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LOCAL INTEGRABILITY OF MIZOHATA STRUCTURES

JORGE HOUNIE AND PEDRO MALAGUTTI

Abstract. In this work we study the local integrability of strongly pseudocon-

vex Mizohata structures of rank n > 2 (and co-rank 1). These structures are

locally generated in an appropriate coordinate system (t\, ... , tn , x) by flat

perturbations of Mizohata vector fields Mj = ~■ - itj-jfc , j = 1, ... , n . For

this, we first prove the global integrability of small perturbations of the struc-

ture generated by g= + o\ ^ ,   -^-^ aJdz ' 7 = 2,...,« , defined over a

manifold C x S , where 5 is simply connected.

1. Introduction

The local solvability of overdetermined and underdetermined systems of vec-

tor fields has been studied with some generality under the assumption that the

structure generated by the vector fields is locally integrable and has co-rank

equal to one [16, 4, 5]. It is thus natural to study the local integrability of

structures of co-rank one. In this work we prove that a formally integrable (i.e.

involutive) structure of co-rank one and rank n > 2 is locally integrable if it

is strongly pseudoconvex, a result analogous to Kuranishi's embedding theorem

for CR-structures as extended by Akahori [8, 1]. These structures, here called

Mizohata structures, are locally generated in an appropriate coordinate system

(ti, ... , tn, x) by n vector fields

(u) M^aTj-itj-bh + p^'     J = l>->n>

where Pj is flat at t = 0 [17], i.e., they are flat perturbations of Mizohata

vector fields. The problem of local integrability is equivalent to the problem

of finding new local coordinates where the structure is generated by the vector

fields (1.1) with pj■ = 0, j = 1, ... , n. For n = 1, Nirenberg [11] showed
that it is possible to select pi so that the corresponding structure is not locally

integrable whereas our result shows that there is always local integrability if

n > 2 ; so, only the case n = 2 remains open.

To prove our result we follow, loosely speaking, the method of Kuranishi

which consists in approximating the given structure by a sequence of locally

integrable structures.   This sequence is constructed by using a Nash-Moser
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scheme.The success of this approach is linked to the existence of homotopy

formulas at the level of one-forms for each one of the approximating struc-

tures. Furthermore, the homotopy operators involved should have adequate

continuity properties in some scale of Banach spaces. In our proof, instead

of dealing directly with the structure J[ generated by vector fields (1.1), we

first introduce polar coordinates in t. This change of variables becomes singu-

lar precisely at the characteristic points of ,#. This blows up the nonelliptic

points of Jf and we are left with an elliptic structure 3? generated by vector

fields
d        d

Li = -^ + Oi--,
dz      dz

[l-¿) d d .     _

where z = x + is = x + i(\t\2/2) and the ü¡ 's are smooth functions of s,

vanishing for 5 < 0. It is to the structure 3? that we apply the method of

Kuranishi. The homotopy operators for the structures that approximate 3?

have explicit integral expressions. In this respect, as well as in other tecnichal

details, the proof runs closer to Webster's proof of the theorems of Kuranishi

and Newlander-Nirenberg [19, 20, 17]. The price to pay for considering the

better behaved elliptic structure 3? is that one has to prove integrability globally

in 6 £ Sn~x. It is easy to show that global integrability for J?7 implies local

integrability for JK.
Concerning the case of rank n = 2, Nagel and Rosay [10] proved recently

nonexistence of homotopy formulas for CR-structures of hypersurface type,

explaining why this case cannot be handled like the case of higher rank. This

argument can be adapted to show that homotopy formulas do not exist either

for locally integrable Mizohata structures of rank 2 [7].
The organization of this paper is as follows: in §2 we state the main theorem

and introduce the elliptic structure &, in §3 we prove the required homotopy

formulas, in §4 we prove the continuity of the homotopy operators in Holder

norms, in §5 we briefly state the needed facts about smoothing operators, in the

extremely long §6 we prove that the Nash-Moser scheme converges, thus proving

the global integrability of 3? and, finally, in §7 we show that the integrability

of SC implies that of JÜ.
The authors are indebted to Professor Trêves for teaching them about the

work of Webster in his lectures at Recife as well as for pointing out reference

[10].

2. Existence of a flat solution for a Mizohata structure

Let Q be a paracompact manifold of class C°° and dimension A. We

consider a subbundle 3? of

CTD. = C ® TO..

Definition 2.1. 3? is a formally integrable structure if \3, 3?} c 3*, that is,

if the Lie bracket of two local sections of Sf is still a local section of 3? .

We put n = dim.? and m = dixx\3'L .

The characteristic set of 3? is

C(3?)=3?LC\T*Çl
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and the natural projection of C(3f)\0 over Q is a closed set called set of the

nonelliptic points.

We now take (p, ¿¡) £ C(3f), Ç ± 0. If v , w £ 3¡, we choose local sections
L and M of 3? defined in a neigbourhood of p so that L(p) = v , M(p) = w ,

and we put

e(p^(v,w) = y([L,M})(p).

This definition is independent of L and M. We define the Leviform of 3?

at (p,Ç) by
V ^®(P,()iv> V)> V£3p.

8(p ¿) is a hermitian form and therefore it has a diagonal real representation.

Definition 2.2. 3* is locally integrable if, given p £ Si, there exists a neigbour-

hood U of p and C°° functions zk : U —► C, k = 1, ... , m , such that their
differentials generate 3f-L over U.

Definition 2.3. Let JÍ be a formally integrable structure of dimension n over a

manifold Q of dimension n+l. JÍ is called a Mizohata structure if C(^#) ^ 0

and the Levi form associated to Jf is nondegenerated at every point of C(J?).

It is clear that Definition 2.2 is more restrictive than Definition 2.1. We will

prove the equivalence of both definitions for a class of Mizohata structures.

More precisely

Theorem 2.1. Let Jf be a Mizohata structure over a manifold Si of dimension

« + 1, n > 2. If J^ is a strongly pseudoconvex structure, that is, if all the

eigenvalues of the Levi form associated to JÍ are positive (or negative), then Jf

is locally integrable.

First, we need the following lemma.

Lemma 2.1 [17]. Let ^ be a Mizohata structure of dimension n over a man-

ifold Q. There are a system of coordinates defined in a neigbourhood U of an

arbitrary nonelliptic point p e SI, a nondegenerated quadratic form Q in R"

and functions p¡, j = 1, ... , n , defined in U, such that

(i) pj is flat at t = 0, j = 1, ... , n.
(ii) Jt is generated over U by

d       .dQ d d
MJ = Wj-ldl]dx- + Pjdx-'        ' = !.-.»•

Moreover, Jf is locally integrable in a neighbourhood of p if and only if

there are coordinates (x, ti, ... , t„) and a quadratic form Q as above such

that pj = 0, j — 1, ... , n.

