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GLOBAL PHASE STRUCTURE OF THE RESTRICTED ISOSCELES
THREE-BODY PROBLEM WITH POSITIVE ENERGY

KENNETH MEYER AND QIUDONG WANG

Abstract. We study a restricted three-body problem with special symmetries:

the restricted isosceles three-body problem. For positive energy the energy man-

ifold is partially compactified by adding boundary manifolds corresponding to

infinity and triple collision. We use a new set of coordinates which are a varia-

tion on the McGehee coordinates of celestial mechanics. These boundary man-

ifolds are used to study the global phase structure of this gradational system.

The orbits are classified by intersection number, that is the number of times the

infinitesimal body cross the line of syzygy before escaping to infinity.

Introduction

McGehee (1974) introduced a new set of coordinates in his study of the

collinear three-body problem which had the effect of blowing up the triple colli-

sion singularity. By properly rescaling the coordinates and the time, he was able

to add a boundary manifold (the collision manifold) at the triple collision sin-

gularity. The equation of motion can be extended smoothly onto this boundary

and the resulting vector field on it (the so-called fictitious flow) is nontrivial and

gradient-like. The study of this fictitious flow has greatly improved the under-

standing of the behavior of the gravitational system nearby triple collision; see

for example Simo (1980), Lacomba and Losco (1980), and Devaney (1980).

Based on both the local information provided by the collision manifold and

geometric methods in modern dynamics, much as been done since then. Mather
and McGehee (1975) constructed the first example of a noncollision singular so-

lution in the collinear four-body problem, and Xia (1991) proved the Poincaré

conjecture that such a noncollision singular solution exists without binary col-

lision. These methods show that heteroclinic phenomena are rather common

in gravitational systems (see Moeckel (1981, 1984) and Robinson (1984)), and

also, some symbolic subsystems are embedded in grativational systems (see Saari

and Xia (1988)).
Since the blowing-up method has stimulated so much progress in the qualita-

tive study of gravitational systems, it is natural to ask if we can do the same at

other singularities or at infinity. Boundary manifolds have been constructed at

infinity (see Lacomba and Simo (1982)), at singularities of general collision (see

Wang (1986)), and for the restricted problem (see ElBialy (1989)). However,
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Figure 1. The isosceles three-body problem

for a successful generalization, the following requirements should be met: (a)

The fictitious flow should be nontrivial and (b) it should provide useful infor-

mation about the system. We give coordinates to blow up the singularities of

our system which meets these requirements.

In this paper we deal with a special gravitational system defined as follows.

First, put two gravitational particles with masses mi = m2 = 1 in the O-XY

plane. They are placed on the X-axis symmetrically with respect to the F-axis

and have only X-component initial velocities which are also symmetric with

respect to the 7-axis. Assume that, as a collinear binary system, mi,m2,

move apart from each other with positive energy. Now, put another particle

with infinitely small mass m^ = 0 on the Y-axis and give it only 7-component

initial velocity. We see m$ will always move on the F-axis. The problem is

to study the motion of W3 in the gravitational field created by mi and m2 .

We call this problem the restricted isosceles three-body problem with positive

energy. (See Figure 1.)
We will use the intersection number, which is the number of times the in-

finitesimal mass W3 intersects the X-axis, to code solutions. The goal of this

paper is to give a global sketch of the variation of this number on phase space.

Our discussion will start from the new blowing-up transformation introduced

previously in Wang (1986). The difference between this new transformation and

that of McGehee's is that the blowing-up factor was the moment of inertia, /,

and now is the potential function, U. This small modification gives a sim-

ple solution to the long-standing global solution problem in celestial mechanics

Wang (1991). For a nice description of the global solution problem see Saari

(1990).
In this paper, the new transformation allows us to blow up not only the total

collision but also other kinds of final evolutions such as the hyperoblic expanding

evolution. To be precise, we will get the boundary manifolds for hyperbolic

expanding evolution and as well as the collision manifold simultaneously. The

first section will be devoted to creating these boundaries and giving a detailed

description of the fictitious flows on them.
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According to Marchai and Saari (1976), the only possible final evolution of

a solution of our system is hyperoblic expanding. To be precise, if x2 denotes

the distance between m^ and the X-axis, then:

x2(t) = At + Blnt + C + 0(r2'3),

where either both A and B axe nonzero or A = B = 0. We will refer to the first

case (A, B t¿0) as the hyperbolic solution and to the second case (A = B = 0)

as the parabolic solution. Using what was introduced in the first section, we will

prove the following in the second section of this paper.

(i) The intersection numbers change only near parabolic solution and the

change is at most one in the vicinity of any point of the phase space except

on the surface x2 = 0. Furthermore, there exist solutions with intersection

number n for any given positive integer n .

(ii) All of the parabolic solutions form an embedded two-dimensional mani-

fold in the phase space.
In the third section, we will use all the previously obtained conclusions to

globally sketch how the intersection number changes in the phase space. It will

turn out that the parabolic solutions divide the whole phase space into countably

many zones. Each of the zones has an intersection number and these zones are

arranged in order of increasing intersection numbers. (See Figure 13.) Thus for

this one gradational system the complete description of the global phase space

can be given.

I. The boundary manifolds

Refer to Figure 1. Let Xi denote the distance between the two primaries of

mass 1 on the x-axis, so they are positioned at (±xi/2, 0) and x2 the distance

from the infinitesimal particle and the origin so it is located at (0, x2). The
equations for Xi, x2 axe:

.__. d2Xi 2       d2x2 _       -16x2

(      ' Vx}'       1t2~ ~ (X2 + 4x22)3/2-

These are the equations on motion for the restricted isosceles three-body
problem. The energy integral for the primaries is

(dxi/dt)2 -4/xi =h.

We will concentrate on the nature of the motion of this system for positive

energy, so h > 0 throughout this paper. In particular the primaries will escape

to infinity. A set of coordinates on the energy manifold is xx,x2, dx2/dt.

