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COMPLEX GEODESICS AND ITERATES OF HOLOMORPHIC MAPS
ON CONVEX DOMAINS IN C

PETER R. MERCER

Abstract. We study complex geodesies /: A —> fi, where A is the unit disk

in C and ii belongs to a class of bounded convex domains in C with no

boundary regularity assumption. Along with continuity up to the boundary,

existence of such complex geodesies with two prescribed values z, w 6 £2 is

established. As a consequence we obtain some new results from iteration theory

of holomorphic self maps of bounded convex domains in C .

0. Introduction

Let Q be a domain in C" . Í2 is convex if for each pair of points x, y £ Í2,

the segment Lxy = {(1 - t)x + ty: 0 < t < 1} is contained in Q. Q, is strictly
_ o

convex if for each pair of points x, y £ £2, the segment Lxy = {(l-t)x+ty: 0 <

/ < 1} is contained in Q. Q is strongly convex if it has C2 boundary and a

defining function with positive definite real Hessian. Finally, Q is strictly lin-

early convex [L2] if: (i) it has C2 boundary, (ii) through each boundary point

p G dSl there passes a complex hyperplane which is disjoint from Q, and (iii)

it retains properties (i) and (ii) under small C2 perturbations. We have the fol-

lowing implications: strongly convex => strictly convex => convex, and strongly

convex => strictly linearly convex. There is no such relationship between the

convex domains and the strictly linearly convex domains (for example strictly

linearly convex does not, in general, imply convex).

Let A denote the unit disk in C. A complex geodesic is a mapping / g
HOL(A, Q) which preserves the Kobayashi distance between each pair of points

in A (see §1 for precise definitions).

Theorem 0.1. Let ficC" be strictly linearly convex. We have

(i) [L2] For each pair of points z, w £ Q. there is a complex geodesic f £

HOL(A, Q) which contains {z, w} in its image.

(ii) [L2] The mapping f above extends to a continuous mapping /: A —> £2,

with f(dA)cdQ.
(iii) [CHL] For each pair of points z ,w £ Q. there is a complex geodesic

f G HOL(A, £2) whose continuous extension f contains {z, w} in its image.

In this article we study a class of convex domains which we call the m-convex

domains (Definition 2.6). This class contains the strongly convex domains but
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requires no boundary regularity. In this case an analogue of Theorem 0.1 (i) is

immediate, thanks to

Theorem 0.2 [RW]. Let £2 CC C" be convex. For each pair of points z, w G £2

there is a complex geodesic f £ HOL(A, £2) which contains {z, w} in its

image.

After fixing some notation and definitions (§1) we obtain analogues of The-

orem 0.1 (ii) and (iii) for the class of m-convex domains (§§2 and 3). Finally

(in §4) we apply our work to obtain some new results from iteration theory of

holomorphic self-maps of convex domains in C" .

The content of this article will constitute part of the author's doctoral thesis.

The author is grateful to Ian Graham, his thesis advisor, for numerous useful

discussions and suggestions.

1. Preliminaries

In this section we recall some standard definitions to be used in the sequel.

Much of the terminology is taken from [A3]. £2 denotes a domain (= connected

open set) and A denotes the unit disk in C.

Definition 1.1. Let £2 c C" . The Kobayashi metric Kc.: r(£2) -> R+ is given

by

Ka(z;v) = inf{\u\: 3F £ HOL(A, £2) such that F(0) = z, dF0(u) = v}.

Definition 1.2. Let £2 c C" . The Kobayashi distance kçi : £2 x £2 —> R+ is given

by

kn(z, w) = inf ¡ /  Kçi(y(t); y(t))dt: y: [0, l]^£2isaC' curve

with y(0) = z, y( 1 ) = w >.

