TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 338, Number 1, July 1993

MIXING PROPERTIES OF A CLASS OF BERNOULLI-PROCESSES

DORIS FIEBIG

ABSTRACT. We prove that stationary very weak Bernoulli processes with rate
O(1/n) (VWBO(l/n)) are strictly very weak Bernoulli with rate O(1/n).
Furthermore we discuss the relation between VWB O(1/n) and the classical
mixing properties for countable state processes. In particular, we show that
VWBO(1/n) implies ¢-mixing.

0. INTRODUCTION

Let X;: (Q,&,u) - (S,%), i € Z, be a stationary sequence of ran-
dom variables on a probability space (Q, .7 , u) with values in a Polish space
(S, #). In this setting we define very weak Bernoulli processes with rate &(n),
denoted by VWBe¢(n), and strictly VWBe(n) processes. It was shown by
Dehling, Denker and Philipp [D.D.P] that O(1/n) is the fastest rate for which
nonindependent VWB-processes exist. We show that (X;)iez is VWBO(1/n)
iff (X;)iez is strictly VWB O(1/n) . This strengthens the result of Eberlein, that
real-valued strictly VWB O(1/n) processes with certain moment conditions sat-
isfy an almost sure invariance principle [E]. Then we restrict ourselves to the
discrete case, i.e., we assume .S to be countable and that & is generated by the
discrete metric. Our main result in this case is that VWB O(1/n) implies ¢-
mixing, which improves an earlier result of [D.D.P]. We show that VWB O(1/n)
gives no constraints on the ¢-mixing rate, and that VWB O(1/n) does not imply
w-mixing. After that we give a new upper bound for the Wasserstein-distance,
which implies that a ¢-mixing process with ¢-mixing rate ¢(i) is strictly VWB
with rate %ELI @(i); in particular ¢-mixing processes with summable rates
are VWBO(1/n).

1. VWBO(1/n) MPLIEs STRICTLY VWB O(1/n)

Let X;:(Q,%,u)— (S,%), i €Z, be a stationary sequence of random
variables. Let o : SxS — R be a metric, such that & is generated by ¢ and S
is a Polish space. For ~co < m <n < oo let & = (X;, m <i<n) bethe
o-algebra generated by X; with indices between m and n. For two probability
measures vy, v, on (S", B") let P,(vy,1n) = {A: B"x B" - [0,1]: 12 isa
probability measure with jth marginal v;, i =1, 2}. So P,(v,, v») is the set
of joinings of v, and v,. Then, for Z € &9  with u(Z) > 0, define the
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Wasserstein-distance

Pt 1(+/Z)) lnf/s ) Z o(Xi, yi)dAX), .o, Xn, Y1y oo Vn)

where the infimum is taken over A € P,,((Xl s X, (Xpy oo, Xn)u(+/2)) .

Definition 1 [E]. (X;);cz is very weak Bernoulli with rate ¢(n) (VWBe(n)) iff
(1) ¢(n) -0, n— oo,
(2) VneN VmeZ* 3D =D(m, n) € &%, with

(L.1) u(D) = 1—¢(n),

(1.2) ACD, A€, u(A)>0= pu(u, u(-/4)) < &(n).

Definition 2 [E]. (X;);cz is strictly VWBe(n) iff (X;);cz 1s VWBe(n) and all
sets D(m, n) can be chosen to be Q, i.e., pu(u, u(-/A)) < e&(n) VA€ L2,

We shall tacitly assume p(A4) > 0 when dealing with conditional probabilities
as pu(-/4).

In [D.D.P] it was shown that a VWBe(n) process with liminfne(n) = 0
is already independent. This means that &(n) = O(1/n) is the fastest rate
for which one can possibly have a nonindependent VWBe¢(n) process. Var-
ious classes of examples for VWBO(1/n) processes are given in [F]. They
include m-dependent processes, finite state mixing Markov chains and con-
tinuous factors of finite state mixing Markov chains. There it was shown that
the VWB O(1/n)-property is not preserved under finitary factor maps, not even
if the coding length of the factor map has moments of all orders [F].

