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CLASSIFICATION OF SINGULARITIES FOR BLOWING UP
SOLUTIONS IN HIGHER DIMENSIONS

J. J. L. VELAZQUEZ

Abstract. Consider the Cauchy problem

■ Am = uP        when x£RN,  r > 0,  N>1,

u(x, 0) = u0(x)   when íGl",

where p > 1 , and Uo{x) is a continuous, nonnegative and bounded function.

It is known that, under fairly general assumptions on u0(x), the unique solution

of (P), u(x, t), blows up in a finite time, by which we mean that

(p) {7
L u(x,

lim sup    sup u(x, t)    = +00.
itT     \xzrN j

In this paper we shall assume that u(x, t) blows up at x = 0, t = T < +00 ,

and derive the possible asymptotic behaviours of u(x, t) as (x, i) —> (0, T),

under general assumptions on the blow-up rate.

1. Introduction and description of results

This paper deals with the following problem:

(1.1) ut - Au = u"   when x £RN,  t>0, p > 1,

( 1.2) u(x ,0) = u0(x)       when x£RN

where u0(x) is a continuous, nonnegative and bounded function. Local (in

time) existence of a classical solution u(x, t) of (1.1), (1.2) follows at once
from standard results. It is said that u(x, t) blows up in a finite time T < +00 ,

if w(x, i) satisfies (1.1), (1.2) in RN x (0, T) and

lim sup ( sup u(x, t) ) = +00.

In such case, a point x0 £ RN is called a blow-up point of u(x, t) if there

exist sequences {x„}, {t„} such that lim^ocX« = xo, lim„^oo t„ = T, and

lim„_00 u(x„ ,tn) = 00. Conditions on uq(x) and p under which u(x, t)

blows up in finite time have been extensively discussed in the literature (cf., for

instance, [Fu, AW]). See also [BBE, CM, FM, L, W] for related results.
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We shall concern ourselves with the task of describing the asymptotics of

solutions near blow-up points. To this end, we shall assume henceforth that

(1.3) u(x, t) blows up at x = 0 and t = T < +00.

Moreover, some information about the manner in which blow-up happens will

be taken for granted. Namely, we will suppose throughout that

(1.4a)

(14.b)

u(x,t)<M(T-t)-xl(p~x)   foranyxeE", t<T, and

some constant M.

lixn(T - t)xl{p-X)u(x(T - t)x/2 ,t) = (p- 1)-i/Cp-D j

uniformly on bounded sets |x| < R with R > 0.

We remark in passing that (1.4) holds under loose assumptions on the initial

values uo(x) when p < (N + 2)/(N - 2) ; see for instance [GP] for the case

A = 1 and the series of fundamental papers [GK1, GK2, GK3], where no

restriction on the dimension A is made.
Our aim here consists in obtaining an additional term in the asymptotic

expansion in ( 1.4b) when A > 1. Besides its intrinsic interest, we expect that

this fact will be important in describing the local structure of the blow-up set,

as it happens to be in the one-dimensional case (cf. [HV1, HV2, HV3]). We

shall recall briefly the corresponding results in [HV1, HV2], since these are

relevant for the analysis to be performed presently. Following [GP and GK1],

we introduce similarity variables

(1.5) u(x,t) = (T-t)-xl(p-xH(y,x)   wherey = —^=,  t =-log(r-?),
Vi -1

so that 0 satisfies

(1.6) 0T = 0w,-y0^/2 + 0 + ./i(0),

where

/l(0) = 0P-^T0-

We then linearize about the nontrivial stationary solution of (1.6) by setting

(1.7) 4>(y,x) = (p-l)-x^-X) + V(y,x)

so that *¥(y, t) solves

(1.8) TT = Vyy - yVy/2 + ¥ + /(¥) = AV + f(V),

where

/(¥) = ((/>- i)-i/(p-i)+ yy> - (p- i)-W(P-i)
p-\

and f(s) = 0(s2) as s -» 0. Here and henceforth, free use will be made of the

customary asymptotic notations o( ), 0( ), < , « , etc. For 1 < q , -Hoc and

any positive integer k > 1, we define the spaces

(1.9a) Ll(R) = jg £ L^: j^\g(s^e-s2IUs < +oo| ,
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Hk(R) = [g £ L20C(R): for any j£[0,k],  gW £ L20C(M)

(L9b) r 2 1
and  / \gW(s)\2e-s'Ads<+oo\.

Jr J

It is readily seen that L2,(R) (resp. Ll(R), 1 < q < +oc , q / 2) is a Hubert
space (resp. a Banach space) when endowed with the norm

(1.9c) \\g\\22w^(g,g)= ¡\g(s)\2e-s2IUs
Jr

(resp.

11*112,«,= i\g(s)\"e-s2'4ds).
Jr.

Since the L2, norm will be extensively used hereafter, we shall denote it by

|| || for simplicity. Clearly, for k > 1, Hk(R) can be given a structure of

Hubert space in a straightforward way. It is then natural to consider (1.8) as a

dynamical system in L^(R). Actually, operator A defined in (1.8) with domain

D(A) = H2(R) is selfadjoint in L2(K) and has eigenvalues X„ = 1 - n/2,
« = 0,1,2,..., with eigenfunctions Hn(y) given by

Hn(y) = cnHn(y/2), where cn = (2"l2(4n)xl\n\)xl2)-x,

(1.10) and Hn(y) is the standard nth Hermite polynomial,

so that \\H„\\ = 1 for any n.

The following result was proved in [HV1] and [HV2].

Theorem A. Assume that A = 1  and (1.3) holds.  Then one of the following

cases occurs:

(1.11a) *¥(-, x) = 0   foranyx>0.

(4n)x/4(p - l)-x/{p-x)   H?(v)        fl\
(1.11b)        Y(-,t) + ^—yv±l-2U2 = 0/_j    asx^oo.

(1.11c) There exist m even, m > 4, and C / 0 such that

¥(•, t) - Ce{X-ml2)zHm(-) = o(e{X-m/2)r)   as x - oc,

where convergence takes place in Hx, as well as in Clo¿a for any k > 0 and

a£(0, 1).