When Ji is strongly pseudoconvex, we can take

Q(tl,...,tn) = ^(t2i+--- + t2n)

and so we can assume that p = 0 is a nonelliptic point of ^#, SI = R"+1 and

J( is (globally) generated by the vector fields

(2.1) Mj = £--itj± + pj^,       j = l,...,n,

where pj axe flat at t = 0.
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Now, we use polar coordinates for t £ R" :

-.«-i
r = yjt2 + • ■ • + t2,        B£S"

We fix a local chart (di, ... , 6n-i) of Sn~x . Then Jt is generated by

Mi = — - ir— + pi — ,
n ~s dr        dx dx

where p¡ are flat at r = 0.

We now take

r2
(2.3) ^"T'    # = ^   and   x = x.

When r > 0, (2.3) defines a change of coordinates and we can write (2.2) as

(24)       «f—^(é + 'É)**^^-^-

When r = 0, (2.3) is not a change of coordinates, so (2.2) and (2.4) do not

have the same solutions because

r2
r^s = —

becomes singular at r = 0, but we will see that a solution of (2.4) will yield a

solution of (2.2).
Now, since

pi(x, V2s, 0) - ,       PT   a\
i-i-=-       and        pj(x,V2s,d)

V2s

axe also flat at t = 0, we can extend them to be zero when s < 0 and therefore

we can study the structure generated by

d        d
Li = — + <Xi — ,

where z = x + is and ct7 , j = I, ... , n, axe C°° functions vanishing for

5 = Im(z) < 0.

The structure 3? generated by (2.5) is an elliptic structure over C x S"~x ;

therefore it is locally integrable [15], but this depends on a localization in 0 £

S"~x which is not enough to cover a full neighbourhood of the origin in the

original coordinates.

An invariant way of treating this problem is the following: we fix a canonical

chart z of C and we consider a compact manifold S instead of S"~x . We

also consider the structure

(2.6) si = (dz)L
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defined over Cx5. We want to study the perturbated structure 3? given by

(2.7) 3f = {w)±,    w = dz-oidz--o,

where o is a smooth 1-form in S which depends on z as a parameter, ai

is a C°° function defined in C x S and both are flat at Im(z) = 0. When

S = Sn~x, we get a structure as in (2.5).

We now consider the complex associated to 3? :

C°°(CxS)-^C°°(CxS,Ax3?*(CxS))
(2.8)

-^+C°°(C x 5, A2^*(C x S))-^

(2.9) ti^(CxS)=   /f*S\ ,        k=l, A,

where f is the ideal generated by the sections of 3,L in Ylk=o A (CxS) and

6k is the operator induced by the exterior derivative in the space (2.9).

Using the decomposition

(2.10) CT*(CxS) = (w)®(d-z)®CT*S ,

we can write

(2.11) v_(|£+Big£)Ä+(fa,+ «£.

where úfc is the exterior derivative of 5.
Indeed,

^    *-(fÉ+*f0A+(*'+4í)+-§í
So, the equations

(2.13) Ljf = 0,       j=l,...,n,

where Lj axe given by (2.5), can be invariantly defined by

(2.14) áo/ = 0,

taking S = Sn~x.

3.  A HOMOTOPY FORMULA FOR  SHÍ = (dz)L

Let S be a simply connected compact orientable manifold of dimension

n — 1 > 2. We fix a Riemannian metric in 5.

We consider in CxS the globally integrable structure sf given by (2.6).

We will construct a homotopy formula for the complex associated to $/ :

(3.1)

C°°(C x S)^C°° [cxS,/\V*(CxS)]lr (cxS,/\2sf(CxS)\

at the first stage.
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More precisely, we will construct operators Â^i and K2 such that

(3.2) K2ôfF + Ô^KiF = F   in Ax S

for all F £ C°°(C x S, f\l stf*(C x S)), where A is the unit ball of C.
According to the Hodge theorem, it is possible to find operators Kf and K%

such that

(3.3) dsKf + K^ds = I

because S is simply connected. Here ds is the exterior derivative in S,

(3.4) K dsGi       and      K$ = dsG2

where (7, is the Green operator for the Laplacean in S, i = 1, 2.

If F £ C°°(C x S, \Jjsf*(C x S)) then F has the following unique decom-
position:

(3.5) F = w + </>Nd~z,

w£C°°(C,Cco(S,f\JS)) and <f> £ C°°(C; C°°(S, AJ~' S)).
So,

(3.6) ôf F = âf (w + 4> A dz-) = dsw + (-ly^zz Adz + ds<f> A dz .
1 J oz

Now, we define

(3.7) Tf(z) = ±-((     M-dxKdx,
2nl J   J\x\<\ ?~z

We know that

(3.8) i(Tf)(z) = f(z),

z £ A.

— (Tf)(z) = f(z),

KiF = Kf(co-dsT<p) + Tcf>

Then we define

(3.9) ÄM   -.v,

for F = co + 4>d.-z£ C°°(CxS; f\{ stf*(C x S)), and

(3.10) K2F = Kfcpd^ + K^co

for F = co + <f>Adz£C°°(CxS, /\2 ss?*(C x S)).
Since Kf comutes with the Laplacean of S, it also comutes with ds and

with ö/öz. By (3.6), (3.9), (3.3), and (3.8),

SfiKxF) = dsKiF + ^(KiF)dJ
oz

= dsKf(co-dsTct>) + dsT<t>

+

(3.11)

K$dW 0_

'dz'
Kfdsi=(Tct>) + i=(T<t>)

d_

dz-'
dl

co-dsT(p- K^ds(co - dsT<j))

,s idb)
+ dsT4> + Kf [■&-*« dz

= co- K^dsco - A-f
0co\

of1
in Ax S, because ds  —0. So, (3.2) is proved.
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On the other hand, we can put (3.9) in the following form

(3.12) KiF = Kfco+-^-- ÍTcpdcr
°w,) Js

for F = co + (j>dz £ C°°(C x S, /\xsf*(C x S)),   where do is the volume

element in S.   Indeed, we consider v = ds*Gi(co),   co = dsf.  Then (3.3)

implies co = dsdgGico and ds(v - /) = 0.
Hence from (3.4),

(3.13) Kfdsf-f = dsGidsf-f = c,

c constant. But

(3.14) / vdo = (v, 1)L2(S) = (ds*Gico, l)L2{S) = 0
Js

then (3.12) follows from (3.9).

