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TWISTS OF HILBERT MODULAR FORMS

THOMAS R. SHEMANSKE AND LYNNE H. WALLING

Abstract. The theory of newforms for Hubert modular forms is summarized

including a statement of a strong multiplicity-one theorem and a characteri-

zation of newforms as eigenfunctions for a certain involution whose Dirichlet

series has a prescribed Euler product. The general question of twisting Hubert

modular newforms by arbitrary Hecke characters is considered and the exact

level of a character twist of a Hubert modular form is determined. Conditions

under which the twist of a newform is a newform are given. Applications in-

clude a strengthening in the elliptic modular case of a theorem of Atkin and Li's

regarding the characterization of imprimitive newforms as well as its general-

ization to the Hubert modular case, and a decomposition theorem for certain

spaces of newforms as the direct sum of twists of spaces of newforms of lower

level.

Introduction

For the case of elliptic modular forms, Hijikata, Pizer and Shemanske [3]

show how to decompose a space of newforms as a direct sum of character twists

of other spaces of newforms. In particular, these decomposition theorems yield

information about how a given newform behaves under character twists: what

the exact level of a character twist is, and under what circumstances the twist of

a newform is a newform. Atkin and Li [ 1 ] consider these specific questions for

elliptic modular forms by different methods and with a different perspective.

In this paper, we adapt the methods of [ 1, 5] to investigate similar questions in

the case of Hubert modular forms but with an eye towards the decomposition
theorems of [3].

We begin with a summary of the newform theory for Hubert Modular Forms;

in particular, we present both a regular and a strong multiplicity-one theorem

(Theorems 3.5 and 3.6). While a multiplicity-one theorem follows (at least in

principle) from the work of Miyake [7], we give a characterization of newforms

as cusp forms which are eigenfunctions for a certain involution and whose as-

sociated Dirichlet series has a prescribed Euler product (Theorem 3.7). We

then use this characterization to prove that the twist of a Hubert modular new-

form by a Hecke character whose conductor is prime to the level is a newform

(Theorem 5.5).

To examine twists of newforms by arbitrary Hecke characters, we begin by

generalizing Atkin and Li's operator  W@ .   The definition and properties of
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this generalized operator are rather delicate, reflecting differences among the

various Hecke characters which "extend" the numerical character of the space

of cusp forms on which W<g acts. Using a result of Shimura regarding the

special values of Dirichlet series attached to Hubert modular forms [11, 12],

we characterize certain properties of the pseudo-eigenvalues of W@ (Theorem

4.2). This eventually allows us to determine conditions under which twisting a

newform by a character whose conductor divides the level of the form yields a

newform (Theorem 7.1). This theorem extends Theorem 3.1 of [1] which only

gives the exact level of a twist, and applies both to Hubert modular as well as

elliptic modular forms. In turn, this theorem allows us to decompose a certain

type of space of Hubert modular newforms as the direct sum of twists of spaces

of newforms of lower level (Theorem 7.2), analogous to Theorem 3.14 of [3].

Most of the results of [5 and 1] generalize to the Hubert modular case. There

is an important result concerning the nonvanishing of Hecke eigenvalues (The-

orem 3.3(2)) which we were able to generalize in a significant number of, but

not all, cases however, we have been informed that it follows from the repre-

sentation theory that the result holds in all cases. This result is critical to the

determination of when the twist of a newform is again a newform (Theorem

5.8), and is consequently of concern to us here.

1. Notation

For the most part we follow the notation of [11 and 12]. However, to make

this paper somewhat self-contained, we shall briefly review the basic definitions

of the types of functions and operators to be studied here; more details can be

found in Shimura's two papers referenced above.
Let K \>e a totally real number field of degree n over Q, tf its ring of

integers, and cfx and tf* the groups of units and of totally positive units

respectively. Let D be the different of K. Let GL2 (K) denote the group of
invertible matrices with totally positive determinant and %f the complex upper

half-plane. Then GL2(K) acts by fractional linear transformation on %'n via

(A, x) i-> Ax —
' d»)xv + dW'

where a(l/) denotes the i/th conjugate of a over Q. For A £ Z+ , let

TN = {A£ SL2(cf) \A - l2 £ AMat2(¿f )}.

For k = (kx,... , k„) £ (Z+)n and c, d £ K , let
n

(cx + d)k = \[(¿v)xv + d(v))k".

v=\

Define Mk\yN) to be the complex vector space of functions / holomorphic

on 3tn and at the cusps of TN such that f(Ax) = (det A)~kl2(cx + d)k f(x)

for all ^er,. Let Mk = (J~=1 Mk(YN).
For <J a fractional ideal and Jf an integral ideal, put

TQ<jr,s) = ¡as'
JCfï)      tf

det A £tf*

By a numerical character y modulo JV we mean a character y/ :

Cx , and by a Hecke character we mean a character *F : K¿  —► <CX  which is



TWISTS OF HILBERT MODULAR FORMS 377

trivial on Kx . (In general, we use lower case Greek letters to denote numerical

characters and upper case Greek letters to denote Hecke characters.) As in

Shimura [11, 12], for y a numerical character mod JV and 9 a character of

tfx of finite order, define Mk(To(yV, Jr), i//, 9) to be the set of all f £ Mk
such that

f(Ax) = (detA)~k'2 y/(a) 9(detA) (ex + d)kf(x).

We always assume that i//(e)9(c2) = sgn(e)fc for all e £tfx since

Mk(YQ(jr,S), v,9) = {0}

otherwise. Now, there exists an m £ R" such that 0(e) = e'm for all e £tfx ;

while m is not uniquely determined, it will be fixed throughout this paper.

Let J*i, J^2, ... , J*n be a set of representatives of the strict ideal classes of

K, Yk = Yx(jV) = Y0(yy, Sx), and put

h

mk(yy,ift,9) = l[Mk(r,,y/,9).
x=\

We shall study the forms identified with h -tuples

ifufi,... ,fh)£mk(yr,¥,9).

For notational convenience in handling the problems introduced by class

number h > 1, we follow Shimura and describe Hubert modular forms as
functions on an idele group as follows. Let A/* be the idele group of K and

G a the adelization of GL2(K). With the usual identifications, we may view

G a = GL2(KA) ; Gk = GL2(K) embedded as the diagonal in GA ; G» =
GL2(R)n the archimedean part of G a ', and Goo+ = GL2(R)n . For an integral

ideal ¿V of tf, let

p[    '     \       \c d ) fc \jVWp   tfp   J  (acfp,Jtfp) = lf'

Wp(Jf) = {x£ YP(JV) | det(x) £tfx},

and put

Y = Y(Jf) = GAn (G^ x H Yp(yV)\ ,     W = W(JT) = Gœ+ x fl Wp(Jf).

For a £ Kj and JV an integral ideal, let a denote the archimedean part of

a, dQ the finite part of a, and a^ the JV-paxt of d. The numerical char-

acter y/: (tf/Jf)x —> Cx induces a character y/y : Y -* Cx by y/y ((« *)) =

y/(äjr modyT).

Now, fix a set of ideles 7¿ £ A/* , (t~x)oo = 1 with J¿ = T^tf, and let x¿ =

(¿~ ) 6 G a ; also fix an idele F„ with (7¡,)oo = 1 and ï0tf = ö . Then by strong

approximation, we have

h h

(1.1) Ga = \Jgkx1W=\JGkx¡'W
A=l l=\
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where i denotes the canonical involution on 2x2 matrices. Finally, given an h-

tuple of functions (f , ... , f„) £ ?iïlk(yV, y/, 9), define a function f : GA —► C
by

(1.2)
t(ax?w) = y/Y(w')det(w0C)'m(fl | Woo)(i)

for a £ Gk, and w £ W(Jf)

where i = (/',... , i) (with i = \/-ï ) and where

(1-3) /, ''x) = (ad-bc)kl2(cx + d)-kf '
cd) x \cx + d

As in [11, 12], one can identify Mk(yT, y/, 9) = nj=i Mki^x, ¥, 9) with
the set of functions f : GA —► C which satisfy:

(1) f(axw) = y/y (w')f(x) for all a £ GK, x £ GA , w £ W(jV) , w^ = 1, and

(2) For each X there exists an element fx £ Mk such that

f(x-l'y) = det(y)'m(fl \y)(\)

for all y e Gœ+ .
Henceforth, the space of such functions will be denoted Wlk(yK ,yj,m), where

m£R" is fixed and satisfies 0(e) = e'w for all s £ tfx . We use &k(Jr, y/, m)

to denote the subspace of cusp forms.

With m as above, define y/    : K^ —> Cx by setting

w(a) = sgn(aoc)k\dk\-x    \2im
oc

If for ? £ K¿ we define F(x) = f(sx), then f —> F induces a unitary rep-

resentation of K¿ in Mk(J/', yi,m) which decomposes into a direct sum of

irreducible subrepresentations. By Schur's lemma (since K% is abelian) the
irreducible subrepresentations are all 1-dimensional. For a character *F of

K^ , let J(k(JV, *F) denote the subspace of Tïk(J^, yi, m) consisting of all

functions f for which f = T(i)f, and let S^k(jr, T) c Jtk(jV, *¥) denote
the subspace of cusp forms. Since f = f for s £ Kx , J£k (yf, VF) is non-

trivial only when T is a Hecke character. Note that from equation (9.22) of

[12], we have that T(5) = y/(d^ )y/oo (a) for all a £ K£, Y[p @? ■ Thus, by a

Hecke character extending y/ y/ we shall mean a Hecke character *F such that

*F(5) = y/Çàjr )y/oo (a) for all a £ K^ Y[ cfp . There are only a finite number

of such_characters; in particular, if *P and <$> are two such Hecke characters,

then *F<I> is a character on the yT-ideal class group (see [14]). By a Hecke char-

acter extending y/ we shall mean a Hecke character extending ^sgn(*)' (i.e.

some / e Z") in the above sense. If 'Pœ denotes the A'-modulus consisting

of the product of all the infinite primes of K, then it is clear that any Hecke

character extending yy^ has conductor dividing J^ty^ . Consequently, given

*F, we may define an ideal character ¥* modulo y^oc by

Í ¥*(P) = «F(£P)   forpt-^and^ = p,

1 ' j I ¥» = 0 if (a,^)/ 1.

