_{\{(x_{1}, \dots, x_{n}) : x_{l_{i}} = \bar{w}_{i} i \leq s\}} \sum_{\{(y_{1}, \dots, y_{n}) : y_{i} = x_{i} \text{ if } i \in J(C)\}} \sum_{i=1}^{n} \sigma(x_{i}, y_{i})$$

$$\cdot \mu(V_{1-U_{1}} = x_{1}, \dots, V_{n-U_{n}} = x_{n}/C \cap Z)$$

$$\cdot \mu(V_{l_{1}-U_{l_{1}}} = y_{l_{1}}, \dots, V_{l_{s}-U_{l_{s}}} = y_{l_{s}}/C)$$

$$= \sum_{\{(x_{1}, \dots, x_{n}) : x_{l_{i}} = \bar{w}_{i} i \leq s\}} \sum_{\{(y_{1}, \dots, y_{n}) : y_{i} = x_{i} \text{ if } i \in J(C)\}} \sum_{r=1}^{s} \sigma(x_{l_{r}}, y_{l_{r}})$$

$$\cdot \mu(V_{1-U_{1}} = x_{1}, \dots, V_{n-U_{n}} = x_{n}/C \cap Z)$$

$$\cdot \mu(V_{l_{1}-U_{l_{1}}} = y_{l_{1}}, \dots, V_{l_{s}-U_{l_{s}}} = y_{l_{s}}/C)$$

$$\leq \sum_{\{(x_{1}, \dots, x_{n}) : x_{l_{i}} = \bar{w}_{i} i \leq s\}} s\mu(V_{1-U_{1}} = x_{1}, \dots, V_{n-U_{n}} = x_{n}/C \cap Z)$$

$$\leq s = \text{card } J(C)^{C}.$$

So we get with λ : $(\mathbf{Z}^+ \times \{0, 1\} \times \{0, 1\})^n \times (\mathbf{Z}^+ \times \{0, 1\} \times \{0, 1\})^n \to \mathbf{R}$ defined by

$$\lambda(((u_1, v_1, w_1), \ldots, (u_n, v_n, w_n)) \times ((a_1, b_1, c_1), \ldots, (a_n, b_n, c_n)))$$

:= $\mu(C) \cdot \lambda_C((w_1, \ldots, w_n), (c_1, \ldots, c_n)),$

C as above, if $u_i = a_i$, $v_i = b_i \forall i$ and

$$\lambda(((u_1, v_1, w_1), \ldots, (u_n, v_n, w_n)) \times ((a_1, b_1, c_1), \ldots, (a_n, b_n, c_n))) := 0$$

otherwise, a probability measure $\lambda \in P_n((X_1, \ldots, X_n)\mu(\cdot/Z), (X_1, \ldots, X_n)\mu)$ by (3.1) and

$$n\rho_{n}(\mu, \mu(\cdot/Z)) \leq \int \sum_{i=1}^{n} \sigma(x_{i}, y_{i}) d\lambda = \sum_{C} \mu(C) \int \sum_{i=1}^{n} \sigma(x_{i}, y_{i}) d\lambda_{C}$$

$$\leq \sum_{C} \mu(C) \cdot \operatorname{card} J(C)^{c} \leq \sum_{C} \mu(C) \cdot \operatorname{card}(\{i \leq n : U_{i} \geq i\} \cap C)$$

$$= \sum_{i=1}^{n} \mu(U_{i} \geq i). \quad \Box$$

Remark. One can actually strengthen this last construction and prove that if $(U_i)_{i \in \mathbb{Z}}$ is a stationary process with values in \mathbb{Z}^+ and $(V_i)_{i \in \mathbb{Z}}$ is a stationary process with values in $\{0, 1\}$ and $X_n := (U_n, V_n, V_{n-U_n})$ then

- (1) $(X_i)_{i \in \mathbb{Z}} \phi$ -mixing $\Leftrightarrow EU_0 < \infty$, $(U_i)_{i \in \mathbb{Z}} \phi$ -mixing, $(V_i)_{i \in \mathbb{Z}} \phi$ -mixing,
- (2) $(X_i)_{i \in \mathbb{Z}}$ VWB $O(1/n) \Leftrightarrow EU_0 < \infty$, $(U_i)_{i \in \mathbb{Z}}$ VWB O(1/n), $(V_i)_{i \in \mathbb{Z}}$ VWB O(1/n).