Our main interest is the examination of VWBO(1/n) processes. The fun-
damental observation is the following:

Theorem 3 [F]. Let (X;);cz be a stationary sequence of random variables with
values in a Polish space. Let 0 < M < co. Then:

(Xi)iez is VWB with rate M/n iff (X})iez is strictly VWB with rate M /n.
We need

Lemma 4 [S]. Let M, = {v: (S", B") — R : v probability measure} with weak
topology. Then

np,: M, x M, - R

(v1, v2) = npa(vy, 12)

is a lower semicontinuous function.
Proof of Theorem 3. Let 0 < M < oo. Let (X;);cz be VWB with rate M/n.
Then for all n € N, m € Z* sets D(m, n) € &%, can be chosen such that
(1.1), (1.2) hold for &(n) = M/n. We show that the process is strictly VWB
M/n. Let n € N, m € Z* and choose a set 4 € &9 with u(4) > 0.
Now pick kg > n such that uy(AnND(m, k)) > u(A)/2 >0 Vk > ky. Then
u(-/AnND(m, k)) — u(-/A) in weak topology. Because AND(m, k) C D(m, k)
and AND(m, k) e &9, Vk, (1.2) implies

Pi(u, u(-/AND(m, k))) <

<M
k

Yk > k.
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Since n < kg we have

Palit, u(-JAND(m, k))) <

By Lemma 4 this implies p,(u, u(-/4)) < M/n, so the process is strictly
VWB M/n. The converse is trivial. O

M
) Vk > ky.

Theorem 3 does not hold for rates slower than O(1/n). This was shown in
[F] and we recall here the example:
Let (X;)icz be a Markov chain with state space Z* and transition probabil-

ities o ]
1, i=j+1, j>0,
Pij={Cj, i=0, j>0,

0, otherwise,

where (cp)n>0 is a sequence with ¢; > 0 Vj, ¢; > 0 infinitely often, E;’il jcj <
oo. Then the (p;j); jez+ define a stationary Markov chain. For stationary
Markov chains one can calculate the exact value of p,(u, u(-/Xo = 1)) for all
n €N, i € Z* (by Theorem 6). This gives the possibility by choosing (c;);>o
to achieve a given VWB rate ¢(n) with ne(n) — oo. In [F] it was shown that
the Markov chain above is not strictly VWB, i.e., there is no rate ¢(n) for which
(Xi)iez 1is strictly VWBeg(n).

2. RELATING VWB O(1/n) TO THE CLASSICAL MIXING PROPERTIES

Now we want to examine the mixing properties of VWB O(1/n) processes.
Because &(n) = O(1/n) is the fastest rate for which one can have nonindepen-
dent VWBe(n) processes, and because of Theorem 3, one expects that these
processes have good mixing properties, but this depends strongly on the state
space S and the metric o. There exists a stationary VWBO(1/n) process
with uncountable state space S C R, where ¢ is the Euclidean metric, which
is not even a-mixing [B1], but on the other hand finite state VWB O(1/n) pro-
cesses are always weak Bernoulli [D.D.P]. From now on we restrict ourselves
to stationary processes with at most countable state space, endowed with the
discrete metric. For Z € &% , u(Z) >0 and 1 <i < n < oc we define the
distribution distance of names by

| dist X"y — dist X" u(-/Z))|

1
=5 Y Xn=y. o Xi=y) = (X =u s Xi=0if2),

(Vis e, yn)ES=iH]

With this notation we have the simple, but extremely useful

Lemma 5. Let (n;);en be a strictly increasing sequence of natural numbers with
no:=0. Let Z € &% with u(Z)>0. Then forall N € N

N
AN+ Py, (1 4(-/Z)) 2 | dist Xy i — dist X' u(-/Z).
i=0

(If S is countable and the metric ¢ is bounded below by ¢, i.e., a(x, y) >
e >0 Vx # y, then this lemma holds with the RHS multiplied by ¢). The
next theorem gives a new upper bound for the Wasserstein-distance.
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Theorem 6. Let n € N, Z € /9 with u(Z) > 0. Then

n
npalpe, p(-/Z)) <Y |dist X7 u — dist X7 u(-/Z)].

i=1

The proof of Theorem 6 is deferred to the Appendix. It depends on the

construction of a joining v, of (X;,..., Xp)u and (X, ..., X,)u(-/Z) such
that
(21) /S'le" O'(X,', J"i)an((xl 5 eve s xn)> (yl PRI J/’n))

<|distX]'u—dist X!'u(-/Z)] V1<i<n.

The joining v, is a generalisation of a construction in [F], and shows that for
Markov chains

npn(it, u(-/Xo = x)) = Y | dist Xip — dist Xy (-/ Xo = x)|.

i=1
We use the following mixing coefficients:

a(n):= sup sup |u(BNA) - pu(B)u4d)],
AewO  Bed,™

WB(n):= sup > Y u(A)-|u(B|4) - u(B),

m. k20 pe ik g0

where Pk (resp. #9,,) is the finest partition of Qinto sets B € &,k
(resp. A€ L0,).