General properties of kq and kçi may be found, for example, in [Kl, K2,

or KR]. A result of Lempert (Théorème 1 in [LI]) asserts that if £2 c C" is

convex then

ka(z ,w) = inf{/7A(0, A) : 3F £ HOL(A, £2) such that F(Q) = z,  F(X) = w},

where
. 1       |1 -pX\ + \À-p\

p^>v = 2l0*\i-n\-\i-n\
is the hyperbolic or Poincaré distance on A (see [VE] for example). Clearly

then /ca = Pa ■

Definition 1.3 [V]. Let £2 c C". A complex geodesic is a mapping f £

HOL(A,£2) suchthat

PÁÍ,H) = kcl(f(k),f(p))   W,p£A.

Corollary 3 of [RW] asserts that if £2 cc C" is convex and / G HOL(A, £2)

is a complex geodesic then

*a(A; v) = Ka(f(X); f'(k)v)   V(A, v) £ T(A).
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Proposition 3.3 of [V] and Theorem 2 of [RW] together imply that if £2 is
convex then for / G HOL(A, £2) to be a complex geodesic it is sufficient that

/ preserves the Kobayashi distance between just one pair of distinct points

in A. A complex geodesic composed with an automorphism of A is again

a complex geodesic (and the image set is unchanged). Such a composition is

called a reparameterization.

We fix some further notation. For z g £2 c C", denote by da(z) the

Euclidean distance from z to <9£2. For £2 cc C" convex, z G £2, and v £C ,

denote by rci(z; v) the radius of the largest one complex dimensional closed

disk, centered at z, tangent to v , and contained in £2. Clearly rA(A ; v) - 1 -\X\

VA G A and nonzero v £C.

2. Complex geodesics and continuity at the boundary

In this section we obtain some new boundary estimates for the Kobayashi

distance on convex bounded domains in C" . We define m-convex and use

these estimates to obtain the appropriate analogue of Theorem O.l(ii).

For a > 1 denote by AQ the image of A under the mapping A i-+ (A+ l)1/a .

For a = 2, Aa is the interior of one loop of a lemniscate.

Lemma 2.1. Fix zq £ Aa . There is a C > 0 such that

kK{zo,z)<C-\\ogd%a(z)   VzgAq.

Proof. By the triangle inequality we may assume that Zq = 1. The function

/: A —» AQ given by z = f(X) — (A + \)xla defines a biholomorphism, so by the

invariance property of the Kobayashi distance we have

*A.(1, z) = PaÍO, za - 1) = ^og¡!|^I¡¡    Vz G A,.

Thus it suffices to show that d% (z) < 1 - \za - 1|  Vz G A„ .

If A = 0 then z = 1 and dK(z) = 2l/a - 1 , so the inequality holds. If A ¿ 0

then dA(X) = 1 - |A| is the Euclidean length of the segment y parametrized by

y = tX, 1 < t < 1/|A|. Let L = f(y) and denote by \L\ the Euclidean length
of L. We have then

\L\-   Í d-L   I ¿Al-  /1/|A'_J^_

</    _\Ml_= d _m)'/o = (i -\zn- in1/"

We observe that ¿a„(z) < |L| and the lemma is proved.   D

Lemma 2.2. Let £2 c C be convex and such that 0 G ö£2, A„ c £2, and

Aa n <9£2 = {0}. Then for any 6 > 0 (small) there is a v > 0 such that

whenever 0 < t < S, we have udçi(t) < dAn(t) < dçi(t).

Proof. The right-hand inequality is obvious, since A„ c £2. Set Zr = {A G

C: - n/2a < argA < n/2a, \X\ < r}. By increasing a (and thus decreasing

d/^ ) if necessary, we may assume that there is an ro > 0 such that I = Iro c £2.

If f < r0 then t £ £2 n X n A„. Now dK(t)/dz(t) / 1 as t -» 0, and
di.it) = /sin(7r/2a) so if t is small enough we can choose a v £ (0, sin(7i/2«))

such that dAll(t) >vt> v da(t) for 0 < t <ô and the lemma is proved.   D
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Now in order to estimate kc¡ for some general domains in C", consider

the following construction. We can rescale AQ by a factor of r > 0 and

linearly embed the result in C" to obtain the set A(p, 9, q, r), where p and

q are the images of 0, 1, G AQ respectively and 9 = n/a £ (0, n). We call

A(p, 9, q, r) a lemniscate with vertex p , aperture 9 , centre q and radius r.

