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ON COMPLETE MANIFOLDS OF
NONNEGATIVE rcTH-RICCI CURVATURE

ZHONGMIN SHEN

Abstract. In this paper we establish some vanishing and finiteness theorems

for the topological type of complete open riemannian manifolds under certain

positivity conditions for curvature. Key tools are comparison techniques and

Morse Theory of Busemann and distance functions.

1. Introduction and main results

One of the most important aspects of riemannian geometry deals with the

relationship between the curvature properties of a riemannian manifold and its

topological structure.

Two classical theorems are Gromoll-Meyer's theorem [GM] and Cheeger-

Gromoll's Soul Theorem [CGI]. Gromoll-Meyer's theorem asserts that any

complete open riemannian manifold of positive sectional curvature is diffeo-

morphic to R" . Cheeger-Gromoll's Soul Theorem says that for any complete

open manifold of nonnegative sectional curvature, there is a totally geodesic

compact submanifold S, to be called a soul, such that M is diffeomorphic to

the normal bundle v(S) of S in M (the diffeomorphism does not come from

the exponential map of S, in general). Therefore it is quite natural to study

complete open manifolds under certain partial positivity for curvature.

For a riemannian «-manifold M, we say the /cth-Ricci curvature of M,

for some 1 < k < n - I, satisfies RiC(¿) > H, at a point x £ M if for

all (k + 1 )-dimensional subspaces V c TXM, the curvature tensor R(x, y)z
satisfies

k+\

Y,(R(ei, v)v , e.) > H,        v£V,
i=\

where {ei, ... , ek+x} is any orthonormal basis for V . By Ric^jiM) > H we

mean Ric^ > H at all points x £ M. In a similar way we can define that

RiC(¿.) > H at a point x, and RiC(k)(M) > H. Clearly, Ric(„_i)(M) > H

if and only if Ric(M) > H, and Ric(,)(M) > H if and only if KM > H,
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where Ric(M) and KM denote the Ricci curvature and the sectional curvature,

respectively.

1. We say a complete open «-manifold M is proper if the Busemann func-

tion bp at some point p is proper. This property of the Busemann functions

is independent of a choice of p (see §2.1 below for definition and basic prop-

erties). Any complete open «-manifold M of nonnegative sectional curvature

outside a compact subset must be proper. Moreover in this case M has finite

topological type (cf. [CGI, GW2]). H. Wu [W2] has proved that any complete
open «-manifold M with Ric^(M) > 0 for some 1 < k < n - 1 and non-

negative sectional curvature outside a compact subset, has the homotopy type

of a CW complex with finitely many cells each of dimension < k - 1. By using

the techniques developed in [SH, W2], we will establish the following

Theorem 1. Let M be a proper open n-manifold with Ric^(M) > 0 for some

k, 1 < k < n — 1. Then M has the homotopy type of a CW complex
with (possibly infinitely many ) cells each of dimension < k - 1. In particu-

lar, H(M ; Z) = 0, for i>k.

Theorem 1 should be viewed as a generalized version of the Gromoll-Meyer

theorem [GM]. In the case of k = n - 1, Theorem 1 tells us that any proper

open «-manifold of positive Ricci curvature has the homotopy type of a CW

complex with cells each of dimension < « - 2. Hence Z/„_i(M; Z) = 0.

This is an analogue of a vanishing theorem for closed manifolds which says

that any oriented closed «-manifold M of positive Ricci curvature satisfies

Hi(M; R) = //„_i(M; R) = 0 (cf. e.g. [BY]). In [Y], by using a different
method, S. T. Yau proves that any complete open «-manifold M of positive

Ricci curvature satisfies //„_i(M, R) = 0. His method, however, does not give

a vanishing theorem for Hk(M, R) for k < n - 2 under the positivity condi-

tions for the fcth-Ricci curvature. One notices that M. Anderson also proves a
relative result that if M is a complete open «-manifold of nonnegative Ricci

curvature, then the first Betti number ¿>i(M) := dim//i(M; Q) < « - 1 . For

further information see [An].

Recently, Sha-Yang [SY1, 2] have constructed «-dimensional complete open

manifolds of infinite topological type for all n > 4, on which the metrics

can be chosen to be proper, have positive Ricci curvature and bounded cur-

vature1. Topologically, their examples are obtained by removing infinitely

many disjoint balls Df+X , i = 0, 1, ... , +00, from Rp+X and then gluing

S^p-^ x(RP+x\l[^0Dp+x) with Dn-px]l™0Sp together by the indentity maps

along the corresponding boundaries, where 2 < p < n-2. Let M„ p denote the

resulting manifolds. Clearly, the singular homology groups Hn-2(Mn,„-2; Z)

are infinitely generated. In this sense, Theorem 1 is sharp. In dimension 3,

Schoen-Yau [SHY] prove that all complete open 3-manifolds of positive Ricci

curvature is diffeomorphic to R3,. Thus there is no nontrivial examples in this

case.
It seems to be difficult to determine whether a complete open riemannian

manifold M is proper or not, even if M has nonnegative Ricci curvature.

However, we will show that if (with respect to a point) M has small diameter

growth of ends, then M is proper. For a subset A of M, denote by dia(^)

This property of the sectional curvature is not stated explicitly in [SY1, 2]
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the diameter of A measured in M, i.e. dia(A) = supx y€Ad(x, y). We will

prove that if for some point p £ M,

,i\ ,• dia(S(p,r))
( 1 ) lim sup — < 1,

r—>+oo r

where S(p, r) := {x £ M ; d(p, x) = r} denotes the geodesic sphere of radius

r around p, then M is proper (see Corollary 2 below in §2.2). Therefore one
has

Corollary 1. Let M be a complete open n-manifold Ric^^M) > 0 for some

1 < k < n - 1. Suppose that for some p £ M, ( 1 ) holds. Then M has the
homotopy type of a CW complex with cells each of dimension < k - 1. In
particular, Hi(M; Z) = 0 for i > k.

In the case of k = n - 1, Corollary 1 tells us that if a complete open «-

manifold M of positive Ricci curvature satisfies (1), then M has the homotopy

type of a CW complex with cells each of dimension < « - 2. To my best
knowledge, all known examples of positive Ricci curvature satisfy (1).