Observe that if a £ Kx with (5¿?, JV) = I , then *F(a) = ^(à^)^^-)^ (à),

so that in particular, ¥*(<^V(£)sgn(£)*|£|2"" = 1 for all £ £ cf with ({, JIT)
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= 1 (cf. [11, p. 650]). Also, *F and *P both have modulus 1, and they have
finite order iff y/     has finite order.

If f = (fi,..., fn) £ yj\k(Jf,y/,m), then fx has a Fourier expansion of

the form

fx(x) = ax(0)+   £   a^)exp(2nitx(^x)).

0<í£^x

Following Shimura we define

C(m  f) = { Nim)ko/2a^)i~k/2~'m   if m = ¿J^1 C 0,

\ 0 otherwise,

where ko = max{A;i, ... , kn} ; we refer to the C(m, f) as the Fourier coeffi-

cients of f. We use these Fourier coefficients to associate a Dirichlet series to

f:

D(s,f)= £C(m,f)A(mr.

Furthermore, it is easy to describe the action of two important operators on

J£k(j¥, T)—the Hecke operators and the shift operators—in terms of their

action on Fourier coefficients (for complete definitions see [11]).

For functions on GA , we first define an analog of the classical slash operator:

if f £ Wl^J^ ,yi,m) and y £ GA, we define f | y(x) = f(xy'). Then for an
integral ideal q , the shift operator 5q is characterized as follows: Let q £ Kx

with qx = 1 and qtf = q. Define f | Bq = N(q)-k°'2f | (¿~°, ). Then Bq

maps Jtk{jr,W) to jrk(Jfq, V), and if f £ Jfk(jV, *F) then C(m, f | Bq) =

C(mq_1, f) where as always we understand that C(n, f) = 0 if n is not integral.

Clearly, we have f | 2?q, | 5q2 = f | ßq,q2 .

For an integral ideal n, the Hecke operator Tn = T^ maps Jfk (JV, xí/) to

J?k(sV, *¥), independent of whether (n, Jf) = 1 . On Fourier coefficients, the

action is

(1.5) C(m,f|I>(n))=   Y.   ^MN(a)k°-lC(a-2mn,t)
m+nC«

where *F* is the ideal character defined on ideals prime to JV induced from the

Hecke character *F and extended to all ideals as described earlier. In particular,

even if *¥ is the trivial character, *P has the property that ^(a) = 0 for

(a, yV) yé 1. Both Bq and Tn take cusp forms to cusp forms.

2. The Ws  operator: definition and basic properties.

In this section we define and give the basic properties of the W@ operator

which is critical to our development of the theory of newforms and to our

investigation of character twists of newforms.

Fix a space JKk(yV, 4*) c %Rk(jV, yi, m), where 4* is a Hecke character

extending yiy/ .In the absense of comments to the contrary, we take € and

J{ to denote relatively prime integral ideals with jV = d£#, and we write

yi = y/g yi^ where y/s, and yi^ denote numerical chararacters modulo S

and J( respectively. Then somewhat tedious but routine computations give

us Propositions 2.1-2.7; these are essentially straightforward generalizations of

Propositions 1.1-1.5 of [1] and Lemmas 1-4 of [5]. The first of these is
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Proposition 2.1. Let q be a prime and suppose that q2|^" and y/ is a character

modulo jV(\~x . Then rq maps Jfk(yV, 4*) to ^k(J/"q~x, 4*), and hence maps

9Jlfc(yf ,y/,m) to mk(J/"t]~x, y/, m)

Our Wg operator is a generalization of Li's operator Vq and Atkin and

Li's operator Wq , however in the Hubert modular case, it depends not only

upon the numerical character of the space but also upon the choice of Hecke

character extending the numerical character. We define it as follows.

Definition. Let 4*^ be a Hecke character extending y/e . Choose y £ GA so

that Voo = 1 ,  (det y)tf = €, and y0 = (£¿)n with dtf, dtf ç S ; also
~ c d   v

btf CD~l and ctf ç Jíx¡ (recall that >>o is the finite part of y ). For x £ GA ,

define WsifV€) by

(2.1) f| Ws(^)(x)=%(detx)yÇ(brixnod @)VJ(ä modJ?) (f | y)(x).

To specify the level, W@ is sometimes denoted Wf[ . When yie — 1, we

assume 4V = 1.

Remark. In [2], Flath has given a definition of a W@ -operator defined on the

Q-ideles which is essentially the same as our W@ -operator when K = <Q>.

We can now state Propositions 2.2-2.7.

Proposition 2.2. Let the notation be as above with JV = SJf where & and Jf

are relatively prime integral ideals and yi — y/& y/^ . Let 4* be a Hecke charac-

ter extending yiyi^ and^s a Hecke character extending y/ß . Then Wg(f¥&)

takes Jfk(jV,4*) to Jík(JÍ,yVxVs ), and hence takes ykk(jV, y/, m) to

mk(Jf, y/yJ2 , m). Moreover, if f £ JTk(yK, V), then f\W<f(}¥a)\ W€ (%)

= (4*4V)*(q)^(-l)f.

Proposition 2.3. If S? is an integral ideal, and t£\JT5? with (S ,JV5C&~x) =
1, and 4*^ is a Hecke character extending y/s , then for f £ ^k(yV, 4*) C

?U\.k(yV, y/, m), we have

UB    lw^(y  ) = l%&)t\W(%)\Bx    ifi&,2>) = \,
*      S \ A(^)-^/2f| W^{%)   if&\£.

Proposition 2.4. Let p be a prime with p \ S, and let 4*^ be a Hecke character

extending ye . For f e Jfk(Jt~, 4*) we have

f\Wa(Vs)\Tp= % (p) t\Tv\Wa («F, ).

Proposition 2.5. Suppose that q is a prime such that q | Jf, but q2 \ Jf, and

that y/ is a character modulo JVcTx. Let 4* be a Hecke character extending
yiyi^ . Then Tq + N(q)ko'2~xW<,   maps Jtk(Jf, T) to ^k(yVq~x, 4>).

Remark. Here Wq —WS(Y) since y/   — I.

Proposition 2.6. Suppose f = g | /3q e S"k (Jf, 4*) for some prime q . // q | JV

and y/ is a character modulo jVt\~x, then g G 5^k(JVt\~x, 4*). If <\\JV then
f=0.
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Proposition 2.7. Let ¿?, é" be divisors of JV such that (¿f ,J/&~X) = 1 and

(&', &JV@'~X) =1, and let f £ Jtk(^f, 4») c 9Jifc(yT ,y ,m). Let y/^ (resp.

yig, ) denote the (S- (resp. &'-) part of y/ and let 4*^ (resp. 4/^< ) be Hecke

characters which extend the corresponding numerical characters. Then

f | Wayie ) | Wg, (4V )=% (@')i\ Wm, ?¥#%, ).

3. Newforms in 5%.(jr ,*V)

Now that we have developed analogs of the operators defined in [5 and 1 ] and

we have established some preliminary propositions describing their interactions

(Propositions 2.1-2.7), many of the theorems in [5] have natural generalizations

to the Hilbert modular case. In this section, we give a summary of the theory

of Hilbert modular newforms which culminates in a theorem characterizing

newforms as cusp forms whose associated Dirichlet series has a prescribed Euler

product and which are eigenfunctions for a certain involution (Theorem 3.7).

In Theorem 3.3 we characterize the Hecke eigenvalues for primes dividing the

level.

Given &k(jr ,W) c &k(JV, yi, m), let f?k(jr, 4*) be the subspace of

S?k(jr, 40 generated by all g | Be where ge^/'.ï) C &k(yf', y/, m)
with Jr~'\Jr", yV1 yéyV , and SJV'yV . As in the elliptic modular case, it is easy

to see that S"k~ (JV, 4*) is invariant under the action of the Hecke operators Tn

with (n, JV) = 1. With this notation, the proof of Theorem 3.1 below follows

in analogy to the proof in [5] for the case of K = Q ; since no significantly new

ideas are required to prove this generalization, we state it without proof.

Theorem 3.1. // f 6 S?k (JV, 4*) has the property that C(m, f) = 0 if(m,a) = l

where a is a fixed integral ideal, then f £ 5^k~ (yV, 4*).

Shimura defines ((2.28) of [11]) a Petersson inner product (f, g) for f, g £

S?k(Jf,*¥). If f=(/i,... ,fh) and g = (gi,... , a), then

<f, g> = £</,,*, >
A=l

where (fx , gx) is given by (2.27) of [11]. A standard argument shows that for a

matrix A £ GL+(K), (fk \ A, gk \ A) = (fx , gx ) (see e.g. (3.4) of [13]). This
invariance extends in an obvious way to (f, g) : Let f = (f , ... , fn), g =

(g\, ■■■ , gh) G 5^k(jy, T), r be an operator which maps <9k(JV, 4*) to

^(^,<D),andput f = (f[,... ,f¿),g! = (g[,... ,4)e^(^,<D),where
f | T = f and g | T = g'. If for each index p there exists an index X

and an  Ax  £ GL2(K)   such that  f   = fx\Ax  and  g'   = gx\Ax, then

(f | T, g | T) = (f, g). This will be the case with most of the operators we

define.
With respect to this inner product defined above, the Hecke operators are

essentially hermitian (Proposition 2.4 of [11]):

4'*(m)(f|rm,g) = (f,g|7m)

for all integral ideals (m,yf) = 1 . Let t5^+(yT, 4*) denote the orthogonal

complement of S"k~(jV ,*¥)  in Sfk(jV ,*¥).   It follows from the invariance
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of S^k (JV, 4*) under the Hecke operators and the hermitian property of the

Hecke operators that 5^k(JV, 4*) is also invariant under all Hecke operators
T„ where (n, JV) = 1 .

Definition. A newform f £ S?k(JV, 4*) is a form in S"k+(JV, 4*) which is a
simultaneous eigenform for all Hecke operators Tp with p a prime, p j JV.

The form is normalized if C(tf, f) = 1.