4.  HOLDER REGULARITY OF THE HOMOTOPY OPERATORS

Let K be a compact convex subset of R'. We define

iAt\ ii \u(x)-u(y)\(4-l) 14»=   sup      \ '      I
x,ytK    \x-y\a

for u £ C°(K) and 0 < a < 1.

If « G Ck(K) and k < a < k + 1, k positive integer, we put

(4.2) |M|a = £ \d^u\a_k

\ß\=k

and

(4.3) ||w||a = |"|a + |w|o,       |w|o = SUp|«|.
K

We can define Ca(Si) when Q is a compact manifold using coordinates

and a partition of unity as usual. We can also define the spaces Ca(Sl; E) of

sections of a bundle E over Si. Given Si c C x S possibly noncompact, we

want to define the space Ca(Sl, A/ F*(C x S)). For this, we fix a chart z of

C and using it we can define a norm which we denote by

(4-4) ||  ||v

If we fix a chart z of C, the norms coming from different coverings and

partitions of unity on S axe equivalent.

We want to study the Holder regularity of the homotopy operators Ki and

K2 constructed before. For this, we fix a chart z of C and we take

(4.4) F = û) + ^z€C°[cx5,/\V,(Cx5)]

then F belongs to Ca if and only if co and <j> belong to Ca.

Now, we claim that there exists a constant C = C(a) > 0 such that

(4.5) \\KiF\\r<C\\F\\r
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for every F £ Ca(CxS, /\sf*(CxS)), m <a< m+l, m integer positive ( A

is the unit ball of C). Indeed, we fix a covering {Uj, 6j} of S by coordinate

neighbourhoods and a subordinate partition of unity {Xj} • Then

(4.6) \\KiF\\a,: <\\Kfco\\a,:+^^    [ Ttpdo
Js

and so

(4.7)

because

o(S)

\\KiF\\r<\\Kfco\\r+C\\cj>\\r
AxS AxS AxS

1

7rr

C«(A)

maps CQ(A) into C1+a(A) [2] and the regularity in the variables of S remains

the same.
From now on, the letter C will be used to denote several universal constants.

||Aftu||a., =sup|tffcu(z,0)|
AxS

(4.8)

Since

(4.9)

and

(4.10)

+E E suç
\dld¡XjKf<t>(z, ej)-d!d¡XjKf<t>(z', e;.)

/   \ß\+\y\=m
AxS |z-z'| + |07-0;.|)°-

\dlxj(Kfdlco)(z, dj)-d¡Xj(Kfd?Q))(z, 0;.)|
\6j - 6'jrm

<C\\Kfd!co(z,.)\\CM+a-m{S)

d7eXjK

<C

s(d¡to(z,6'j)-d!co(z',Q'j)

Z - Z'

K
s(dzßco(z,.)-d2ßco(z',.)

_ 7i\a—m

CM(S)

using the fact that Kf is a continuous linear operator from C(S) into

C+l(S), n > 0, n & N, we get (4.5). A proof of this continuity can be

found in [2].
Similarly, we can find another C = C(a) > 0 such that

(4.11) \\K2F\\*,: < C||F||„,.- ,        F£Ca (cxS, A V*(C x S) J .
AxS AxS V /

We must note that Ki and K2 do not gain a derivative as in the Newlander-

Nirenberg Theorem but we do not need to shrink the domain AxS to get the

estimates (4.5) and (4.11).
Now, we know that there is a continuous linear extension operator [14]:

(4.12)

Then we take

(4.13)

e : CQ(A x S) -» Ca(C x S)

Ki = n-(eioKi),     K2 = rj-(E2oK2),
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where n is a smooth function supported in A2, the ball of radius 2 at the origin

of C and e, is an extention operator acting in Ca(A x S, /\'sf*(C x S)), i =

1,2, as in (4.12).

So, for F e C°°(C x S, A' ^*(C x S)) ,we still have

(4.14) off KiF + K2Sf F = F   in Ax S.

Now supp Ä^F, supp K2F c A2 x S, and the inequalities (4.5) and (4.11)

are also valid for Ki and K2 , respectively.

5. Smoothing operators

Let K be a compact subset of C. We consider a covering {Uj, Oj] of S

by coordinate neighbourhoods such that dj(Uj) is contained in the ball Bi

of radius 1 and center 0 in R"_1. We can also fix a partition of unity {<f>j}

subordinate to this covering and denote by z the canonical coordinate of C.

Given / £ C°(C x S) with supp/ c KxS, f=Ejfj, fj = <t>jf- Let Fj
be the expression of f using (z, 0;) as coordinate.

Let x be a function of <5*(R"+1) such that % e C^°(Rn+l) (Fourier trans-

form in R"+1) and X-l iR a neighbourhood of the origin.

We define

(5.1) SNFj = y(xN*Fj)

where xn(x) = N"+xx(Nx), A > 1, and ip £ CC0C(R"+1), ip = 1 in a neigh-
bourhood of K x Bi.

Putting SNfj = (SNFj) o(z,e¡), then

(5.2) W=E*W/
;'

is called the regularization of /.

The following estimates are known for / e Ca(CxS) with support in KxS :

(5.3) ll^/||,.I<C^-°||/|L.I a<ß,
CxS Cx-S

(5.4) ||(7 - SN)f\\,., < CA^||/|L.z ,        ß < a .
CxS CxS

6. Perturbations of globally integrable structures

Theorem 6.1. We consider the structure 3? given by (2.7) where a and ctj are

smooth in CxS. Let a £ R, 0 < a < 1. Then it is possible to find £n > 0 such

that, if

(6.1) ||ffi||.+a,, < s0      and      ||o-||1+0iI < e0
CxS CxS

then S7 is semiglobally integrable.

In others words, if (6.1) holds for en suficiently small, then given R > 0,

there is a function Z^ defined in ArxS, with nonvanishing differential, such
4

that

(6.2) ¿nZoo = 0   in Ar x S.
4

Here Afi is the ball of radius f and center 0 £ C and <50 is given by (2.8).
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Corollary 6.1. We consider the structure 3^ given by (2.7). Let a £ R, 0 < a <

1. Then it is possible to find e0 > 0 such that, if (6.1) holds, then 3^ is globally
integrable.

Theorem 2.1 will also be a corollary of Theorem 6.1.