To deal with the case A > 1 , we modify our functional frame in a natural

way. Let q, k be as in (1.9), and set

(1.12a) Ll(RN) = {f£L?JRN):^\f(s)\'!e-s2'ids < +^} ,

(1.12b)

Hk(RN) = {# £ L2V(RN): ̂  £ L2„(RN) where a = (a, , ... , aN),

a d"f dl"lf       \
\a\ = ai+... + aN<k, and — = __^j.
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The change of variables; (1.5), (1.7) leads then to

¥T = AN*¥ + fÇ¥),    where /(¥) = O^V2) as ¥ - 0 and

(1-13) v-VTAN = M-?-^+*¥.

Operator AN is now selfadjoint in L2J(RN) with domain D(AN) = H2(RN).

Its spectrum consists of the eigenvalues

(1.14a) 1-    where m\, m2, ... , mN = 0, 1, 2, ... ,

and the corresponding eigenfunctions are

(I 14b1     Hmi,m2.mN - Hm¡(yi) •••HmN(yN),

where Hj(y¡) is defined in (1.10).

For x = (xi, ... , XaO and a = (a\, ... , a^), let us write xa = x"1 ■ • • x^" ,

and Ha(x) = Ha¡(x\) ■ ■ ■ Hafi(xN). Our main result is

Theorem. Let u(x, t) be the solution of (I.I), (1.2) and assume that (1.3),

(1.4) hold. Let ¥(•, t) be given by (1.5), (1.7). Then, if*¥(-, x)¿0 for some
x > 0, the following possibilities arise. Either there exists an orthogonal trans-

formation of coordinate axes such that, denoting still by y the new coordinates

(1.15a) vP(-,t) = -^¿//2(y¿) + of-)    as x->oo
T fc=i VT/

where 1 < / < A and

Cp = (4n)xl\p - l)~xl(p-X)/V2p

or there exists an even number m, m > 4, and constants ca not all zero such

that

(1.15b) *¥(-, t) =-eU-"1'2* Y, caHa(y) + o(e{X-m/2)T)   asx-^oo,

\a\=m

where the homogeneous multilinear form

B(x) = Y, Co*"
\a\=m

is nonnegative. Incases (1.15a), (1.15b) convergence takes place in Ht

as well as in Cfc'a(RN) for any k>0 and a £ (0, 1)

We next discuss briefly previous work to ours, as well as some related results.

In [B], the author considers the Cauchy-Dirichlet problem for

(1.16) u,-Au = eu

in a bounded domain with homogeneous side conditions. Such a choice of

the reaction term f(u) = eu is well known in combustion theory (cf. for in-

stance [BE]). It is shown in [B] that solutions satisfying (1.15a) (or rather its

counterpart for (1.16)) actually exist.
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On the other hand, let us denote by {e+}kj=i the eigenfunctions of AN corre-

sponding to positive eigenvalues (cf. (1.14)), {e®}™^ its eigenvalues with eigen-

value zero, and {e~}jZi its eigenfunctions with negative eigenvalues. Recalling

the definition of *F(y, t) in (1.7), we may write

k m oo

*iy, *) = EftWf/M + Ea;(T)*°oo + Y,y^eJiy)-
7 = 1 7=1 7 = 1

Then the following result has been shown in [FK].

(1.17) Either 4* —> 0 exponentially fast as i-»oo, or for any e > 0 there is a

time so such that

k oo m

E^W + E^^E^)    /^T>50.
7=1 7=1 7=1

Moreover, if Y ¿foes «oí approach zero exponentially fast, the neutral modes

{"7)7=1 sato-fr

where Ufj denotes orthogonal projection onto e¡ and ^0 is the neutral compo-

nent of ¥ :
m

^ = £0,(1)^).

7=1

Concerning the alternative state in (1.17), we obtain here a precise descrip-

tion of the situation where *F(-, t) —» 0 as x —> 00 exponentially fast (cf.

(1.15b)). Furthermore, an asymptotic expansion for ¥(•, x) in the case where

the neutral modes prevail is given in (1.15a). It is worthwhile to point out that

our approach is technically rather different from that in [FK]. While those au-

thors rely heavily on a center manifold viewpoint, we proceed along the lines

of the perturbative techniques already used in [HV1, HV2, HV3] to deal with

the one-dimensional case. The techniques introduced in these works, as well as

those developed in [FK], have been applied in [HV5, BB, Li]. Of these, [HV5]
and [BB] deal with the combustion model (1.16). In [HV5], the final blow-up
profiles for the corresponding Cauchy problem are obtained, and the existence

of flat blow-up structures (in the sense of ( 1.1 lc)) is shown in a particular case,

which correspond to two maxima collapsing at blow-up time. The paper [BB] is

concerned with the description of final blow-up profiles for radial solutions in

any space dimension, under some assumptions on the initial values which are

not required in [HV5].
After completion of this article, we learned about related and independent

work by Filippas and Liu [FL]. In that paper, the authors obtain, among other

results, that either (1.15a) holds, or the scaled error *¥(y, x) must decay at
least exponentially as x —► oc . However, decays faster than exponential are not

excluded, and no precise formula like (1.15b) is obtained therein.
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The plan of this paper is as follows. A number of auxiliary results which

extend previously known facts for the case A = 1 can be found in §2. The

main novel points in the proof of our main result are then discussed in §3.

2. Preliminaries

In this section we shall gather some results which are analogous to those

previously obtained in [HV1] for the case A = 1. To keep this paper within

reasonable bounds, we shall just stress the points where relevant differences

appear with respect to the corresponding results in [HV1], and refer to that

work for details.
As a starting point, we state a crucial delayed regularizing effect (cf. [HV1,

§2]).

Lemma 2.1. Assume that *F(y, t) satisfies (1.13) and |*F| < M < oo for some

M > 0. Then for any r > 1, q > 1, and L > 0 there exist Tq = x^(q, r) and

C = C(N, r,q, L) such that

(2.1) ||vF(.,T + T*)||r,„,<C||¥(.,T)||(7,!iJ   foranyx>Oandx*£[x*o,x*0 + L].

It is worthwhile to point out here that (2.1) is basically a linear effect, which

holds indeed for solutions of the heat equation. To proceed further, we notice

that, since the set {Ha:a £ NN} is an orthonormal basis in L2 (MN), we can

represent 4* as

(2.2) ^>(y,x) = Yjaa(x)Ha(y)
a

for some coefficients aa(x). The following nondegeneracy result can be proved

exactly as in [HV1, §3].

Lemma 2.2. Assume that \m(y, x)\ is bounded. Suppose also that for any R > 0

there exists C = C(R) such that

H*(-,t)|| <Ce~Rr   forx>0.

Then "¥(y,x) = 0.