As in the classical case, if f is a newform in S?k(JV, 4*) and f | Tp — Xpf

then C(p, f) = XpC(tf, f) for all p \ JV. It follows from Theorem 3.1 that
C(tf, f) yé 0, and hence f can be normalized. Moreover, if f, g 6 S^k(JV, 4*)
are both newforms with the same eigenvalues for all Tp for p \ JV then by

Theorem 3.1, we have f-ge ^~(yT, 4*), hence f is uniquely determined up

to a scalar multiple by its eigenvalues. (From a representation-theoretic point of

view, this result is due to Miyake [7] although the results there are in a different

context which is difficult to compare to our own.) Since { Tp \ p \ JV} is a

commuting family of hermitian operators, S?k(JV, 4*) has an orthogonal basis

consisting of newforms. A form g £ S?k (JV, 4*) is an oldform if g = h | Bg

for some newform h 6 5^k(JV', 4*) c &k(JV' ,yi,m) with SJV' \JV. It is easy
to see that S?k(JV, 4*) is generated by the oldforms in S?k(JV, 4*), and if

g e SPk (JV ,4*) is a simultaneous eigenform for all Tp, p \ JV, then there

exists a newform h £ S^k+(JV', 4*) c &k(JV', yi, m) with JV' \JV having the
same eigenvalues as g for all such Tp. In fact, we have the following result

which is crucial to a number of arguments in this paper (e.g. Theorem 3.6).

Proposition 3.2. Let g £ S*k(Jf ,4*) be a newform, and suppose that ^# \JV.

Then {g | Ba : a\JVJi~x } is linearly independent.

Proof. Clearly,

y~"   ca g | Ba = 0    if and only if       ^   ca C(ma_l , g) — 0

a\JC¿r-< a\yfJC-1

for all integral ideals m. The idea then is to choose an ideal m for which

C(ma_1, g) yé 0 for some a occurring in the sum, but for which mb_1 is not

integral (and hence C(mb_1, g) = 0) for any other ideal b occuring in the

sum. This forces ca = 0, and the result follows by induction. Since the only

coefficient of g that we know is nonzero is C(cf, g), the choice of m is clear.

Suppose SoL«--' ca g | Ba = 0 ; fix an ideal a of minimal (absolute) norm,

and put m = o. Then

Y   caC(ma-x,g)=     Y     cbC(ab-x,g)+     £     cb C(ab~l, g).

a\yTjf-' b\JCœ-' b\JK£-x
N(b)=N(a) N(b)>N(a)

If A(b) > N(a) then clearly ob-1 is not integral, so the second sum vanishes.

So suppose A(a) = A(b) ; then a and b lie above the same primes of Q. Write

o = pi' • • • pss and b = p^1 • • • pjs where the py are primes of K . With m = a

fixed we see that mb~x — ab-1 dtf if and only if b | a and hence if and only if

r'j < rj fox I < j < s . If b yé a then r'k < rk for some k , hence A(b) < N(a),

contrary to assumption. Thus only one term survives in the first summand as

desired.   D
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Now we come to an important theorem about newforms which generalizes

Theorem 3 of [5].

Theorem 3.3. Let i be a normalized newform in S?k (JV, 4*), and p, q primes

with p\JV and t\\JV.

(1) The Dirichlet series attached to f, D(s, f) = Ylmc<? ̂(m' f)A(m)_i has
the Euler product

D(s,f)= n(l-C(q,P(q)T'

x J](l-C(p,f)A(p)-i + 4'*(p)A(p)^-1-2i)-1

(2) If y/ is not defined modulo JVq~x, then either C(q, f) = 0 or |C(q, f)|
= A(q)(fc°-1)/2. Moreover, C(q, f) jé 0 whenever the inertial degree of q

(over Q) is 1, or when q\\JV.
(3) //" y/ is a character modulo JV<\~X, then C(q, f) = 0 //" q2 \JV and

|C(q, f)|2 = iV(q)*ö-2  ifq2\JV.

Remark. The referee informs us that it follows from the representation theory

that in part (2) of Theorem 3.3 the coefficient C(q, f) is never zero. We are

not able to verify this from our classical point of view however, the stated

condition is not overly restrictive since the set of primes having inertial degree

one over Q has density one (see [4, p. 131]). Moreover, if K/Q is an abelian

extension, then class field theory tells us that the rational primes which split

completely are described by congruence conditions in Q, so we can explicitly
compute levels at which C(q, f) yé 0. Nonetheless, it would be interesting

to have a classical proof that C(q, f) yé 0 without restrictions on the prime

q when y/ is not defined modulo jVq~x . The issue of nonvanishing of this

coefficient represents far more than idle curiosity for as Theorem 5.8 suggests,

whether C(q, f) vanishes is at the heart of the question of whether the twist of

a newform f is again a newform.

Proof. The proofs of parts (1) and (3) are analogous to the proofs in [5]. For
part (2), one must generalize Theorems 3 and 4 of [8]; here we find that Ogg's

proof of Theorem 3 is valid only for primes of degree one. In this context, the

generalizations are straightforward.   D

To proceed, we need several operators: Let f £ ^k(JV, 4*) c Wlk(JV, yi, m)

and suppose that y/ is a character modulo Jf where Jf\JV. Choose w} £

W(Jf) such that (wj)^ = 1 and

W(Jf) = (J W(JV)w}    (disjoint) ;

j

define the trace operator Tr^,  by

flTri =E^K)fl«'j'
7

Notice that this expression is clearly well-defined, and if {Aj} is a complete

set of coset representatives for YX(^£)\YX(JV), then we may take (w¡) 0  =

x'xAjXxl = xxxAjXX . It is straightforward to check that f | Tr^. £ ^£k(^£, 4*).
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The conjugation operator, K, can be defined by its action on Fourier co-

efficients: C(m ,f\K) = C(m, f) (where the bar denotes complex conjuga-

tion), or by its action on the components of f: if i = (f, ... , fn), then

f\ K = (gi, ... , gh) where gj(z) = fj(-z) (this operator is defined in [11]

and denoted there as F ).

Now we define the operator Hjr (the "canonical involution"); this is essen-

tially Shimura's operator Jj-, although we rescale it here for consistency with

the operator Ws  when @ = JV. Let ñ £ K¿  with ntf = JV, and put

yo =   ~r \      witn ^oo = i ;

define_(f I Hjr)(x) = (f | y)(x~<). For f e J?k(jV, 4'), we have f | Hjr =

(-l)kW(tp)f\Jjr.
From [11, pp. 653-655], we see that both K and Hjr map J!k(jV, 4*) c

Wlk(jV, yi,m) to J"k(jV,^) c mk(JV,-yf, -m), that K maps S%~(jV, 4*)

to S?k(JV, 4*) and <9>k+(JV, 4*) to S"k+(JV, *F), that f | Tp | K = f | K \ Tp,

and that f\H^\Tp = 47*(p)f | Tp \ Hjr for all (p,JV) = I. It is trivial
to check that for f £ JTk(JV, 4*), i\Hjr\HA- = (-l)fcf, i\K\K = f,

f | Ba | # = f | K | ßa, and that f j Hjr \ K = (-1)*f | K \ Hjr. Also, one can
easily show that if g 6 S?k(JÍ, 4*) with Jf\jV and a an integral ideal such that

aJi\jV, then g | Ba \ Hjr = N(a)-k°N(JV£-x)k«l2g\ Hj, \ Bjc-i,-, , so HA

maps &k(JV, 4*) to &k(JV, 4*). Moreover, since (f, g) = (f | Hjr, g | ¿t»

= Et,(/A I ßrl. ^ I &"'> with & € GrL+(/X) (see (2.47) of [11]), it follows

that Hjr maps ^+(yT, 4*) to S"+(JV, T). Finally, from Proposition 2.10 of

[11], we have that if f £ S»k+(JV ,4*) is a newform then i\Hj- = yf\K for
some constant y with |y| = 1 .

As before, given these newly defined operators, it is now straightforward to

obtain the following two generalizations of theorems in [5].

Theorem 3.4. Let f £ S"k(jV, 4*) c &k(jV, y/, m).   Then f £ ^¿(JV, 4*)  //

and only if for all primes q \JV for which y/ is defined modulo JVq~x, we have

'|7>ir. =0 = i\Hj-\Tr^.

Theorem 3.5. Let f, g be normalized newforms in S%(yV, 4*), <5^(^f, 4*)

respectively such that C(p, f) = C(p, g) for almost all primes p. Then f = g

and Jf = JV.

We note here that while a knowledge of the eigenvalues C(p, f) for almost

all primes p is sufficient to determine the level of a newform, it is not sufficient

to determine the character. However, we can make the following statement.

Theorem 3.6. Let f £ S^(yV, 4*) c Bk(JV , y/, m), and g £ 5%(J?, O) c
&k(J(, 4>, m!) be normalized newforms, and assume that they have the same

eigenvalues for all the Hecke operators Tm for (m, Jfc/V) = 1. Then 4* = <I>,

^ = JV, and f = g.

Proof. We need only show that m = m! and 4* = í> ; the result will then follow

from the previous theorem.
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Let p \ JfjV be a prime. Then

f | TP2 = f | (Tp)2 - N(p)^-X f | S(p) = [C(p, f)2 - A(p)*°-'4>*(p)]f

(see [11] for the definition of S(p) ). Similarly,

g|rp2=[C(p,g)2-A(p)^-'0*(p)]g.

Since C(p,f) = C(p,g), C(p,t)2-N(p)ko-x^(p) = C(p,g)2-N(p)k<>-x^(p),

we have 4'*(p) = <D*(p) for all p \JUV. Thus (4*0)* = 1
Let S be the set of primes dividing JV£ together with the infinite primes of

K, and let K¿ s be the set of ideles which are 1 at all places in S. From above,

we know that 4/<ï>(a) = Ç¥Q>)*(dtf) = 1 for all ideles a £ Kx s. Moreover,

since 4*<I> is a Hecke character, it is trivial on Kx . By Proposition VII. 15 of

[15], K*K¿ s is dense in K¿ , so by continuity of 4*0, the Hecke character

4*0 is trivial on all of K¿ ; hence O = 4/.

Since y/^ (5) = sgn(ä0o)/c|a00|2'w and «^ (5) = sgn(äoc)k\aoc\2im', we have

(y/(f>) (a) = |fl00|2"' where r = m - m' £ R" ; we claim that r = 0. To see

this, consider a sequence of ideles d¡ with all components of 5/ = 1 except for

the j'th infinite place. In that place of d¡, let the value be f' (e the base for

the natural logarithm). Then 1 = 4/0(5/) = (y/^)^ (5/) = \e'\2irJ = e2llr>. This

implies that r¡ £ (n/l) Z for all / > 1, hence r¡- = 0, which implies m — m'

and so completes the proof.   D

The final result from [5] which we need to generalize is

Theorem 3.7. Suppose feSí¡c(JV,x¥)c6k(JV, yi ,m), and

D(s,f)= £C(m,f)A(mr
mCi^

is the Dirichlet series attached to f. If f | K \ Hjr = yi for some y £ Cx and

D(s,f)= n(l-C(q,f)A(q)-)-'

x [](l-C(p,f)A(p)-i + 4'*(p)A(p)A:»-1-25)-1

then f ¿s a normalized newform in S"k(jV, 4*).