¢(n):= sup sup |u(B/A) - u(B),
Acatd | BES™

w(n):= sup sup |u(B/A)/u(B)—1|
A€/  Be>®

(where as always u(A4) > 0 is assumed, if necessary). (X;);ez is said to be
a-mixing (weak Bernoulli (= WB), ¢-mixing or y-mixing) iff a(n) — 0
(WB(n) - 0, ¢(n) —» 0, w(n) — 0), respectively. From the definitions of
the mixing coefficients it is clear that

y-mixing = ¢-mixing = WB = a-mixing.

The reverse implications do not hold. For general background on the properties
of these mixing coefficients see [B3]. We first strengthen the result of [D.D.P]
to

Theorem 7. Let (X;)icz be a stationary process with at most countable state
space S and discrete metric (or a metric bounded away from zero). Then
(Xi)iez VWBO(1/n) = (Xi)iez ¢-mixing.

For the proof we need the following Lemma 8, which is an easy consequence
of the observation that VWB with rate M/n implies (m € N)

M > (Nm)pym(u, u(-/D))

N
> | dist X" ) i — dist X7 u(-/D)| by Lemma 5.

i=1
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So that, given ¢ > 0, there is an N € N such that for any set
D e /% , u(D) > 0 there is an i < N with
| dist X[ )yt — dist X" ), 1(-/D)| < e
Lemma 8. Let (X;)icz be VWB with rate ¢(n) = M/n, 0 < M < co. Let
o : SZ — SZ be the shift map, i.e., o((sj)jez)i = Siy1 Vi € Z. Fix r € N,

m € N. Choose Ay, ..., A, € 2™ with u(As) >0 Vs. Fix > 0. Then there
is k = k(minj<s<, u(4), d) € N such that:

vDe % , u(D)>030<i<k (i depends on D) with

(6™ A /D) — u(As)| < Su(As) Vs <r.
Proof. Choose & < 6 min <<, i(4;) , and apply the observation (2.2) above, us-
ing the fact that |u(0~"™A;/D)—u(A;)| < |dist XEH)" u—dist X" u(-/D)|. O

im+

(22.)

Remark. Lemma 8 remains valid for strictly VWBe(n) processes, for all rates

e(n).

Proof of Theorem 1. Let (X;)icz be VWBe(n), e(n) = M/n, M < co. Assume

(Xi)iez 1s not @-mixing.

Claiml. Yme N Ve >0 N =<l <bhb< -+ <lp<o JkeN

3B e "', 1<i<mand 3C € 45, u(C) >0, such that u(B;)>1-e¢,
(B,/C)<s vie{l,..., m}.

We prove this clalm by induction on m. For m = 1, we apply Theorem 1
of [B2], so (X;)icz not ¢-mixing means ¢( ) = 1. This implies the claim for

= 1, because one can approximate sets in %> (resp. &9 ) arbitrarily well
by sets in &/ (resp. &%) for [ (resp. k) large enough.

Let ¢ >0 and pick 0 <d < ¢/3.

By hypothesis there are 1 =/lp </, <--- <[/, < oo and sets B; € M,’_l" ,
1<i<m, Ce&ZS, u(C) >0 with u(B;) >1-35, uB;/C) <. We
shall show that there are sets B,,,; and E and that By, ..., By, B, and
E satisfy the claim for m+ 1 and ¢. Let I :={ie {l,..., m}: u(B;/C) >
0}, 4; := 0" (B;NC), 1 <i < m. Then 4; € &"*Vi. We apply
Lemma 8 to the {4;, i € I} U{o~*"'C} with m' := [, +s. So we get
k = k(u(C), (u(Ai))ier; &) such that for any set D € #° 30 < j < k such
that

(™™ 4;/D) — u(A))| < Su(4) Viel,

lu(a /™ ==1C /D) — u(C)| < 3u(C).
Now, because not ¢-mixing means in particular ¢(n) = 1 Vn, we find for
0<d; <6 with 26,/u(C) <6 anumber L > (2k + 1)m’ + 2 and sets

(24)  BeAgiyw, DeAY withu(B)>1-6;, u(B/D)<.
Let E := CNg/™++1D where j is according to (2.3). Then E € &°

(2.3)

—L—jm'—s—1~

and u(E) = #(D)#(G"jm’_s_]C/D) > 1u(D)u(C) > 0 by (2.3). Let By =
g/™ 4B S0 By € M(ZL,( ’J';'m,s Uand 2k —j)ym' > km' > I, , s0 for [y, =
L—jm —s—1 we have

(2.5) By € and p(Bpi)>1-0.
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For ie{l,..., m}—1I we have
w(BinC)

2(E) =0<d.