2. It was proved by M. Gromov [G1 ] that there is a constant C(«) depending

on only « such that for any closed «-manifold M of nonnegative sectional

curvature, the total Betti number of M with respect to any field F satisfies

Y,bi(M;Y)<C(n).
k=0

By the Soul Theorem of Cheeger-Gromoll [CGI], this theorem is also valid for

complete open «-manifolds of nonnegative sectional curvature. Examples in

[SY1, 2 and AKL], however, show that this theorem does not hold for com-

plete «-manifold of nonnegative Ricci curvature. But one can still obtain some

topological obstruction to complete open manifolds with nonnegative Ricci cur-

vature and bounded curvature. Let M be a complete open riemannian «-

manifold and let p £ M. For r > 0, put B(p, r) = {x £ M ; d(p, x) < r}.
Let bj(p, r) denote the rank U : H¡(B(p, r) ; F) <-> H¡(M; F), where F is an
arbitrary field. We will prove

Theorem 2. Let M be a complete open n-manifold with Ricci curvature Ric(M)

> 0 and sectional curvature Km > -1. Then there is a constant C(n) depending
only on « such that

n

5>¿(p,r)<C(/!)(H-rr\        r>0.
(=0

As we see from Sha-Yang's examples, in order to prove a finite topological

type theorem for manifolds in Theorem 2, additional conditions are required.

Recently, Abresch-Gromoll [AG] have proved that a complete open «-manifold

M of nonnegative Ricci curvature has finite topological type if M has essential

diameter growth of order o(rxln), provided that the curvature is bounded from

below. In §2.2 we will introduce the notion of essential diameter of ends. There

are several definitions for the (essential) diameter of ends. It seems to the author

that the definition given by Cheeger [C] is the simplest one. Denote by 3(p, r)

the one defined in [C], which is called the essential diameter of ends at distance

r from p . Roughly speaking, 3(p, r) is the maximum of the diameters of the
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connected components, I, of S(p, r), with y(f) e I for some ray emanating

from the point p. We will generalize the Abresch-GromolPs theorem to the

case RiC(fc)(M) > 0.

Theorem 3. Let M be a complete open n-manifold of Ric^j(M) > 0 for some

2 < k < n - 1. Suppose that the sectional curvature KM > -K, K > 0, and for

some point p £ M,

lim sup ^(P'^ < -K-k>Mk+l»

Then M is homeomorphic to the interior of a compact manifold with boundary.

One notices that the diameter growth condition is violated by Sha-Yang's

examples. By definition, 3(p, r) < di&(S(p, r)) for all r. Thus any growth

condition on di&(S(p, r)) implies that on 3(p, r). The advantage of 3(p, r)

is that the growth of 3(p, r) can be controlled by the volume growth condition.

For a complete open «-manifold M with Ric(M) > 0 and volume noncollapse,

i.e. infx€MVol(5(x, 1)) > v > 0, it is shown in [SW] that for all r > 1,

3(p,r)<C(n)v-xVOl{B{rP>r)).

Thus we have

Theorem 4 [SW]. Let M be complete with Ric^(M) > 0 for some 2 < k <

« - 1. Suppose that M has weak bounded geometry, i.e. KM > -K, K > 0,

and inf^çMVoKZ^x, 1)) > v > 0. If the volume growth at a point p satisfies

YQl(B(p,r))

r1™»     rl + l/<*+.)      =0<

then M is homeomorphic to the interior of a compact manifold with boundary.

In the case of k = n - 1 , Theorem 4, in particular, implies that for a com-

plete open «-manifold M with Ric(M) > 0 and bounded geometry, if M has

linear volume growth at a point, then M has finite topological type. One should

compare this result with Calabi-Yau's theorem ([Y], see also [CGT]) which as-

serts that any complete open «-manifold of nonnegative Ricci curvature has at

least linear volume growth at any point p , more precisely, for all r > 1 ,

vol(B(p, r))>e(n) vol(B(p , l))r.

M. Gromov [G2] proves that a complete manifold M of sectional curvature

-1 < Km < 0, and vol(M) < +oo , is diffeomorphic to the interior of a compact

manifold with boundary. Furthermore, if in addition the sectional curvature is

strictly negative, then M has finitely many ends, E , with dia(S(p, r)f\E) —» 0

as r-> +00 . We will prove the following relative result.

Theorem 5. Let M be a complete open manifold with sectional curvature KM >

-K, K > 0. Suppose that M has finitely many ends and for some p £ M,

limsup.Sr(/?, r) < In 2- K
r—* + oo

-1/2

then M is homeomorphic to the interior of a compact manifold with boundary.

The organization of this paper is as follows. The proof of Theorem 1 is in

§3. The proof of Theorem 2 is in §6. The proof of Theorem 3 is in §5. The

proof of Theorem 5 is in §4.
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2. Preliminaries

2.1. Busemann functions. Let M be a complete open riemannian «-manifold

and let p e M. Recall that the Busemann function By associated with a ray

y issuing from p is defined as By(x) = lim^+oo / - d(x, y(t)), x £ M. For

arbitrary r > 0, let

R(p, r) = {y(r) ;   y is a ray issuing from p },

which is a closed subset of the geodesic sphere S(p, r). Set pp(x) = d(p, x).

Set B'p(x) = t - d(x, R(p, t)), x £ M. It is clear that B'p(x) is increas-

ing in t and \B'p(x)\ < pp(x), x £ M. Then the function Bp, defined as

Bp(x) = lim,^+0o B'p(x), is a Lipschitz function with Lipschitz constant 1. An

elementary argument shows that Bp = supy B7, where the supremum is taken

over all rays y issuing from p. For x £ S(p, r), r > 0, set

Rp(x) = d(x, R(p, r)).

Since B'p(x) is increasing in t, it is easy to see that

(2) PP(x) - Rp(x) < Bp(x) < pp(x).

Consider a family of functions b'p : Mi-» R defined by b'p(x) = t - d(x, S(p, t)),
í e [0, +00). They are Lipschitz continuous (with Lipschitz constant 1 ) and

also satisfy |¿>¿(x)| < pp(x) (by the triangle inequality). It is not difficult to

show the following

Lemma 1. Fix any point x £ M, b'p(x) is decreasing in t, for t > pp(x), i.e.

for all t2>ti> Pp(x),

(3) b¡¡(x)>b£(x).