Proof. The proof of Theorem 3.7 is somewhat tedious, but follows exactly the

line of argument in [5]. On the other hand, a few comments are in order.

The proof relies in two places on Proposition 3.2, and requires a nontrivial

estimate of the size of Fourier coefficients of cusp forms. The most general

result to date is provided by [9]. Throughout the proof in the Hilbert modular

case, the operator W$ is used in place of Li's V@ which results in minor but

inconsequential variations.   D

4. More on We

In this section we extend the definition of the operator Wg (O) somewhat by

allowing í> to be a Hecke character extending yi&  or yi^ y/    , and we develop
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some properties of Wg  which are crucial to analyzing twists of newforms by

characters whose conductors are not prime to the level of the newform.

With the notation as in (2.1 ) we have:

f I Wg(<¡>)(x) =0>(detx)yC(bh n\od€)yTff(a mod-#)(f | y)(x).

In the case that <S> extends y/& y/^ , Wg ($) maps Jtk(jV, 4*) to JTk(yV, 4/<ï> )

and thus 9Jlk(JV, y/, m) to Mk(jV, y/W^1, ~m) ■ Except for the difference in

the range of Wg (O), it is easy to see that the rest of Proposition 2.2 as well as

Propostions 2.3 and 2.4 remain valid with this extended definition. Moreover,

Proposition 2.7 remains valid in the case that the infinite part of at most one

of the two Hecke characters 4*^  or 4^/   extends y/    .

Proposition 4.1. Let f, g £ S?k(JV, 4*) c &k(jV, y/, m) and let O be a Hecke
character extending y/s  or yis y/^ . Then (f | Wg(Q>),g\ Wg (<!>)) = (f, g).

Proof. Given f = (/,,... ,fh),g = (gi,... , gh) £ ^k(JV,*¥), put f =
C/j', ... ,fl) = f\ Wg(<b) and g' = (g[, ... ,g'h) = ë\ Wg(Q>) where y £
GA, yoo = I and det(yo)tf = Q as described in §2. We shall show that

(f I Wg (d>), g | Wg (<D)> = Et,if[ , g[> = SÍ,(fx ,gx) = if, g> by show-
ing that (f'x ,g[) = (fßw , gßix)) for each X.

Let z £ %fn and let w^ £ GL2(R)" such that u>oo(i) = z . Let wq = 1 and

w = woWoo . From (2.1) we have that

fx' | wœ(i) = det(u;00)-/wf | mtyixr'Woo)

= det(^oo)-"" ^(detx^'Woo) yÇ(btj, mod &)~yT^(d mod„#) {(x^y'vo^).

For each index X there is a uniquely determined index p = p(X) and a totally

positive element a^ £ K such that Txx det(y) = aß7~l . By (1.1) we have that

xx'y' = ßx~lv with ß £ Gk and v £ W(JV). Comparing infinite parts, we

see that v00 = ß~x hence ß £ GL+(K). Thus

f' | Woo(i) = det(w00)-,'mö(detx7,w00) yÇ(bh mod<f)

x yÇ(à mod ./#) {(ßx^VWaa)

= <&(detx^'w^ljÇ&h mod S)~yÇ(d mod^#)

x y/Y(v') det(voc)im fß | v^w^ï)

from which it follows that

f'(z) = 4>(det xxlw^)%(bh n\odS)~yT¿(a modJf)

xy,Y(v')det(voc)'mfll\ß-x(z),

ß £ GL2(K).  The expression for g'   is identical, so it is trivial to see that

f¡(z)gJ(T) = fß I ß~x(z)gß \ß~x(z), hence (/; ,g[) = (fß\ ß~x, gß | ß~x)

= (fß, gß) which completes the proof.   G

Proposition 2.3 implies that Wg (<D) maps S?k(jV, 4*) to S?k(JV, 4'#2),

and Proposition 4.1 implies that it maps S"k+(JV, 4*) to S^k+(JV, 4/Ö> ).  By
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Propostion 2.4, Wg (O) takes Hecke eigenforms to Hecke eigenforms, hence

Wg (<P) takes newforms to newforms. Thus if f e S"k(jV, 4*) is a normalized
newform, we have

f| Wg(^>) = Xg^(f)g = Xg(f)g
_2

where g is a normalized newform in ¿?k(jV, 4'<P ). Following [1], we call

^<f,o(f) the pseudo-eigenvalue of Wg(Q>) at f. It follows from Proposition 2.4

that f = g if y/e = 1, and from Proposition 2.2 it follows that Xg ̂ (ï) Xs ^(g)

= yis(-l): (4/$)*(q), so that in particular, Xg ̂ (i) / 0 . Finally we have

defined Wg so that when f £ 3>k(jV, 4*) and 3 = JV, i\ Wg (V) = f\ Hjr;
consequently, if f is a normalized newform in S?k(JV, 4*), then by Proposi-

tion 2.10 of [11] we have f \ Hj- = yf \ K (with |y| = 1 ) hence f | Wjr (4*) =
Xjr^(i)i | K with |A/r,i,| = 1 . That the pseudo-eigenvalue of Wg has modu-

lus 1 is true in general:

Theorem 4.2. Let € \JV with (€, JV(S~X) = 1, and let *¥g be a Hecke character
extending yis  or y/0 y/^ . Let f £ <9%(JV, 4*) be a normalized newform with

f | Wg (f¥g ) = Xg^s (f) g where g is a normalized newform in S?k(jV, x¥*¥g ).

Then \Xg^e(i)\ = l.

To prove this we first require a lemma.

Lemma 4.3. With the notation as above and p a prime ideal, the pth Fourier

coefficients of f and g are related as follows:

C(p    ) = {%*ÍP)CÍP>Q_   </Pt^\

\(4%-ir(p)c(p,f) ifp\3.
Proof. If p \ € then Proposition 2.4 yields

t\Tp | ^(4V)=4^(p)f|I^(4^)|rp

from which we obtain

C(p, f)Xg^ (f)g = V*g (p)Xg^ (f)g I Tp.

It follows that

C(p,f)D(s,g) = ^(p)D(s,g\Tp),

where D(s, h) is the Dirichlet series attached to h. For a fixed integral ideal

m, the coefficients of A(m)_i in the above Dirichlet series are C(p, f)C(m, g)

and 4'^(p)[C(mp,g) + (4^2)*(p)A(p)^-1C(mp-1,g)] respectively.   When

m = tf, the coefficients must be equal which yields the result in the first case.

Next assume that p\S. By Proposition 2.7 with &' = JV@~X , we have

f | UV (40 = 4^ (JV€~X) f | Wg (Vg ) | WAri (4"F-')

which implies

Xjr^(í)i \K\TP= %(JV($~X) f | Wg(%) | h^-,(4%-') | Tp

= V¿(JV3-X)(¥&y(p)f\ Wg(Vg)\Tp | WM-i(^¿x)

and hence

Xjr^(f)C(p,r)f\K

= ^(JV3-X)(^¥¿xr(p)f\ Wg(%.) I Tp I W^-,(4%-
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On the other hand,

Xjr^(tfC(fJ) i\K = C(p77)f I Wjr(V)
= C(pTfj4'¿(^-1)f I Wg(%) I h^_,(4%t')

which implies

C(pTf)f|^(4'<f) = (4747Jrr(p)f|^(4'¿?)|7i

or equivalently, _

cUJjg = (^xr(p)g\Tp.
For a fixed integral ideal m, the coefficients of N(m)~s in the associated

Dirichlet series are  C(p,f)C(m,g)  and  (4/4/^')*(p) C(mp,g)   respectively.

When m = tf, they must be equal, hence C(p,f) = (4/4/^')*(p) C(p, g) which

completes the proof.   D

Proof (of Theorem 4.2). We first claim that the mth Fourier coefficients of f

and g have the same modulus. Since f and g are both newforms, it suffices

to show this (see Theorem 3.3) when m = pr, p a prime. The case of r = 1

is Lemma 4.3, and the general result follows from equation (1.5) by an easy

induction on r.

For f 6 S^k(JV, y/, m) and g £S?k(jV, (¡>, -m) Shimura defines (p. 355 of

[12])
L(s;{, g) = £ C(m, f)C(m, g)N(m)~s

and he discusses its analytic continuation. From the proof of Theorem 9.8 of

[12] (see also Proposition 4.9 and 4.13 of [11]) we have that the residue of

L(s ; f | K, f) at 5 = 0 is equal to «:(f, f) where k is a nonzero constant, and

L(s, g | K, g) = K(g, g) for the same constant k . However from above we

have that L(s ; f | K, f) = L(s, g \ K, g) hence (f, f) = (g, g). On the other
hand, by Proposition 4.1 we have

(f, f) = (f | Wg(4V), f | Wg (4V )) = \Xg,ve (f)|2(g, g) = (g, g)

from which the theorem follows.   D

5. Twists of newforms

In this section we characterize the exact level of twists of newforms and give

the strong relationship between nonvanishing of eigenvalues of Hecke operators

and whether the twist of a newform is again a newform.

Let <P be a Hecke character with conductor dividing J( . Here and hence-

forth, the word conductor will mean only the finite part of the conductor. The

infinite part of O has the form <Poo(a) = sgn(a)l\a\ir for / £ Z" , r £ Rn and

a £ K^ ; typically in the applications below, we shall choose r = 0. Let r(<I>)

be the Gauss sum defined in (9.31) of [12].

Definition. Let f £ S%(JV, 41) c &k(JV, y/ , m). Let

f|/î<J)(^) = cD(detx)        J2        ÖooM^Vj-o) f | (oï)Qix).
i/e.^-'D-'/o-'



TWISTS OF HILBERT MODULAR FORMS 389

The twist of f by O, f 0 , is defined by

f4,(x) = T(Ö)-,f|Ä4((cond(<D)).