We call the real segment from p to q the axis of A(p, 9, q, r).

Let £2 cc C" be convex and fix zo G £2. For each p £ 9 £2 there is a

9 £ (0, n) and an r > 0 such that A(/?, 9, q, r) c £2, where q lies on

the real segment from Zo to p. Now A = A(p, 9, q, r) considered simply

as a set of points may be contained in any 2 real dimensional affine subspace

containing zq and p. In any case, since £2 is bounded we may assume that

9 and r are independent of p £ 9 £2. For our construction, we consider A

as a complex linear image of A, so that A necessarily lies in a particular 2

real dimensional (= 1 complex dimensional) affine subspace determined by the

complex structure of C". We say that d £2 is lined with lemniscates when

referring to this construction.

Proposition 2.3. Let £2 cc C" be convex and fix z0 G £2. There is a C > 0

and an a > 1 such that

ka(zo,z)<C-\\o%d^(z)       Vzg£2.

Proof. It suffices to prove the proposition for points z G £2 near <9£2. We line

d £2 with lemniscates and observe that there is a p > 0, p < r such that if

da(z) < p then z lies on the axis of a lemniscate A = A(p, 9, q, r). We may

assume that dc¡(q) > p. Set

Ci = sup{kn(x, y) : dn(x) > p, da(y) > p}.

By the triangle inequality and the distance decreasing property we have

Mzo, z) < kn(z0, q) + kn(q ,z)<Cx + kA(q, z).

By Lemma 2.1 there is a C2 > 0 and an a > 1 such that

kA(q,z)<C2-±logdA(z).

Finally, by the lemniscate construction and Lemma 2.2 there is a C¡ > 0 such

that

-ilog¿£(z)<C3-±log¿¿(z).

Replacing Ci + C2 + C3 with C, the proposition is proved.   D

Proposition 2.4. Let £2 CC C" be convex and fix z0 G £2. There is a C £ R

such that

C-ilogi/Q(z)<rVn(z0, z)       Vzg£2.

Proof. We begin by noting that the result is true if £2 is any simply-connected

proper subdomain of C (see Lemma 2.1 in [GP]). Now for z G £2, let p be

a point of d £2 of minimum distance from z. Since £2 is convex there is

a (2n - 1) real dimension supporting hyperplane Hp to £2 at p, with p £

HpndQ. Up to a rotation/translation we may assume that p = 0 and H0 -

{w = (wx, ... , w") £ C: Rew1 = 0}. Then (say) Rew1 > 0 Vw G £2 and

z = (x1, 0, ... , 0) with jc1 > 0.   Define /: £2 - C by f(w) = wl , then
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/(£2) c n = {A G C: Re A > 0}. By the distance decreasing property, the above

note, and the choice of p we have then

ksi(z0, z) >kn(zl0, zx)>C- \\ogdn(zx)

= C-\\o%\zl\ = C-\\o%dçl(z).   D

Proposition 2.5. Let £2 CC C" be convex and let f £ HOL(A, £2) be a complex
geodesic with zo = f(0) G £2. There is an a > 1 and constants Ci, C2 > 0

such that
C,(l - |A|) < da(f(X)) <C2(\- |A|)'/a   VA G A.