Proof. Let x' £ S(p, t2) such that d(x, x') = d(x, S(p, t2)). Take a minimal
normal geodesic a from x to x'. For s0 := d(x, S(p, t2)) -t2 + t\ > 0, the

point ct(so) satisfies

d(p, o(so)) >t2- d(o(s0), S(p, t2)) = t2- d(x, S(p, t2)) + s0 = h.

Thus o(so) £ M\B(p, ii), that implies

d(x, S(p,h))< d(x, o(so)) = d(x, S(p,t2))-t2 + tx.

This gives (3).   Q.E.D.

Thus b'p converges to a Lipschitz function bp , with the convergence being

uniform on compact subsets. The function bp is called the Busemann function
at point p . Set

ep(x) = pp(x) - bp(x),       x £ M.
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ep is called the excess function at point p £ M (compare [GP]). By definition

and (2), one has

(4) Bp(x)<bp(x),        x£M,

(5) ep(x)<Rp(x),       x£M.

For r > 0, set

(6) %(p, r) =   max  ep(x),
x€S(p,r)

(7) âê(p,r)=   max   Rp(x).
xeS{p,r)

Then (5) immediately implies that for all r,

(8) g(p,r)<¿?(p,r)<dia(S(p,r)).

The following lemma is important for further study.

Lemma 2. Let M be a complete open riemannian n-manifold and let p £ M.

Then for any point q £ M, there is a ray oq: [0, +00) -> M issuing from q

such that
(i) for all i>0,

bo/(x):=bp(q) + t-d(x,oq(t)),

supports bp(x) at q, i.e., bp''(x) < bp(x) for all x £ M and bjJ(q) = bp(q).
(ii) (Wu) for all t>0,

(9) bp(oq(t)) = bp(q) + t.

Proof. Take a divergent sequence /„ —> +00, and a sequence of points x„ £

S(p, tn) such that d(q, xn) = d(q, S(p, tn)). Take a normal minimal geodesic

on issuing from q to x„ . By passing to a subsequence if necessary, one can

assume that ct„(0) converges to a unit vector v £ TqM. Set oq(s) = e\pqsv .

It is clear that oq is a ray. Notice that for sufficiently large t„ ,

d(q , S(p, t„)) = t + d(on(t), S(p , tn)).

Thus one obtains

bp(x) - bqp>'(x) = bp(x) - bp(q) - t + d(x, oq(t))

=   lim  d(q,S(p,tn))-d(x,S(p,tn))-t + d(x,CTq(t))
t„-*+oo

=   lim  d(a„(t), S(p, tn)) - d(x, S(p, tn)) + d(x, oq(t))
t„—>+oo

> lim   -d(on(t), x) + d(x, oq(t))
t„-t+oo

> lim   -d(on(t), oq(t)) = 0.
i„->+oo

It is obvious that b%''(q) = bp(q).
The equality (9) was proved by Wu in [Wl].   Q.E.D.

An open riemannian manifold M is called proper, if M is complete and

for some point p £ M, the Busemann function bp is proper, i.e. the subset

bp x((-oo, a]) is compact for all a £ R. The following lemma shows that bp

is proper for some p £ M, then bq is proper for all q £ M .
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Lemma 3. Let M be a complete open riemannian manifold. Suppose that for

some point p and some sequence of closed subsets f = {Cn}^=0 with r„ :=

dip, C„) -» +00, bp" := rn - d(-, C„) converges to a function bf . Then for all

a,

bq(x)>-bf(q) + bf(x).
In particular,

bq(x) > -bp(q) + bp(x).

Thus bp is proper if and only if bq is proper for all points q £ M.

Proof. Let /„ = d(q, C„).  Clearly, for t„ > d(q, x), one has x e B(q, tn)

and d(x, S(q, t„)) < d(x, C„). Thus

b'q"(x) = tn- d(x, S(q ,tn))> d(q , C„) - d(x, C„)

= -(rn - d(q, C„)) + (rn - d(x, C„)).

Letting r„ -> +oo, one obtains bq(x) > -bf(q) + bf(x).   Q.E.D.

Remark 1. It was proved in [CGI, GW2] that any complete open manifolds

with nonnegative sectional curvature outside a compact subset is proper. In

particular [LT], for any point p £ M,

lim   m. =  lim  tel = !.
x^+oo pp(x)       x^+oo pp(x)

The question is when the Busemann function bp is proper. By (5) one sees

that if Rp(x) satisfies

lim sup   yv     < 1,
r^+oo    PP(X)

then bp is proper. In the next section we will continue to study the properness

of open riemannian manifolds.

2.2. Diameter of ends. In this section, we will prove an elementary result for

Busemann functions, which tells us how the smallness of the diameter of ends
implies the properness of the Busemann functions. In particular, we prove that

if a complete open manifold M with finitely many ends has diameter growth

of order o(r), then M is proper. No restriction on curvature will be required.

There are several definitions for the (essential) diameter of ends (cf. [AG,

SI, C]). Let us first give the most natural one here for manifolds with finitely

many ends. The essential diameter of ends will be defined in the last of this

section. Let M be a complete open riemannian manifold with A ends. Let

^min be the smallest number R such that M\B(p, R) has A unbounded

connected components. Let Ui, ... , Un be the unbounded connected compo-

nents of M\B(p, /?min) • Then the diameter of ends at distance r > Rmin from

p,W(p, r), is defined as

W(p, r) = max dia(S(p, r) n U¡).
\<i<N

When M has only one end, W(p, r) is defined for all r > 0, and

W(p,r) = dm(S(p,r)).

Remark 2. By the Cheeger-Gromoll's splitting theorem [CG2], one can conclude

that any complete open manifold M of nonnegative Ricci curvature has no
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more than two ends. In addition, if M has positive Ricci curvature at some

point, then M has only one end. Thus in this case W(p, r) is always defined

as the diameter of S(p, r).

Lemma 4. Suppose M is a complete open riemannian n-manifold with finitely

many ends. Then there is R0 such that for all r>R0,

(10) <%(p,r)<W(p,r)<dia(S(p,r)).

Proof. Suppose M has A ends. Let Ui, ... ,Un be the A unbounded con-

nected components of M\B(p, /?min) ■ Clearly there are only finitely many

bounded connected components of M\B(p, Rmm) > to be denoted by Vx, ... ,

VK, with  V¡ nS(p, 2Rmin) ye 0.  Thus for R0 := ma\i<i<KsupxeV. pp(x) >

■^■^min ;

(11) M\B(p,R0)=   (J   U\B(p,Ro).
Ki<N

By (11), for any x e M\B(p, Ro), there is an unbounded connected component

U¡0 of M\B(p, Z?min) such tnat x 6 £A'o • Take a ray y issuing from p such

that y| (Rrain,+oo) C £/,„. Let r0 = d(p, x). Then

Rp(x) = d(x, R(p, r0)) < d(x, y(r0))

< dia(t/,0 n S(p, r0)) < W(p, ro).   Q.E.D.