Proposition 5.1. Let the notation be as above. If JVq is the conductor of 4*, Jfo

is the conductor of <&, and f? = lcxn(jV ,JfoJVo,JÍQ2), then f<& € ^(i?, 4'02)

and C(m, f. ) = <P*(m)C(m, f) for all integral ideals m.

Proof. This is Proposition 9.7 of [12] (cf. Propositions 4.4 and 4.5 of [11]).   D

Similarly it is easy to see that f | R 0 (J?) £ S^(^f, 4/<D2) where

& = lcxn(jV ,JfjVo,Jf2).

The following two propositions are trivial to verify using the action of the

various operators on Fourier coefficients. Note that the Fourier coefficients

C(m, f) capture the modular form f, although the Dirichlet series D(s, f) need

not.

Proposition 5.2. Let O be a Hecke character with conductor aV, and let p be a

prime with p\JT. Then for i£^k(jV,*¥) we have i^ \ Tp = <D* (p) (f | Tp ) 9 .

Proposition 5.3. Let G> be a Hecke character with conductor Jf and f £

^k(jV,V). Then f^ | K = (f | K)^ .

A simple and straightforward computation gives us

Proposition 5.4. Let f e 3>k(jV,*¥), €\JV with (<g,JV€~X) = I. Let O
be a Hecke character with conductor Jf and suppose that (S, Jf) = I. Fi-

nally, let *¥g   be a Hecke character extending y/s .   Then f 9 \ Wg ÇVg ) =

&(t$)(î\Wg(*¥g))(S>.

Now we wish to explore the actions of newforms under character twists.

When the conductor of the character by which we twist is prime to the level
of the modular form, the situation is completely straightforward. We have (cf.

comments on p. 228 of [1])

Theorem 5.5. Let i £ S?k (JV ,4*) be a normalized newform and let O be a

Hecke character with conductor Jf. If (Jf ,JV)=\ then f^ is a normalized

newform in 5?k(JC02, 4/<D2).

Proof. Since f is a normalized newform, Theorem 3.3 tells us that D(s, f)

has an Euler product representation; consequently, we immediately see that

D(s, iç ) = \ZmCg C(m, f0 )N(m)~s has the Euler product

Dis,f*)= Hil-V(q)C(q,f)N(q)-')-1

q\yT

• ]}(l -0*(p)C(p, f)A(p)-J + 4,*(p)<D*(p)2A(p)^-1-2s)-'.

Moreover, a computation analogous to Proposition 3.65 of [10] (see also equa-
tion 9.32 of [12] and Proposition 4.5 of [11]—beware of the two typographical

errors) yields that f0 | HNMi = y'(i\ HN)-$  for / e Cx with |/| = 1 . Also
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recall that since f is a newform, f\K\ HN = yi for some y £ Cx with \y\= 1 .

Thus

f0 I K | HNM2 = (-1)% | HNM2 | K = i-lfiy'ii | HN)¿) | K

= (-l)V(f I HN | JC)0 = f(t\K\ HN)9 = 7yf0.

The result now follows from Theorem 3.7.   D

Next we turn to the more complicated case in which we consider a Hecke

character whose conductor is not relatively prime to the level. Clearly it suffices

to consider characters whose conductor is a prime power which divides the level.

We first need a lemma (cf. Lemma 7 of [5]).

Lemma 5.6. Suppose that f £ ^(aT, 4/) n S*k(jV, 4*). Then f £ S\[ß, 4/)
where 2¡ is the greatest common divisor of aï and JV.

Proof. It is clear that 4* is defined modulo 2^^. Write JV = pajV' and
Jf = pßA?' where p is a prime dividing JÜV and with p \ Jf'jV'. Wlog
assume a > ß. Then f e ^(JV,yV) n S?k(pa-xJf', 4*). By induction, it

suffices to show that f 6 S%(pa-xjV', 4*).

Since p\jV'a#' we may decompose W(pa~xyV') as

W(pa-xjV') = \JW(jV)Wj

7

where w¡ £ W(pa-xjV'Jr'). Thus for any w £ W(pn~xjV') with w^ = I we

have w = wiw2 where w\ £ W(JV), w2 £ W(pa~xjf') and (toO«, = (w2)x =

1. Then f | w = f | WiW2 = yi Y (w2)i \wx = yi Y (w2)yi y (w{)i — yi Y (w)f, so

by equation (1) following (1.3), f £ ¿/k(pa~xyV') as desired.   D

Now we determine the exact level of a twist by a character whose conductor

is not prime to the level (cf. Theorem 3.1 of [1]). For an integral ideal JV and

a prime q dividing JV, let @ — qy where y = oxdq(jV). Then JV = Saî with
(&, a?) = 1 ; we call (S the q-primary part of JV.

Theorem 5.7. Let JV be an integral ideal and let q be a prime, q \JV. Write

JV = (SJÍ where S is the q-primary part of JV. Take f to be a normalized

newform in ¿?k(jV, 4*) with ordq(cond(4/)) — a, a > 0. Let O be a character

of conductor qß , ß > 1, and put â" = lcm(¿f, qa+ß , q2ß). Then:

(1) For each prime p \a? , f ̂   is not of level &'Jip~x.

(2) The exact level of f 0  is S'Jf provided that

(a) max(a + ß,2ß)< ordq(<f) if S1 = S, or
(b) ordq(cond(4'<D)) = max(a, ß) if ordq(¿f") > ord„(¿í).

Remarks. (1) Theorem 7.1 gives a refinement of this theorem in which essen-

tially, the phrase "the exact level of f ̂  is (S'Jf " can be replaced by the phrase

"f^ is a newform of level (S'Jf". (2) There are cases in which the level of

f ̂   is a proper divisor of S'a? (see Theorem 7.2).

Proof. By Proposition 5.1, f^ e 5^(0'Jt, 4/<D2). If f „, e ¿W-íTp-' , W),

then (f^)^ £ S*k(jV, 4/) where JV = y.£p~x , where

y = max(ordq(é"), ordq(cond(4,<D2)) + ß , 2ß).
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Now (f 0 ) ̂  is equivalent to a newform h, written (f 0 ) ̂  ~ h (i.e. has the

same eigenvalues for almost all Hecke operators 7¡, I a prime) where the level

of h divides JV. By Proposition 5.2, f ~ (f ̂  ) ̂  , so f ~ h, and so by Theorem

3.5, f £ S?k(JV, 4/) n Sk(SJf, T). By Lemma 5.6, f £ 3%(&£p-x, 4*), a
contradiction.

Now suppose that f0 has level @'AÎq~x . First note that f0 / 0 oth-

erwise f ~ (f ̂  ) ̂  = 0, contradicting that f is a newform (see Theorem

3.1). Let Wj £ W(S'Jfq~x) (with (wfj^ = 1 ) be a set of representatives

for W(3'M)\W(€'Jiq-x). Then

(5.1) ;  _
= Y, YyÍvUVyÍ™})1* = NWv

j

On the other hand, since we may take {wj} = {(¿ ?) Ie € é"J?q~lï>/â"AfV},

(5-2)

7

= T(5)-'*(det(x)) J] *<*>(^(^W(*(-m)Jo7)0)-
ce^'^rq-'o/^'^fD

^eq-^B-'/D"1

Case I. q^+2 \S'. The proof is very similar to the proof in [1], but for com-

pleteness, we sketch it. Since qß*2\(S', for each v £ q~^£>-1 there is a unique

v' £ q~^ö~' such that v - v'(l + vc) £ £>"' . It follows that

'(*(ií).(¿7)J-'(*(¿7')0(ií)i-1)

where

wo = (1+c"'(«'+1> ^^ e W(^'^f), woo = 1.

Equation (5.2) now yields

fJIr^.W^W-'i'ldetd))

(5.3) x £ 000(í,)0*(^D)f(x(¿7')o(_1c?)ow')
c€<?'.^fq_1D/<f',<fO

i/€q-'0-'/a-'

Since W(£#) C W(<$".¿f ) we have

f(-(iT')0(i?)0»') = ̂ 1+-')f(Ki-r')„(--)„)-

It is easy to see that Ooo(i/)0 (i/q^ö) depends only on the value of v mod D_1
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SO

Öo»Ö*(iYd) = Ôoo(i/'(l + i/c))Ö*(i/'(1 + vc)qh)

= *oo(i/'(l + i/c)(l - i/'c))0*(i/'(l + i/c)(l - u'c)qßD)

xOoo((1-í/'c))0*((1-z/'c))

= Ö00(i/')Ö*(i/Vö)Ö(I(1-i/,c)

= Ö00(z/')Ö*(I/Vö)Oq(l + i/'<;),

where Oq is the q-part of the Hecke character O, which may be viewed as a

numerical character modulo qß . Thus (5.3) becomes

(5-4)
f*\Tx^_](x) = x(<&rx®(det(x))

£ of

c^'jfor^is'JCo
n'eq-íí-'/O-'

,(iO*Vq'*)^Ml + ̂ f(*(o7') 0(-c?) 0)

Subcase A. a > /? , or a = ß > (1/2) ordq @ and ordq(cond(^0?)) = a.

If ordq¿f" > ordgéf, then cond(^ Oq) = qQ, ce •#"?>, and tV e q'a-l

If S' = ¿f, then max(a + ß,2ß)< ordq¿f, cond(íí/ Oq)

and tV e qa^.

Thus equation (5.4) yields

qa, C£â"Afq-xî>,

T'jr
x(<b)<!>(det(x))i<!>\Tx^-i(x)

Y.cY.v<ñ„iv')&iv'qh)yfp¿\+v'c)i(x(^-t)^

= < if ordq ¿f' > ord4

l EcE,.*oo(*0*Vq'3)f(*(o7')0(-c?)0)     if€'=,

'E,^oo(^')^(^Vo)f(x(¿7')o)Ecvqí>q(i + ^)

= < if ordq &' > ord? <

= 0

in the first case since either O (u'qßD) = 0 or J2C y/ Oq(l + v'c) = 0 (for

1 - v'c runs over a group on which ^ Oq is nontrivial), and in the second case

by Theorem 3.4. This contradicts equation (5.1).

Subcase B. a< ß or a = ß < (1/2) ordq ¿f.

If ordqéf' > ord?^\ then cond(^ Oq) = qß , c £ JV$, and cv' £ qß-[Af .

If S' = e, then max(a + ß, 2ß) < ordqéf, cond(y/ Oq)|qQ, ceéf'-^V'D,

and cu' £ qßJf. The argument proceeds in analogy to the one above.