K(Bi/E) <

For i € I we have

u(BinCNg/™+*1D)  u(D)u(c~I" 4;/D)
HE/E) u(E) u(E)
(=™ 4,/D)
~ u(o=im'=s=1C/D)
3
2u(A;
< 2]#( ) _ 3u(B;/C) < 36 (because of (2.3))
7#(C)
and
_ u(@/m 1B Cng/m D) u(B/D)u(D)
/‘(BmH/E) - ,u(CﬂO'jm"”"'lD) < 'u(Cno-jm’+s+lD)
1(B/D) Jy
= . <d (b f (2.3), (2.4)).
2= =-1C/D) < T.(D) (because of (2.3), (2.4))
Because 30 < ¢ we have sets By, ..., B,.; and E which satisfy Claim 1 for

m+ 1 and e. This proves Claim 1.
Now we choose ¢ < % and m € N such that m(1 — 2¢) > M. Then we
choose sets B;, C from Claim 1 to obtain by Lemma 5 the estimate

m
M 2 Lnpy, (s, 1/ €)) 2 Y | dist X~ — dist | X;~ -/ C)]

i=1
> > |u(Bi) — u(Bi/C)| 2 m(1 - 2¢) > M.
i=1

This contradiction shows, (X;);ez was, in fact, ¢-mixing and proves the theo-
rem. 0O

Remark. The key to the proof of Theorem 7 is Claim 1. In fact, one can prove
Claim 1 for all strictly VWBe(n) processes, but of course, the fastest rate
e(n) = O(1/n) was needed to produce a contradiction from Claim 1. We show
in §3 that for each sequence ¢(n), ne(n) — oo, &(n) — O there is a strictly
VWBe(n) process which is not ¢-mixing.

Theorem 7 is the strongest possible, since there exists VWB O(1/n), a finite
state process, which is not ¢-mixing (see [F]).

Example 9. There exista VWB O(1/n) process with countable state space which
is not y-mixing. Let 0 <p <1 and for i, j € Z* let

D, ifj=i+1, i>0,
pu:={l—p, ifi>0, j=0,
0, otherwise.

This stochastic matrix defines a stationary Markov chain (X;),cz with state
space Z* and invariant measure u, where u(Xo=i)=(1-p)-p', i >0.
(Xi)iez 1s not y-mixing, because u(X,=n+1/Xo=0)=0 Vvn.
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(Xi)iez is ¢-mixing, as an easy calculation shows, so (X;);ez is VWBO(1/n),
see Corollary 13.

The next theorem shows that VWBO(1/n) has no constraints on the ¢-
mixing rate.

Theorem 10. Let (4n)n>1 be a sequence with Ay < 1, (Ay)n>1 nonincreasing,
in = 0 as n — oo and —log(l — A,) is convex on the set {k : A, < 1}.
Then there exists a countable state process (X;)icz which is VWBO(1/n) and
¢-mixing with 12, < ¢(n) < A,.

Proof. Kesten and O’Brien have constructed an example in [K.O’B] (which we
discuss in §3), where one easily checks that 4, = #(U>n{Uk 2 k}). So 4, — 0
means EUj < oo in their construction. Apply Theorems 14and 15. O

We do not expect the converse of Theorem 7 to be true, but we do have the
following corollary from Theorem 6.

Corollary 11. Let (X;)icz be ¢-mixing with ¢-mixing rate ¢(n), then (X;)iez
is strictly VWBe(n) for e(n) = 157 ¢(i)
Proof. Theorem 6 yields

sup npn(u, u(-/Z)) < sup ZldlstX”u dist X"u(-/Z)|
ZeM Zes"

oo i=1

(BY) — u(B} /Z) z
szzgg 22!# [Z)| +|u(B]) — u(B] /Z)))

<> e()
i=1

where
B =A{i, s yn) u(Xi=pi, o, Xn=yn) 2 0(X; = vi, ooy Xo = ya/Z)}
and

By :=={is s yn): w(Xi=Vi, ..., Xy =yn)

<uXi=yi,..., Xn=yn/Z)}. O
In particular, we have the following consequences.

Corollary 12. If (X))iez is ¢-mixing with Y72, ¢(i) < oo, then (X)icz Is
VWBO(1/n).

Corollary 13. Let (X;)icz be a stationary Markov chain with at most countable
state space. Then (X;)icz is VWBO(1/n) iff (X;)icz is ¢-mixing.