(5) and (10) immediately imply the following

Corollary 2. Let M be a complete open manifold with finitely many ends. Sup-

pose that for some p £ M,

lim sup —- = C < 1,
r—*oc r

or
dia(S(p,r))     _     ,

lim sup —v = C < 1 •
r—>oo r

Then
,•    • cbp(x)
hm inf - ; . > 1 - ç.

x-»oo  pp(x)

In this case, the Busemann function bp is proper. Thus M is proper.

Now we will introduce a weaker concept of diameter of ends for complete

open manifolds (compare [C]). Let M be complete with p £ M fixed. For

r > 0, the connected components, I, of d(M\B(p, r)), are called the boundary

components of M\B(p, r). Set

3¡(p, r) = supdia(I),

where the supremum is taken over all boundary components Z of M\B(p, r)

with X n R(p, r) yi 0. We call 3(p, r) the essential diameter of ends at

distance r from p. Clearly, one has

(12) 3(p,r)<dia(S(p,r)).
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Remark 3. Without any additional assumption there is no relation between

3t(p, r) and 3(p, r). However, one still has that for all boundary compo-

nents, I, of M\B(p, r) with I n R(p, r) ¿ 0 ,

(13) Rp(x)<3(p,r),        x£l.

3. Open manifolds M with positive /Vth-Ricci curvature

3.1. Smoothing theorem. In [SH, W2], J. Sha and H. Wu independently stud-
ied the fc-convexity for certain distance functions on a riemannian «-manifold

(with boundary). Let (M, g) be a riemannian «-manifold (not necessary to

be complete) and let p £ M. Let / be a continuous function defined in a

neighborhood of p £ M. Let y : (-a, a) —* M be a normal geodesic with

y(0) = p £ M and y(0) = v e TPM. As in [W2], we define the following
extended real number:

Cf(p;v) = liminf Uf°y(r) +foy(-r) - 2foy(0)}.
r—>o    rA

We say that / belongs to C(k) at p £ M for some k, 1 < k < n, if /
is Lipschitz continuous in a neighborhood W of p, and there are positive

constants e and n such that if x £ W and {v\, ... , vk} is set in TXM with

\(Vi,Vj)-ôij\<e, then
k

Y^Cf(x;vi) > n.
i=i

We say that / belongs to C(k) on a subset A of M if / is defined on a

neighborhood U of A, such that / £ C(k) at every point p £ U . Similarly, a

function / is said to be C°° on a subset A, if f is defined on a neighborhood
U of A such that / e C°°(U).

Clearly, a C2 function / : M —► R belongs to C(/c) on M if and only if

k

5>2/(^,^)>o,
!=1

for any set of orthonormal vector fields {V\, ... , Vk} locally defined in M.

Thus if a smooth Morse function / : M —> R belongs to C(k) on M, then

the index of / at each critical point satisfies that ind(/) < k - 1. By Theorem

1.1 in [GW1] Wu proves the following smoothing theorem for C(k).

Theorem 6 [W2]. Let (M, g) be a riemannian n-manifold. Let f: M —> R

belong to C(k) on M, and Ç: M —> R be a positive continuous function.

Then there exists a C°° function F: M —► R which belongs to C(k) such that

\F-f\<H.
For the applications below, one needs a refinement of Wu's smoothing theo-

rem for proper functions / : M —> R.

Lemma 5. Let (M, g) be a riemannian n-manifold. Let f : M —> R be proper

and belong to C(k) on M, and t¡: M —> R be a positive continuous function.

Then there exists a proper Morse function F: M —> R which belongs to C(k)

on M such that \F - f\ <t¡.

The proof of the above lemma strongly relies on the argument in §2 of [M1 ].

The outline of the proof is as follows.  By Theorem 6, one can assume / is
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a smooth proper function belonging to C(k) on M. Take a sequence ax <

a2 < ■■■ -» +00, such that all a¡ are the regular values of /. Let W¡ =

f~x([a¡, <2,+i]). One can find a smooth Morse function F¡: W¡ —* [a,, a¡+\]

such that each F, has no critical points in a neighborhood of dW¡. Moreover,

each F, is sufficiently close to / in C2-topology so that it belongs to C(k)

on Wj. Then by gluing all F¡ together, one obtains a desired Morse function.

Since the proof is elementary, so the details are omitted here (see [S2]). The

following algebraic lemma is also elementary. It will be useful to verify that a

locally Lipschitz function / belong to C(k) at a point p e M.

Lemma 6. Let V be an inner product space of dimension «. Let S be a

symmetric bilinear form on V. Suppose that for some k, 1 < k < n, and

some positive numbers n and A, S satisfies

(i) Xw=i $iei > ei) ^ n for any orthonormal set {ei, ... , ek} in V,

(ii)  \S(v , v)\ < A\v\2 for v £V.

Then there is e > 0 depending only on k, n, and A such that for any set

{f i,..., vk} in V with \(Vi, Vj) - Sjj\ < e,

k

3.2. Construction of proper Morse functions. In this section we will prove

Theorem 1. It suffices to prove the following

Theorem 7. Let M be a proper open n-manifold. Suppose that for some 1 < k <

« - 1, the kth-Ricci curvature is nonnegative everywhere and positive curvature

outside a compact subset. Then M has the homotopy type of a CW complex

with (possibly infinitely many) cells each of dimension < k — 1. In particular,

Hi(M; Z) = 0,    fori>k.

We begin with the following elementary result.

Lemma 7. Let M be a riemannian n-manifold. Suppose at some point p £ M

the sectional curvature and the kth-Ricci curvature, for some 1 < k < n — 1,

satisfy \KP\ < K and RÍC(¿) > H, respectively. Then for any orthonormal set

{ei, ... , ek} in TPM and any unit vector v in TPM,

k

£(*(« , e,)et ,v)>-(k-l )K(a2 + 4aß) + Hß2,

i=\

where a = yJ>Zli{v , e,)2 and ß = y/1 -£*=i(fl , e,)2.