For this one needs a Borel-Cantelli-Lemma for ϕ -mixing sequences. We get as corollaries of Theorems 14 and 15:

Corollary 16. $X_n := (U_n, V_n, V_{n-U_n})$ as above. Then

$$(X_i)_{i \in \mathbb{Z}} \phi$$
-mixing $\Leftrightarrow (X_i)_{i \in \mathbb{Z}} \text{VWB } O(1/n) \Leftrightarrow EU_0 < \infty$.

Corollary 17. For any rate $\varepsilon(n)$ with $(n+1)\varepsilon(n+1) - n\varepsilon(n) \leq n\varepsilon(n) - (n-1)\varepsilon(n-1)$ $\forall n$, $\varepsilon(n) \to 0$, $n\varepsilon(n) \to \infty$ and $n\varepsilon(n) \leq n$ $\forall n$ there is a process $(X_i)_{i\in \mathbb{Z}}$ which is strictly VWB $\varepsilon(n)$ and not ϕ -mixing.

We would like to find an example of a process which is not VWB O(1/n), but ϕ -mixing, but we have not yet been successful. We believe a good candidate is the following:

Let $(U_i)_{i\in \mathbb{Z}}$, $(V_i)_{i\in \mathbb{Z}}$ as above. Let $Y_n:=(V_n\,,\,V_{n-U_n})\,,\,\,n\in \mathbb{Z}$. Then it is not hard to see that $EU_0=\infty\Rightarrow (Y_i)_{i\in \mathbb{Z}}$ is not VWB O(1/n). The conjecture is

$$EU_0 = \infty$$
, $\sum_{k=1}^{\infty} \mu(U_k \ge k)^2 < \infty \Rightarrow (Y_i)_{i \in \mathbb{Z}}$ is ϕ -mixing.

APPENDIX

Proof of Theorem 6. Fix $n \in \mathbb{N}$, $Z \in \mathscr{A}_{-\infty}^0$, $\mu(Z) < 0$. We will need some elaborate notation. Let $\{X_1^n = s_1^n\} := \{X_1 = s_1, \ldots, X_n = s_n\}$.

$$I_{1} := \{(s_{1}, \ldots, s_{n}) \in S^{n} : \mu(X_{1}^{n} = s_{1}^{n}) > \mu(X_{1}^{n} = s^{n}/Z)\},$$

$$\overline{I_{1}} := \{(s_{1}, \ldots, s_{n}) \in S^{n} : \mu(X_{1}^{n} = s_{1}^{n}) < \mu(X_{1}^{n} = s_{1}^{n}/Z)\},$$

$$\tau_{1}(s_{1}, \ldots, s_{n}) := \mu(X_{1}^{n} = s_{1}^{n}), \quad \overline{\tau}_{1}(s_{1}, \ldots, s_{n}) := \mu(X_{1}^{n} = s_{1}^{n}/Z),$$

$$\rho_{1}(s_{1}, \ldots, s_{n}) := (\mu(X_{1}^{n} = s_{1}^{n}) - \mu(X_{1}^{n} = s_{1}^{n}/Z)) \cdot 1_{I_{1}}(s_{1}, \ldots, s_{n}),$$

$$\overline{\rho}_{1}(s_{1}, \ldots, s_{n}) := (\mu(X_{1}^{n} = s_{1}^{n}/Z) - \mu(X_{1}^{n} = s_{1}^{n})) \cdot 1_{\overline{I}_{1}}(s_{1}, \ldots, s_{n}).$$