Proof of the Theorem 6.1. First we take R = 1. Using the Nash-Moser pro-

cedure, we will construct a sequence {zv} of C°° functions defined in CxS

such that z„ -» z^ when v —> oo in C1+a(Ai x S), 0 < a < 1 , and

(6.3) 3f = (dz00)±   inAixS.
4

We consider the complex (2.8) associated to 3?. According to the decom-

position (2.10), we can write

(6.4) Sof=(Lifdz,Laf)

where

(6.5) Lif=% + oM   and   Laf = dsf'+d-J-a
oz        oz oz

Here oï is a C°° function defined in C x 5, La(f) is a smooth 1-form in

S and we regard z as a parameter. Using coordinates (z, 0,, 02, ... , 0„_i)

and o = Yl"j=2 o~¡dQj-i , (6.5) assumes the form

(6.6) Ljf = 0

where L¡ are given by (2.5).
If C is another global coordinate of C, the new expression of S0 in the

decomposition (2.8) is

(6.7)

ôof= (f,(C)|| + Fi(C)^,

,    ir.df     ,    /T,df     .    , fdfdC    dfdlW
dsAQ^ + dsAQ^ + ds,a + ̂ [^ + fc/z)J

where ds, z is the exterior derivative in S, and z is considered as a parameter.

We would like to see the complex (2.8) as a perturbation of a complex asso-

ciated to a globally integrable structure. For this, we change the generators of

3? and define the operator adapted to ( , by setting

(6.8) o¡f=(Li(l)-xLif,  Laf-Li(l)-xLi(f)La(l)).

The reason for this is the following:

First step (definition of z„ ). According to Webster [20] and Trêves [17], we

will define a sequence of C°° functions

(6.9) z„:CxS^C,        v = l,2,...,

and a sequence of real numbers

(6.10) - < r„+, < r„
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such that Zo = z (the canonical chart of C), r0 = 1 and the following inductive

hypotheses will hold:

(Hi)v : (z, 0) —► (zv , 0) is a diffeomorphism from C onto C,

iH2)v: F,(z„)^0   in CxS,

(Hi),: SicSi„-i,    where Si„ = {(z, d) £Cx S :\zv(z, 0)| <r„}.

Then, taking £ = zv in (6.8), and using a system of coordinates (6i, 62, ... ,

0„_i) to S, we will get

(L\r
W)=fW) =

(6.11)
( §fv  \      (Li(zv)Li(zv)-x§¿

[L2(zv)-L2(-zv)Li(-zv)-xLi(zv)]^ÈL
+

\90„_, /

sfrf+Rvf.

\[Ln(zv)-Ln(-zv)Li(-zv)-xLi(zv)]§f)

where stfv is the structure given by

(6.12) K = (dz,)1.

We observe here two interesting phenomena: the approximating structure

sév has always the same aspect and the rest Rv contains terms which permit a

quadratic estimate.

We now consider the complex associated to sfv :

,..*„ sf
(6.13) C00(CxS)^^C00ÍCxS,/\ x?;\^c°°\c xS,/\ j¡c

where
A*        Ak(CxS)

A     "  -     (dzv)    ■

Using the technique introduced by Kuranishi [8] and Webster [20], we define

(6.14) Zj/+i = zv + cov ,    co„ = -SNi/+1K\ÔqZ„ ,

(6.15) r„+i = rv - 2W ',,    Nv+{= NJ .

Here <5q = a^" is the operator adapted to the chart z„ (see (6.8)).

S/v„+, is the smoothing operator defined in CxS using the chart z„ , a

covering and a partition of unity of S which we fix from now on, and Ao is a

real number which we will fix in the future. Using (6.15) we can obtain A0 > 1

such that

(6.16) E*7
7=0

<
1
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K\ is the operator obtained from

(6.17)

K\(F) = Kfco + -^-)JTrJdcj,    F = co + 4>d^ £ C°° (c x S, [\ <) ,

where

(6.18)

r'Xz) = ¿7 / /       T^r^ A ̂  »        z 6 Af„ = {z e C : |z| < r„),

and

(6.19) K%(F) = Kf<j>dz-V + K$œ,    F = co + <pdz„ e C°° (c x S, f\ sztv* J ,

putting

(6.20) K\ = xDrMD±Kvx ,    K\ = XDr„e2D±K<(
rv ru

where x £ Q°°(C), X = I in a neighbourhood of Ai  and # = 0 out of A2,

(6.21) Drf = f(rz),        zeC,

and e, is the extension operator described in (4.13).

We now use the following notation:

(6.22) ||F||.., = ||F||«,2„ = ||F'o^;-1||„,2 ,    X(z, 9) = (z„(z, 6), d).
si„ n„ Är„ x s

It follows from (4.5), (4.11), (4.12) and (4.13) that

(6.23) IMWI&S < C-ll^ll-.-.        F £Ca(cxS, /\lK*) .

(6.24) 11*2*11- < C ■ ||F||„n.;,        FeC"(cxS, f\ s/*} .

It is clear that that homotopy formula

(6.25) ôfk\ + Kv2ôf = I

is still valid in Ar„xS,
The definition of zv+i does not depend on systems of coordinates of S. So,

to prove the convergence of zv in the space Ca(C x S) we can use coordinates

but this does not mean a localization in the variables of S.

We take a chart (6\, 62, ... , 0„_i) from the covering of S fixed before.

Using (z, 0i, ... , 0„.-i) as coordinates, the equation (2.14) can be written

in the following form:

(6.26) %       "
L^=ä6-7 + ̂  = °-     I-*.-.»-

and the operator adapted to the chart zv has the form (6.11).

Putting

(6.27) 8\f = (Ljfi - L1fj)\<t<j<n .        feC°°(cxS,f\ K*) >
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and using the fact that [L¡, Lf\ = 0, we get

(6.28) &\ • ¿£ = 0.

Returning to (6.14), we want to prove that {z„} is a Cauchy sequence in

C1+a(Ai x S), 0 < a < 1 ; for this we must estimate

||Z1/+1   — Zi/||l+a,i/  =   ||Wtl||l+Q,„   =   ||  — O/y     , Xj Oq Z^Ui+o.i,
CxS CxS CxS

(6.29) < CNu+l\\k^zv\\a.„ < CNv+x\\K\ô%zv\\..,
CxS Sly

<CA,+1||^z„||0.,.
Slit

We are using (6.14), (5.3) and (6.23).

Second step (estimate for S^zv+i ). Using (6.14), (6.25) and (6.11), we can write

övoZv+i = 6voZv + SvoWv = (ôfK\ + K»2ôf)(ovoZv) + {of + R„)(wv)

= 6fK\ôvoZv + Kv2ôfôv0zv - (S* + R„)(SN^K\ôvoZv)

in Siv .

Now from (5.4) and (6.23), we conclude

(6.31)
WSf'il-S^KWzvWy < CN^\\k\övQzv\\M^v < CN^\\ô^zv\Ur

where X is a parameter to be determined.