Since x\ > 0 and x2, dx2/dt axe arbitrary the energy manifold is topologically
R3.

Instead of using the moment of inertia as a scale factor as was done by McGe-

hee (1974) we shall use the potential energy as the scale factor. To this effect

let u~x = (4/xi + h) and change coordinates from Xi, x2, dxi/dt, dx2/dt to

Fi, F2, Gi, G2 and time from / to x' by

Fi=u~xXi, F2 = u~xx2,

m) ". = »"2(^)>    ft = »"2(t)-

dt = u3'2dx'.
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According to the energy integral, G2 = 1 . We have two different choices of

Gi:C7i = 1 corresponds to the case dxi/dt > 0 and Gi = -I to dxi/dt < 0.
We will restrict ourselves to the case Gi = 1, so the primaries will tend to

infinity as time tends to infinity. Now Fi, F2, and G2 axe coordinates on the

energy manifold.
With the new time variable x', the equations for F\, F2, G2 axe:

dFx - d    A.^ d°2     2°2 16F2
dx' ~~ V      F\ J ' dx'       F2      (F2 + 4F22)3/2 '

^E1^ dFj. _4F2 du__4u

dx' ~   2     F2 ' dx' ~F2'

Now introduce polar coordinates and change the time scale again by

Fi = r sin cp,        F2 = (r/2) cos cp,

i\=l-uh,       dx = (2c\yx dx',

and denote G = G2. The angle <f> = cot~x(2F2/Fl) = cot-1(2.x;2/xi) and

r2 = F,2 + 4F22 = (x2 + 4x\)/u2. Since Xi > 0 and x2 axe arbitrary 0 <<j>< n .

G is arbitrary and 0 < ¿¡ < 1. The new coordinates on the energy manifold are

(j), G,£, and the equations are

d(f>       ■   a,(X       a    r ■-¡- = sin ó [ - cos ó - G sin <
dx \2

(£2) dG _ £(G - 4sin2 </) cos0)

~dx~~ 4 '

dt     -£(l-fl
dx 2

Notice that these equations naturally extended to D = [0, n] x (-co, oo) x

[0,1] for (</>, G, 4) ■ Thus several boundary manifolds have been created by

(E2), which we shall discuss in turn.

The boundary manifold £, = 1 is the triple ejection manifold. It is a natural

generalization of McGehee's collision manifold in this restricted problem. Since

there is another choice of G (G — -1), this boundary is only one half of the

collision manifold.
Figure 2 is the phase portrait on this boundary. E is the Euler point and

Li,L2 are the Lagrange points. F is a spiral sink and Li, L2 are saddles.

Pi, F"2 represent binary ejection of the primaries and Qi, Q2 axe the intersec-

tions of the orbits connecting Pi, Lx and F2, F2 with the dotted line <$> = n/2 .

The boundary manifold ¿; — 0 is the total expanding manifold (£ = 0 means

xi = 00). All the points of the curve l: G = jcolcj) axe rest points as are those

on the line 4> = 0 and </> = n . The phase portrait on this boundary is shown

in Figure 3.

The boundary manifold </> = 0 is the degenerate configuration manifold

(since 0 = 0 means the triangle formed by (mi, m2, my) degenerates to a line

on the y-axis, i.e. x\ = 0). The phase portrait of the fictitious flow is shown in

Figure 4 on page 316.
All the points with ¿¡ = 0 are rest points. We also have Pi in this picture.

The boundary manifold <f> = n and the fictitious flow on it is exactly the same

as that of ó = 0.
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2 2

Figure 2. The triple ejection manifold—¿¡ = 1

Figure 3. The total expanding manifold—¿¡ = 0

Figure 5 shows three of the boundaries discussed above, namely the degener-

ate configuration manifold 0 = n in front, the triple ejection manifold, £ = 1 ,

on top and the total expanding manifold, £, = 0, on the bottom.
We will need some notation for the arguments that follow. Denote by p any

point in the phase space D° = (0, n) x (-oc, oo) x (0, 1). Denote by 0(x, p)
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Figure 4. Degenerate configuration manifold— <j> — 0

or n

Figure 5. Three boundaries

the solution at time x which starts from p at x = 0 and

0(x, p) = (<ß(x, p), G(x, p), c¡(x, p)),

O(p) = {O(x,p):0<x<œ},

Os(p) = {O(x,p):0<x<s},

co(p) = the a>-limit set of 0(p),

¿ = {(<P,G,0):G={ cot 0} ,     / = i\(n/2, 0, 0) = t\K,
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* = (jr/2,0,0),    S = {p:ct>(p) = n/2}.

We also use all the symbols in Figures 2 to 4.

Definition 1.1. The intersection number of p is defined by

N(p) = Caxd{0(p)nS}.

The intersection number of p is the number of times the orbit through p

crosses the x-axis in the future.

The following two propositions are simple corollaries of the results in Marchel

and Saari (1976) on the final evolutions of gravitational systems. A detailed and

independent proof of these two results may be found in Appendix 1.

Proposition 1.1. For any p, co(p) is one of the fixed points of Í .

This proposition shows that co is a well-defined function on D° = (0, n) x

(-to, oo) x (0, 1) into I.

Proposition 1.2. If co(p) £ I, then

(1.1) x2(t) = At + Blnt + C + 0(r2'3).

If co(p) = K then

(1.2) x2(t) = C + 0(r2^),      dx2/dt = 0(r5'i),

where A, B, C are constants and A^O.

Definition 1.2. If co(p) £ l, we say that 0(p) is a hyperbolic solution and p is

a hyperbolic point. If co(p) = K , we say that 0(p) is a parabolic solution and

p is a parabolic point.

Our first basic lemma establishes the continuity of the function co and shows

that the intersection number changes only at parabolic points.