Then inductively for $1 \le k \le n-1$

$$\tau_{k+1}(s_{k+1}, \ldots, s_n) := \sum_{(s_1, \ldots, s_k)} \rho_k(s_1, \ldots, s_k, s_{k+1}, \ldots, s_n),
\bar{\tau}_{k+1}(s_{k+1}, \ldots, s_n) := \sum_{(s_1, \ldots, s_k)} \bar{\rho}_k(s_1, \ldots, s_k, s_{k+1}, \ldots, s_n),
I_{k+1} = \{(s_{k+1}, \ldots, s_n) \in S^{n-k} : \tau_{k+1}(s_{k+1}, \ldots, s_n) > \bar{\tau}_{k+1}(s_{k+1}, \ldots, s_n)\},
\bar{I}_{k+1} = \{(s_{k+1}, \ldots, s_n) \in S^{n-k} : \tau_{k+1}(s_{k+1}, \ldots, s_n) < \bar{\tau}_{k+1}(s_{k+1}, \ldots, s_n)\},
\rho_{k+1}(s_1, \ldots, s_n) := \rho_k(s_1, \ldots, s_n) \left(1 - \frac{\bar{\tau}_{k+1}(s_{k+1}, \ldots, s_n)}{\tau_{k+1}(s_{k+1}, \ldots, s_n)}\right) 1_{I_{k+1}}(s_{k+1}, \ldots, s_n),
\bar{\rho}_{k+1}(s_1, \ldots, s_n) := \bar{\rho}_k(s_1, \ldots, s_n) \left(1 - \frac{\tau_{k+1}(s_{k+1}, \ldots, s_n)}{\bar{\tau}_{k+1}(s_{k+1}, \ldots, s_n)}\right) 1_{\bar{I}_{k+1}}(s_{k+1}, \ldots, s_n),
\tau_{n+1} := \sum_{s \in S^n} \rho_n(s), \quad \bar{\tau}_{n+1} := \sum_{s \in S^n} \bar{\rho}_n(s).$$

We want to define a probability measure on $S^n \times S^n$, therefore we partition the

set $S^n \times S^n = W_0 \cup W_1 \cup \dots \cup W_n \cup R$ in disjoint sets, where $W_0 = \{(x, x) : x \in S^n\},\$ $W_n = \{((x_1, \dots, x_n), (y_1, \dots, y_n)) : x_n \neq y_n, \rho_n(x_1, \dots, x_n) > 0 \text{ and }$ $\bar{\rho}_n(y_1, \dots, y_n) > 0\},\$ $W_i = \{((x_1, \dots, x_n), (y_1, \dots, y_n)) : x_i \neq y_i, x_r = y_r, i < r < n,$

$$W_{i} = \{((x_{1}, \ldots, x_{n}), (y_{1}, \ldots, y_{n})) : x_{i} \neq y_{i}, x_{r} = y_{r}, i < r \leq n, \\ \min(\tau_{i+1}(x_{i+1}, \ldots, x_{n}), \bar{\tau}_{i+1}(x_{i+1}, \ldots, x_{n})) > 0\}$$

for $1 \le i \le n-1$,

$$R:=S^n\times S^n-\bigcup_{i=0}^nW_i.$$

Then we define $\nu_n: S^n \times S^n \to \mathbf{R}$ in the following way:

(1) $((s_1,\ldots,s_n),(s_1,\ldots,s_n))\in W_0$:

$$\nu_n((s_1,\ldots,s_n),(s_1,\ldots,s_n)) := \min(\tau_1(s_1,\ldots,s_n),\bar{\tau}_1(s_1,\ldots,s_n)).$$

(2) $((a_1, \ldots, a_i, s_{i+1}, \ldots, s_n), (b_1, \ldots, b_i, s_{i+1}, \ldots, s_n)) \in W_i, 1 \leq i < n-1$:

$$\nu_{n}((a_{1}, \ldots, a_{i}, s_{i+1}, \ldots, s_{n}), (b_{1}, \ldots, b_{i}, s_{i+1}, \ldots, s_{n}))
:= \frac{\min(\tau_{i+1}(s_{i+1}, \ldots, s_{n}), \bar{\tau}_{i+1}(s_{i+1}, \ldots, s_{n}))}{\tau_{i+1}(s_{i+1}, \ldots, s_{n})\bar{\tau}_{i+1}(s_{i+1}, \ldots, s_{n})}
\cdot \rho_{i}(a_{1}, \ldots, a_{i}, s_{i+1}, \ldots, s_{n})\bar{\rho}_{i}(b_{1}, \ldots, b_{i}, s_{i+1}, \ldots, s_{n}).$$