Proof. The proposition follows directly from Propositions 2.3 and 2.4, Defini-

tion 1.3 and the definition of pA .   D

Remark 2.6. We can extend the hypothesis of the above proposition slightly

by allowing f(0) to be contained in some fixed compact set V c £2. In this

case the conclusion remains unchanged except that the constants Ci and C2

depend on V.
If £2 CC C" is convex with C2 boundary then we can line d£2 with small

balls or complex linear images of A rather then lemniscates. This construction

leads to similar results with a = 1. Indeed Proposition 2.3 is then a special case

of Proposition 1.2 of [Al], and Proposition 2.5 is a generalization of Proposition

12 of [LI].
Thus the number a is a quantity which indicates the sharpness of the corners

of <9£2. It is natural then to quantitize the flatness of 9 £2. This is the content

of

Definition 2.7. Let ficcC" be convex. We say that £2 is m-convex if there

is a C > 0 and an m e (0, oo) such that for every v £C" we have

(1) rçl(z;v)<Cdlim(z)   Vz G £2.

A ball is 2-convex and thus a strongly convex domain is 2-convex. For an

arbitrary m-convex domain in C" (n > 2) we must have m > 2 . It is possible

to have a bounded strictly convex domain in C" (n > 2) for which (1) is not

satisfied for any C > 0 or m £ (0, oo). We say that such a domain is oc-

convex. Conversely, w-convex need not imply strictly convex.

We state a result due to Graham [G] which allows us to relate (1) to the

Kobayashi metric.

Theorem 2.8. Let £2 cc C" be convex. For each v £ C" we have

\v\ \v\
o x <Ka(z;v)< '   x    Vzg£2.   d
2rn(z;v) ~   "v rn(z;v)

We come to the main result of this section.

Proposition 2.9. Let £2 ce C"  be m-convex and let f £ HOL(A, £2)  be a

complex geodesic.  Then f extends to a continuous mapping f: A —> £2, with

f(dA)cdü.

Proof. By Theorem 2.8 we have for any v G C,

< Ka(f(X) ; f'(X)v) - ka(X ; v) < -^\-   VA G A.
2rçl(f(X);f'(X)v)-   "VJ v >"* '  >       "  »   ' - i _ n\
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By hypothesis and Proposition 2.5 there is an a > 1 and a C > 0 such that

(2) lJ {m -      Y^]x\      -       Y^]x\
= C(l-|A|)1/am-1|'y|   VAgA.

The desired extension / exists due to a well-known result of Hardy and Little-

wood (Theorems 3 and 4, Chapter IX, §5 of [GO]). Definition 1.3 ensures that

f(dA) c <3£2.   D

Remark 2.10. The above proof actually yields a bit more. The same Hardy-

Littlewood Theorem shows that / is Holder continuous on A with exponent

I/am G (0, \), that is, there is a C > 0 (depending only on f(0)) such that

\fih) - f(X2)\ < C\Xi - X2\l'am   VA, ,X2£A.

After obtaining these results, we learned that Dineen and Timoney have a

version of Proposition 2.9 in the special case of bounded m-convex circled

domains (Theorem 4.4 of [DT]).

3. Complex geodesics with prescribed boundary data

In this section we obtain an analogue of Theorem 0.1 (iii) for the class of

w-convex domains. With our results in place, the methods of Chang, Hu, and

Lee [CHL] do much of the work for us.
For £2 c C" , set

SF = {complex geodesics / g HOL(A, £2): dçi(f(0)) > dn(f(X)) VA G A}.

Lemma 3.1. Let £2 cc C" be convex. There is an a > 1 and C > 0 such that

for each f £S*~ we have

da(f(X))<C(\-\X\)x'la VAgA.

Proof. Let / G &~. By Remark 2.6 it suffices to prove the lemma for f(0) near

d £2. Fix zo G £2 and line d £2 with lemniscates. Let p > 0 and Ci > 0 be as
in the proof of Proposition 2.3. If dci(f(0)) < p then f(0) is on the axis of a

lemniscate A = A(p, 9, q, r). Fix A G A, then since f £ SF, f(X) is on the
axis of a lemniscate A' = A(p' ,9,q',r). By the definition of pA, the triangle

inequality, the distance decreasing property, and our choice of Ci we have

(3) \logTh^ = M/(0) ' fW) - M/(0)' q) + kQiq' ql) + knim' ql)

<kA(f(0),q) + Ci+kA,(f(X),q').