Proof. If (X;)icz is ¢-mixing then ¢(n) = O(A") fora 0 <A < 1 [R]. Apply
Corollary 12. O

3. SOME ASPECTS OF STRICTLY VWB¢g(n) PROCESSES

We want to discuss a class of examples, which was given by Kesten and
O’Brien in its original form. These examples will show that &(n) = O(1/n) is
the only VWB rate which forces the process to be ¢-mixing.
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We use the notation of [K.O’B].

Let (Uj)iez be i.i.d. with values in Z*.

Let (V;)icz be iid. with valuesin {0, 1}, u(Vo=0)=1.

Let (U;)icz be independent from (V});cz.

The process which Kesten and O’Brien constructed is X, := (Uy,, Vs, Va-u,),
n € Z. In this section (X;);cz is always this process.

Kesten and O’Brien proved

Theorem 14 [K.O’B]. If ¢(n) is the ¢-mixing coefficient for (X;)icz then

%u (U{Uk Zk}) <¢(n) < p (U{Uk Zk})-

k>n k>n
In particular (X;)icz is ¢-mixing< EUy < co.
We prove an analogous estimate for the VWB-rate.
Theorem 15. (X;);cz is strictly VWBe(n) where

Proof. First we observe that

npa(u, u(-/Z)) 2 Y |dist Xi — dist Xiu(-/Z)]
i=1

by Lemma 5. Thus

ne(n) > sup Z|dlSIX,/,t dist X;u(-/Z)|
ZeO

oo I=1

> sup ZUI(U 2L, Vicy =) —puUi 210, Vi_y, =1/Z)|
Zed

oo i=]

N
Z U>l) (ZN=ﬂ{V_j=O},letN—>OC).

j=0
So

1 & .
> — F >
25 i§=]#(Uz > ).

For proving the upper bound we cannot apply Theorem 6, because for large n
we have for u(Up =k):=1/k(k+1), k> 1,

sup ZldlstX”u dist X' u(-/Z) |>8Zﬂ(UU >1) =3

Zey i>k

oo I=1

Because 1 >y u(Up 2 i) — 0 if n — oo, we have for large n

1 sup Z|dlstX",u dist X" u(-/Z)|.
R zewo

~ i=1
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Thus Theorem 6 is not strong enough in this case, because it gives a trivial upper
bound. So we have to construct a measure

A€ Po((Xys .o Xn)u(+/2), (Xys .o s Xn)H).

Fix n, me Z* and Z € &%, of the form Z = {Uy = ug, Vo = vo, Vo-v, =
wo, ..., Uiy = Uy, Ve = V-, Vem—v_,, = W—p} such that u(Z) > 0.
First we have, because (U;)icz, (Vi)icz are i.id.,
(3.1)

1pn((Uss s Uny iy ooy Vit (Uny oy Un, Vi o, Va)u(+[2) =

If U<k or (U >k+m and k- Uy # —i—U-; YO<i<m) then Vi_y, is
independent of Z € &9, , and it is this property which helps us to find a good
joining.
Let C={U=u;,=vy,..., Uy =uy, Vo =v,}. (3.1) implies u(C) =
wcC/z).
Let J(C) be the indices where C does not hit Z, so J(C):={1</
uy <! or (uy>I1+m and l—u,;é—i—u_« v0<z<m )} Then J( )=
C) =i, -... e} and (Xj,, ..., X;)p(-/C) = (). ..., X;)u(-/Cn
If J(C)={1,..., n} then there is AC {0, 1}” x {0, l}" —»R such

(1) prydc((X15 .5 Xxn)) =pNM-v, =%1, ..., Vaeu, = x2/CNZ),
(2) pryAc(1s oo ¥n)) =0Vicu, =Y1s ..o s Va—y, = ¥n/C) and

<n
@0
Z)
that

n
/Za(xi, yi)dic = 0.
i1

If J(C)#{1,...,n} then {1,...,n}-J(C)={l,..., L}, s>1.Then
let

. { Uiy, > if [; — u, > —m,
w; 1= !

w_,, ifli—uw,=-r—u_,forre{0,..., m}.

So we have (W, ..., wy) € {0, 1}*. Let Ac: {0, 1}"x{0, 1}" — R be defined
by

Ac((x1, ooy Xn)s Wiy ooy vn) =010f (X, ..., X)) # (W, ..., Wy) Or
yi # x; forsome i € J(C),
Ac((Xtsoves Xn)s (V15 o5 V) = u(Vicy, = X1, ooy Vaey, = x0/C N Z)
. l‘(Vl.—UI, =V Y-y, /C) otherwise.