(3)
$$((a_1, \ldots, a_n), (b_1, \ldots, b_n)) \in W_n$$
:

$$\nu_n((a_1, \ldots, a_n), (b_1, \ldots, b_n))$$

$$:= \rho_n(a_1, \ldots, a_n) \bar{\rho}_n(b_1, \ldots, b_n) \frac{\min(\tau_{n+1}, \bar{\tau}_{n+1})}{\tau_{n+1} \bar{\tau}_{n+1}}.$$

(4) $\nu_n((a_1,\ldots,a_n),(b_1,\ldots,b_n)):=0$ if $((a_1,\ldots,a_n),(b_1,\ldots,b_n))\in R$. We use the abbreviated notation $s^{(i)}:=(s_i,\ldots,s_n)\in S^{n-i+1},\ 1\leq i\leq n$. First we want to prove that ν_n is a joining of

$$(X_1,\ldots,X_n)\mu$$
 and $(X_1,\ldots,S_n)\mu(\cdot/Z)$.

One calculates

$$\begin{split} \alpha(s^{(1)}) &:= \sum_{t^{(1)} \in S^n} \nu_n(s^{(1)}, t^{(1)}) \\ &= \nu_n(s^{(1)}, s^{(1)}) + \sum_{i=1}^{n-1} \sum_{\{t^{(1)} \in S^n : t_i \neq s_i, t_{i+1} = s_{i+1}, \dots, t_n = s_n\}} \nu_n(s^{(1)}, t^{(1)}) \\ &+ \sum_{\{t^{(1)} \in S^n : t_n \neq s_n\}} \nu_n(s^{(1)}, t^{(1)}) \\ &= \min(\tau_1(s^{(1)}), \bar{\tau}_1(s^{(1)})) + \sum_{i=1}^{n-1} \frac{\min(\tau_{i+1}(s^{(i+1)}), \bar{\tau}_{i+1}(s^{(i+1)}))}{\tau_{i+1}(s^{(i+1)})} \rho_i(s^{(1)}) \\ &+ \frac{\min(\tau_{n+1}, \bar{\tau}_{n+1})}{\tau_{n+1}} \rho_n(s^{(1)}). \end{split}$$

To calculate $\alpha(s^{(1)})$ we have to look for the set I_k that $s^{(k)}$ belongs to:

Case 1.
$$s^{(1)} \notin I_1$$
. Then $\rho_i(s^{(1)}) = 0 \ \forall i \ge 1$, so

$$\alpha(s^{(1)}) = \tau_1(s^{(1)}) = \mu(X_1 = s_1, \dots, X_n = s_n).$$

Case 2. $s^{(1)} \in I_1$, $s^{(2)} \notin I_2$. Then $\rho_i(s^{(1)}) = 0 \ \forall i \ge 2$, and

$$\alpha(s^{(1)}) = \bar{\tau}_1(s^{(1)}) + \rho_1(s^{(1)}) = \mu(X_1 = s_1, \dots, X_n = s_n).$$

General case. $s^{(1)} \in I_1, \ldots, s^{(k)} \in I_k$, $s^{(k+1)} \notin I_{k+1}$. Then the same argument as in Case 2 shows $\alpha(s^{(1)}) = \mu(X_1 = s_1, \ldots, X_n = s_n)$ and in the case $s^{(1)} \in I_1, \ldots, s^{(n)} \in I_n$ one uses the fact $\tau_{n+1} = \bar{\tau}_{n+1}$ to see $\alpha(s^{(1)}) = \mu(X_1 = s_1, \ldots, X_n = s_n)$. Similarly

$$\sum_{s^{(1)} \in S^n} \nu_n(s^{(1)}, t^{(1)}) = \mu(X_1 = t_1, \dots, X_n = t_n/Z).$$

For proving (2.1) we need an equivalent definition of the sets I_k .