By Lemma 2.2 and Proposition 2.3 there is an a > 1 and a C2 > 0 such that

(3) is no larger than

4iogdS(/(0)) + c2-¿iogdS(/(A)).

Therefore d%(f(0))d%(f(X)) < C(l - |A|) for some C > 0 and finally the
definition of &~ implies the desired result.   D

Lemma 3.2. Let £2 cc C" be m-convex. There is an a > 1 and a C > 0 such

that for each f £ SF we have

\f(h) - f(X2)\ < CIA, - A2|'/2"w   VA!, A2 G A.
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Proof. The first inequality in line (2) combined with Lemma 3.1 shows that

there is a C > 0 and an a > 1 such that for each f £Sr and v £ C we have

\f'(X)v\ < C(\ - \X\)x'2am-x\v\   VA G A.

The Hardy-Littlewood Theorem completes the proof.   G

Lemma 3.3. Let £2 ce C" be m-convex. Let ^ be a family of complex

geodesics with the property that there is an a > 0 such that diam(/(A)) > a

for each f £&. Then there is a compact set V c £2 such that f(A) flK / 0

for each f £ *&.

Proof. By reparameterizing each element of & (if necessary) we may assume

that 'S c SF. Write £2 = U Vj with Vx c V2 c ■■■ each compact. If the
lemma is not true then for each j there is an f £& such that f(A) n V}■ =

0. By Lemma 3.2 we may assume that fj—*f uniformly on A. We have

then f(A) n V¡■ - 0 for each ;' and hence /(A) c 9 £2. We must also have

diam(/(A)) > a. Since £2 is m-convex this is impossible (the appropriate

maximum principle is provided by Lemma 1 of [G], which originally appears

in [TW]), and we have the desired contradiction.   D

We come to the main result of this section.

Proposition 3.4. Let £2 cc C" be m-convex. Let z ^ w g £2. There is a

complex geodesic f £ HOL(A, £2) whose continuous extension (see Proposition

2.9) contains {z, w} in its image.

Proof. Let {z;}, {Wj} c £2 with z¡ -> z and w¡ —> w . By Theorem 0.2

there are complex geodesics f £ HOL(A, £2) with {z¡, w¡} c f¡(A). Now

diam(/y(A)) > \z¡ - w¡\ and z ^ w so we may assume that diam(/)(A)) > a

for some a > 0. By Lemma 3.3 we can reparameterize each f (if necessary)

to ensure that there is a compact set V C £2 such that {//(0)} c V . By Remark

2.10 we have /)■—►/ uniformly on A. / has the desired property.   D

4. An application

In this section we apply some of the work of the previous sections to obtain

a new generalization of the Denjoy-Wolff Theorem (Theorem 4.1 below). First

we do some groundwork.

Let £2 c C" and z, w £ £2. A Cx function y: [0, 1] -> £2 with y(0) = z
and y (I) — w which attains the infimum in Definition 1.2 is called a real
geodesic between z and w . If £2 = A, real geodesics are arcs of circles which

intersect 9A at right angles (see Chapter 2, §7 of [VE]). Theorem 0.2 implies

that if £2 is convex then for any pair of points z, w £Íl, there is a real geodesic

between z and w . If u e £2 is a point of the image of such a real geodesic then

kçi(z, w) = kçi(z, u)+ka(u, w). When complex geodesics extend continuously

to the boundary of A it is clear that real geodesics extend along with them.

Let £2 c C and F g HOL(£2, £2). We consider convergence (uniformly on

compact subsets) of the sequence defined by Fx — F , Fj+X — F o FJ', j' -

1,2,.... The structure of the set Fix(jF) = {z g £2: F(z) = z} plays an

important part. If £2 = A, then (assuming F is not the identity mapping) the

Schwarz Lemma implies that either Fix(F) = 0 or Fix(F) is a single point.