Case II. q^+2 \ $'. Here we must have S = q , ^' = q2, and cond(íí/ Oq) =

q = cond(Oq). The argument here is in analogy to that in [6].
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Starting from equation (5.2), it is sufficient to show that

(5-5) £        ÖooMÖ>qD)f| (o,)0l 0?)oW = O
v€q~'t>~'/t>~1

ceq^ö/q2^D

Note that we may assume that (vqD, q) = 1  otherwise O (i/qD) = 0.  We

first show that

£   Öoo^ÖVq^fl^)    |(>?)   =0,
v ,c

\+cve<i

so given c, v assume that 1 + cv e q. Let q £ K% with qcf = q and q^ = 1,
and let y £ GA , with

0\   il   0 \    _ (\+cvvq

VOlJoU*o= ;      ;;,:,=   7;  . ^ = 1.

Finally, let 4*^  be a Hecke character extending ^  • Then we can use y to

define the action of Wg (4*^ ). It follows that

J/eq-'a-1/»"1    c6q^ö/q2^0
l+o/€q

£ Oo>)0>q0)f|(¿í)o|(^)o(*)

4^(ídetx)       53 Y.       ^^(vWivq^ivqh)
i/Gq-^-'/D"1   cSq^D/ql^D

l+a>€q

xf| W*)l(o7-.)0(*)

= 4/¿f(¿fdetx)0~(¿7/r0i/)       5]       O^ii/iîi)
-iîi-i/î>-ii/eq-'o-'/o

x        E       f|%(^)l(o?°.)0W-
ceq^0/q2^fD

l+cv€<\

As v runs over q-1o-1/ö~' , vqt¡, runs over tf/q, and since Oq|¿/   / 1 ,

53 «DqV,  ("«*»)   =0
i/Gq-'D-'/D"1

which proves the first claim.

Thus, we are reduced to showing that

(5-6) 2 53       Ooo(z/)0>qo)f|(¿í)o|(^)o(x) = 0
i/ëq-'D-'/D-1 c£<\jn>i<?jn>

l+ci>¿q

For each c, z/ with 1 + cv g q there is a unique z/ e q~xV~x/D~x such that

•(!+«/) = .modi"'.   Then  (oï)o0?)o(o7')o = (7^77'r') e
o
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W(qJf) = W(yV). Hence

53       53   $cc(^(^)fi(oï)0iOï)0w
¡/Cq-'S-'/O-1   c6q^D/q2^0

\+Cfiq

(5.7) =    E   ^0o^'(l+cv))^*(v'(l+cv)qV)y/(l+cv)i\ (¿"/) (x)

1+c^gq

=   53   ^(«/'^("'q^q^íl+^fl (oí)oW-
l+Ci/gq

Observe that v'(l + cv) = v modo-1 iff v' = (l - cv')v modo-1 , so we

can change the variables c,v to c, v' where v' runs over q"1ö"1/ö"1 with

(z/'qD, q) = 1 and c runs over q^#ö/q2^#D with 1 - cv' g q. Also note that

Oqy/ (1 + cv) = Oqt/y (1 - cv') so equation (5.7) becomes

53     o»(i/')*Vqa)f|(0í)0(*)     E     oq^q(i-a/) = o
i/'eq-'B-1/*»"1 ceq^ö/q^D

1-Ci^'^q

since for fixed v', I - cv' runs over (tf/q)x , and Oq^ is a nontrivial char-

acter on (tf/q)x . This provides the desired contradiction and completes the

proof of the theorem.   D

Now we have

Theorem 5.8. Let q | JV and let S be the q-primary part of JV. Write JV =

&a% and let O be a Hecke character of conductor qß, ß > 1. Let i be a
normalized newform in S?k (JV, 4*). Then there exists a normalized newform

g e S?k(@Jt, 4/02) with S = qy for some y > 0 such that i„, = g-g | Tq | Bq.

Remark. In the case K = Q, more precise information can be obtained about

S (see Theorem 3.16 of [3]).

Proof. By Theorem 5.7, f0 e SPk(jS'J[, 4/02) where €' = lcm(¿f, qa+ß , q2ß)

and a = ordq(cond(4/)).  Since f^   is a simultaneous eigenform for all   Tp

with p\JV, there exists a newform g £ S^k(@AÏ', 4/02) with f^ ~ g. Here

S\S' and a?'\a? . Then g^ ~ (f„,)$ ~f and g^ has level Í'aT' where

Í' = qy, where y = max(ordq (<#), 2ß, ordq(cond(4/02)cond(0))). Since f is

a newform of level &Jf we have SJÍ \ <S'aï' .  Thus aï = Jf' and g^ =

DBiitf-.c«f Ia«- Finally>

g-g 17-, | ßq = (g5J)<í =  53 Ml5«)«» ■-**•*•

Comparing first (i.e., tf th) Fourier coefficients yields eg — 1.    D

Corollary 5.9. If ordq(cond(4/02)) < ord,, @, then f ̂   is a newform if and only

Ífq2\Í.
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Proof. By Theorem 5.8, f 0 is a newform if and only if g | Tq — 0. Since g

is a newform, g | Tq = 0 if and only if C(q, g) = 0. The result now follows

by Theorem 3.3(3).   G

6.   q-PRIMITIVE NEWFORMS

In this section we obtain most of our results concerning when twists of new-

forms are newforms, and we consider the question of when a newform can

be expressed as the twist of a newform of "lower" level (i.e., the question of

primitivity).
Throughout this section fix a normalized newform i £ S?k (JV, 4*) and a

prime q\JV. Let S be the q-primary part of JV and write JV = @aî as

before. We shall consider only Hecke characters O whose conductor is a power

of q . The character Oq is the restriction of the Hecke character O to the q-part

of the ideles, but may be viewed as a numerical character on (¿f/cond(0))x .

Put
â"   = lcm(íf, cond((¿/ )cond(0), cond(O)2).

Theorem 6.1. Let  O   be a Hecke character with   q-primary conductor.    If

& | cond(O)   and  cond(^O)   =   cond(O),   then   f^    is a newform  in

^(áP ./#, TO2).   Moreover, if 4*i   is a Hecke character extending  y/â.O2

(viewing Oq as a numerical character), then

^,4-,(fo) = Oq(-l)471(?D)T(4'10)T(0)-1.

Proof. Put &' = &'    and S" = cond(O).   By Theorem 5.7(2b), the exact

level of f,,,  is S'Ji, and S' = (S")2. Let y £ GA, y0 = (?^)0 represent

Wg,(Vl) = W*'*(Vl).Then

f0 I Wgi^i)(x)=%(detx)^(bT,)y^(d)xm-x^(det(xy))

53       ®00(v)®*(v<$"*)f\(l0'{)o\y(x)

We may assume that (vS"t}, q) = 1 , so for each such v there exists a unique

v' £ (é"'V)-x/d-x such that (vv'c-b)ùf £ ¿fö"1 . Then

(it).(íí)0(¿T).-*«

where q £ Kx with qtf = S" and <7oo = 1 , and where w £ W(&".£) c

W(JV). Thus

A straightforward but tedious computation permits us to rewrite the sum over

v as a sum over v'. The end result is

f* I Wg, (4M = Oq(-l)47,(ii)T(4'1Ö)T(Ö)-1f¥)<I) ,

which confirms the claim about the pseudo-eigenvalue.

By Theorem 5.8, there is a normalized newform g £ J/¿(áL#, 4*02) such

that ¿f is q-primary and f^ = g-g | Tq \ Bq . The exact level of g-g | Tq \ Bq
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is qëJT or €Jf (the later case if C(q, g) = 0 ). Thus (¿f")2 = @ or qS. By

Corollary 5.9, f 0  must be a newform unless S" = 3 = ¿f = q , so we assume

this later condition and derive a contradiction.

From the first part of the proof we have that

Oq(-l)4ï1(i0)T(4'1Ô)%i(I)

= t(ÔX, I Wg^i) = r(Ô)(g-g | Tq | Bq) | h/2(4M

Also,

g | Wq2 (4M = g I Wq (4»,)(g°) = A(q)W2(víAp2<I,2)(í7) g I Wq (4»,) | ¿?q

and

g | Tq | Bq | ^qJ (^) = C(q, g)A(q)-^2g | Wq (4',).

Note that by Theorem 3.3, C(q, g) yé 0. Taking g to be the normalized new-

form such that g | Wq (4M = Aq(g)g, we have

Oq(-l)47,(rD)T(4'1Ô)%|<I)

= T(Ö)C(q, g)A(q)-^%(g) (g - C(q , g)"1 A(q)S | Bq).

Comparing the absolute values of the tfth Fourier coefficients of both sides

yields
A(q)1/2 = A(q)1/2|C(q, g)|A(q)^/2|Aq(g)|.

From Theorem 4.2, \Xq(g)\ = 1, which shows that |C(q, g)| = N(q)ko/2, con-

trary to Theorem 3.3. Therefore, f 0  is a newform.   D

The following corollary is an immediate consequence of the theorem above.

Corollary 6.2. If 3 = q and ordq(cond(4/)) = 0 then the twist of i by any non-
trivial q-primary Hecke character O is a normalized newform of level ¿f' Af .

Theorem 6.3. Suppose that cond(i/é,) = € and ordq(cond(0)) < ordq(¿f). //

C(q, f) yé 0 then f 0   is a normalized newform in 5^k(jV cond(O), 4*02).

Remark. The condition C(q, f) / 0 is discussed more fully in the remark

following Theorem 3.3.

Proof. Put €" = cond(O) and write JV = Sa% as usual. By Proposition

5.2, f 0 is an eigenform for all Hecke operators Tp with p / q . We observe

that C(m, f0 | Tq) = 0*(mq)C(mq, f) = 0, so f0 is an eigenform for Hecke

operators Tp for all primes p. By Theorem 5.7 (2b), f^ has exact level JV@" ,

so by Theorem 3.7, we need only show that f ̂  is an eigenform for the operator

Hjgn K.

Consider (f | Tg» \ Hjr)-^ \ H~j^„ . A straightforward but tedious calculation

completely analogous to Theorem 4.2 of [1] yields that

(f | Tgn | Hjt)q I K = (i I Tg« | Hjr)-^ \ H^„ \ Hjg„ \ K

= C(€",i) (f | Hjr)$ | K

By Proposition 5.3, f0 \ K = (i\ K)^  and since f | Hjr | K = yf for \y\ = 1,

we have _

(i\Tg„ \H*)9 \K = C(S",t)yi<s>.