Using (6.11), (5.3) and (6.23), we get

(6.32)
\\RvSK+xK\àlzv\\^ < CHv+x\\U(Jv)-%..{\ + ||4^||-)||4^|U|^

il|< Sly Sil/ "f

We can use (6.28) and (6.24) to estimate

(6.33)
WkzsfsszvW.,. = \\kz(sf-s¡)s$zv\\*,, < c\\(sf-s^)s^zv\\...

Sly Sli/ **v

< C\\Li(zv)-x\\a,v(l + \\ôoz-v\\a,v)\\ôozv\\a,„\\d'oZv\\Ua,v.

In this estimate we lost one derivative, but putting

(6.34) ^z„ = SNv+iStzv + (I- SK+i Wo zv ,

from (5.3) and (5.4),

(6.35) II^A^IU.* < CNv+i\\ôv0zv\\a.„,

(6.36) \\(I-SNvJôv0zv\Ua, < CN-^zv\\M+a,v.
Siu Sly

Collecting (6.31), (6.32), and (6.33), we can finally write

(6.37)
H^+ilk.- <CNv+i\\Li(-zu)-x\\aJl + ||áoz,|LOII*^lk.'ll^^lk.'

"(/ Sly Sly Sly Sly

+ CA;+A1||L1(zi,)-1||„,,(l + ||r5oz,||a,,)||<5ozy||Q,,||^zi,||1+x+„,1/

+ C A(/+|||oq Zy||,+^+Q „ .

Third step (preparatory lemmas).
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Lemma 6.1. Let Z: C x S -» C x S, Z(p, 0) = (z(p, 0), 0)  be a global
diffeomorphism.  Using the fixed covering in S, we can define ||    ||,+„,.,    0<

CxS

a < 1. Let (6i, 92, ... , 0„_i) ¿>e a c/ztfri of this covering and let co: C -> C a

C°° function such that
1

||<y||1+Q,z < -.

CxS Z

Then
(a) Z' : CxS ^ CxS , ^'(z, 0) = (z'(z, 0), 0) = (z + co(z, 0),0) «a/50

a global diffeomorphism and so (z' ,QX, ... ,Bn-i) is a system of coordinates

on CxS.
(b) The Holder norms in Cl+a(C x S) (or in Ca(C x S)) using (z, Ö,, ... ,

0„_i) or (z', 61, ... , 0„_i) as coordinates, are equivalent.

Proof, (a) By hypothesis

1

2

where / is the identity matrix and DZ' is the Jacobian matrix of Z' in the

coordinates (z, 0i, ... , 0„_i).  Then DZ' is nonsingular in C x S and if

Z'(z, 9) =Z'(z, 9), we get

(6.40) |z - z\ = \w(z, 9) -w(z, 0)| < ||tü|| ,,z|z - z| < -\z - z\ .
CxS 2

(b) Let f belongs to C1+a(C x S) and denote by F the expression of / in

the coordinates (z', 0i, ... , 0„_i). Then

||/IU.. = ||FoJ2"||u..,
CxS CxS

< C(||F||0 + ||F||c,+„(Cx5)||F>jr||0+* + ||F||cl(CxS)||D5"||c«(cxS))

< C||F||cl+a(cxS) = C||/||1+„,z,
CxS

because \\DZ'\\Ca{cxS) < \ (see (6.39)).

For the opposite inequality, we observe that Z'~l is of the same kind as

Z', that is

(6.42) (ZTx(p,9) = ((z')-x(p,9),9),

where

(6.43) (z')-'(z, 0) = z' - co((Z')-x(z',9)) = z'- co'(z', 9).

Since ||Z)(^'')'-1||ca(Cx5) < 2 ,   we get similarly the other inequality.

Remark 6.1. Using the fact that

(6.44)
KH,+„,Z, = caMk^HFK^")-1!^ + IMI,., \\D(Z')-x\\c»{CxS) + \\w\\0)

CxS CxS

<C|M
CxS

) 1+a,z
CxS

we get for a compact subset K of C, a constant C(K) such that

(6.45) \\Z'\\CHK><S) < C(\\z\\,., + IKH ,., + 1) < C(K),
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(6.46) \\(Z')-x\\0{KxS) < C(||z'||,,z, + |K||,,Z, + 1) < C(K)
KxS KxS

Lemma 6.2 (Moser) [9]. Let pa be a sequence of positive real numbers such that :

(6.47) po < -¿-

and

(6.48) pa < C#(N2sp¡_ i+Na-ANÏ+_\),        o=l,...,v,

where Nv = NJ_l, A0 > 1, p, X, s and / are parameters determined in the

following way:  s and t are positive known numbers; we first choose p > 4s

and then X > 0 such that t + \p — \ < —\ .

Then, if ¿Vf1 < ^¿p , we get

N~ß
(6.49) Po<^

Proof. See Kuranishi [8].

Fourth step (induction). We now add to the hypotheses  (H\)v,  (H2)v  and

(Ht,)v the following inductive hypotheses:

(H4)v W0-Xzv\\a,^ < QlNvWô^z^iWl^ + N-'NÏtl],
°r-í CK-2

iHs)v \\Ô0Zv\\e,v < C5,
Sly

iH6)„ ||I.1(zI/)-,||„fl;<C6,

(Hn)v IN„_i||1+„,„_, < A"1    and   ||u;„-i||,+„,o < A"1,
CxS CxS

(H%)v \\zv\\i+a+J.o<NÍ, j = 0,l,...,X+l .

where C4 , C5 and C(, do not depend oni/; Ao > 1 will be chosen a posteriori.

If Ao is sufficiently large, then J2T=o ̂ "  ' can De made arbitrarily small.

When v = 1, we put ôn~x = öS, Si-i — Sl0 and'0   - uo

(H4)i ll^iIU < Q[A1||f500z0|L2,0 + N-*N*+X] .

We begin by setting

(6.50) z0 = z,    Q0 = AxS,

First we prove that the validity of the hypotheses for step v implies the same

hypotheses in the step v + 1, choosing A0 large and sq small. Finally we will

prove the hypotheses when v = 1.

By (6.14),

(6.51) zv = zo + ^coj.
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Using (H7)v ,

(6.52)

u-l

r-1EikHh-o^E^/
1=0 j=0

This last sum can be made < \ if we take Ao sufficiently large (see (6.16)).

Lemma 1 implies that the norms || || „., , j = 0, ... , v , are equivalent. We can
CxS

now prove (Hj)u+i . It follows from (6.29) that

(6.53) IKl|1+a.,<c¿vI/+1||íífyzI,|L
o*

but according to (6.11) and (2.5),

'L\f\

(6.54)

where

(6.55)

%f =
Mi

Lif>
:     ) = MvSof

Unf,

Mv =

f       Lifzv)-X_   _     0
-L2(zv)L\(zv)-x    I ^

I\-Ln(zv)Li(zv)-x    0    ■

(the matrix Mv is well defined due to (H2)v). So,

(6.56) 81 = mvm;1,81-x.