Claim 2. $1 \le k \le n$. Then

$$I_k = \{s^{(k)} : \mu(X_k = s_k, \dots, X_n = s_n) > \mu(X_k = s_k, \dots, X_n = s_n/Z)\}.$$

Proof of the claim.

$$\begin{split} \tau_k(s^{(k)}) &= \sum_{s_1, \dots, s_{k-1}} \rho_{k-1}(s_1, \dots, s_{k-1}, s_k, \dots, s_n) \\ &= \sum_{s_1, \dots, s_{k-2}} \sum_{s_{k-1}} \rho_{k-2}(s^{(1)}) \left(1 - \frac{\bar{\tau}_{k-1}(s^{(k-1)})}{\tau_{k-1}(s^{(k-1)})} \right) 1_{I_{k-1}}(s^{(k-1)}) \\ &= \sum_{\{s: (s, s_k, \dots, s_n) \in I_{k-1}\}} (\tau_{k-1}(s, s_k, \dots, s_n) - \bar{\tau}_{k-1}(s, s_k, \dots, s_n)) \\ &= \sum_{\{s: (s, s^{(k)}) \in I_{k-1}\}} (\tau_{k-1}(s, s^{(k)}) - \bar{\tau}_{k-1}(s, s^{(k)})). \end{split}$$

So we get

$$\begin{split} \tau_k(s^{(k)}) > \bar{\tau}_k(s^{(k)}) \\ \Leftrightarrow \sum_{\{s \,:\, (s \,,\, s^{(k)}) \in I_{k-1}\}} (\tau_{k-1}(s \,,\, s^{(k)}) - \bar{\tau}_{k-1}(s \,,\, s^{(k)})) \\ > \sum_{\{s \,:\, (s \,,\, s^{(k)}) \in \bar{I}_{k-1}\}} (\bar{\tau}_{k-1}(s \,,\, s^{(k)}) - \tau_{k-1}(s \,,\, s^{(k)})) \\ \Leftrightarrow \sum_{s \in S} \tau_{k-1}(s \,,\, s^{(k)}) > \sum_{s \in S} \bar{\tau}_{k-1}(s \,,\, s^{(k)}) \\ \Leftrightarrow \sum_{s_1 \,,\, \dots \,,\, s_{k-1}} \tau_1(s_1 \,,\, \dots \,,\, s_{k-1} \,,\, s^{(k)}) > \sum_{s_1 \,,\, \dots \,,\, s_{k-1}} \bar{\tau}_1(s_1 \,,\, \dots \,,\, s_{k-1} \,,\, s^{(k)}) \end{split}$$

by repeating the argument

$$\Leftrightarrow \mu(X_k = s_k, \ldots, X_n = s_n) > \mu(X_k = s_k, \ldots, X_n = s_n/Z)$$

by definition of τ_1 , $\bar{\tau}_1$.

This completes the proof of the claim.