With regard to the former case, the following result was proved in 1926.
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Theorem 4.1 (Denjoy [D], Wolff [W2]). Let f £ HOL(A, A) with Fix(f) = 0 .
There is an x £ dA such that fJ -> x uniformly on compact subsets of A (that

is, P -» / where f(X) = x VA g A).    D

The main tool used in the proof of this theorem is the following generalization

of the Schwarz Lemma.

Theorem 4.2 (Wolff [Wl]). Let f £ HOL(A, A) with Fix(/) = 0 . There is an
x £ dA such that every disk Dx in A, tangent to 9A at x has the property that

P(DX)CDX   V;.    D

Of course the x's appearing in the above two theorems are the same. For a

nice account of iteration theory on A see [B].

The proofs of these two theorems rely on purely elementary means such as

the Schwarz Lemma, Montel's Theorem and a geometrical description of the

set Dx . In particular we have

Definition 4.3. The horocycle at x G 9A with radius R is given by

{11 - Xx\2        1
ÀeA:T^W<Rj-

A useful result of Yang [Y] is the following:

1       II — Xx\2
(5) \im[pA(X, p) - pA(0, p)] = -log

which is a direct result of the transitivity of the automorphism group of A.

The importance of (5) is that although the right-hand side relies heavily on

the structure of A (compare with (4)), the left-hand side can be generalized to

quite general domains in C" using the Kobayashi distance. Thus we have the
following generalization of horocycle, originally due to Abate [A2].

Definition 4.4. Let £2 cc C" and fix zo G £2. We define the small and big
horospheres at x £ 9 £2 with radius R respectively by

Ex(z0, R)= \z £0.: limsup[kn(z, w) -kçi(z0, w)] < ¿\ogR\
[_ w—x )

and

Fx(zo, R) = (z G £2: liminf[/cc2(z, w)-kQ(zo, w)] < j\ogR\.
t tí)—»X J

Clearly Ex(z0, R) c Fx(z0, R). Abate [A4] has shown that if £2 is strictly

convex with C3 boundary then Ex(z0, R) = Fx(z0, R). In general this is not

the case (see [A5]). We remark that if £2 = A then DX(R) = Ex(0, R) =

Fx(0,R).

These definitions lead one to hope that an analogue of Theorem 4.1 holds for

general domains in C" . Indeed in 1988 Abate [A2] proved a perfect analogue

in case £2 ce C" is strongly convex. In this section we obtain the desired

analogue in case £2 ce C" is m-convex.

The main problem in using small and big horospheres is making sure that

they behave roughly the same way that horocycles do near the boundary of the

domain in question. To be more precise we have
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Definition 4.5 [A6]. A domain £2 cc C" is F-convex if for each x £ 9£2 we
have

Fx(z0, jR)n9£2 = {x}   Vz0gQ, R>0.

Certain types of domains are known to be F-convex: strictly pseudoconvex

domains with C2 boundary, domains of strict finite type, etc. (see [A6] and

the references given there). We prove

Theorem 4.6. Let £2 cc C" be m-convex. Then £2 is F-convex.

Proof. Fix x G 9£2, z0 G £2, R > 0. We begin by showing that x G Tx(z0, R)n
9£2. By Proposition 3.4 there is a complex geodesic / G HOL(A, £2) whose

continuous extension (which we also denote by /) contains {zo, x} in its im-

age. Up to reparameterization we may assume that /(0) = z0 and /( 1 ) = x .

Let z G f(Di(R)) (see (4)), so that z = /(A) for some A G DX(R), and choose

a sequence {/•;} c A with r¡ / \ . We have then

liminf[rc£2(z, w) - kQ(z0, w)] < lim [kn(z, f(r})) - ka(zo, f(r¡))}
W—*X J—»oo

= lim [ka(f(X), f(rj)) - kaiAO), /(*>))]
J—►oo

= lim [pA(X, rj) - pA(0, rj)] < A logic
J—»oo

Hence f(Dx(R)) c Fx(z0, R) and in particular x £ Fx(z0, R) n9£2.