As a further step, we notice that the first modes in (2.2) represent negligible

contributions to the L^-norm of *F.

Lemma 2.3. Let *F(y, t) be as in the previous lemmata, and assume also that

lim^oo ||»F(., t)|| = 0. Then there holds

,,,* ,. E|q|<l   MT)I n
(13) ¿%    |'|y(.,T)||    =°-

Proof. It consists in a suitable modification of that of Proposition 4.1 in [HV1 ].

Of the various estimates which are used there to derive (2.3) when A = 1, only

one does not carry over as such when A > 1, namely that obtained in Lemma

4.4. To circumvent this problem we proceed as follows. Assume that (2.3)

does not hold, so that there exists a sequence {Xj} with lim^oc x¡ = oc and a

constant e > 0 such that

£K(t,)|>£|PF(.,t,)||.
|a|<l
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Set now *F(y, t) = a¡(y, x) + ojj(y, x), j = 1,2,... , where for any such j,
Oj solves

(Oj)T = A(Oj) - y- • V(Oj) + Oj     if T > Xj ,

Ojiy, *j) = x¥(y, T/).

For R > 0, let us define %R(y) by XR(y) = I if M < -R and zero otherwise.
We then have

(2.4) For any given L > 0, e > 0, and R > 0 there exists C > 0 indepen-

dent of R, e, and a constant Ce such that

lç^(jT^to(Of(M-..)i)iaA)

<C£ + C£||¥(.,t,)||1/4(1+£>cr2)5/4

where g(s) = min(s, s5/4).

To obtain (2.4), we notice that

rij+L rxi+e rTi+L

/ \\XRÍ-)giWj(-,S)\)\\2ds= ()+/ ()
Jt¡ Jtj Jij+e

<C r'E\\XR(.)\Oj(-,s)\\\2ds+ f'     \\XRi')\Oji-,S)\W\?ds
Jxj J-Cj+s.

= h+ h-
We then estimate /i as follows:

rti+e r

e-(2/4

RM

\V(X,Xj)\dX)       dt]

dX) dÇ

h < Ce2^-^ /      ds /
JXj JR

if   exp(-(^g-^-^)/2 - /l)2/4(l - e~^-^)

X\hN (4n(l - e-(s-^))N/2

< Ce2L i'    ds f   \V(X, T;)|2e-A2/4
Jtj Jr."

(Î   exp(-(^g-^-^)/2 - A)2/4(l - g-(T~^)) - g2/4 + X2/4)

X KJun (4n(l - e~^-^))N/2

<Ce\m-,Xj)\\2.

On the other hand, a slight modification of the argument used in [H V1, Lemma

4.4] yields

h < C\m-, ^)\?ll(l+eeRy'2e^2{l_^)im

for some suitable constants C, 8 independent of e, R, and {t,-} , and (2.4)

follows. Taking now the limits j —> oo, R —> oo, and e — 0 (in this order) we

obtain that

lim !L«/(',Ti!! = 0   uniformly for x £ [x, ,x, + L]
7-<» I|t(-, Xj)\\

(cf. Lemma 4.5 in [HV1]). The rest of the proof of Lemma 2.3 proceeds then
exactly as in [HV1, §4].   D
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As a next step, we shall make use of a result which has been proved in [HV1]

for the case A = 1, and in [FK] for A > 1. For completeness, we shall give

here a different proof along the lines of that in [HV1].

Lemma 2.4. Under our current assumptions, the following alternative holds. Ei-

ther

(2.5) Urn ( £ («a(t))2 ) ( E (a"(T))2 I     = °.

or

(2.6) \V(-, x)\ = 0(e~")   as x-> oo for some e > 0.

Moreover, if (2.5) 75 satisfied, we have that, if \a\ = 2,

(2.7) aa = up J2iHßH?. Ha)aßay + O   «(t) E iaß(x)Y

\ 1*1-2

where vp = p(p - l)x^p~xf2, summation in the first series is extended to those

indexes ß, y with \ß\ = 171 = 2, and e(x) —> 0 as x —> oo.

Proof. Let us define p(x) = ||*F(-, t)|| . As in [HV1, §5] we have the following

possibilities:
(2.8a) limsupT_0O(T/j(T)) = +oo .

(2.8b) There exist <50 > 0, ¿i > 0 such that

0 < ¿o < liminf(T/?(T)) < limsux)(xp(x)) <5i< +oo.
T—»OO T—»OO

(2.8c)   liminfT_»oo(t/j(T))  = 0  and  limsupT_0O(e,£T/?(T))  =  +00   for any

£>0.
(2.8d) p(x) < Ke~" for some e > 0, K > 0 and large enough x.

Clearly, if (2.8d) holds, (2.6) is satisfied. On the other hand, if one of the cases
(2.8a), (2.8b), or (2.8c) takes place, we may argue exactly as in [HV1, §5] to

obtain that (2.6) holds.
It then remains to show that the Fourier-Hermite coefficients aa with |q| = 2

satisfy (2.7). We then write

<¥(y,T)= ^aa(i)//„(y) + Ö(y,T).

|«|=2

Since 4* satisfies (1.8), where

p(p-iynp-i)
-j--S2 + g(s) = VpS2fis) = ^~ -+T-      ~s   + gis) = VPS   + g(s) -

and g(s) = 0(\s\3) as s -» 0, we readily see that, if |a| = 2,

aa = (f(V),Ha)

(2.9)

= vp ( ( E aß^Hß(y) + ö(y, t) j , h,\ + (gv?), Hn)

= vp ( E E aß(x)ay(x)HßHy, H,\ + 2vp £ aß(x)(Hß8 , H„)
\|«|=2|y|=2 / \ß\=2\\ß\=2\y\=2 I \ß\

+ Vp(82 , Ha) + (g(V) , //„)
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Using the delayed estimates recalled in Lemma 2.1, and arguing as in [HV1,

§5], we readily bound the last three terms on the right in (2.9) as follows:

Y,aß(x)(Hß8,Ha)

1*1=2

< E \^)\\\ei-,m+w\\H}hi,,w,
1*1=2

\(62,Ha)\<\\6(-,x)\\lw,

KsPF), Ha)\ < c\m-, x)\\iw < c\m-, x - mi3
3/2

<C||4>(.,T)||3<C( ¿2(aa(x))2'

\\a\=2

where here and henceforth C will denote a generic constant, possibly changing

from line to line. We now claim that

(2.10)

Indeed, 8 satisfies

hm =-—t^ = 0.
T^°° E|a|=2(fla(T))

6X = AÖ - ^ + 8 + AV)-'E(fiV),Ha)Ha
\a\=2

= AN6 + D(y,x)

whence, dropping the subscript A for convenience,

(2.11) 6(y, x) = SA(R)8(-, x R)+ f
Jx-R

SA(x - s)D(-, s)ds

for any R > 0. Recalling (2.5), we see that

1/2

||0(., x - R)\\ «  ( £ (aa(x - R))2        < \m-, x - R)\\ < C||4>(., i)

J«l=2 /
1/2

<C(   ^(^(T))2' as t —> oo

\a\=2

so that

(2.12)

\\SA(R)8(-, x - R)\U,W < C\\6(-, x - R)

« ( £ (aa(x)Y

\>l=2

1/2

as x —» oo.