Then one calculates
pryAc((xi, ..., xn) =puVicy, = X1, .oy, Vay, = X0 /CNZ),
=uVicy, =v15--- s Vacu, = v0/C), and

perC((yl’ ey )’n))
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/Ea(xi, yi)dic

i=1
n

= >, > > o(xi, yi)

{Gxt s ey Xn) 2 2y = Wi S} {15 e, Vi) 2 yi=xi if P€J(O)} i=1
wN-v, =X15 ...y Voev, = X0 /CNZ)
.”(I/Il_Ull =y[| AR I/[:—'U/s =y[5/C)

§

= Z Z Za(xb’ yl,)

{(x1, ey xn) ¢ x,l.=w,»i§s} {1y ¥n) 1 yi=x; if i€J(C)} r=1
':u(I/I—U|=x1,"'sI/II—U,,an/CﬁZ)
.lu(l/;]—U/l =y[|""’ I/};—U[s =y/;/C)

< Z suVi—y, = x15 v, Vamy, = X2/C N Z)

{(x1,. L X =w;i<s}

§s=cardJ(C) .

So we get with A: (Z+ x {0, 1} x{0, 1})"x(Z*x{0, 1} x{0, 1})" — R defined
by
A(((ul,vlawl),~-~,(un,vn,wn))x((alabl,cl),-o-a(an’bnacn)))
:=M(C)°)’C((wl’-"awn)a(cl"">cn))a

C as above, if u; =a;, v; = b; Vi and

AM((uy, vy, wi), oy (Un, Vn, wa) X ((@r, brs 1), ... (@, by cn))) =0

otherwise, a probability measure A € P,((Xy, ..., X))u(-/Z), (X1, ..., Xn)l)
by (3.1) and

npa(p, u(-/Z)) /Z (xi» yi)dA = Z# /Z o (xi, yi)dic

<> u(C)-card J(C <Z/‘(C ccard({i<n:U; >i}nC)
c c

=zn: (Ui > 0).

Remark. One can actually strengthen this last construction and prove that if
(Ui)iez 1s a stationary process with values in Z* and (V});ez is a stationary
process with values in {0, 1} and X, := (U,, V,, Va—y,) then

(1) (Xi)iez ¢-mixing < EU0<00 (U)iez ¢-mixing, (Vi)icz ¢-mixing,
(2) (Xi)iez VWBO(1/n) & EUy < 00, (Ui)iez YWBO(1/n),
(Vi)iecw VWBO(1/n).

For this one needs a Borel-Cantelli-Lemma for ¢-mixing sequences.
We get as corollaries of Theorems 14 and 15:
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Corollary 16. X, := (U,, Vy,, V,—u,) as above. Then
(Xi)iez ¢-mixing & (X;)icz VWB 0(1/’1) & EUj < oc.

Corollary 17. For any rate ¢(n) with (n + l)e(n + 1) — ne(n) < ne(n) —
(n—1)¢e(n—-1) Vn, ¢(n) - 0, ne(n) » oo and ne(n) < n Vn there is a
process (X;)iez which is strictly VWBe(n) and not ¢-mixing.

We would like to find an example of a process which is not VWBO(1/n),
but ¢-mixing, but we have not yet been successful. We believe a good candidate
is the following:

Let (Ui)iez, (Vi)iez as above. Let Y, := (Vy,, Va_y,), n € Z. Then it is
not hard to see that EUy = 0o = (Y;)iez is not VWBO(1/n). The conjecture
is

EUp=00, Y u(Uc>k)*<oo=(Y)iez is ¢-mixing.
k=1

APPENDIX
Proof of Theorem 6. Fix n € N, Z € &% , u(Z) < 0. We will need some
elaborate notation. Let {X] = s{’} ={Xi=581,..., Xp=5n}.
Iyi=A(s1, ..., n) €87 (X[ = 87) > u(X{ = s"/Z)},
Iii={(s1, ..., 80) €S™: u(X] =5]) < w(X} = s7/Z)},

Tl(sl""asn):=,u(Xln=sf)’ fl(sl, )—#(X”—S?/Z)>
pl(sl’“'7sn):=(.u(Xln=sr)_ ( —.sl/Z) 11|(Sla-”’sn)’
Di(S1s ... 8n) = (uWXT =s71/Z) - (X,"=sl)) (sl,...,s,,).