Lemma 1.1. The function co: D° = (0, n) x (-00, oo) x (0, 1 ) —> I is continuous.

Moreover, if po & S and co(po) y¿ K then there is a neighborhood U of po where

the intersection number N is constant.

Remark. We show that if co(po) — ao £ i then for any e > 0, there is a

S > 0 such that when \p - Po\ < S, we have \co(p) - ao\ < £. In the above

\p - po\ = vnax{\f(p) - f(po)\, \G(p) - G(p0)\, \x(p) - x(p0)\}.

Proof. For any given e > 0 and «o = (<j>o > Go, 0), take the box B as in Figure

6:

\<t> - 4>o\ < ei ,     |G-C70|<£2,     l£l<£3-

Here ei, e2, £3 are positive constants less than e and

e2<l,        £3 < min{l/2, 16e2/(5(Go +5)}.

Since co(po) = ao, there is a ô > 0 and U: \p - Po\ < ¿ , such that for any

p £ U, we have a xp with

\4>(Tp,p)-(/>o\ <«i/5,     \G(xp,p)-Go\ <e2/5,    |£| < e3.

0(x, p) will stay inside B after xp . Otherwise there will be a x2 > xp , such

that 0(i2, p) is on the boundary of B . Referring to Figure 6, we see that the

vector field is directed into B on Sf where </> = </>o ± £1 • Therefore

C7(r2) = C70 + £2.
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Figure 6. The approach to a critical point on I

Since £ decrease monotonically, we have

dG
dZ

|G-4sin 0cos0|      (Go + 5)

2(1-0 ~       4

Therefore

|G(t2 , p) - G(xp, p)\ < (Go + 5)£3/4 < 4£2/5.

But we also have

|G(t2 , p) - G(xp, p)\ = |Go ± £2 - G(xp , p)\ >e2- \G(xp , p) - G0\ > 4£2/5.

This is a contradiction.

If po & S, a0 £ I = l\K, we can take U such that U n S = 0 and

N(0Tp(p)) = N(po).   0

This lemma shows that the intersection number changes only near parabolic

solutions.

II. The approach to the critical point K

As we have seen co(p) £ I for all p £ D°, co(p) = K = (n/2, 0, 0) for a

parabolic point p , and the intersection number N(p) can only change near a

parabolic point. In this section we study the approach to the equilibrium point

K in order to obtain information about the manner in which the intersection

number changes.

To study the equilibrium point K we introduce another transformation:

(T3) n = cos(P/i,        A = G/{.

The equations for n,X,c\ are

dn/dx = -t\n/2 + tx>e/2 + 1(1- n2??'2,

(E3) dX/dx = k/2 - iX/4 - {ij(1 - n2?),

dt\/dx = -c\(l-c\)/2.
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Notice that when £ = 0, we have a linear flow

(2.1) dn/dx = X,       dX/dx = X/2.

All of the points on the line X = 0, ¿; = 0 are fixed points. We denote this line

by /'.

Lemma 2.1. p is a parabolic solution if and only if co(p) is a fixed point of I'.

Proof. If co(p) is a fixed point of /', we see that cos <f> —> 0, G —> 0. This

implies co(p) = (n/2, 0,0) for (</>, G,Ç). Therefore, p is a parabolic point.

If p is a parabolic point, then according to the transformations we intro-

duced,

x2 = {2(1 -i\)/h sin <f>}n.

When T —► oo , t —> oo, by Proposition 1.2 we have x2 —> C. So n —> AC/2 =

170 as t —» oo.

Therefore, co(p) in (n, X, £)-phase space is (n0, 0, 0) £ I'.   D

We will prove

Proposition 2.1. For any parabolic point po 0 S, we have a neighborhood U of

Po such that for any p £ U,

N(Po)<N(p)<N(po)+l.

Proof. We shall show in Proposition 2.2 that for any given i/0 there is a unique

parabolic orbit with n(t) —> n0 . The rç = 0, X = 0 line is invariant and consists

of the one orbit which has n(t) —> 0, so if n(t) —► 0 then n(t) = 0 and po £ S.

Therefore, we can assume that t]o ¥" 0 •

By symmetry we can assume that for this parabolic orbit x2(t) > 0 and

dx2(t)/dt > 0. Thus we can assume without loss of generality that n0 > 0 and

X(t) is positive for large t. The proof of the proposition depends on a sequence

of technical lemmas which will be used again.

For the next three lemmas and the proof of Proposition 2.1 assume that

Po & S is a parabolic point, lim 17(1-, p) = t]o > 0 and X(t) > 0 for sufficiently
large ¿.

Lemma 2.2. For any given 0 < k < 1/24 and £3 < min{l/2, 170/12^(170)}, we

have £1, £2 > 0, so that on D' :

|(G-4sin20cos0)/(l -f)| < kno.

Here D': \(f> - n/2\ < £1, \G\ < e2, \Ç\ < £3, and M(n0) is a constant depending

only on i/o. (It will be given explicitly later on in the proof.)

Proof. It is true because (G - 4sin2 0cos0)|(^=o,g=o) = 0; 1 -£ > 1/2.   D

Lemma 2.3. There is a neighborhood of po & S, say, U(po): \p - Po\ < à, such

that for any p £ U(p0), we have xp, 0(xp,p) £ D' and N(p0) = N(0Tp(p)).

Furthermore, this solution will stay inside of D' after xp and </>(tp , p) < n/2.

Remark. In the above N(Oïp(p)) = caxd{0Xp(p) r\S} which is the number of

times the orbit through po intersects S for 0 < x < xp .

Proof. This is an easy corollary of Lemma 1.1. <¡>(xp , p) < n/2 because i/o >

0.    D
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Lemma 2.4. For any 0(x, p) in Lemma 3, assume we have a x2 > xp, such

that \X(x2, p)\ > ktjo . Then this solution will never meet G = 0 after x > x2.