Proof. Let  V = spanfe^ , ... ,ek}  and v = V\ + v2 such that vx £ V and

v2 1 V. Clearly, \vx\2 = £f=1 (t>, <?/)2 and |í;2|2 = 1 - Ef=i<*>. <?/>2 • Let
{fi, ... , fk} be another orthonormal basis for V such that V\ = \vi\f . Let

fk+i be the unit vector such that fk+i ± V and v2 = IV2IA+1 ■ Consider the
following identity for i = 2, ... , k ,

2(R(fi,fi)fM , f) = (R(f, (f +fk+x))(fx+fk+i),fi)
- (Rift, /.)/i, //) - {Rift, fk+i)fk+i, fu-
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It turns out that 2\(R(f, /,)/fc+1, f)\ < 4K . Thus

k k

YliR{v,ei)ei,v)= Y,(Rifi, v)v, fi)
!=1 ;=1

k

\vi\2Y,iR(fi,m,fi)
i=2

+ 2\vi\\v2\Yi(R(f,,A)fk+i,fi)
1=2

k

+ \v1\2YdiRifi>fk+\)fk+x,fi)
i=\

> - (k - l)K(\vi\2 + 4\vi\\v2\) + H\v2\2.   Q.E.D.

Now we are in position to construct a proper function on M as in Theorem 7

such that it belongs to C(k) on M. Then Theorem 7 follows from the standard

Morse theory.

Lemma 8. Let M be as in Theorem 1 and let p £ M be fixed. Then there exists

a function / € C2(R) such that x ° bp is a proper function and x°bp belongs

to C(k) on M.

Proof. Let a = min^M bp(x). Let Rq > a be a number such that Ric^j > 0

in {y ; bp(y) > Ro} . For r >a, define

H(r) = inf{Ric(fc)(y) ; r + R0 - a < bp(y) < r + R0 - a + 1} > 0.

Let T(r) = max{l6kH(r)~x, 2(R0-a+ 1)}. Define

K(r) = sup{\Ky\;r<bp(y)<r+T(r)}.

Let C: [a, +oo) —► R+ be a positive continuous function to be determined
later. Set

X(t) = / exp Í /   C(t) dx j ds + a.

It is easy to check that x is of class C2 and has the following properties:

(i) X'(r) > I for all r £ [a, +oo),

(ii) x"(r) = C(r)x'(r) for all r £ [a, +oo).

Clearly, (i) above implies X ° bp is also proper.   By choosing an appropriate

C(t), we will prove that x°bp belongs to C(k) on M.

Fix any point q £ M with bp(q) = r. From Lemma 2 in §2.1 it follows that

there exists a ray crq(s) issuing from q such that for all 5 > 0,

bqp's(x) = r + s-d(x, oq(s))

supports bp(x) at q , and bp(o~q(s)) = r + s .

Define 6 : TqM x [0, T(r)] - M as

6(v , s) = expa,s) ( 1 -7F7^)v(s)
s

f\r)
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where v(s) denotes the parallel vector field along aq(s) such that v(0) = v

Define / locally at q as

fT(r)
f o e\pq(v) = r + T(r) - /

Jo

d_Q_

ds
(v,s) ds.

Clearly, / supports bp at q. Take any orthonormal set {e\,...,ek} in

TqM. Let a and ß be nonnegative numbers such that a2 + ß2 = 1 and

a2 = Y,j=iiej> ^í(O))2 • Then by the first and second variation formulas and

Lemma 7, one obtains

k k

Cir) Y, \ejf\2 + £ V2M,*;)
j=\ j=\

>C(r)a2-^—Ak-a2)
T(r)

(k-l

rT(r)

»r'(r)

Tir)
xna\\Kaq(s)\(a2 + 4aß)ds

fnn (        s   \
+ J       \l-----\  minRic{k)(cTq(s))ß2ds

> C(r)a2
k rT^ (

(k - l)K(r)(a2 + 4aß) (l
T(r) T(r)

ds

Ra-a+\

+ H(r)ß-
rKo~

JRa-a

1 -
T(r)

ds

> C(r)a2 -J--±(k- l)K(r)T(r)(a2 + 4aß) + l-H(r)ß2.

Clearly, one can find a positive continuous function C(r) depending only on

k , T(r), K(r), and H(r) such that

k k

C(r) ¿ \ejf\2 + ¿ V2f(ej, ef) > ±H(r).
j=\ j=\

Thus

YiV2(Xof)(ej,ej) =
y=i

c(r-)^M2+x;v2/(^,^) ix'°f)i<!)

1 1
>j¿H(r)(x'obp)(q) = -H(r)x'(r).

One can also check that there is a positive continuous function A(r) on [a, +oo),

such that

\V2(x o f)(v , v)\ < A(r)\v\2,        v£TqM.

It follows from Lemma 6 that there is a positive continuous function e(r)

on [a, +oo) depending only on H(r) and A(r), such that for all vector set

{vi, ... ,vk} in TqM with \(vj , vj) - o¡j\ < e(r),

k 1

y=i
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Since x ° f supports x°bp at q £ M, one obtains

* 1

7=1

By definition, x°bp belongs to C(k) on M.   Q.E.D.

Proof of Theorem 1. It follows from Lemmas 5 and 8 that there is a smooth

proper Morse function F which belongs to C(k) on M. Clearly, the index of

F at each critical point satisfies that ind(F) < k - 1. Thus Theorem 7 follows
from the standard Morse theory [M2].   Q.E.D.

It is a conjecture that any complete open «-manifold of positive Ricci cur-

vature admits a sequence of compact domains Í2) c Q2 c •• • such that

M = Uí_i Oí and each Q, has smooth boundary with positive mean curva-

ture. This conjecture is affirmative in case that M is a proper open manifold

of positive Ricci curvature. In fact, we will prove the following

Theorem 8. Let M be a complete proper n-manifold Ric^(M) > 0 for some

1 < k < n — 1. Then M admits a sequence of compact domains with smooth

boundary Cli c Cî2 C • • • such that M = \J°^l Í2, and each Í2, has k-convex
boundary.

Proof. Since M is proper, it follows from Lemmas 5 and 8 that there is a proper

smooth function f:M—>R such that / belongs to C(k) on M. Choose a

sequence of numbers ax < a2 <•■•-> +oo such that each a, is a regular value

of /. Set

Q, = {xeM; /(*)'<«/}.