TWISTS OF HILBERT MODULAR FORMS 397

Since  f | Hjgu \ K  =  (-l)ki \ K \ Hjg„ ,   f | Hjg„ \ Hjg„   =  (-l)ki, and
f I K I K = i we have

(f | 7> \Hjr)-^\K = (i\ Tg„ \Hjr)^\ H^,„ | Hjrg,, \ K = C(@", i)y f 0 ,

from which it follows that f0   is an eigenform for Hjrg«K and hence is a

newform of level JVS" provided C(@",f) = C(q, f)ord'^") yé 0, which has

been assumed.   D

From this we get

Corollary 6.4. Suppose that cond(^ ) = S, O is nontrivial, and C(q, f) yé 0.

Put

Q7
cond(O) z/ordq (cond(4'0)) > ordq (€),

cond(v^Oq)   ify/J&q yé 1 a«ö?ordq(cond(4/0)) < ordq

Then f^ is a normalized newform in 5^k(QjV, 4/02) // O does not extend

y/   . If O does extend y/    then f 0  is not a newform of any level.

Remark. The condition C(q, f) yé 0 is not required for the case where O does

not extend y¡ and ordq(cond(4*0)) > ordq(¿f). See also the remark following

Theorem 3.3.

Proof. Let 4*^   be a Hecke character extending  y/s , and consider i=    .

Let g £ S%(JV, 4/4/¡r ) be the normalized newform such that f | Ws (fVg ) =
Xgye (f)g.   From Lemma 4.3, we know that for any prime p \ S we have

C(p,g) = 4^ (p)C(p, f), and C(q,g) = (W~x)*(q)Cjq~J).   Moreover, for

p f S, C(p, i=fi) = "V*g (p)C(p, f), thus g ~ f ¥    . By Theorem 5.8, f ̂    =
—2

h - h I Tq | Bq where h is a normalized newform in S?k (S'Ji, 4AF(f, ) for ¿f'
a power of q, so f-     ~ h, and hence g ~ h.  By Theorem 3.5, g — h, so

f^   =g-g| Tq | BqJL g since C(q, g) = (T4'¿1)*(q)C(q, f) # 0, hence f^,

is not a newform.

Now suppose that O yé *¥g . Consider first the case where ordq(cond(4/0)) >

ordq(¿f). If ordq(cond(0)) < ordq(¿f) = ordq(cond(4')) then Theorem 6.3
yields the result. If ordq(cond(0)) = ordq(cond(4/)), then cond(^¿f4/q) \@,

which combined with the hypothesis of the theorem gives cond(^, 4*q) = (S =

cond(^ ) = cond(O). If ordq(cond(0)) > ord^cond^)), then cond(^, 4'q)

= cond(O) of which ¿f is a proper divisor. In either of the later two cases,

the result follows from Theorem 6.1. Next, suppose that ordq(cond(4'0)) <

ordq(éf).   Then  O = 4^0'  with  O' ^  1   and  ordq(0') < ord(^).    Let

g£^k(JV, 4/4'2? ) be the normalized newform with f | Wg (% ) = Xg ̂  (f)g.

Then fw = g - g | Tq \ Bq (as above), so f 0 = (f^ ) 0, = g^, is a normal-

ized newform of level QJV by Theorem 6.3.   D

In strict analogy with [1], we introduce the notion of a primitive newform.
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Definition. Suppose that the prime q divides JV . A newform g £ S?k(jV, 4*)

is said to be q-primitive if g is not the twist of any newform of level JV' where

JV' is a proper divisor of JV by a Hecke character whose conductor is a power

of q. Clearly g is q-primitive if C(q, g) yé 0.

Proposition 6.5. If i isa q-primitive newform and C(q, i) = 0, then all twists of

i by q-primary Hecke characters O are normalized newforms with level divisible

by JV.

Proof. Let O be such a character. By Theorem 5.8, there exists a normalized

newform g £ S?k(@'Af, 4'02) such that f 0 = g - g | Tq \ Bq. Since C(q, f) =

0, we have f = g^ = f ̂  . If f 0 is not a newform then C(q, g) yé 0, for if

C(q, g) = 0 then f 0 = g - g | Tq \ Bq = g - C(q, g)g | Bq = g which would
imply that f^ is a newform, a contradicition. By Theorem 3.3, C(q, g) ^ 0

implies either that cond(^02) = (§', or q || &' and ordq(cond(^ O2)) <

ordq(¿f'). In the first case, Corollary 6.4 implies that g^ = f has level JV =

€€'Jf ; in particular, ordq(éf') < oxdq(@'S) = ord?(^). In the second case,

S' = q and ordq(cond(^O2)) = 0, so Corollary 6.2 implies that g-¡¡ = f has

level JV = lcm(^", cond(Ô), cond(0)2)^# . In either case, it is clear that S'aî

is a proper divisor of JV and f = g ̂  implies that f is not q-primitive, contrary

to assumption. Therefore f 0 is a newform. The level of f 0 is divisible by

JV otherwise f=(f0)^  would not be q-primitive.   G

Conversely, we have

Proposition 6.6. If all twists of i by Hecke characters O with q-primary conduc-

tors are newforms, then i is the twist of some q-primitive normalized newform.

Proof. Let O be a Hecke character with q-primary conductor such that the
level of f0 is minimal. That is f0 £ S%(@'aV , 4/02) with &' dividing the

level of every twist of f by a Hecke character with q-primary conductor. By

Theorem 5.8 there exists a normalized newform g £ 5?k((§A%, 4*02) such that

f 0 = g - g I Tq | Bq. If C(q, f) yé 0, then f is q-primitive and hence is the

twist by the trivial character of a q-primitive newform. Otherwise C(q, f) = 0

and as in the previous proposition we have f = g^ = f^ . Clearly g is

q-primitive by minimality of ¿f '.   G

The proof of the following technical lemma is analogous to Lemma 4.11 of

Lemma 6.7. Let O be a Hecke character with conductor dividing qß, ß <

ordq(ß). Let a = ordq(4/) and put

@' = lcm(£f, qa+ß ,q2ß),        @" = lcm(q, qa~ß@, q~2ßS2).

Finally, let 4*^.  be a Hecke character extending yts . Then

i\Rc>(qß)\Wg,(Vg<S>2)

= Kf\m%) I 53%i(tfq-/') I !%>•{%&!) I %¡p i<S 'q~ß).
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where k is a nonzero constant and where the sum is over Hecke characters Oi,

one for each numerical character defined on (& /qß)x . The particular choice of

the Hecke character extending the numerical characters is irrelevant but fixed.

Now we have

Theorem 6.8. Let a = ordq(^ ). If (1/2) ordq(¿f ) < a < oxdq(S) and C(q, i)

= 0, then f is not q-primitive.   Moreover, there exists a Hecke character O
_2

of conductor €q~a and a normalized newform g £ Sík(qaAf, 4*0 ) such that

f=gq>-

Proof. The proof that f is not q-primitive is completely analogous to the first

part of the proof of Theorem 4.3 of [1]. The proof of the second statement has

minor variations which we indicate below. Since f is not q-primitive, there

exists a Hecke character O of conductor q^ , a proper divisor ¿f of S, and

a q-primitive newform g 6 S^k(&J(, 4*0 ) such that f = g0 . We claim that

ordq(cond(4'02)) = Q.

Since f = g 0 , we have

fö =8*í =8-8 I rq I Bv

Put S' = lcm(^, qa+ß , q2ß) and y = ordq(cond(4'Ö2)). If y > a, then ß > a

and ordq(¿f') = 2ß > ordq(¿?).  By Theorem 5.7, f^   has exact level &'aV

which implies S\S, contrary to assumption. If y < a then cond(02) = qa ,

so either ß = a if q is nondyadic or q is dyadic of degree greater than 1, or

ß = a+1 if q is a dyadic prime of degree 1. In either case, ordq(<áf) < ordq(¿f')

and ordq(cond(4/0)) = max(a, ß).  Using Theorem 5.7 as above leads to a
—2

contradiction, so we conclude that ordq(cond(4,0 )) = a as claimed.
—2

Using arguments similar to those above, we see that ordq(cond^O )) = a

forces cond(O) = q^ | qa. Moreover, we claim that S = qa. Now a > 1 by

hypothesis, so if ordq(éf) > a, then C(q, g) = 0 by Theorem 3.3. Moreover,

since ordq(if) > a > (l/2)ordq(¿f) > (l/2)ordq(¿?), the first part of this the-

orem implies that g is not q-primitive, contrary to asumption, hence @ = qa

as desired.
To complete the proof, we need only verify that qß = @q~a . We know that

ß < a.  If ß < a, then qß = Sq~a by Theorem 5.7 applied to g^ .  Now

assume that ß = a. If ordq(cond(4'0)) = a, then by Theorem 5.7 again,

we have S = q2a, contrary to assumption, so ordq(cond(4/0)) < a. This

implies that O = *¥g O' where 4*^ is a Hecke character extending y/g and

where O' is a q-primary Hecke character with ordq(cond(0')) < a. Note that

O' is nontrivial, otherwise since g - g | Tq \ Bq = i s— , and f | Wg (4*^ ) ~

in— ~ g, we would have that g is a newform of level JV, contrary to assump-
s

—2
tion. Now let g' £ 5^k(qaJf, 4AFif ) be the normalized newform such that

8 I Wq« ifVg Ö2) = X -g(g) g'. Then as above, gf     2 = g' - g' | T - q \ Bq
q    , T g V g>

and f = g^ — g' - = g'-, . By the same argument as above, we have

cond(O') = Sq-a .    G
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As an immediate consequence of Theorems 6.8 and 3.3 we have

Corollary 6.9. If i is q-primitive and C(q, i) = 0 then either ordq(cond(^ )) <

(1/2)ordq(^) or ordq(cond(\ps )) = ordq(áf), q2\@ and the inertial degree of

q is greater than one.

Finally we have

Theorem 6.10.

(1) If S = q2p+x and cond(^)|q/), then i is q-primitive.

(2) If (S = q2p where q is a dyadic prime of degree one, and cond(^. ) =

qp, then i is q-primitive.