Actually, it will be a hyperbolic solution.

Proof. If it does meet G = 0, we have t3 > T2 so that G(t3, p) — 0. (If it is

a parabolic solution we have T3 = 00.) From

dG/dt = (G - 4sin24>cos0)/2(l - £),

we have

\dG/d£\ < ¿i/o.

Since £ decrease monotonically,

\G(x}, p) - G(x2, p)\ < knotig, p)/2.

But G(t3 ,p) = 0. So it follows that

\X(x2,p)\ < kno/2.

This is a contradiction since we assumed \X(x2, p)\ > kt]o ■   □

Now we are ready to prove Proposition 1.1.

According to Lemma 2.3, we have U c U(po), a neighborhood of po, such

that for any p £ Ü, 0(xp , p)

5Vo/4 > n(xp , p) > 3170/4   and   X(xp,p)>0.

Since 170 > 0 and lim n(x, po) = n0, U exist.

For the motion after xp , we have two possibilities:

(i) X > 0 for all x > xp: Since X is positive dx2/dx is positive and the

solution will never intersect S again after xp , and we conclude that N(p) =

N(p0) .

(ii) There is a T3 such that X(xi, p) = 0 but for xp < x < t3 , X(x, p) > 0.
Since X(x, p) > 0, x2 will increase monotonically in [xp, T3] to x2(x^,p).

After that, it will decrease monotonically until the solution meets 5 at T4 > T3.

We have 17(14, p) = 0.

Define

x = sup{r: x £[xp, t4] , n(x, p) = 170/2}.

Obviously t £ [T3, T4]. Now consider the solution in [f, T4], for which we

also have two possibilities:

(a) We have x £ [x, t4] , \X(x, p)\ > kn0 : By Lemma 2.4, we have N(p) =

N(Po) + 1.
(b) For every x £ [x, t4] , \X(x, p)\ < kn0 In this case, on [t, t4] we have

|?7(t , p)\ < m/2.        W*. P)\ < ho < rjo/2.

Denote O = 17 - 2X. From (E3) we have

= a(r],X,Z).

But
|(1 - n2Z2)i/2 - 1| < |(1 - r/2£2)3 - 1| = |3(^2i72 - 3i74£4 + i/6^6|.
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So, when x £ [x, T4], we have

\L(n,X,Z)\<M(n0)

where

M(n0) = 2n0 + nl + nl + nt + lo-

Therefore,

\d*/dZ\ < 4M(n0),        |0(f, p) - 0(T, p)\ < 4M(n0)Z(T, p).

According to the definitions of f and T4 , we have

<E>(t , P) = no/2 - 2X(x, p) ;       <D(t4 , p) = -2X(x4, p).

So far we have shown

|i7o/2 - 2X(x, p) + 2X(x4 ,p)\< 4M(t1o)Ç(T, p),

no/2 - 2\X(x, p) - X(x,, p)\ < 4M(f/o)í(T, p).

Remember that

\X(x, p) - X(x4, p)\ < 2kt]o ;        4kn0 > (n0/2 - 4M(t]o)Zi)-

But £3 < t]o/l2M(r]o) ■ This implies

4kn0 > 170/6,        k>l/24,

which contradict the definition of k.   The proof of Proposition 2.1 is com-

plete.   D

To further study the approach to K we will make yet another change of

coordinates. Take a parabolic point po ■ Assume n(x, p0) —> 1/0 as x -» 00 .

Introduce another transformation as follows:

(T4) H = (n-n0)/ep,    L = X/e<\     P = ZXI\

The equations for H, L,P are

dH     H(l-Pi)

dx ' 3
+ L(l-(!7o + //F2)2F6)3/2

(E4)

-Pr>°+2piH+P\P2H + no)\

*£= (^ + \)L-P(r1o + HP2)(l-(m + HP2)P*)-^,

dP F(l-F3)

dx 6

Notice that (H, L, P) = (0, 0, 0) is an isolated hyperbolic fixed point of
(E4) with a two-dimensional unstable manifold, P — 0, and a one-dimensional

stable manifold, L = H = 0.

Propositon 2.2. For any given 170 , there is one and only one parabolic orbit such

that n —> 1/0 as x —> 00.

Proof. Recall: (i) According to the relationship between / and r, we see that

when t —> 00 , x —> 00 , and £ ~ At~x , where A is a constant depending only

on h ;  and (ii) a parabolic solution satisfies equation (1.2).



322 KENNETH MEYER AND QIUDONG WANG

For any given 170, we can transform coordinates by (T4) to obtain (E4). Since

(H, L, P) = (0, 0, 0) is a hyperbolic fixed point with a one-dimensional stable

manifold, the system has one orbit that tends to (0,0,0). It is a parabolic

orbit with 17 -> i/o as x -> oc .

From the transformation (T4) again, if 17 -> i/o for a solution when x —> 00 ,

and t —► 00. Clearly P -> 0. But form formula (1.2), we have

(2.3) H = (n- no)/e/3 ~ 0(r2/3)i2/3 = 0(1).

So FT is bounded. Similarly, we have

(2.4) L = X/C2'3 ~ 0(r5'3)t5'3 = 0(1).

Therefore L is also bounded. Since the orbit is bounded in the future its co-

limit set, co(p), is nonempty and the orbit tends to that invariant set. Since

P —► 0 the (y-limit set lies in the P = 0 plane. But the flow on the plane

P = 0 is linear and all orbits other than the origin tend to infinity. Therefore,

the «y-limit set is the origin. There is only one such orbit.   G

Proposition 2.3. For any po <£ S, a parabolic point, and any neighborhood U of

Po, there is a p £ U, such that N(p) = N(p0) + 1.