We next set out to estimate the second term on the right in (2.11). To this

end, we first notice that, whenever s £ [x - R, x] and R > 0 is large enough,
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there holds

\\D(-,s)\\5N,w = 11/(4») - £ (/(¥), Ha)Ha\\5NiW

M=2

< WfWWsN.w +  E  K/W. «a)l H«.llstf,»
(2.13) |a|=2

< CH^., i)||V„ < CH^., s - x*)\\2 < C\\V(-, x)

<C[$>a(T))2

\l«l=2

On the other hand, we have that for any r, q with q > r > 1

eCx
(2.14) \\SA(x)(l)o\\r,w < C    _e_r)N/2qHo\\<i,w   for some C > 0 and any x,

(cf. [HV1,§5]), so that

jT r\\Sa(x - s)D(., s)\U,wds < CeCR £ r P'^yJio ds

<C\T(aa(x))2) f  (l-e-(T-'))-,/I0rfj

Vl«l=2 / ■'*-*

\1/2

«   I   ^(«a(T))2'

\|a|=2

as T -^ oo. Putting together (2.11), (2.12), and (2.14), (2.10) follows and the
proof is concluded.

We now consider the case where (2.6) is satisfied.

Lemma 2.5. Assume that (2.6) takes place. Then the following alternative holds.

Either there exist m > 3 and constants ca with \a\ = m, not all identically zero,

such that

(2.15a) \\W(., x) - £ cyx-m'2^Ha\\K = o(¿l-m'2*)

\a\=m

in HX,(RN) as x -> oo, or

(2.15b) 4/(-,t) = 0.

Proof. It can be modeled after that of Proposition 5.8 in [HV1]. Once more,
as a starting point we use variation of constants formula in (1.13). This yields

V(y, x) = SA(xm-, x0) + ísA(x-s)f(V(-,s))ds
Jx0

where operator An is written as A for simplicity. Suppose now that

l^-, t)|| < Me~"   for some M > 0 and e > 0 where

( '    ' 2e¿l/2- 1 for/ = 3,4,... .
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Fix now a positive integer /c0 > 2 such that ko/2 - 1 < 2e < (ko + l)/2 - 1 .

Notice that

«F(.,t)=   £ aa(xo)e^x-M'2^-^Ha(y)

\a\Kko

+ E <fe(To)*(1-H/2)(T-to)#«oo
|«|>/co+l

(2-17) + E ^^ /T ^(1-|a|/2)(T-i)</(4'(-, 5)), tfQ> rfi

l"l<*b T°

+    J]    i/0(y) [TeV-W2K-»(f(V{.,s)),Ha)ds

|a|>*o+l ^T°

= 7, + T2 + T3 + 74.

By direct computation, we obtain that

/ \ x>2 / \ '/2

\\n\K<[ E («^o))2       E (i + M)^-N/ïKt-i,)
\|a|>*b + l / \|a|>*o + l

<CF(.,T0)||«p((l-^Íl)(T-T0:

<C||Y(.,To)||exp(-2e(T-T0))

if T > T0 + 1 .

Let us look now at T¡, in (2.16). Clearly

2

l|r4(-,T)||2<    Y.    (fe{l-{ko+l)/2){T-s)\(fm-,s)),Ha)\ds)

=    E    (/^(1-(fco+1)/2M(T"i)^(1"("0+1)/2WT-i)K/(xî/(-^)), 7YQ)|^)'

\a\>k<,+ \

where A and B axe positive numbers such that A + B — 1 . Use of Cauchy-

Schwartz inequality yields then

lir4(-,T)||2=   Yl   (fjv-to+ww-'UÏ)

x(f e(»-(*b+l)/2)*(t-i)|(/(V(., s)) , Ha)\2 ds)

< C. f e{x-{ko+X)l2)B(T-s)\\f(*¥(-, s))\\2ds
Jxo

for some C\ = Ci(A,ko). As in [HV1], delayed estimates give ||/(4/(-, s))||2 <
Ce~2es, whence

\\T,(-, s)\\2 < C, f exp ((2 (l - k^-\ b) (x-s)- 4es) ds.

Therefore, if B is close enough to 1, -4e - 2(1 - (ko + l)/2)B < 0, and we
arrive at

||r4(.,T)||<ce-2"
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whence

\\T4(-, x)\\H¿ <Ce~2£T   forsomeC>0

by standard semigroup theory (cf. for instance Appendix A in [HV1]). On the

other hand, since Icq/2 - 1 < 2e , we readily check that the function

e-(1_H/2),</m-, *)),#«)

is integrable in [to , oo) for |q| < Tco . Thus we can write

f e-Q-W^fJW', s)), Ha) ds = f e-('-l«l/^(/(4'(., s)), Ha) ds

/OO

e-(x-W'2)s(f(V(-,s)),Ha)ds

/OO

e-V-MM{fÇV(.,s)),Ha)ds

provided that |a| < ko. In such cases, arguing as in Proposition 5.8 in [HV1]

we obtain that

<Ce -2ex/oo e-V-MMs(f(V(',s)),Ha)ds

Summing up our previous results, we may rewrite (2.16) in the form

4>(y, t) =   Y («« + ßa)e{l-lal/2)rHn(y) + T2 + TA

\a\<ko
(2.18) ,oo

- Y H«iy) /    e-V-WMs(f(V(-, s)), Ha) ds.