The elements of the matrix Mv (and M~ ' ) can be estimated by C5 or Ce

(due to (H5)v and (//6)„ )and using (H$)v , we can write

(6.57)

|«>„||l+0., <C(5,6)¿V„+1||^-,zv||„..
Si„

<C(5,6)AI/+1||^-1z1/||„.l

Here C(5, 6) is a constant involving only C¡, C(, and universal constants.

We now use (H4)v and the Lemma 6.2 with

(6.58) Pv = \\Ôq   lZt;|kv-i.

1
(6.59)

We take A0 large such that

(6.60)

On the other hand,

s = -,    p = 2,     t = I    and   X= 14.

¿Vf1 <

(6.61) PO = ll¿ozolko =

(2C4)2 •

'O",

,<7„

<
2CA

s¡n

if Co is sufficiently small (this can be achieved due to (6.1)).
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Lemma 6.2 implies

A"2
(6.62) pv < -0

Hence, using the equivalent norms || \\¡+aj, j = 0, I, ... , u, we get
CxS

(6.63) ||a>„|U„ < ^-^A"1,

and

(6.64) IKI l+a.O
<£^lN-x

G v+\

We take C4 > 1 sufficiently large such that C(5, 6)/C4 < 1 (for, C4 de-
pends on C$ and C(, and it may be necessary to increase Ao and, hence,

decrease eo ). Therefore (H-j)v+i holds.

Once more, by using Lemma 1, we can claim that all the norms || ||,+„,,• , j =
CxS

0, 1, ... , v + 1 are equivalent and that (z, 6) *-+ (z„+1 ,0) is a global diffeo-

morphism (due to (6.16) and Lemma 6.1).
So (Hi)v+i is true. We will now prove (H-¡)v+i . From (Hj)v+i it follows

that

(6.65) sup |z„+1 - z„| < A"1,
CxS

hence

(6.66) \zv\<\zv+x\ + N~lx.

Since rv+i = r„ - 2Af+11   and r0 - 1, if \zv+\\ < rv+\ , we have  \z„\ <

rv - N~ly < rv . This implies (#3)^+1 .
Futhermore,

(6.67) r = infr„< l-2^Af+l1

v=0

if we want r > \ (see (6.10)), we must require

(6-68) E^"+'. <4
i/=0

but this follows from (6.16).
Now we will prove (/F4)„+i.

First, we must note that ||o,y||i+;+„ 0 are bounded for j = 1, ... , n   (Oj axe
«0

smooth in CxS).
So, from (6.14), (6.4) and (6.5),

(6.69) ||áo^||.-<||áoZolk- + cy;iK-||1+....

hence ||¿oz'i/||'* .» is bounded independently of v .
Sly
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Using now (6.37), (H5)„ and (H(,)v ,

(6.70) H^^+ill- < C(5, 6)(A1/+1||^z¡/||2,„ +Af/jl^z.H,^,,,)
Qy Sly Sly

On the other hand, fi„ c fl„_i and due to (6.56),

(6.71) H^+ilk* < C(5, 6)(At,+1||^-1z,||2,l/_l + ¿V-^H^z.,11,^.,,) .

Then, to prove (H4)v+\ it is sufficient to show that

(6.72) ||¿o^lU+^<C(5,6)A¿+1 .

Now (6.11) implies that 6qZv = Rvzv and also gives the expression of Rv

in the (zo, 0i, ... , 0„-i) coordinates. It is convenient to change Rvzv to new

coordinates. We then consider

(6.73) Zv:CxS-*CxS,    (z, 9).- (zv(z, 9), 9).

Then

VpO ZvW+a+\,v  S:  C (||ivvZv|||+<I+i,o||-2j/       11C (A     xS)

(6.74) "" "°       ,_      „'.,«._,
+  /?!/Z„ 1,0 L2j,     ri+t,+^   +\Rvzv\o).

We noted in (6.45) and (6.46) that ||X||c'(Af„xS) and \\Z-x\\a(KxS) are

bounded. Then we can use the following lemma:

Lemma 6.3 [6]. If Bi and B2 are two compact convex subsets of R' ; g: B{ ->

B2, f:B2^ R< satisfy

f(g(x)) = x,        X£Bi,

and \\f\\a and Háfllc are bounded then \\g\\a<C\\f\\a, a > 1. So,

(6-75) \\ZV   Hci+^-ha^xS) S C\\Zv\\ci+a+x^xS) .

and since Zv(z, 9) = (zv(z, 9), 9),

(6.76) H^z^l ,+„+,,„ < C(||^zy||,+„+A,o + ||^i/ZI/||,,o||zI/||1+(>+ii0).

We now proceed to estimate Rvzv . The first line of Rvzv can be estimated

by

||L1(z(/)"1L1(zv)||1+„+,,o<||Fi(zt/)-1||1+Q+,,0||Li(zI/)||o

(6.77) "°
+ l|F,(z(/)-1||o||F1(zI/)||1+(>+,,0.

We claim that

(6.78) HZ^zVr'lU^.o < C(5, 6)1^,(^)11,^,0 .

This follows by induction over X. First we note that

V—1 V—1 .

(6.79) \Lx(zv)\ > |L,(z0)| - £ lLi^l ^ l -C£\\cOj\\i+„,o > =
CxS 2

;=0 j=0

if Aq is sufficiently large.
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So,

(6.80)

\\Li(zv)-x\\a,0
"o

IL,ÍZ  r'lln-f SUD l¿1(?»r'U.0)-¿.(^)-'(z',g')
\^i\zv)    110+        »up \(z,e)-(z',e')\"

(z,0),(z',ö)e£io *

= 2 +
U.e),^)^1^^^'9'11^^''0''1

|z.i(z„)(z,e)-L|(z„)(z',e'
|(z,0)-(z\0'

<2 + 4||L1(zu)||(1,0<C||L1(zî))||a,„.
«o "o

To simplify matters, we omit in (6.80) the partition of unity fixed in S. We

will make this omission from now on.