Proof. Without loss of generality, assume 170 > 0. We will have To such that

li?, Po) > 0, L(x, po) > 0, and N(OT0(p)) = N(p0) for this parabolic solution,

provided x > To .
Now take a neighborhood V of 0(to , Po) such that for any p £ V we have

n(p) > 0, L(p) > 0. For any given neighborhood U of po , we can choose V

so small that any point q £ V lies in U and NXp(p) = N(p0) if q = 0(xp , p).

Referring to Figure 7, the unstable manifold of (0,0,0) of (E4) satisfies

(2.5) dH/dx = H/3 + L,        dL/dx = 5L/6.

Take a solution A: of (2.5) with initial condition L < 0 and the segment 5

as in Figure 7. Consider the backward flow and the time 1 mapping F of the

flow. By the A-lemma, we have n sufficiently large such that r"(j)flK/0.

Any point of this intersection gives a solution with N(p) = N(po) + 1 since on

s, L<0.   D

Figure 7. The approach to (0,0,0)
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One may check that the fixed-points line of (E3) is a normally hyperbolic

invariant set. By applying the normal stable manifold theorem (see Hirsch,

Pugh, and Shub (1977)), one concludes that all of the parabolic solutions form

a two-dimensional immersed manifold in the phase space. Actually we can do
much more.

Proposition 2.4. All of the parabolic solutions form a two-dimensional embedded

manifold in the phase space.

Proof. For any given i/o , we can use (T4) to conclude (E4). In fact, (E4) is an

equation with parameter n0 . Since (H, L, P) = (0, 0, 0) is a hyperbolic fixed

point with one negative eigenvalue, we have one dimensional stable manifold
given as

(2.6) H = H(x,n0),    L = L(x,n0),    P = P(x).

Since F(t) is monotonically decreasing and independent of i/o, we have

t = r(F). Therefore, we conclude

H = H(P,r]o),        L = L(P,n0)

for any n0 £ (-oo, oo), P £ (0, 1 ).

Going back to the coordinate (n, X, P), we have

(2.7) 17 = i/o + P2H(P, no),    X = P2L(P,t]o),    P = P.

Formula (2.7) defines a map from D2 to the phase space (i/, X, P) :

F:D2 = (-oo, oo) x (0, 1) -> (-oo, oo) x (-oo, oo) x (0, 1),

fao, P) - (»7o + H(P, n0)P2 ; L(P, n0)P2 ; P).

The right-hand side of (E4) is a C°°-differentiable function with respect to i/o .

Therefore, F is a C°°-mapping. By Proposition 2.2, p £ F(D2) if and only if
p is a parabolic point. We denote A = F(D2).

F is one-to-one. Otherwise we assume that (r\\, Pi), (n2, P2) are such that

F(nl, Pi) = F(n2, P2). From (2.7), Py = P2. So we obtain two parabolic
solutions

n = ni+P2H(P,r,i),    X = P2L(P, m),    P = P,

n = n2 + P2H(P,n2),    X = P2L(P, i/2),     P = P,

starting from the same initial point except i/i = n2.

For any po £ A, we have unique F~x (po) £ D2. Take any neighborhood U

of F~x(po) in D2, and denote Ay = F(U). In order to prove that F is an

embedding, we need to prove that there is a neighborhood V of po such that

V n A = V n Af,.
Without loss of generality, we assume F~x(po) = (fjo, Po) and U — [i/o -

e, fjo + e]x[P0 - e, Po + e] = I x J.  If we have no  V such that KnA =

V n Ac/, there will be p„ £ D2 such that (i) p„ -> Po, pn & Ary and (ii)

{i7o(F-1(/?„))} n / yi 0 . Here (ii) holds because of Proposition 2.2.

For these pn , we have two possibilities:

(i) There is a subsequence P„k such that r]0(F~x(pnk)) —» i/0 where nQ& I.

Since F is one-to-one, F(n'0, Po) y+ F (fjo, Po) ■ Actually we can take V and

a neighborhood W of F(n'0, Po) so small that V n W = 0. According to

continuous dependence of the stable manifold on the parameter 1/0 , we have
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f(>/;p) p„ p.

Figure 8. Showing uniqueness of limit

an interval including /' = (n'0 - S, i/0 + S) such that F(P x {P0}) £ W . Refer
to Figure 8. We have created two different parabolic solutions with same limit

value of i/o . This contradicts Proposition 2.2.

(ii) We have r\o(F~x(pn)) -» oo - Without loss of generality, assume

r¡o(F~x(pn)) —> +00. We are going to show that this case is also impossible.

First we do it in the case fjo 7e 0. Without loss of generality, we assume i/o >

0. There will be p„ £ W such that n0(F~x(pn)) > 2fj0 for any neighborhood

W of po-
The solution passing through pn is parabolic. Now, take W nearby p0 as

the U(po) in Lemmas 2.2 to 2.4 with k - 1/8. We have xPn for 0(p„) so

that

3fjo/4< ij{tp„,p„) < Sfjo/4,

and \X(x)\ < i/o/8 for all x > xp since 0(pn) is parabolic.

Now define

x' = inf{r: x > xPn ; \n(x, pn) - fj0\ = fjo}-

x' is well defined and \n(x, p„) - fj0\ < fjo for any x £ (xPn, x').

Considering the solution 0(p„) on the interval x £ [xPn, x']. We have shown

so far that

(2.9) |A(t)|< 1/0/8;        \n(x, pn)\ < 2fj0.

Recall formula (2.2) and the definition <t> = 17 - X :

S-«H^+X[(l
^^l^Mi-n2^

Substitute (2.9) into it. When x £ (xp , x'), we have

(2.10) \d®/dx\<M(fjo),

where M (fjo) is a constant related only to i/o .

Take £3 in Lemma 2.2 to be £3 = min{l/2; fj0/l6M(fj0)}, (2.10) yields

|<D(t')-0(t,J|<i/o/16.
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But

l<ï>(-0 - *(t„JI = W) - liTpJ + 2X(xPn) - 2X(x')\
> W) -fjo + fjo- n(xPn) + 2X(xp„) - 2X(x')\

> \r¡(x') - flo\ - \m - lirp.)\ - 2\X(xPn) - X(x')\

> fjo/2.