Then inductively for 1 <k <n-1

Thr1 (St s -+ » Sn Z pksl,...,sk,sk+l,...,s,,),
Tt (Ska1s oov s Sn Z pksl,...,sk,skH,...,s,,),
($15 05 8%)
Ik+1 = {(sk+l s e Sn) GSn—k : Tk+l(sk+1 [ Sn) > Tk+l(sk+l [ Sn)}’

Tirr = {(Sks15 -+ 5 Sn) € snk Thpt (Skats oo s Sn) < Thg1 (Skats -5 Sn)}s

Tt Skt oov 5 Sn)
pk+l(sl’-"3sn) = Pk(sl’-“,sn) <1_ * T L ]1k+l(sk+l,"'asn)’
Tk+l(sk+l FECRRE Sn)

_ ~ That (Skats -5 Sn)

= — 15 e s
pk+1(sl > > Sn) Pk(sl s d Sn) <1 Tirt (Skats ooe s sn)) 1k+,(sk+l Sn)
Tnel = E Pn(8),  Tny1 = E Pn(s)

SES™ seSH

We want to define a probability measure on S” x S”, therefore we partition the
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set S" x S"=WoUW;U---UW,UR in disjoint sets, where
Wo={(x,x):xeS"},
Wo={((x1, ..., Xn), V1, -5 ¥n)) : Xn # Y, pu(X1, ..., Xn) > 0 and
Pn(V1s -5 ¥n) > 0},
Wi={((x1,.c..xn), W15 oo s V) i Xi # Vi X = pr, i <r<om,
min(Tip 1 (Xig1, -- s Xn) s Tigt(Xigt > oo 5 Xn)) > 0}
forl<i<n-1,

n
R:=8"x8"-|JW.
i=0
Then we define v, : $” x S” — R in the following way:
(1) ((sla--->sn)>(sla--oasn))€%:
Un((S],...,Sn),(Sl,...,Sn)):=min(‘[](sl,...,Sn), T](S[,...,Sn))-
(2) ((ala"'sai,si+la"-9sn ,(bl,~~->bi,si+l,---,sn)) e I/I/i, 1 S l
<n-1:
Vn((ala“-,ai)si-f-la'“asn)’(bl’-~-’biysi+la~"’sn))
N (Ti 1 (Sigrs -5 Sn) s Tt (Sivrs oo 5 Sn))
Tig1(Sit1s oo s Sn)Tigt(Sigts -vv s Sn)
cpi(@ry ooy @iy Sivtyeee s Sn)Pi(Bry oo, biy Sivts iy Sh).
(3) (a1, ..., an),(br,...,by)) e W,:

va((@y, ...y an), (by, ..., by))
=pnai, ..., an)pn(bi, ...

min(7n+l > T+l )
s bn) - .
Tn+1Tn+1

(4) vo((ay, -.-,an), (b, ..., by)) = 0 if ((a1,...,an), (bl, ..., by) €
R. We use the abbreviated notation s() ;= (s;,...,s,) € S""*! 1<i<n.
First we want to prove that v, is a joining of

(Xl,u-,Xn)/‘ and (X19~'~aSn)1u(’/Z)'
One calculates

asM) = 3 vu(s™, M)

thesn

n—1
=va(sV, M)+ 37 > va(sh), 1)

i=1 {[“)GS" DL#ES i1 =Sig) .....ln=fn}

+ Z I/,,(S“), l(”)
{theSm : ty#sq}

= min(z;(sV), 7,(sV)) + Z

i=1

min(t;,(sU*1), 7,4 (sU*D))

(1)
: (s
Tiy1 (D) Pils)

min(T,41, T
+ ( n+l n+|)p,,(S“)).

Tn+l

To calculate a(s(!)) we have to look for the set I, that s*) belongs to:
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Case 1. sV ¢ I,. Then p;(s‘V)=0 Vi>1, so
a(s) = 1,(sW) = u(X, = s Xn = Sn).
Case2. sVel, s? ¢ I,. Then p;(s!V)=0 Vi>2,and

a(sM)y =2,(sM) + pi(s")) = u(Xi =51, ..., Xu = 5n).