Then each Q, has a smooth boundary <9Q,. Let {ei, ... , ek} be any or-

thonormal set in TqdCl¡, q £ dCi,-, and {ë\,...,êk} be any extension of

{ei, ... , ek} to a set of tangent vector fields to 9Í2, near q . Since / belongs

to C(k), one has £*_, V2/(<?,, *?,) > 0 . Notice that

k k k

J2 V2/(f«, et) = £>/(*,/) - (Vé|#/)/} = - £(V,r,)/.
/=i (=i i=i

Thus - S,=i(^,^)/ > 0- Let £ be the outward-pointing unit normal at q £

dQj. Then the second fundamental form ht at q satisfies

k k . k

£hç(e,, et) = - Yt^èèi, í) = -||grad/|| Y,(Ve,ei, grad/)

^mt^i)f>o.

Thus Çl, has k -convex boundary.   Q.E.D.

Corollary 3. Let M be a complete open n-manifold with Ric^M) > 0 for

some 1 < k < n - 1. Suppose that for some point p £ M, ( 1 ) holds. Then M
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admits a sequence of compact domains Í2i c Ö2 C • • • such that M = IJ^, £2,

and each Q, has k-convex smooth boundary.

4. Open manifolds with curvature bounded from below

4.1. Isotopy Lemma. For an open manifold M, if there is a proper smooth

function /: M —> R such that / has no critical points outside a compact sub-

set of M, by Morse theory, M is diffeomorphic to the interior of a compact

manifold with (smooth) boundary. For a complete open riemannian mani-

fold M, the natural candidate of such function on M is the distance function

pp(x) := d(p, x) from a fixed point p £ M. It is well known in riemannian

geometry that pp(x) is only Lipschitz continuous. The concept of critical point

of pp(x), therefore, cannot be given in a usual way. Grove-Shiohama [GS]

have made the fundamental observation that there is a meaningful definition of

"critical point" for such distance function, such that in the absence of critical

points, the Isotopy Lemma of Morse theory holds.
A point q(i= p) is called a critical point of pp if for all unit vector v in the

tangent space TqM, there is a minimal geodesic, y , from q to p , making an

angle, Z(v, y(0)) < n/2, with y(0). As was shown in [GS], if q is not a critical

point of Pp , then there is a small positive number e > 0, an open neighborhood

U, of q, and a smooth unit vector field W on U, such that for any minimal

geodesic, y, from x e U to p, y makes an angle, ¿.(Wx, y(0)) > n/2 + e
with Wx . By using a partition of unity and the first variation formula, one can

prove the following

Isotopy Lemma [GS, G1,C]. If ' rx < r2< +00, and if C is a connected compo-

nent of B(p, r2)\B(p, ri) such that the closure, C, is free of critical points of

pp, then there is a homeomorphism

\p :Ix (r, , r2) -> C,

where S = dC n S(p, rx ) is a connected boundary component of C, such that

Pp(y/(x, t)) = t, for all (x, t) £ 1 x (r{, r2). Moreover, X is a topological

submanifold (without boundary).

Remark 4. Note that the closure of B(p, r2)\B(p, ri) is strictly contained in

B{P■> r2)\B{P> ri) in certain cases. If B(p, r2)\B(p, r{) contains no critical

point of pp , then this region is homeomorphic to S(p, rx ) x \rx, r2]. More-

over, S(p, r{) is a (not necessarily connected) topological submanifold without

boundary (cf. e.g. [C]).
The Isotopy Lemma above, in particular, implies that if a complete open

riemannian manifold M does not contain critical points of pp outside a com-

pact subset, then M has finite topological type. For our purpose we need the

following

Lemma 9 (cf. e.g. [C]). Let M be complete, and let p £ M be fixed. Suppose

that there is Rq > 0 such that for all r > R0, all boundary components, I, of

M\B(p, r) with Zn R(p, r) ^ 0, are free of critical points of pp . Then there is

a R\ > Ro, such that M\B(p, Ri) is free of critical points of pp . In particular,

M has finite topological type.

Outline of the proof. Follow [C], let U be any unbounded connected com-

ponent of M\B(p,Ro).   Let zZr0  be a boundary component of dU with
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Er0 C\R(p, r) yi 0. One can take a ray y emanating from p with y(Ro) £ Z/*0 ■

For r > Ro, let Ir denote the boundary component of M\B(p, r) with

y(r) £ Zr. By assumption, all Er, r > R0, axe free of points of pp. By

the same argument for the Isotopy Lemma, one can show that there is an em-

bedding y/ : X/?0 x (Rq , +00) —> U such that ^(Xr0 x {r}) = Ir. It is also

easy to see y/ is onto. Thus y/Ç£Ro x (R0, +00)) = U. Clearly there are

only finitely many bounded connected components, V , of M\B(p, R0) with

Vf\S(p, 2R0) í 0 . Thus there is Ri>R0, such that M\B(p, /?,) is free of
critical points of pp .   Q.E.D.

4.2. Small excess and finite topological type. In order to prove a complete

riemannian manifold M has a finite topological type, one needs to show that
there is no critical points outside a compact subset with respect to a fixed point

p £ M. For this purpose we will prove an important lemma, which tells us

that the value of excess function ep at critical points cannot be small. In [AG]

Abresch-Gromoll have proved a similar result for the excess of a thin triangle

in M. The following lemma gives us a concrete information for the excess

function ep which can be thought of as the excess of the triangle with one

vértice at infinity.

Lemma 10. Let M be a complete open riemannian manifold with sectional cur-

vature Km > -K for some constant K > 0, and let p £ M be fixed. Suppose

that q t¿ p is a critical point of p. Then

~ VK     coshVKpp(q)

Proof. Take an arbitrary sequence tn -> +00 so that bp(x) = tn-d(x, S(p, t„))

converges to bp(x) on M. There is xn £ S(p, t„) such that d(q,x„) =

d(q, S(p, t„)). Take a minimal geodesic y issuing from p to x„, and a min-

imal geodesic o issuing from q to x„ . Since q is a critical point of p , there

exists a minimal geodesic x issuing from q to p such that <r(0) and i(0)

make an angle at most n/2. Apply Toponogov's Theorem [CE] to the triangle
formed by y , a , and x , we obtain

(15) eosh\ÍKtn < eosh\ÍKd(q, xn)eosn\ÍKd(p, q).