This is a contradiction.

The proof for i/o = 0 is almost the same. However, one should change the

expression of Lemmas 2.2 to 2.4 properly and repeat the foregoing procedure.

Details may be found in Appendix 2.   D

We need more preparation for the geometric discussion in the next section:

Corollary. For any n £ Z, we have p £ A such that N(p) = n .

Proof. Since the Euler point E on the total ejection manifold is a spiral, we

can pick a point q such that N(q) > n . Take any q' in phase space such that

(i) N(q') = 0. (ii) We have a path c(s): c(\) = q, c(0) = q', and c(s) n S = 0 .
Such a q' exists.

Denote
s0 = sup{s: N(c(s)) < n}.

So is well defined and so < 1 • c(so) is a parabolic point since nearby it

the intersection number changes. N(c(so)) = n by Proposition 2.1 and the

definition of So •

Proposition 2.5. For any given n £ Z , we have a neighborhood U of E such

that N(p) > n provided p £ U.

Proof. Recall equation (E2) and denote k = cos</>. Introduce the polar co-

ordinate system (R, û) for (k, G) by:   k = R sin û,  G — R cos û, and let

í' = l-í.
The equations for R, û, ¿¡' axe

dû     2.  (i   i -<r
¿7 = cosö-   2 + — Jcosösin.3 + (l -£')sin2û + O(R),

(E4')
dR2

dx

K
dx

2R2
sin2d

(1 -<f)sinlîcosû + (l -£')cos2?3   + 0(R3)

i'(i-i')

It is easy to see from (E4') that we can find an £ > 0 sufficiently small such

that, inside the neighborhood D'2 of E: 0 < R < e, 0 < ¿¡' < e ,

dû
dx

>l/8,
dR2

dx
< 10R2,

d?
dx

< 10^'.

Now for any given n £ Z , let A = e%0nn and take the neighborhood U of

E to be

U:0<R2 <s/N;        0<c;'<e/N.

We claim that N(p) > n provided p £ U.
Consider the solution starting from a given p £ U.   p = (Ro, Ûq) .  This

solution will say inside as long as 0 < x < (In A)/10.   Otherwise, we have
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i < (In A)/10 such that 0(t, p) £ D'2 when x £ (0, f) and either R(p, x) = e
or Ç'(p, x) = £.

If R(p, x) = £, we have

R2 < R20em.

Therefore,

f > ln(R2(p, x)/R2o)/lO > ln(A)/10.

This is a contradiction. Similarly Ç'(p, x) = e is impossible.

So the solution will stay inside of D'2 for x £ (0, ln(A)/10). Therefore,

\û(T) - û0\ > F/8 = ln(A)/80 = nn.

This simply means N(p) > n .   D

HI. A POINCARÉ SECTION

Let S = {p:(4>, G, Ç), <f> = n/2} with coordinates (G, Ç) £ (-oo, +oc) x
(0, 1). We will denote S+ = (0, oo) x (0, 1), S~ = (-oo, 0) x (0, 1) and

S0 = {0} x (0, 1), S = S\So. Also, denote SCl ,C2 = [0, c{] x [c2, 1] for any

given Ci > 0, 0 < c2 < 1 . So is the special collinear solution which goes from

E on the triple ejection manifold to K on the total expanding manifold. Except

at So one has d<f)/dx > 0 and so S+ (or S~) is a Poincaré cross section for

the flow. See Figure 9. In this section we shall discuss in detail the intersection

of the manifold of parabolic solutions with S.

From now on, by a neighborhood U of p , we will mean p £ S and U is a

neighborhood in S of p. For any given p £ S, N(p) is well defined. So is

actually the parabolic solution with i/0 — 0.

According to the discussions in the first two sections we have:

(i) For any given hyperbolic point po £ S, there is a neighborhood U of po

in S such that N(po) = N(p) provided p £ U.

Figure 9. The Poincaré section S
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(ii) For any given parabolic point po £ S, v/e have a neighborhood U of

Po in S such that N(p0) < N(p) < N(p0) + 1 provided p £ U. Furthermore,

for any given neighborhood U of po, there are pi, p2£ U such that N(px ) =

N(Po), N(p2) = N(po) + 1 .
Denote by A the set of all parabolic solutions. For any n £ Z+ , define

A^ = {p:p£ AnS±;N(p) = n}.

We see that A n S± = (J~0 Af •
A is transversal to S* since the vector field is transversal to S^1. So AnS*

is a one-dimensional embedded manifold in S* . However, it is by no means

connected in S±.

Now, for any p e AnS* , take the path-connected component Bp of AnS*
including p.

Proposition 3.1. For any pi £ BPo, N(pi) = N(p0).

Proof. If we have pi £ BPo, N(pi) ± N(p0). Take the path of BPo, say,

c(s):[0, 1] —> BPo, suchthat c(0) = Po, c(l) = pi. Since BPo is path connected,

c(s) exist.

Define S = sup{s ; N(c(s)) = N(p0)}. We see that 0 < s < 1, c(s) £ AnS* .
According to (ii) in the first part of this section, there is a neighborhood U

of c(s) such that
N(c(s)) < N(p) < N(c(s)) + 1

for any p £ U. But from the definition of 5, we have another parabolic

point p' £ U such that N(p') ■£ N(c(s)). Since N(p') > N(c(s)), we have

N(p') > N(c(s)) + 1 .
For p', we can take one of its neighborhoods V, with V c U . Again from

(ii), there is a p2 £ V such that N(p2) = N(p') + 1. This gives N(p2) >

N(c(s)) + 2, which is a contradiction since p2 £ U .   D

For convenience, we introduce the following definition.