We now show that x is the only element of 9£2 which belongs to Fx(z0, R).

To this end, assume that y £ Fx(zo, R) n 9£2, with y / x. Then there is a

sequence {z7} c Fx(zq, R) with z¡ —> y . That is, for each j we have

\iminf[kci(zj, w) -ka(z0, w)] < \\ogR.
W—>X

So for each j there is a Wj (close to x) such that

(6) [ka(zj, wj) - kQ(z0, wj)] < \ \ogR.

We have then z¡ -* y and Wj -* x. By the proof of Proposition 3.4 and the
opening remarks of this section there is a sequence {uj} c £2 contained in a

compact set V c £2 such that kçi(zj ,Wj) = ka(zj, Uj) + ka(Uj, Wj). We may

assume that u,■ —* u £ £2. From (6) and the triangle inequality we have then

\ logR > kn(zj, uj) + ka(uj, wj) - kn(z0, Uj) - ka(uj, wj)

= kn(Zj, Uj)-kn(zo, Uj).

Upon letting j —> oo we obtain the desired contradiction.   D

Now to obtain the main result of this section we need only refer to the work

of Abate. First we have

Definition 4.7. Let £2] c C", £22 C Cm . A sequence of mappings {Fj} c

HOL(£2!, £22) is compactly divergent if for each pair of compact sets Ki c £2i ,

V2 c £22 there is a j0 such that Fj(Vi)nV2 = 0 V/ > ;0 •

Lemma 4.8 (Theorem 2.4.20 of [A5]). Let £2 ce C" be convex and let F £
HOL(£2,£2) besuchthat Fix(F) — 0 . Then {Fj} is compactly divergent.   D

The following is the appropriate generalization of Theorem 4.2.



210 P. R. MERCER

Lemma 4.9 (Theorem 2.3 of [A2]). Let £2 cc C be convex and let F £

HOL(£2, £2) be such that Fix(F) = 0. Then there is an x £ 9£2 such that
for any zn G £2, R > 0 we have

FJ(Ex(z0,R))cFx(zQ,R)   V;.   D

Finally we come to our version of Theorem 4.1.

Proposition 4.10. Let £2 cc C" be m-convex. Let F £ HOL(£2, £2) be such
that Fix(F) = 0. Then {Fj} converges uniformly on compact subsets of £2 to

a constant x £ 9 £2.

Proof. The proof is similar to that of Theorem 3.5 in [A6]. Let x £ 9£2 be

given by Lemma 4.9. Let G be a limit point of {FJ}. By Lemma 4.8 and the
boundedness of £2 we must have C7(£2) c 9£2. By Lemma 4.9 and Proposition

4.6 we have for any zo G £2, R > 0,

G(Ex(z0, R)) cFx(zo, R)ndQ = {x}.

Clearly then G = x and the proposition is proved.   D

Remark 4.11. An example in [A2] shows that Proposition 4.10 does not hold if

£2 is assumed to be merely convex and bounded. As we noted earlier, a strongly

convex domain is 2-convex. Thus Proposition 4.10 is currently the most general

version of the Denjoy-Wolff Theorem in the sense that the (bounded) m-convex

domains is the largest subclass of the bounded convex domains for which such

a theorem is known to hold. The method of using complex geodesics for such

problems seems to be new.

We note that the Denjoy-Wolff Theorem for the unit ball in C" was proved in

1983 by MacCluer in [M]. The methods there are more elementary than those

used here or in Abate's work. In particular the Kobayashi distance does not
appear. Similar results for the unit ball in C" appear in [KU and C].

Finally we point out that this section was devoted exclusively to the situation

where F £ HOL(£2, £2) is such that Fix(F) = 0. For some very interesting

results for the case where Fix(F) ^ 0, one may consult [A2], and especially

[A6].

Added in proof. For smoothly bounded (pseudo-) convex domains of finite type,

X. Huang (A boundary rigidity problem ofholomorphic mappings on some weakly

pseudoconvex domains, Preprint, 1992) has independently obtained results anal-

ogous to those results of §§2 and 3 which involve complex geodesics.