Multiplying (15) by 2exp VK(d(p, q) - tn), and letting t„ —► +00, we obtain

(16) expVKpp(q) < exp\/Kep(q)cosh V~Kpp(q).

Then Lemma 10 follows from (16).   Q.E.D.

Proof of Theorem 5. By (13), for sufficiently large r, 3(p, r) < In 2 • K~x¡2
implies that Rp(x) < In2 • K~x¡2 for x in all boundary components, X, of

M\B(p, r) with Zn R(p, r) ± 0 . Since ep(x) < Rp(x) (5), then by Lemma
10, one concludes that all such X are free of critical points of pp . Theorem 5

therefore follows from Lemma 9.   Q.E.D.

Next we will give an upper estimate for the Betti numbers of complete

open riemannian manifolds with small excess at infinity. Let Hk(X ; F) de-

note the k\h singular homology group of a subset I in a riemannian man-

ifold M, where F is any fixed field.   For any two subsets i: X c Y c M,
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let bk(X, Y) denote the rank of /*: Hk(X;¥) ^ Hk(Y;F), and bk(X) =

bk(X, X) = dimH^X; F). Notice that for subsets X c X cY cY in M,

bk(X, Y) < bk(X, Y).

Theorem 9. Given n, K > 0, D > 0, 0 < In 2. There is a constant C =

C(n, K, D, 8) > 0 such that if a complete open n-manifold M satisfies the
bounds :

(l)KM>-K,

(2) for some p £ M and all r > D,

g(p,r)<--\=e,

or

■%(p,r)<—d,

or

dia(S(p,r))<-±=6.

Then M has finite topological type and its total Betti number satisfies

¿6,(M)<C.
(=0

Proof. By Lemma 10, there is D0 = D0(K, D, 0) > 0 such that M\B(p, D0)
is free of critical points of pp . Thus by the Isotopy Lemma and its remark,

M and B(p, D0 + 1) are homeomorphic to B(p, D0), respectively. Thus by

Theorem 11 below

Y,bk{M) = Y^bk(B(p, Do)) = Y,bk(B(p, Do),B(p,D0+l))
k=0 k=0 k=0

n

< YJbk(B(p,Do),TiB(p,Do))<C(n,K,D,d).    Q.E.D.
<t=o

5. Open manifolds with nonnegative /cth-Ricci curvature

5.1. Better estimates of excess functions. Recall that we always have the esti-

mate ep(x) < Rp(x), x £ M (5). No conditions on curvature are required in

this case. The basic idea of the proof of Theorem 3 is to find a better estimate

of ep(x) in terms of Rp(x) if Ric(¿)(M) > 0. We start with the following

Lemma 11. Let M be a complete n-manifold with Ric(¿.)(M) > 0 for some k ,

1 < k < n — 1. Let Cp be the cut locus of p. Then the distance function pp

is smooth at any point x £ Q.p := M\CP U {p} and for any orthonormal set

{e{, ... , ek+i} in TXM with grad pp(x) £ span{f, , ... ,ek+i},

M k
^2pp(eJ,eJ)< pp{x).

Proof. The proof is quite standard.   Let y be the minimal normal geodesic

issuing from p with y(r) = x , r = pp(x). For each u £ TXM , let u(t) be the
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parallel vector field along y with u(r) = u. Then define 0: TXM x [0, r] —► M

as

6(u, t) = expy{t)-u(t).

Set
\dd

f(u) = f
Jo

jj(u,t) dt.

Clearly, pp o exp"1 supports f at u = 0, i.e., pp o exp~' u < f(u), for all u

close to 0, and the equality holds at u = 0. Hence by the second variation

formula [CE] one obtains

d2 1
V2pp(u, u) < j=-f(su)\s=o = -(1 - (u, gxadp)2)

- j' i^f (R(u(t),y(t))y(t),u(t))dt.

Thus

k+\ .    / k+l \

]T V2pp(ej , <?;) < - U + 1 - $>y, grad pp)2\
j=\ V i=i /

= -.    Q.E.D.
r

By using a modification of the argument given in [AG], we can prove the

following

Lemma 12. Let M be a complete open n-manifold with Ric^(M) > 0 for

some 1 < k < n — 1. Then for all x £ M,

Proof. In case of k = 1, M has nonnegative sectional curvature. By Topono-

gove Theorem (cf. [CE]), one can easily obtain

ePix) <--*-)-+-.
2 pp(x)

For 2 < k < n - 1 and r > 0, set

*«> = (t-n'it + n"'" - ''"'"^ + 2ö?W'2 - '2)-
It is easy to check that

(a) cp';(t) + (k/t)<p'(t) = 1,
(b) cp'r(t) <0 for 0</<r,

(c)^(r) = 0.
Now fix a point x £ M. Take C = 2kpp(x)  ' and / = Rp(x).

First we assume that Rp(x) < \pp(x).   Take any r with  /?p(x) < r <

\pp(x). Define f: B(x, r) —* R as

f(y) = C(pr(d(x,y))-ep(y),       y £ B(x, r),

where ep(y) = d(p, y)-bp(y) is the excess function at p . We claim that / has

no locally maximal point in B(x, r)\{x}. We will prove it by contradiction.

Suppose / has a locally maximal value at some point xq £ B(x, r)\{x}. Take
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a normal minimal geodesic y issuing from p to x0 and a normal minimal

geodesic x issuing from x to Xo. By triangle inequality one can prove that

-e-d(', y(e)) supports -d(',p) at xo and -e-d(-, x(s)) supports -d(-, x)

at Xo, respectively. By Lemma 2, there is a ray aXo issuing from xo such that

bp°',iy) '■= bp(xo) + t - d(y, ox<3(t)) supports bp(y) at Xo . Therefore for small

e>0,

f(y):=Ccpr(e + d(y, x(e))) + bp(x0) + - - d ( y, oXo Í-JJ -e-d(y, y(e))

is smooth near xo and supports f(y) at xo . Thus f is locally maximal at xo

and for all v e TXoM,

V2f(v,v)<0.