Definition 3.1. Given any C°°-curve in S, c(s): (-oo, +oo) —► S,

co(c) = {p: there is s„ —* oo such that c(s„) -» p}

and

a(c) = {p: there is s„ —> -oo such that c(s„) —> p}.

We call co(c) and a(c) the co- and a-limit sets of c(s), respectively.

Definition 3.2. For any connected one-dimensional embedded manifold in S± ,

say, c(s): (-oo, -f-oo) —> S, we call c(s) an upper loop if Ç(p) = 1 for any

p £ co(c) U a(c). It is a lower loop if G(p) = 0 for any p £ co(c) U a(c) and it

is a regular branch if for any p G <u(c) (respectively a(c)), Ç(p) = 1 and for

any p £ a(c) (respectively co(c)), G(p) = 0. Referring to Figure 10, curve 1

is an upper loop, 2 is a lower loop, and 3 a regular curve.

Proposition 3.2. Any connected component B of A n S± has no limit point in

S±.

Proof. Since A is transversal to S* , B — B(s) is an embedded, path-connected

one-dimensional manifold. Since lim^oo n(x, B(s)) changes monotonically

with respect to s, B(s) has no self-intersection so cannot be a closed curve.
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1

s+

2

G

Figure 10. Loops and regular branch

Now assume we have a limit point p in S± . p is parabolic (since any

hyperbolic point has a neighborhood which contains only hyperoblic points).

p is not on B. Otherwise there are s„ —> oo such that B(s„) —* p. Since

linin-.oo lim^oo n(x, B(s„)) yé limT^oo n(x, p), it is impossible by the same ar-

gument in the proof of Proposition 2.4.

The existence of a path-connected component of A n S* passing through p ,

say, Bp , contradict the fact that A n S± is an embedded manifold.   D

Proposition 3.3. There are Cj, c2 ; cx > 0, 1 > c2 > 0, such that A n S+ c

[0,ci]x[c2, l];AnS-c[-d,0]x[c2, 1].

Proof. The first part is to show that there is a Ci > 0 such that any solution

starting from (n/2, G,<j;) with \G\ > Ci will be hyperbolic. We can take

Ci = 4. According to the equation

dG/dx = £(G - 4 sin2 <j> cos 0)/4,

G will always increase so the solution will be hyperbolic.

There remains the existence of c2 . Properly expressing it in the original coor-

dinate system (xi, X2, dx2/dt), we need to show that there is a c2 such that no

parabolic solution exists starting from (xi(0), 0, dx2(0)/dt) with xi(0) > c2.

Certainly we only need to confirm that such a solution with intersection number

zero does not exist.

Recall the original equation for x2 :

d2x2/dt2 = -I6x2/(x2 + 4x22)3/2.

If there is a parabolic solution starting from (xi(0), 0, dx2(0)/dt) with inter-

section number zero (without loss of generality, assume dx2(0)/dt > 0). We

have

x2(t) = [ [dx2(t)/dt]dt < [dx2(0)/dt]t
Jo

and
x2 + 4x\ > x2 > ([dxi (00)I'dt]t + Xi (0))2.
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Where dxi(oo)/dt is a constant depending only on the energy h of the pri-

maries.

Therefore

d2x2 I6[dx2(0)/dt]t

dx2(t)     dx2(0)

dt2  :       ([dxi(oc)/dt]t + xi(0))i

-I6tdt

dt dt    - \Jo [([dxi(oo)/dt]t + xi(0)y

dx2(0)

f -16[1/X!(0) - l/([dxi(oo)/dt]t + x,(0))] )
- \ [dxi(oc)/dt]2 J

dt

dx2(0)

dt

When /->oo, limdx2(t)/dt = 0:

-dx2(0) -16 dx2(0)

dt      > [dxi(oo)/dt]2Xi(0)    dt

This inequality holds only when

*i(0) < l6/[dxi(oo)/dt]2.

Therefore, the choice of c2 = l6/[dxi(oo)/dt]2 will give a contradiction.   G

Now take any path-connected component B(s) of AnS* , B(s): (-00, 00) —>
S*. Without loss of generality, assume that B(s) £ S+ . Since A n S+ c

[0, Ci] x[c2, l] = D+ , a compact set, the limit sets co(B(s)) and a(B(s)) axe

connected subsets of D+ . By Proposition 3.2, they are on the boundary of D+ .

Propositon 3.4. For a given B, co(B(s)) is either a connected subset of (0, Ci) x

{1} orof{0}x(c2,l).

Proof. By Propositions 2.5 and 3.1, (0,0) cannot be in co(B(s)).
By Proposition 3.4, B will be one of the three types of curves described in

Definition 3.2.

Proposition 3.5. // co(B(s)) £ (0, Ci) x {1}, it will be either Q{ or Q2 on the
total ejection manifold.

Proof. For any other point Q on (0, Ci ), we can find a neighborhood U of Q

such that either N(p) > N(B(s)) or p is hyperbolic with N(p) = 0 provided

p £ U. So Q is not in co(B(s)).   D

Now we concentrate on Aq . First of all we have

Proposition 3.6. There is no lower loop for Aq .

Proof. Suppose there is a lower loop B(s): (-00, 00) —> S+ . For any given s ,

denote

lim n(B(s), x) = r¡g(s).
T—»OO

We see that

lim r¡§(s) = //o (°°)   and     lim ng(s) = tig(-00)
s—*oo 5—> —00

exist since for any i/o, there is only one parabolic solution as with 17 ̂  i/o.

Also, ng(oo) yi ng(-oo). So at least one of them is nonzero. Without loss of

generality, assume ng(oo) y± 0.
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Then there is aBy Propositions 2.5 and 3.1,   (0,0)  is not in co(B(s))

sequence sn , sn —> oo, such that

lim B(sn) = (0, £o),    where 0 < £0 < 1 •

According to the proof in Appendix 2 and Proposition 2.4, both i/ó^oc) < oc

or i/q (oo) = oo are impossible.   G

Corollary 3.1. There is no lower loop in Aj for any given n £ Z .