Having obtained (2.18), we then repeat the iteration argument at the end of

Proposition 5.8 in [HV1] to conclude. Suppose first that ko > 3 . We then

arrive at
4>(y,r)=  Y. (aa + ßa)e{l-M/2)rHa(y) + R(y,x)

\a\<ko

where \\R(-, x)\\Hi = 0(e~2ex) for x > 1 . Recalling (2.16), we necessarily have

aa + ßa = 0 for |a| < ko . Then two possibilities arise. There may be an integer

m £ [3, k0] such that aa + ßa / 0 for |a| = m and an + ßn = 0 for \a\ < m .

In this case, we would have

4'(., t) = Y ia« + ßn)e{[-m/2)zHa(y) + Q(y, x)

\a\=m

where ||<2(-, t)\\H\ = o(e(x~m/2)T) as x —> oo and (2.15a) holds. If otherwise

<zQ + ßa — 0 for any |q| € [3, ko], we would obtain

(2.19) ||4,(-, t)|| = 0(e~2ET)   as x -» oc

which implies a faster decay than (2.16). Repetition of this argument would

lead us to (2.15a) in a finite number of steps, unless the hypotheses in Lemma

2.2 hold, in which case 4* = 0. Finally, if ko = 2, we would use (2.19) to
reduce ourselves to the previous case.    D

As a next step, we improve the convergence obtained in (2.15a).
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Lemma 2.6. Assume that (2.15a) holds. Then
(a) For any q e [1, oo), we have that

(2.20) \m-, r)-e(l-m>2* Y cMq,w = o(e(1-w/2)T)   as x -+ oo.

\a\=m

(b) For any k> 0 and a £ (0,1),

(2.21) 4/(-, t) = e{X-m'2)z Y C«H« + o(e(1_m/2)T)

|a|=m

i« C¿¿a(K*) ûjt-oo.

Proof. Let us write

4>(-,t)= J] aQ(U77a(-) + w(-,T)

Then a>(y, t) solves

(2.22) 0Jr = ^at07 + /(¥)- Yifw>H")H»
\a\=m

= ANCO + O.

Using variation of constants formula in the equation above, and recalling the

argument leading to (2.13) together with (2.14), we obtain

IM-. *)\U,w < C (\\co(., x - R)\\ +f{l- e-{T-s))-l/w\\o(-, s)

= o(e(l-«/2)T)    aST^00

provided that R is large enough. On the other hand,

\5Nq ,w ds

Y   fla(T)//«(-)-^(1-m/2)T   E   C*H°

\a\=m \a\=m

= o(e{X~m/2)r)

q ,w

as t —» oo , for 1 < q < oo , whence (2.20) follows.

Holder continuous convergence requires a different approach.   For R > 0

given, it follows from (2.22) that we may write

co(y, x) = A   co(X,x-R)exp(-^7^  _iL
(4tt(1-é>-«))^/2/R^    v  '       "'—^     4(l-e-Ä)

(j,e-(t-*)/2 _ ¿)2

+ Li4n(l-7-lsWßl<>^s^ 4(1 -e-(t-*)
<M.

Using Holder inequality we obtain

My,t)\<
(2.23)

where

(4tt(1-í>-*))"/2

e{r-s)
+

I(y,q,p)

L

-aexp

o)(-,x-R)\\q>wI(y,q,R)

o(X, s)\\gtWI(y, q, x -s)ds
(4tt(1 - ^-(^-^)))^/2

q'X2     (ye-"'2 - X)2q'

4q 4(1 -e-
dk
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and, as usual, q' = q/(q - 1). Assume now that q > 2 . Then there holds

(X-ye~pl2)2     X2      (X-ye-p/2)2     (X-ye-f/2)2     X2

4(1-«-")       4q -   8(1 -e-")   + 8 4q'

if \y\<R,

(A-ye ^2)2 _ A   > _c   where C = C{R   qy

Therefore

and substituting this in (2.23) yields

\co(y, x)\ < C (\\co(-, x - R)\\q,w + ¡^^~^2(l - e-^)ô\\c(-, s)\\q,wds^J

with 5 = N/2q' - A/2. We now take q large enough so that 5 > -1 , and

noting that \\o(>,s)\\q,w < Ce2<-x-m'2y, we arrive at \w(y, x)\ = o(e^x-ml2^)

as x —> oo, uniformly on sets |y| < R. Then (2.21) follows by standard regu-

larizing effects for parabolic equations. The case 1 < q < 2 follows by Jensen's

inequality.   G

The last result in this section is

Lemma 2.7. Assume that (2.15a) holds. Then m is an even number, and the

multilinear form B(x) = ^2\a\=m caxa *5 nonnegative definite.

Proof. It is closely related to that of Lemma 2.1 in [HV2]. Set T = 1 for
simplicity. For 0 < s < 1 , we then define

(2.24) vs(x, t) = (1 -s)xl(p~X)u(x(l -s)xl2,s + t(l -s)).

Then vs satisfies

(2.25a) (vs), = A(vs) + vf    when x £ RN ,  t £ (0, 1),

(2.25b) vs(x,0) = 4>(x,-log(l-s))   when x e RN ,

where 0 is defined in (1.5). By (2.15a), we have that

vs(x,o) = (p-i)-x«p-x)-(i-s)m/2-x Y cMy)

(2.26) \«\=m

+ o((l -s)m/2'x)   in Hi as s-> I-,

where not all the constants c„ axe zero. Consider now the function

zs(x, t) = ((S(t)tP(x, -log(l - s)))-{p-X) - (p - 1)/)-'^-".

Clearly, zs(x, 0) = vs(x, 0) and it is readily seen that zs is a subsolution of

(2.25a), so that

(2.27) vs(x,t)>zs(x,t).

On the other hand, since

0(y, T) = (p - l)-'/*'-» + Y^(r)H„(y)
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setting xs = - log(l - s), there holds

S(t)<f>(x, xs) = (p- I)"W-i) + Ya°i?)( 1 - t)lal/2H« (ti-syß) ■

Taking x = £(1 - r)1/w(l - s)1/"1"1/2, we obtain

S(t)<f>(c;(l - t)x'm(l - s)x'm~x/2, -log(l -i))

= iP - l)-X/{p-X) +  Y  ûa(Ti)(l-0|a|/m(l--ï)|a|(,/m_1/2)

\a\¿m

(2.28) #„({((!-Q(l-■s))-1/"-1/2)

((l-í)(l-í))Nd/«-i/2)

+ V a (x )(1 - r)(l    j)i-./2^ffl(1-0(1-^))1/","1/2)
+ 2^ aa(xs)(l    t)(\    s) {{l_t){ï_s)y-m/2      ■

\a\=m

We now relate t and s as follows:

(l-í) = (l-5)m/2_1

so that (2.28) reads

S(t)<f>(x,-log(l-s))

= (p- îr'/c-') + y *(*«)0 - ow/2ft (tt^W)

+ ^MT,)(i-/r/2//Q (77^172)

|a|=m U '       '

= (p-iyx'{p-X) + Si+s2.