Now we compute for $1 \le i \le n$

$$\begin{split} &\int_{S^{n}\times S^{n}} \sigma(x_{i}, y_{i}) \, d\nu_{n}((x_{1}, \dots, x_{n}), (y_{1}, \dots, y_{n})) \\ &= \nu_{n}(\{(s^{(1)}, t^{(1)}) : s_{i} \neq t_{i}\}) \\ &\leq 1 - \sum_{j=0}^{i-1} \nu_{n}(\{(s^{(1)}, t^{(1)}) : s_{j+1} = t_{j+1}, \dots, s_{n} = t_{n}, s_{j} \neq t_{j}\}) \\ &= 1 - \sum_{j=0}^{i-1} \sum_{s^{(j+1)}} \min(\tau_{j+1}(s^{(j+1)}), \bar{\tau}_{j+1}(s^{(j+1)})) \\ &= 1 - \sum_{j=1}^{i-1} \left(\sum_{s^{(j)} \in I_{j}} \bar{\tau}_{j}(s^{(j)}) + \sum_{s^{(j)} \notin I_{j}} \tau_{j}(s^{(j)}) \right) \\ &- \left(\sum_{s^{(j)} \in I_{j}} \sum_{s, \dots, s_{i-1}} \bar{\rho}_{i-1}(s^{(i)}) + \sum_{s^{(i)} \notin I_{j}, s_{1}, \dots, s_{i-1}} \rho_{i-1}(s^{(i)}) \right) \\ &= 1 - \sum_{j=1}^{i-2} \left(\sum_{s^{(j)} \in I_{j}} \bar{\tau}_{j}(s^{(j)}) + \sum_{s^{(j)} \notin I_{j}} \tau_{j}(s^{(j)}) \right) \\ &- \sum_{s^{(i-1)} \in I_{i-1}} \bar{\tau}_{i-1}(s^{(i-1)}) - \sum_{s^{(i-1)} \notin I_{i-1}} \tau_{i-1}(s^{(i-1)}) \\ &- \sum_{s^{(i)} \in I_{i}, s^{(i-1)} \in I_{i-1}} (\bar{\tau}_{i-1}(s^{(i-1)}) - \bar{\tau}_{i-1}(s^{(i-1)})) \\ &- \sum_{\{s^{(i-1)} : s^{(i)} \in I_{i}\}} \bar{\tau}_{j}(s^{(j)}) + \sum_{s^{(i)} \notin I_{j}} \tau_{j}(s^{(j)}) \\ &- \sum_{\{s^{(i)} : s^{(i)} \in I_{i}\}} \bar{\tau}_{1}(s^{(i)}) - \sum_{\{s^{(i)} : s^{(i)} \notin I_{i}\}} \tau_{i-1}(s^{(i-1)}) \\ &= 1 - \sum_{s^{(i)} \in I_{i}} \bar{\tau}_{1}(s^{(i)}) - \sum_{\{s^{(i)} : s^{(i)} \notin I_{i}\}} \tau_{1}(s^{(i)}) \quad \text{(by repeating the argument)} \\ &= 1 - \sum_{s^{(i)} \in I_{i}} \bar{\tau}_{1}(s^{(i)}) - \sum_{\{s^{(i)} : s^{(i)} \notin I_{i}\}} \tau_{1}(s^{(i)}) \quad \text{(by repeating the argument)} \\ &= \sum_{s^{(i)} \in I_{i}} \mu(X_{i} = s_{i}, \dots, X_{n} = s_{n}) - \mu(X_{i} = s_{i}, \dots, X_{n} = s_{n}/Z)) \\ &= |\operatorname{dist} X_{i}^{n} \mu - \operatorname{dist} X_{i}^{n} \mu(\cdot/Z)| \quad \text{(by Claim 2)}. \end{aligned}$$

So (2.1) is proved and therefore Theorem 6, also. \Box

REFERENCES

- [B1] R. C. Bradley, On a very weak Bernoulli condition, Stochastic 13 (1984), 61-81.
- [B2] ____, On the ϕ -mixing condition for stationary random sequences, Duke Math. J. 47 (1980), 421-433.
- [B3] _____, Basic properties of strong mixing conditions: Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.), Birkhäuser, 1986, pp. 165-192.
- [D.D.P] H. Dehling, M. Denker, and W. Philipp, Versik processes and very weak Bernoulli processes with summable rates are independent, Proc. Amer. Math. Soc. 91 (1984), 618-623.
- [E] E. Eberlein, Strong approximation of very weak Bernoulli processes, Z. Wahrsch. Verw. Gebiete 62 (1983), 17-37.
- [F] D. Fiebig, Über very weak Bernoulli Prozesse mit schnellen Raten, Dissertation, Göttingen, 1988.
- [K.O'B] H. Kesten and G. L. O'Brien, Examples of mixing sequences, Duke Math. J. 43 (1976), 405-415.
- [R] M. Rosenblatt, Markov processes, structure and asymptotic behavior, Springer-Verlag, Berlin, 1971.
- [S.] W. Strittmatter, Measures of dependence for processes in metric spaces, Stochastics Stochastics Rep. 27 (1989), 33-50.

Universität Heidelberg SFB 123, Im Neuenheimer Feld 294, D-6900 Heidelberg 1, West Germany

Current address: Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, 6900 Heidelberg, Germany

E-mail address: bq6@dhdurzl.bitnet