Similarly, we can show that

(6.81) |L,(z„)--''||0.o<Q||L1(zI,V|
«0

.7 = 1,2,...,

and using (H5)v

(6.82)

A straightforward calculation yields

||I,i(rI,)--''||<..o<C/(5,6)||L1(z1/)||0.o,
n0 «0

y =i,2,

\\LiÇz;x)\\Ua,0<C
"o

1

(6.83)

Li(z)2

+

ol|£i(*0ll..o

1

Lx(zv)2

<C(5,6)||F1(z!/)||1+£I.0

\L\izv)\V+a.o + \L\(zv)   '|o
«o

This prove (6.78) for X = 0. The general case follows by induction using

the fact that the rcth-derivative of Ii(z„)"' is equal to a finite number of

derivatives of order < k of the function z >-> ̂  evaluated at Li(zv) with

derivatives of Li(zv) of orders ki,k2, ... , with k\+k2-\— < k which can

be estimated using (6.81).
Returning to (6.77) and using (6.78),

(6.84)

\Li(z„)   lLi(zv)\\l+a+i,0
«0

<C(5,6)(||L1(zi/)-1||l+„+,,0 + ||L1(zy)||1+a+i.0)
«0 «0

<C(5,6)||z„||2+(l+,,o

Analogously, we can estimate all the others terms of Rv z„ . Going back to

(6.76),

(6.85) ||(5oZi/||i+«+-i., < G(5, 6)(||zI/||2+(1+i.0-i-||zi/||2,0||zi l/\\i+i,+i.O )■

Hence (H%)v implies

(6.86) ll^z^ll,^.» < C(5, 6)(A¿+1 + N„N¿).

So, (6.71) yields

12,-

-X   »r^+1-(6.87) ||^z„ + 111«... < C(5, 6)(AI/+1||^-1z,||2.^, + N~^Nf
"» n„-i
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To get (/74)„ , we choose C4 larger than this last constant C(5,6) (A0_1 and

£o can be shrunk).

We will now prove (Hg)v+\ .

Let j £Z, 0<j<X+ 1.
Due to (H&)v,

(6.88) ||z„+1||„+i+;,o < A/-r-||tf„|U,+,,o.

Changing coordinates

(6.89) |K||i+«+,.o< C(||^||1+Q+J,,||X|lclfA+;'xc) + ll^l|i.,||^llc'+^ +IKIIo)
£2o CxS C   \a'v*-*> CxS L(A,„xS)

where Zv is given by (6.73). Hence

IKIU+,,0 < C(|K||,+„+,,„(i + ||z„||1.o)1+0+-'

(6.90) °°
+ iiiw„iii.„(i + iiz^i|l+„+J,o) + Huello).

CxS !i0

By using (H%)v once more, we obtain

(6.91) IKH.+„+;.o < C(|K||1+,,+;., + NÍ)
ílo CxS

because ||Zi/||i.o and ||uv||i,„  are bounded.

But now, (5J), (6.54), (6*56), (6.23), (H5)v and {H6)v yield

IKIU+,,, = \\SN^K^zv\\„+l+/.u < CN/X\W0zv\\^
fyC CxS "1/

(ft Q?^

<C(5,6)N/++\\\ô^xzv\l^l.
ßti_ 1

Hence from (6.58) and (6.62),

A"2
(6.93) |K|U,+,.„<C(5,6)A£{^±I

cxs ZC4

and from (6.88), (6.15), C4 > 1 ,

||^+,||l+,,+,.„<C(5,6)(A/;i1+A/)

(6'94) „«     ,,/V, (   N»    \P
= C(5,6) k-+'1 + (£-)     A/+1<A/

since Ao is sufficiently large.

We now prove (H5)„+i . It follows from (6.14) that

(6.95)       ||dbz„+i||.,MI<C||do^+il|..o<C|||^olLo + ¿||ti;;||,4,.o
«,+i "o      y       "0   ~~0      c*s

Since

¿o^o
W
W
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and ELolK'lkco < T,%oNJ < ï (see (6-4), (6.5) and (6.16)), it is sufficient
1 CxS J

to take C5 > \C, where C is the constant in the right hand of (6.95).
Since Li(z"o) = 1, if Ao is sufficiently large, we get

|1 -Liz„+1| = \Li(z0) - Li(zv+i)\ < l^oizo-z^+i)!

(6'96) <C±\\Wj\\l+a,0<cf:N-x<1-.
'—* CxS '-~'     ' L
7=0 j=o

then Li(zv+l) j¿ 0 in CxS. Hence (H2)v+\ is valid.

Similarly

(6.97) 1 - ¿Z-
1    •   ^     o< -   in C x S .

It remains to prove (H6)v+X

Since

|Li(z0+i)| > |Li(z0)|- Y,LxWi
7=0

>

then

(6.98) HLiO^+i)-1!!..^. < 2 + 4||L1(zI/+i)||i,,+, < 2 + 4C5 < C6

if Co is sufficiently large.
We need to prove the hypotheses when v = 1.

From (6.29), we have

(Ä7)i : INol|i+,,o<CA1||r50°Zo||,1,0
CxS CxS

and using (6.1),

(6.99)

since eo < Af 2/C.

\\w0\l+a,a<CNieo<N-x
CxS

Lemma 1 implies (//i)i  because Af ' < \ .  It is also clear that Slx c Sl0na   i   Huyuya   ymji    uttdusc   iv

because

(6.100) |z0| <|z,| + |u;o| < 1-Af1 < 1.

Now, (Ha) i can be expressed by

(6.101) Ifelko < C4[A1||r500z0||2.0 +AfX"+']-
"o "o

To prove this we use (6.37)

(6.102) ll^ilko < CTV.HáoZoIkoll^oIko + CVll^zoll^.o.

We need show that

(6.103) ll^zolU+,.0 < A0A+1

but this is obvious because ¿ozo is bounded in Cx+n+À(Slo) and Ao can be

taken large.
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Now \Li(-zi)-Li(z0)\ < C||W0||1+„„<CAf1 < A then L^zO^O in CxS
_ CxS Z

since Li(zo) = 1. So (H2)v holds.

It follows from (6.14) that

(6.104) ll^ilL, < C(||ti;o||1+O,o + Háozolko) < C5
n, n0 n0

where C5 is chosen after (6.95). Since |Fi(z)l > IL^Zo)] - |FiWo| > 3,  we
get

(6.105) HL^zO-'lk, < 2 + 4||Z,1(z1)||a,1 < 2 + 4C5 < C6
«1 «1

where C(, is chosen in (6.98).

Hence (7/5)1 and (Hf^i hold.
(H%)i is a consequence of

(6.106) INI|,+,+,.o<CA/+l||¿00zo|k„
Civ í¡0

(see (6.29), the proof is similar), shrinking £0 once again if necessary.

So, if Ao is sufficiently large and £0 is sufficiently small, the inductive hy-

potheses are true for v = 1,2, ... .