Arguing as in [HV1, Lemma 6.1], we deduce that

S\(x, t) = o(l - t)   as / —» 1~ , uniformly for |x| bounded.

Since aa(xs) = ca(l - t) + o(l - t) as / — 1~ , we easily obtain that

S2(x ,0=1 E CaXa J Í1 - 0 + °(! - 0   as 7 — 1 - ,
\\a\=m J

uniformly for |x| bounded.

Recalling (2.27), we then have that

v,ix, t)

(\ -i/(p-i)

((p - 1)-'/(p-D + (i _ t) Y cnxn + o(l - f))-ù»-») -(p- l)t\

\a\=m J
(\   -l/(p-l)

0- i)-0- i)W(P-D £ CaJC« + £,(i))
|o|=m /

as t —> 1~ , uniformly for |x| bounded.  Setting t = 1 - (1 - s)(l - /), we

eventually obtain

u(¿¡(i - t)x'm, t)>(i -/)-»/(j»-i)((p_ i)-(/7- i)p/(p-»)jî(^) + 0(i))-i/(p-»
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as t —► 1~ , uniformly for |£| bounded. Then if B(x) = J2\a\=mcaxa is not

nonnegative definite (in particular, if m is not even), there would exist xo £ RN

such that
lim (1 - t)x^p-x)u(xo(l - t)l/m ,t) = +oo

i-»i-

which contradicts (1.4a). This concludes the proof.   D

3. Analysis of the neutral modes

This section is devoted to the study of solutions satisfying (2.5). More pre-
cisely, we shall perform a detailed analysis of the ODE system (2.7) which even-

tually will yield (1.15a). To this end, we begin by introducing some notation.

Set

(3.1) V = linear space spanned by {Ha}   with |a| = 2.

We then denote by P the orthogonal projection from L2J(RN) on V . Notice

that (2.7) can then be recast as follows:

P(d-DXI(p~X)
(32)    X = VpPiX2) + 0(e(T)\\X\\2),    where X = P*¥,  Vp = P-^-^-,

and lim e(x) = 0.
T—*00

A key point in out approach consists in replacing (3.2) by an evolution equation

in a suitable matrix space. Let Mn(Rn) be the linear space of A x A matrices

with real coefficients. For any given x £ V, we consider G £ Mn(Rn) defined

as follows:

(3.3) G = (Gij),

where

f V2(x,H2(y,))H^-x if i = j,
Gi i = { „ , 1 < i, J < N.

\(X,Hi(yi)Hi(yj))H^-2    if i¿j,

Notice that G is symmetric. On the other hand, as recalled in (1.10), we have

that H2(y¡) = c2(y2 - 2), Hx(y¡) = ciy¡, and H0 = (47t)-1/4, where c, =

(47t)-1/4/v/2, c2 = Ci/2. Therefore, yf2c2H^~x =c2H0N~2. A straightforward

computation yields then that

(3.4) Gij = ßN(x, ytyj)   for /</,;< A where ßN = c2H»-2.

We also point out that x can De reconstructed from the coefficients G¡j by

the formula

X = E ^-G,„//2(y;) + YHt2Gi,jHi(y,)Hi(yJ).
1=1      VL i<j

By means of simple (but tedious) computations, equation (3.2) translates into

the following set of evolution equations for the coefficients G, j :

N

(3.5a) Giti = V2yNup Y G2j + 0(£(t)||C7||2) ,
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(3.5b) GiJ = V2yNvPYGi,iGlJ + 0(e(T)\\G\\2)
¡=\

where for any B = (B¡j) £ MN(RN), ||t3||2 = Y,i%i Blj = Tr(B2), vp is given

in (3.2), and

(3-5c) ÏN = í^2,2,2^o',oío = i42,l,l^lpl,O^Í"o20

where for any nonnegative integers «, m , and /,

/+oo
Hn(y)Hm(y)H¡(y)e-y'Uy.

-oo

We remark that coefficients An,m,i have been studied in detail in [HV1]. In

particular, An¡mj ^0 if and only if n+m+l is even and « < m+l, m < n+l,

I <m + n . In such cases

^,m,/ = (47r)-1/4((«!)(m!)(/!))'/2

m + n-l\  fn + I - m\  fm + l - n\^ ~

2

We may rewrite (3.5) in the form

(3.6) G = Q(G) + 0(e(x)\\G\\2)   where Q(G) = V2yNvpG2.

An important point to be noticed is the following. The space V defined in (3.1 )

can be characterized as the space of quadratic polynomials in RN which are

orthogonal in L2J(RN) to the affine functions. Therefore V does not depend on

any particular choice of axes in RN, and remains invariant under orthogonal

transformations. Let A £ Mn(Rn) be any such transformation which maps

a coordinate basis (yx, ... , y^) into another one (yi, ... , y„), and let G,

G be the corresponding matrices given by (3.3). Then G = AGAT where, as

usual, AT = (a,,,) provided that A = (a¡j), I < i, j < N. It then follows
that equations (3.2) are invariant under rotations, and therefore the form of

equations (3.5) does not depend on a particular choice of coordinate system.
Hence, for any matrix U £ O(N) (the group of orthogonal transformations in

RN) there holds

(3.7) UQ(UTGU)UT = Q(G),     where Q is the quadratic part in (3.6).

This fact will be repeatedly used in what follows. Notice that (3.7) can be

obtained directly by a straightforward calculation.

Since the coefficients G¡j axe Cx , by standard results (cf. for instance

[K]) we may define a set of C'-functions (not necessarily different) X¡((x)

(1 < k < N), such that for any fixed x the eigenvalues of G(x) axe given

by Ai(t), ..., XnÍx) . We next proceed to obtain the evolution equations for

the Xk 's.

Lemma 3.1. Assume that (2.5) holds. We then have that for I < k < N

(3.8) Xk = Kp(Xk(x))2 + 0(e(x)\\X(x)\\2)   asx^œ,

where lim^^T) = 0, ||A||2 = ££, X2, and Kp = V2yNup (cf. (3.5)).