General case. sV € I),...,s%) e I, s&kt1) ¢ [ .. Then the same ar-
gument as in Case 2 shows a(s(!)) = (X. = S1,..., Xy = 8,) and in the
case s € I, ...,s(™ € I, one uses the fact ‘c,,+| = Ty to see a(sh)

=uXi=581,..., X,, =§,). Similarly
Y v W)y =p(Xy =11, ..., Xu = 1a/2).
sthesn

For proving (2.1) we need an equivalent definition of the sets I .
Claim 2. 1<k <n. Then
Li={s®:uXe =5k, ..., Xn=52)>u(Xe =Sk, ..., Xn=52/Z)}.
Proof of the claim.
Z Pk=1(S15 ooy Skt Sks oo 5 Sn)

<3 Sk—1

(k—1)
Z Zpk 2 s(l) < %) llk |(S(k_l))

~9Sk—2 k-1

= Z (Th=1(8, Sk s oov s Sn) = Th—1 (S, Sks o vv s Sn))

{s:(5,8,-»8n)El -1}

D DR CSTCRI R ACR))

{s:(s,sel_}
So we get
T (sK)) > 7, (sM)

& Y (el s —n (s, s0)
{s:(s,s¥Nel_1}

> 0 (Tea(s, s =y (s, sM)

{s:(s,s*NET,_ )

&Y Teils, s> Yt (s, s)

SES SES
N Z Sty e Sker, s9) > Z Ti(St, ey Sk_y, SK
S Sk—1 Slaeen Sk
by repeating the argument
ﬁﬂ(Xk-—-—Sk,...,Xn=S,,)>/l(Xk=Sk,...,Xn=Sn/Z)

by definition of 7,, 7.

This completes the proof of the claim.
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Now we compute for 1 <i<n

/s» S"a(xi,yi)dvn((xl,...,xn),(yl,...,yn))
= y,,({(s(l) t(l)) 18 # ti})

<1_zun {(S sj+l—tj+l>---a5n=ln,sj9étj})
Jj=
=1- Z z min(t,1(sYY), 7,4, (sU*D))
j=0 sU+D)
= Z > )+ Y 1Y)
Jj=1 s() Ell s(j)elj
-1 Y ™+ Y S pisis™)
SOET; S15.058i—1 s(i)gli St ey Sizy
=1 —Z )+ Y sV
Jj=1 S(J)EIJ sgr;
DR EICD EED D /)
sti=Nel;_, si=DegI;_,

- Yo @) = nasU)

S(i)el,' ,sti= ”Ei,‘_l

- >, (zi1(s¥7D) = 712y (s171))

sl si=Ner;_,

i=2
- (Z 7j(sV) + Z Tj(s(j))>

s(f)elj s(j)glj

_ Z Ti—l(s(i_l)) - Z T’._l(s(i—l))

{s6=1: ser} {s=1 : stng 1}

I
J—

=1- Z 71 (sW) - Z 7;(s") (by repeating the argument)

{s®:sWer} {sV s sthgr;}
=1- Y pXi=si,..., Xn=52/2Z) = > u(X; =
sel; siglr;

sel,
=|dist X'u — dist X'u(-/Z)| (by Claim 2).

So (2.1) is proved and therefore Theorem 6, also. O

5 Xn :Sn)

S wXi=sis.oo, Xn=52)— u(Xi =51, ..., Xn = 54/Z))




MIXING PROPERTIES OF A CLASS OF BERNOULLI-PROCESSES 493
REFERENCES

[B1]  R. C. Bradley, On a very weak Bernoulli condition, Stochastic 13 (1984), 61-81.

[B2] _, Onthe ¢-mixing condition for stationary random sequences, Duke Math. J. 47 (1980),
421-433.
[B3] ., Basic properties of strong mixing conditions: Dependence in Probability and Statistics

(E. Eberlein and M. S. Taqqu, eds.), Birkhduser, 1986, pp. 165-192.
[D.D.P] H. Dehling, M. Denker, and W. Philipp, Versik processes and very weak Bernoulli processes
with summable rates are independent, Proc. Amer. Math. Soc. 91 (1984), 618-623.

[E] E. Eberlein, Strong approximation of very weak Bernoulli processes, Z. Wahrsch. Verw.
Gebiete 62 (1983), 17-37.

[F] D. Fiebig, Uber very weak Bernoulli Prozesse mit schnellen Raten, Dissertation, Gottingen,
1988.

[K.O’B] H. Kesten and G. L. O’Brien, Examples of mixing sequences, Duke Math. J. 43 (1976),
405-415.

[R] M. Rosenblatt, Markov processes, structure and asymptotic behavior, Springer-Verlag, Berlin,
1971.

[S.] W. Strittmatter, Measures of dependence for processes in metric spaces, Stochastics Stochas-
tics Rep. 27 (1989), 33-50.

UNIVERSITAT HEIDELBERG SFB 123, IM NEUENHEIMER FELD 294, D-6900 HEIDELBERG 1, WEST
GERMANY

Current address : Institut fiir Angewandte Mathematik, Universitit Heidelberg, Im Neuenheimer
Feld 294, 6900 Heidelberg, Germany

E-mail address: bq6@dhdurzl.bitnet