Finally we note that

(6.107) ALxScSl„,        v = l,2,....
4

Indeed, if |z0| < \, (6.65), (6.16) and (6.10) imply that

(6.108) |z„|< Izol + ^Af1 < \z0\ + - <-<infrp.
7=0

Now, (H7)u+i yields

(6.109) ||z„+i-z„||,+,..o< A7+1
CxS

since J2%t NT1 < \,  {zu} is a Cauchy sequence in the space C1+a(Ai x S)

and hence it converges to a function z^ of this space.

It follows from (Ha)v and (6.62) that

(6.110) ||áoz„|| „.0  < C\\ôoZv\\n^ < C(5,6)\\ôv0-lzv\\„.^ < $%ß- • N;2X
¿1 xs av-\ ß»-i ZL4

4

Since A„+i —► 00 when v —► 00 , we get

(6.111) á0(zoo) = 0   in A, x S.
4

It is clear that

(6.112) dz^ + fj    in A, xS
4

this is a consequence of (6.97).   So,  z^  is a solution of the system (2.5) in

Ai x S whose differential does not vanish in Ai x S. But (2.5) is an elliptic
4 4

system and therefore

(6.113) z^eC^A.xS)
4

(see [2]).
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This proves the semiglobal integrability of the structure 3? given by (2.7),

because we can proceed analogously from Ar x S, R > 0 and zo = z (the

canonical chart of C), to get a C°° solution zR œ of 3? with dzR «, jé 0 in
ArxS.

4

Proof of the Corollary 6.1. We must show that 3? given by (2.7) is globally
integrable. Let zR œ e C°°(Ar x S) the solution of

4

(6.114) ô0zR oo = 0   in A« x S
4

where So is the operator (2.8).

If a' < a, we know that the embedding Cx+"(Ar x S) <-* Cx+a'(A& x S) is

compact.

The functions zi œ , z2 ^ , ... belong to Cl+a(Ai x S) and from (6.109),
' ' 4

oo .

(6.115) iizk,«x,-zii»¿.i.<EiyrI<4-
;=0

So {zfc oo} is bounded in C1+a(Ax x S) and therefore it has a subsequence' 4

{zk ,00} converging to a function z* in C1+a(Ai x S).

The functions zkl œ, j = 1,2, ... , belong to C1+a(A2 x S) except for

a finite number of them. Hence {zk œ} has a new subsequence {zk i<x}

converging to z* in C1+a'(A2 x S). But then z* = z* in Ai x S.

By diagonalization we get a subsequence {zk} of {z^. 00} which converges

to a function z^ G C1+Q'(Aà x S), Vit 6 N. But
4

(6.116) ÔQZk=0   in Ai x S
4

and so

(6.117) ô0(z#oc) = 0   in CxS.

It follows that Zoo e C°°(C x S) because <50 is an elliptic operator. Futher-
more, since

(6.118) ||zfc-z||1+„.z<i fe = l,2,...,
cxs        4

we get

(6.119) ||4,-z||1+„.z< 'OO " I l'+»._z    —      A
CxS

hence dz*^ ^¿0 in CxS.
So, 3? is globally integrable.

7. Proof of the Theorem 2.1

We consider the vector fields given by (2.5), with S = S"~x and where

Oj, j = 1, 2,...,«, are flat at Im z=0. Hence, given A g N, there are

C = C(A) and R = R(N) < 1 such that

o\

(7.1) :   ]|| <CrN,

,on. 1 +,1.0

Ar x S" - '
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Theorem 6.1 can be used to obtain a solution Zoo of the system

0,

(7.2)

a        a
iñ+xaidz-]

m-^ia'cTz:

with differential dZ^ jé 0. Here #(z) = ip(j)

and ^ = 0 out of AR .
Then

j = 2, ... ,n .

y/ £ CC°°(C),  y = 1 in A*

(7.3)

'ffi

l+o.O

CxS"-1

CTl

.o-„.

< C+^A«)

l+,.,0

ARXS"-

< CR-{x+a)RN <
£o

if A > 2 and R is chosen sufficiently small.  So (6.1) is true.  Since x = I

in As xS, we get a solution Z^ of the system (2.5) and therefore Z^ is
4

a null solution of the system (2.4) with differential jé 0, globally defined for

0 G S""1.

We consider now

(7.4) Z(x,t) = Z00[x,^-,9(t)

where 0(í) = í/|í| G S""1, t jé 0.

Z is a C°° local solution of the Mizohata system given by (2.1) with differ-

ential jé 0. Indeed, if t jé 0, Z(x, t) is a C°° function. Z is also continuous

at t = 0 because Zoo satisfies the system (2.5) and 07 = 0 when s < 0. Hence

,n 0 dZoo  ,      ÖZ00      dZ0-
(7-5) -1TZ-+/V00; dz 39 j

= 0   if 5 < 0.

So Zoo(x, 0, 0) does not depend on 0 and Z(x, t) can be defined contin-

uously in a neighbourhood of the origin in R"+1 .

Now

d d
-Z(x,t) = -Zo(7.6)

can be defined at t = 0 because

(7.7)

The derivatives with respect to t¡ are

x,^-,0(O

§d-^Zœ(x,s,9) = ^Zc„(x,s,9) = 0   foxs<0.

n-\
dZ _    öZoo     ^ öZoo ö0fc

(7-8)        ät]-tj~dT + ^~dd^~dtj' 7=1,...,«
;=i

Since

(7.9)
d dZ«

00   ds
= 0, 5<0,
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it is only necessary to prove that

can be defined continuously at the origin. We know that

(7 11) —
1       ' 89k

is flat at 5 = |/|2/2 = 0. So, given A G N, there is a neighbourhood of the

origin in R"+1 and a constant Cn such that

(7.12)
dZn / r \V\N - Cn it,2NS Cat|5|     — —~-\t\
d9k

A simple calculation yields constants C > 0 and M £ N such that

(7.13)
d9k

<C\t
-M

dtj

in a neighbourhood of the origin in R"+1.

Taking A > M/2, we see that

^ %

can be defined continuously at the origin. Hence Z is a C1  function. The

same reasoning shows that Z is a C°° function, because the derivatives with

respect to t are always multiplied by a flat term at 5 = 0.

The chain rule implies

(7.15) M,Z = 0,        j=l,2,...,n,

where Mj are given by (2.1). From (6.112), it follows that dZ jé 0 in a
neighbourhood of the origin.

Finally, we conclude that a strongly pseudoconvex Mizohata structure over

R"+1, n > 2, is locally integrable since in a convenient system of coordinates

it has the form (2.1).

Remark 7.1. The proof of Theorem 6.1 does not fully use that the coefficients

of the system (2.1) are smooth. We can get information about the regularity of

Z(x, t) from the choice of parameters given by (6.59). If the coefficients of

the system (2.1) belong to C15+a(C x S) that is enough to construct a solution

of class Cx+a.
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