Proof. Fix T > 0 large enough. Since G is symmetric, there exists an orthogo-

nal matrix U(x) such that G(x) = UT(x)D(x)U(x), where D(x) is a diagonal
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matrix D(x), D(x) = diag{Ai(r), ... , Xn(x)} . We then change to a new coor-

dinate system y = U(x)y. Recalling (3.7), we see that in the new frame the

evolution of G(x) is given by

G = U(x)Q(UT(x)G(x)U(x))UT(x)

(3-9) + i7(T)0(e(T)||L/T(f)C7(T)<7(T)||2)L/T(f)

= Q(G(x)) + 0(e(T)||0(r)||2) = Q(G(x)) + h(x, x)

if x > x, whereas G(x) = D(x). Consider now a set of repeated eigenvalues

XSl(x) = XSl(x) = ---=XSr(x) = p,        1 < r < A.

Let {ei, ... , £#} be the canonical basis in RN . By classical perturbation

theory for linear operators (see [K, Theorem 5.4, p. 128]), it follows that for

1 < j < r, the eigenvalues XSj(x) are differentiable at x = x and the r-tuple

(XSi (x), ... , XSr(x)) is given by the eigenvalues of the matrix

H = M(Q(D(x)) + h(x,x))M,

where M is the eigenprojection on the space generated by {eil, ... , eir}. Using

the precise form of Q(G) (cf. (3.5) and (3.6)), we see that H = (H¡j), I <
i, j < n, where

Hij = \Í2yNVpP25i^ + (es,, h(x, x)eSj)

where ( , ) denotes the usual scalar product in RN and 5¡j =1 if / = /

and zero otherwise. By the continuity results in [K, pp. 123-127] it follows that

the eigenvalues of H behave as \f2yNUpP2 + 0(£{x)\\X{x)\\2) where e(x) = o(l)

as T — oo. Applying the same argument for any set of repeated eigenvalues,

(3.8) follows. We point out that a careful examination of the previous argument

reveals that the continuity result required to obtain the conclusion is the fol-
lowing: For any e > 0, there exists 5 > 0 such that for any symmetric matrix

A £ Mr(Rr) with  II^H < B < +oo, and  \\A - pl\\ < 5, the eigenvalues of A
satisfy \Xi(A) - p\ H-h \Xr(A) - p\ < e . This follows easily from the analysis

in [K, loc. cit.].   D

We next study equations (3.8). As a first step, we obtain

Lemma 3.2. Assume that equation (3.8) holds. Then

(3.10) limsup —v A'(t)-< 0   fori=l,...,N.
—  (£f=,(A,(T))2)'/2 -

Proof. Define Ç(t) = max{Ai(r), X2(x), ... , Xn(x)} . Then Ç(t) is absolutely

continuous, and by (3.8) we have that

t(x) = Kp(C(r))2 + p(x)   a.e. t»1,

where \p(x)\ « ||A(t)||2 , X(x) = (Xi(x), ... , XN(x)). We shall prove that

(3.11) limsup-v   *°(T)- <0.
— (£r=A(û)2)i/2 "

Indeed, (3.11) implies (3.10). Assume that (3.11) is not satisfied. Then there

exists a sequence {x¡) such that lim^oo x¡ = oo and

(3.12) C(t,-)/||A(t,-)|| > á > 0
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for some 5 > 0, which can be assumed to be arbitrarily small. We now claim

that

,, .,s        If we select 5 > 0 sufficiently small in (3.12), then  £(t) >

^ "    '        (<?/2)||A(t)|| for any x large enough.

To show (3.13), we consider the function S(x) = £(t) - (¿/2)||A(t)|| . A Lia-

punov function type argument quite similar, for instance, to that in Lemma 4.8

in [HV1], gives that (3.13) holds as soon as we can prove that

(3.14) ^>0   a.e.inJp(T)||<f(T)<i||A(T)||.

We now compute

-1/2

dx     *w     2 .
V=i

= Kp(Ç(T))2 + p(x)-jKp IEA7(t)3J (EA;(t)2

-1/2

-^KpiYXj(r)pj(x)\ lYXj(x)2"

-1/2

> Kp(C(x))2 - o(\\X(x)\\2) - ^(C(t))3||A(z)||-' a.e.   as x - oo.

Recalling the a priori bounds on Ç(t) assumed in (3.14), we deduce that

^ > Clf52||A(T)||2 - C2r54||A(T)||2 + o(||A(t)||2) a.e.   as x - oo,
ax

for some positive constants Ci,C2. Taking 5 > 0 small enough, (3.14) follows

and the proof is concluded.   D

On the other hand, we clearly have

(3.15a) liminf ^rrr > -1    for 1 < i < A.
T-oo   ||A(t)||

(3.15b) There exists j £ {1, ... , A} such that

A,(t) 1
||A(t)|| -    A

As a further step, we show

liminf#^<-4r<0.

Lemma 3.3. Assume that liminfT_00(A/(T)/||A(T)||) = -L < 0 for some i £

{1, ... , A}. Then there exists 5 > 0 such that

(3.16) A,(t) < -¿||A(t)||   for large enough x.

Proof. It consists in a Liapunov function type argument, similar to the one

recalled in our previous lemma. Let us write

5(T)=A,(T)2-r7||A(T)||2
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where 0 < a < L2 will be selected later. As remarked before, it suffices to show

that

(3.17a) dS/dx>0,

whenever

(3.17b) a/2 < (A,(t)/||A(t)||)2 < 3a/2   and   t»1.

Recalling (3.8), we readily see that

//<? N ( N \
-^ = 2A,A, - 2oY^i > 2Kp I M*)3 - °YW    + °(P(T)H3)

as T —> oo.

Therefore, at any time x = x where (3.17b) holds, we have that

TV

> ?*-_  I -—nHllfWfi -n
dx
^->2Kp[ -^a3||A(T)||3 - <r £ Ay(T)3 I + o(||A(t)||3

7 = 1

Set J(x) =  {i£ (l,...,N):X,(x) < 0}, I(x) =  {i £ (I, ... , N):Xt(x) > 0}
We then notice that

\  3/2

5>(t)2]      <A'/2^A,(t)3,
Kj€i J jei

¿A,(t)3 = -£|A;(t)|3 + £A,(t)3

1=1 jeJ 767

and, by Lemma 3.2,

Therefore

S5,(EA^T)3)iWT)irl = 0-

^(t) > 2Kp5(ci - c2á2)||A(r)||3 + o(||A(t)||3)

for some positive constants Ci, c2, and x large enough. Therefore (3.17) holds

and the proof is concluded.   D

By (3.15b), there exists at least one eigenvalue Xk  for which (3.16) holds,

and therefore (3.8) gives

A* = TA'pA2 + o(X2k)   as t —> oo.