(3) If q is a dyadic prime of degree one, S = q2p with cond( ^ ) | q^_ ' and

p > 2, then the exact level of i9 divides jVq~x for any Hecke character

O of conductor qp . In particular, f is not q-primitive.

(4) // q is a dyadic prime of degree one, € = q2, and y/€ = 1, then i is

q-primitive.

Proof. The proof has only minor variations to the proof of Theorem 4.4 in [ 1 ],
but for completeness we sketch it.

Case (1). By Theorem 5.5, f is q-primitive if & = q and \pe = 1, so we

may assume that p > 1 . Suppose that cond(yis)\qp and f is not q-primitive.
_2

Then f = g^ for a q-primitive normalized newform g £ <Sfk($'AÎ, 4*0 )

where €' is a proper divisor of S and O has q-primary conductor. Then

f ̂  = g - g I Tq | Bq. Since @' is a proper divisor of S, we must have that

cond(O) | qp otherwise Theorem 5.7 would give yT to be a proper divisor of

the level of f = g0 . On the other hand, if cond(O) | qp then Proposition 5.1

gives the level of f = g^ as a proper divisor of JV, contrary to assumption.

Thus f is q-primitive.

Case (2). We have that € = q2p where q is a dyadic prime of degree one,

and cond(^ ) — qp . If f is not q-primitive, then as above, f = g0 and f^ =

g_g I Tq | Bq with cond(O) = qp . Note that since q is a dyadic prime of degree

one, cond(02) |q^_1 , hence ordq(cond(4/0 )) = p > ordq(á?'). By Theorems

6.8 and 3.3, we have that S' = qp . Let 4*^   be a Hecke character extending
_2

y/s and let g' £ ^(S'J?, 4'4'¿f O2) be the normalized newform such that

g | Wg, (4^Ö2) = Xe,^-2(g)g'. Writing O = ^ O2^ Ö where 4^0 is a

character of conductor qß , ß < p, we have f = g(J) = g-^^- = g*

since g' = g= Q2 = g'-g' \Tq\ Bq . Here 4/(f. O has nontrivial conductor since

f is a newform and g' and f have different levels. It follows from Theorem

6.3—notice that we again use that the degree of q is one (see Theorem 3.3

(2))—that g'    -  = f has exact level S'J(qß  which is a proper divisor of

JV = SJf, a contradiction. Thus f is q-primitive.

Case (3). Here we assume that q is a dyadic prime of degree one, € = q2'' with

p > 2 and cond(^ ) Iq''-1 . Let O be a Hecke character of conductor qp . By

Proposition 5.1, the exact level of f0   divides JV. Let  (<Lb~) £ W(JV<\~X) -
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W(JV). In a computation completely analogous to the proof in [1], and using

Theorem 3.4, we deduce that f^ | (£ Í-) = ^Oq(5)fq> , which implies the result.

Note that once again we have used that the degree of q is one since in this case
[W(jVq~x) : W(JV)] = A(q) = 2.

Case (4). This follows easily from Theorem 6.1 and from the fact that there

are no numerical characters of conductor q since q is a dyadic prime of degree

one.   G

7. Some applications

We now present two applications of the preceding results. The first appli-

cation which we give strengthens Theorem 5.7 from a result characterizing the

exact level of a twist to a theorem telling us that the twists described by Theorem

5.7 are newforms. The authors thank Arnold Pizer for suggesting this result.

Theorem 7.1. Let JV be an integral ideal and let q be a prime, q \JV. Write

JV = Ä# where & is the q-primary part of JV. Take i to be a normalized

newform in 5^k(JV, 4*) with ordq(cond(4')) = a, a > 0. Let O be a character

of conductor q^, y? > 1, and put â" = lcm(éf, qa+ß, q2ß). Then f0 is a

newform in ^(S'Jf, 4*02) provided that

(1) max(a + /3,2/?)<ordq(¿f) if@' = @, or
(2) ordq(cond(4/0)) = max(a, ß) if oxdq((§')> oxdq((S) and q is a prime

of degree one.

Proof. By Theorem 5.8, f,,, = g - g | Tq | Bq  where g £ S"k(Íaí , 4*02)  is

a newform and ¿f is q-primary.  Since by Theorem 5.7, f^   has exact level

&'Af, it follows from Proposition 2.1 that S' = ë or S' = qS.
First suppose that €' = € and max(a + ß, 2ß) < ordq(éf).   Since ß >

1 and 2ß < ordq(^) = oxdq(€'), we have q31 éf', hence q2|áP. More-

over, we see that ord9(cond(4/02)) < ord,,(¿f) as follows: If a < ß, then

ord?(cond(4/02)) < ß. By hypothesis, 2ß < oxdQ(S'), so ß + 1 < 2ß <

OTdg{£') or ß < ord„(^') - 1 < ordq(^). If a > ß , then ord?(cond(4'02)) =

a . By hypothesis, a + 1 < a + ß < ordq(éf) = ordq(éf'), hence a < ordq(¿f" ) -

1 < ordq(^) as claimed. By Theorem 3.3(3), we have g | Tq = 0 hence f ̂  = g

is a newform of level SJf. As f ̂  has exact level €' Jf, we have q' = &,

and the result follows in this case.

Next suppose that ordq(é?') > ordq(^) and ordq(cond(4*0)) = max(c*, ß).

We consider the cases a > ß and a < ß separately.

Case A. If a > ß , then ord(?(cond(4/02)) = ord^condíTO)) = ordq(4/) = a.

Subcase 1. q2\ë.

If ë = S' then ordq(cond(4/02)) < ordq(q), so by Corollary 5.9, f,,, is

a newform of level d'JK^ as desired. Otherwise, S = @'q~x ; we show that

this cannot happen. If 3 = ¿Tq-1 » then ordq(cond(4/02)) = ordq(#), for

if ordq(cond(4/02)) < ordq(^) then f0 = g - g | Tq \ Bq would have level

S by Proposition 2.1, and since S'aî is the exact level, <S' \<S = €'q~x , a

contradiction.  Now ordq(cond(4/02)) = oxdq(S),  q a prime of degree one,
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and Theorem 5.8 imply that f 0 is not a newform of any level. From this we

derive a contradicition.
Since ordq(cond(4/02)) = ordq(¿f), we have

ordq(df) = ordq(cond(4'02)) = ordq(cond(4/0))

= ord^cond^)) = a < oxdq(3).

If ordq(cond(4/)) < ord,(if) then ord,(#) = ordq(cond(4/)) < ord^efq"1) <

ordq^'q-1) = oxdq(3), a contradiction. Otherwise, ordq(cond(4/)) = oxdq(3).

Observe that O does not extend yf since ordq(cond(4fO)) = a > ß > 1, so

by Corollary 6.4, f 0  is a newform, a contradiction.

Subcase 2. ë = q. If S = 3' then 1 = ord,(¿f) = ordq(éf') > ordq(¿f) > 1 ,

a contradicition. If 3 = 3'q~x, then ordq(q') = 2 = max(a + ß, 2ß), which

implies ß = 1 and a = 0, 1. But we are assuming that a > ß , a contradiction.

Case B. If a < ß , then ordq (cond(4/0) = ß and ordq(cond(4'02)) < ß

Subcase 1. q2\3. If 3 = 3'(= q2ß), then ordq(cond(4/02)) < ord,(#) and

so by Corollary 5.9, f^ is a newform of level S'aí . Otherwise, 3 = S'q~x ;

we show that this cannot happen. We must have ordq(cond(4/02)) = ordq(^)

otherwise by Theorem 3.3(3), f^ is a newform of level SJf contradict-

ing that its exact level is @'J(. By Theorem 5.8 (since the degree of 3

is one), f0   is not a newform of any level.   Now,  ß = ordq(cond(4,0)) >

ordq(cond(4'02) = ordq(<#) implies 2ß = ordq(¿f') = ordq(qéf) < ß + l which

in turn implies that ß = 1 . Thus a — 0, 1, 3' = q2 and 3 = q = 3. Since
ß = ordq(cond(4/0)) = 1, O does not extend yi . If a = 1 then Corollary

6.4 implies that f 0 is a newform, while if a = 0, f 0 = g - g | Tq \ Bq is a

newform since g | Tq = 0 by Theorem 3.3(3). In either case, this provides the
desired contradiction.

_ Subcase 2. 3 = q . If 3 = 3' then q = 3 = 3' = q2ß , a contradiction. If

3 = ¿f'q-1 then 3' = q2 implies ß = 1 . Then a = 0, 1 give contradictions

as above,   a

Our second application gives a decomposition of a space of newforms as a di-

rect sum of twists of other spaces of newforms. (Such decomposition theorems

were studied extensively in [3] where the predominant tool was the Eichler-

Selberg trace formula.) Here we let S?® denote the space of cusp forms con-

sisting of {f 0 | f £ ¿P } where S? is a space of cusp forms and O is a Hecke

character.

Theorem 7.2. Let q be a dyadic prime of degree one and AÍ an integral ideal

prime to q. Let v be an even integer, v = 2p > 4, O a q-primary Hecke

character of conductor qp, and assume that ordq(cond(4/)) < p. Finally, let

e = ordq(cond(4/02)). Then

v-l _

<9>k+(q"A?,V) = 0^+(q''^r , TO2)*.
i=e

Proof Over the rationals, this is Theorem 3.14 of [3]. Let f 6 S?k+(qvJf, 4*)
be a normalized newform. By Theorem 6.10(3), the exact level of f»   divides
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q" xJt. By Theorem 5.S, i^ = g- g\ Tq \ Bq where g is a normalized new-

form in S%(qpAf, 4'02). It is easy to se that e < p < v - I for if p > v

then by Theorem 3.3(3), g | Tq = 0 which would imply f = g and hence

p < v, a contradiction. Now f^ = g-^ £ <9"k(qvA?,4*) by Theorem 5.1

and so g^ ~ f. Since f is a newform in S"k(ql'Af, 4*), we have f = g^ by

Theorem 3.5 (multiplicity-one). It follows that

i/-i _
5*k+(qvAf, 40 c 53^T(q''-^» 4/02)0.

Conversely, if g € ^+(q/'^', 4'02) is a normalized newform, then Theorem

7.1 implies that g^  is a newform in S'^Af, 4*), thus

v-\ _

yk+(quA?, 4*) = 53^+(q'^, 4/02)*

That the sum on the right-hand side is direct follows immediately from the

multiplicity-one theorem (Theorem 3.5).   G
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