M. Suzuki (Iterates of holomorphic self-maps on a convex domain, Kobe J.

Math. 6 (1989), 229-232) obtained a result similar to Proposition 4.10 using
an approach to iteration theory which does not involve horospheres.

The authors thanks Ian Graham for bringing these references to his attention.

References

[Al]      M. Abate, Boundary behavior of invariant distances and complex geodesics, Rend. Accad.

Naz. Lincei 80 (1986), 100-106.

[A2]      _, Horospheres and iterates of holomorphic maps, Math. Z. 198 (1988), 225-238.

[A3]      _, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), 645-

655.



MAPS ON CONVEX DOMAINS 211

[A4] _, The Lindelöf principle and the angular derivative in strongly convex domains, J. Anal-

yse Math. 54 (1990), 189-228.

[A5]      _, Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press, Rende,

Cosenza, 1989.

[A6]      _, Iteration theory, compactly divergent sequences and commuting holomorphic maps,

Preprint, 1990.

[B] R. B. Burckel, Iterating self-maps of the disk, Amer. Math. Monthly 88 (1981), 396-407.

[CHL]   C. H. Chang, M. C. Hu, and H. P. Lee, Extremal analytic discs with prescribed boundary

data, Trans. Amer. Math. Soc. 310 (1988), 355-369.

[C] G. N. Chen, Iteration of holomorphic maps of the open unit ball and the generalized upper

half plane of C , J. Math. Anal. Appl. 98 (1984), 305-313.

[D] A. Denjoy, Sur l'itération des fonctions analytiques, C. R. Acad. Sei. Paris 182 (1926),

255-257.

[DT]     S. Dineen and R. M. Timoney, Complex geodesics on convex domains, Preprint, 1990.

[GP] F. W. Gehring and B. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30

(1976), 172-199.

[GO] G. M. Goluzin, Geometric theory of functions of a complex variable, Transi. Math. Monos.,

vol. 26, Amer. Math. Soc., Providence, R.I., 1969.

[G] I. Graham, Distortion theorems for holomorphic maps between convex domains in C ,

Complex Variables Theory Appl. 15 (1990), 37-42.

[Kl]      S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Dekker, New York, 1970.

[K2]      _, Intrinsic distances, measures and geometric function theory. Bull. Amer. Math. Soc.

82(1976), 357-416.

[KR]     S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982.

[KU]    Y. Kubota, Iteration of holomorphic maps of the unit ball into itself, Proc. Amer. Math. Soc.

88(1983), 476-480.

[LI] L. Lempert, La métrique de Kobayashi et la réprésentation des domaines sur la boule, Bull.

Soc. Math. France 109 (1981), 427-474.

[L2]      _, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications,

1981, Bulgar. Acad. Sei., Sofia, 1984, pp. 341-364.

[M] B. D. MacCluer, Iterates of holomorphic self-maps of the unit ball in C" , Michigan Math.

J. 30(1983), 97-106.

[RW] H. Royden and P. M. Wong, Carathéodory and Kobayashi metric on convex domains,
Preprint, 1983.

[TW] E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into

a Banach space, Proc. Amer. Math. Soc. 18 (1987), 640-646.

[VE]      W. A. Veech, A second course in complex analysis, Benjamin, New York and Amsterdam,

1967.

[V]        E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394.

[Wl]     J. Wolff, Sur une generalization d'un théorème de Schwarz, C. R. Acad. Sei. Paris 182

(1926), 918-920.

[W2]     _, Sur l'itération des fonctions bornées, C. R. Acad. Sei. Paris 1982 (1926), 200-201.

[Y]        P. Yang, Holomorphic curves and boundary regularity of biholomorphic maps, Preprint,

1978.

Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1

Current address: Department of Mathematics, University of North Carolina, Chapel Hill, North

Carolina 27599-3250
E-mail address : mercer@math.unc.edu