Let  {ei, ... , ek+i}  be and arbitrarily orthonormal set in   TXoM  such that

y(d(p, Xo)), x(d(x, x0)), and rjXo(0) is in span{<?i, ... , ek+x} . By Lemma

11, one has

o>|vV*i,,i)>c[1 + ,;Wx,,0))(5j3^-¡^)

- ke
d(x0, y(e)) '

Since kd(xo, p)~x < k(pp(x) - r)~x < 2kpp(x)~x = C, the right side of (17)

is positive for sufficiently small e > 0. It is a contradiction. Therefore one

concludes that / has no locally maximal point in B(x, r). Take z £ R(p, r0)

with d(x, z) = Rp(x) (hence ep(z) = 0), where r0 = pp(x). Clearly, / does

not achieve the maximum on S(p, r). Then for any p, 0 < p < I = Rp(x),

0 < f(z) <   max   f(y) = Ccpr(p) -   min   ep(y),
yes(x,p) y£S(x,P)

which implies

Letting r —» / = Rp(x), one obtains

ep(x) <    min   ep(y) + 2p < 2p + Ccpr(p).
y€S(x,p)

ep(x) <xnin(2p+ Ccpi(p)).
0<p<l

Notice that h(p) := 2p + Ctp¡(p) satisfies that

lim h(p) = +oo   and      lim h(p) = +oo.
/>—0+ />->+oo

Then h(p) has a minimal point po £ (0, +oo).

(18) h'(po) = 2 + -^priPo - PöklM) = 0.

It follows from (18) that

(.9) o»<G>(Fn)''+l

and

(20) ^o < /•

i/k
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By (18), (19) and (20), one obtains

2k
eP(x) < y^Po + 27JTT) (/'o - ñ < f^Po

¿*K, (^ ,    2       ;2\     -

<     ^     (       C       jk+\X

- k-l \2(k + l)

2k

k- 1

2k       Rp(x)k+X

2(k+l)      pp(x)

\/k

Second, if Rp(x) > \pp(x), then by (5), one obtains

ep(x)<Rp(x)<4Rp(x)[^^j     .   Q.E.D.

Remark 5. Let M be as in Lemma 12. Let ep>q(x) := d(p, x) + d(q, x) -

d(p, q) denote the excess of a triangle formed by p , q , x in M, by the same

argument as above, one can show that

e>>9(x)<8«(x)(^)Xl

where s(x) = min{d(p, x), d(q, x)} and «(x) equals the distance between x

and a minimal geodesic joining p and q .

5.2.   Small diameter growth and finite topological type.

Proof of Theorem 3. By ( 13), for sufficiently large r, the assumption of Theorem

3 implies that

Rpix) s }_](k/2(k+l)
pp(xy/(k+i) ^ 8

for x in any boundary component, I, of M\B(p, r) with lnR(p, r) ^ 0 . It

follows from Lemmas 10 and 12 that all such components I are free of critical

points of Pp . Then Theorem 3 follows from Lemma 9.   Q.E.D.

The same argument as in Theorem 9 also gives the following

Theorem 10. Given n, K>0 and D>0. There is a constant C = C(n, K, D)>

0, such that if a complete open n-manifold M satisfies the bounds :
(l)KM>-K,

(2) Ric{k)(M) > 0 for some 2 < k < n - 1,
(3) for some p £ M,

ri/(*+i)      8

or

^iP ' r)  / lKk/2(k+l) > n

<ü*JS(p,r)) < lKkH(k+i) r > D
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Then M has finite topological type, and its total Betti number satisfies

n

J2h(M)<c.
k=0

6. Betti numbers and nonnegative Ricci curvature

In this section, we will study the "topological growth" of the geodesic balls

in complete open manifolds of nonnegative Ricci curvature. First let us recall

Gromov's theorem [Gl]. One can also refer to [A] for the details.

Theorem 11 (Gromov [Gl]). Let M bean n-dimensionalcomplete riemannian

manifold with sectional curvature Km > —1. Then there is a constant C(n) > 1

depending only on « such that for any 0 < e < 1 and any bounded subset

X CM,
n

^bk(X, F£^)<(l+dia(X)e-1)"C(«)l+dia(;,r),

A:=0

T£X denotes the ^-neighborhood of X in M.

This theorem, in particular, tells us that for a complete «-manifold M with

sectional curvature KM > -1, the total Betti number of the geodesic balls in

M has at most exponential growth, more precisely, for all r > 0,

Y,bk(p,r)<C(n)x+r,

k=o

where bk(p, r) = bk(B(p, r), M), the rank of the natural inclusion

it:Hk(B(p,r),F)->Hk(M,F).

What we will show in this section is, if in addition, M has Ric(M) > 0, then
the total Betti number of M has polynomial growth of degree « .

Proof of Theorem 2. Let B be any ball in M with radius r and let p > 1 .

Denote by pB the concentric ball of B with radius pr. By Theorem 11, there

is a constant Ci(«) depending only on « such that for all balls B with radius

r < 1 in M,
n

(21) 5>(/?,55)<G(«).
i=0

The rest of the proof will rely on the following topological lemma which was

proved by Gromov [Gl].

Lemma 13 [Gl, A]. Let M be a complete riemannian n-manifold and let p £

M. For any fixed numbers r > 0 and r0 < 7""_1 , let B® = B(p;, r0), j =

I, ... , N, be a ball covering of B(p, r) with p¡ £ B(p, r). Let Bk = 7* 5° ,

k = 0,... ,n + l. Then
n

Y,bi(B(p,r),B(p,r+l))
¿=o

<(e- l)Nt" sup J ¿ bi(Bkj , 5Bk) ;  0<k<n,   I < j < N
11=0
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where t is the smallest number such that each ball BJ intersects at most t other

balls B],.

Take r0 = J-"-1 , and let B(p¡, \ro), j — 1, ... , A, be a maximal set of

disjoint balls with p¡ £ B(p, r). Then B? := B(pj, r0), j = 1, ... , A, is a

covering of B(p, r). By Bishop-Gromov's volume comparison theorem, one

obtains

N<(l + 4-}   < 4"7"2+"(l + r)n.

Let Bk = 7kB(j, k = 0, ... , n + l. Assume that BJ intersects t other balls

Bj,. By the same volume comparison argument, one obtains t < 5" . Since

each ball Bk has radius < 1, it follows from (21) and Lemma 13 above that

n n

YJbi(B(p,r),M)<YJbl(B(p,r), B(p, r + I)) <C(n)(l+rf.   Q.E.D.
;=0 1=0

This theorem gives a topological obstruction to complete open manifolds M

with nonnegative Ricci curvature and sectional curvature bounded from below.
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