Arguing as in [HV1, Proposition 5.7], we obtain for such eigenvalues

(3.18) Aa(t) = -1/7^ + 0(1/1)   asT^oo.

On the other hand, for those X¡ which do not satisfy (3.15b) we clearly have

that limT_00Aj(T)(||A(T)||)_1 = 0. Taking into account (3.18), we notice that

\\X(x)\\ = C/x + o(l/x)   as x -» oo for some C > 0.

Summing up, we have obtained
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Lemma 3.4. There exists I £ [1, A] such that the eigenvalues {Xk(x)} (after

being possibly relabelled) satisfy

(3.19a) Xk(x) = -l/Kpx + o(l/x)   as x -> oo for k =1,...,/,

(3.19b) Ajt(T) = o(l/T)   as x -► oo for k = l+l,..., N.

To proceed further, we notice that by (3.2) and (3.19) there exists C > 0 such

that (1/C)||C7|| < llxll < C||G|| and since ||t7|| = ||A||, d/x < \\X(-, x)\\ < C2/x
as x — oo for some positive constants Ci and C2. Let us write now

(3.20) V(y,x) = x(y,T) + 8(y,x),    where x & V,  8 £ Vx

(cf. (3.11)). We then have

Lemma 3.5. Assume that (2.5) is satisfied, and let 6(y, x) be the function de-
fined in (3.20). Then there holds

(3.21) ||0(-,t)|| <C/t2   for some C > 0 as x -» oo.

Proof. It consists in a slight modification of the results in [HV4, Lemma 3.1],

and [HV1, Proposition 5.8]. The basic idea consists in writing the evolution

equation for 6(y, x) and use variation of constants formula to estimate the

various terms arising there. To avoid repetition, we shall omit further details,

which can be found in the aforementioned papers.   D

It follows from our previous results that we can recast (3.2) in the form

(3.22) ^ = i/pJP(x2) + 0(l/T3)   asT-oo.

Let now W(x) be the eigenspace associated to the eigenvalues Ai(t) , ... , A/(t)

satisfying (3.19a), and let Pw(x) be the orthogonal projection on W(x). Set

R(G, X) = (G- A)"1 . We now prove

Lemma 3.6. There exists E = lim^oo Pw(x) ■

Proof. By classical results (cf. for instance [K, p. 77]) we can write

/V(T) = --L/    R(G(x),X)dX
mi yr(T)

where T(x) is a closed, positively oriented curve in the complex plane contain-

ing Ai(t), ... , A/(t) and no other eigenvalues of G. By Lemma 3.4, if x is

large enough, T(x) can be taken to be a ball centered at (-l/Kpx) with radius

l/2Kpx. Furthermore, since

^(R(G(x), X)) = -R(G(x), X)G(x)R(G(x), A)

(cf. for instance [K, p. 32]), using the analyticity properties of the resolvent R

and (3.6), we obtain that

jziPw<x)) = ¿7 /    RiGiT), X)G(x)R(G(x), X) dX
ax 2ni Jr(T)

= ^- /    R(G(x), X)Q(G(x))R(G(x), X) dX
2ni Jr{z)

+ ~ f    R(G(x), X)h(x)R(G(x), X) dX
2ni JT(T)

= h+h,
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where ||«(t)|| = 0(1/t3) as x —> oo by (3.22). We know that, for any fixed t0 ,

there exists an orthogonal matrix U(xo) such that C7(to) = (7t(to)t!)(to)í/(to)

where D(x0) is diagonal. Therefore

R(G(x0), X)Q(G(xo))R(G(x0), X)

= UT(x0)R(D(x0), X)Q(D(xo))R(D(xo), X)U(x0)

and since

R(D(x0), X)Q(D(x0))R(D(xo), A) = diag(KpX2/(Xi - X)2)

where Kp is given in (3.8), we readily see that U = 0.

On the other hand, for to > 1 and A e T(to) , Lemma 3.4 yields that
||jR(G(to), A)|| < Cto for some C > 0. Recalling the bound available for

||«(-, t)|| , we obtain

dp
TxPwM < |/2| < ç± r m < g

T0 Jr(xn) TnT0 Jy(x0) T0

for some positive constants Ci and C2, which implies the result.   G

It is worth pointing out that the operator E obtained in Lemma 3.6 is an

orthogonal projection operator on an /-dimensional space, since the same hap-

pens for W(x) when x is large enough (see for instance [K, pp. 33-35, 58-60]).

As a final step, we next show

Lemma 3.7. There holds

(3.23) lim (xG(x)) = -E/Kp
X—»oo

where Cp is given in (3.5).

Proof. Let us write

(3 24) G^ = Pw^G^Pw^ + pw(x)/Kpx

+ (I - Pw(x))G(x)(I - PW(x))Pw(x)/Kpx.

Notice that (/ - Pw(x)) is the orthogonal projection on the eigenspace corre-

sponding to the eigenvalues A/+1(t) , ... , Aat(t) . Then, by Lemma 3.4

||(7 - PW(x))G(x)(I - 7V(t))|| = o(l/x)   as r - oo.

On the other hand,

\\P\V(x)G(x)Pw(x) + PlV(x)/KpX\\

= Txace{(PW(x)G(x)PW{x) + PW{x]/Kpx)2}

2

as T —► oo.

k=\

Then (3.24) yields

G(x) = -PW(X)/Kpx + o(l/x)   as x — oo.

Recalling Lemma 3.7. the result follows.   □
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End of the proof of the theorem. Since E is an orthogonal projection on an

/-dimensional space, E can be written in a suitable system of coordinates in

the form

E =

\ 0/

where there are A-/ zeroes in the main diagonal. In such a coordinate system,

Lemma 3.7 yields that

G¡j = -l/Kpx + o(l/x)   as i

G¡j = o(l/x)   as x —> oo

By the very definition of G, this means that

00 if 1 < I < /,

otherwise.

c   ' /
\m-,T) + -fYHM\\ = o(

k=\ ^

as x 00,

where Cp is given in (1.15a). Convergence in H^ follows then by standard
regularizing effects for semigroup evolution equations. Finally, convergence in

CJ^a(RN) can be obtained as in Lemma 2.6.   D
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