Proof. Any lower loop of A± will create a lower loop for Aq .    D

Proposition 3.7. There is at most one regular branch for Aq .

Proof. Suppose there are two regular branches, say, Bi(s) and B2(s)

lmv^G^s)) = 0, lim^oo G(B2(s)) = 0.  Since ngl(s) ¿ ng2(s

one of these two values is nonzero. But this gives a contradiction similar to that

in the proof of Proposition 3.6.   D

Assume

at least

Proposition 3.8. There is one and only one regular branch in Aq .

Proof. We need only establish the existence here. Refer to Figure 11. Take any

straight line G = G0, 0 < G0 < G(QX). We claim that it intersects at most

finitely many branches of Aq .

If this is not the case, there are infinitely many loops intersecting this line.

Then there is a sequence pn on it, with each p„ belonging to a different loop

branch of AJ. Since we have cx,c2, such that 0 < c{ < S,(pn) < c2 < 1,

pn will have at least one accumulation point inside S+ , say po. We have

N(po) = 0 and Po £ A. The existence of this po will destroy the embedded

manifold structure of Aq .

Now, consider a path, n , connecting a point with intersection number larger

than zero and another point with intersection number zero, We can do it in

such a way that this path does not intersect any loop branch of AJ . But it

must intersect AJ . Therefore the intersection will be on a regular branch of

Aq . The regular branch exists,   n

Figure 11. The path n in S+
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We will denote this unique regular branch by Ro ■ Ro divides S+ into two

parts. Denote again

Dq = {p £ S± : there is a path connecting p and zero

and there is no point of Aq on this path},

and

Ko = {p £ S± : there is a path connecting p and (0,1)

and there is no point of A^ on this path}.

For any p £ K0 , N(p) = 0 and for any p £ Do, N(p) > 1 .
For any p £ Do, define

T* = inf{T>0:O(T,p)eS}.

T* exists since N(p) > 1 . See Figure 12.

Define the Poincaré mapping F:Dq —> S by F(p) = 0(x*, p)

For a given p £ Dq (or p £ S*), F x(p) might not be well defined. How-

ever, for a branch B of Aj , define

F-x(B) = {p:p£Dbt, F(p)£B}.

Either F~X(B) = 0 or F~X(B) is an embedded one-dimensional manifold.

Again, F~X(B) is by no means path connected but we have at most countably

many path-connected components of F~X(B).

Similarly, for any natural number n , define

F-"(B) = {p:p£D0t,  Fn(p)£B}.

Proposition 3.9. If B is a loop, either F~"(B) = 0 or F~"(B) consists of only
loops.

Proof. For any n, if it is not the case, we will have a one-dimensional path-

connected component c(s): (-oo, oo) —> D^ , such that c(s) £ Aj , and c(s) is

a regular branch of A* . For c(s), there is a sequence Sk -» oo (or -oo), such
that

lim c(s/c) = (0, ¿fo),     for some £o > 0.
n—»oo

From the proof of Proposition 4,

lim rfQ(s)(sk) = 0.
n—»oo

Figure 12. Regular branches
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Then,
limnc0{s)(F"(sk)) = 0.

n—>oo    "

Therefore, Fn(sk) will lie on a regular branch of A± . This is a contradiction

since they should lie on B , a loop of A^ .

So the inverse of a loop is a set of loops.   D

Proposition 3.10. There is one and only one regular branch in A+ (and A~) for

any given n.

Proof. For the existence, we remark that all of the arguments for the regular

branch in AJ apply for the regular branch in A+ . If there is no regular branch

in A+, we can create a contradiction in exactly the same way as in the proof

of Proposition 3.8.
For uniqueness, if there are two different regular branches in A+ , we will

obtain two different regular branches in Aq by applying the mapping F" .

We would like to emphasize that all of the regions and curves we have created

in S+ have their dual in S~ , symmetrically with respect to the ¿-axis of S.

We will denote the regular branch in A* by R^ .   D

Proposition 3.11. Assume (0, £) £ co(R+) (or a(R+)). For any e > 0. There

is an A such that \ 1 - £| < e for n > N.

Proof. If not there is a sequence p„ £ S+ such that N(p„) -* oo and

limp„ = (0,£);       |l-fl>e.

A solution starting from pn will enter the region |£| < c2 after a fixed period

of time F (which is independent of the initial condition p„). We see that it

cannot hit S afterward. Recall the notation in the proof of Proposition 2.5.

We can take n sufficiently large so that for p„ , during x £ [0, T], the solution

will always satisfy |0(/?)| < 1 in the equation of dû/dx.

Therefore, for this solution,

\dû/dx\<5;        \û(T,pn)-û0\<5T.

The intersection number will be restricted by F for all pn when n is suffi-

ciently large. This is a contradiction.   D

This proposition says that the end of the regular branch R+ on the ¿-axis

will move toward (0, 1) with increasing n .

The following is the global sketch we promised in the beginning of this paper.

Refer to Figure 13. Denote the regular branch of A± as R^ . The Rq form

a region F>o = ^o u ^o w*tn ^f e ^o • Again, the Rf form a region Di =

Df U F>¡~ and R2 £ Di , and so on in this way we obtain a sequence of regions

bounded by R^: D d D0 d Di d • •• d Dn D Dn+i ■■■ such that for any

peK„: Kn = Dn_i\Dn, N(p) = n.
Notice that we excluded all of the points inside the loops in A n S. So far we

have finished our discussion for this special gravitational problem. Evidently

the global sketch of the phase structure we have given here is by no means

complete. At least two questions are still open. They are:

(a) Do the loops exist in A n S and, if they exist, how does the intersection

number change inside the loops?

(b) What is the structure of the limit set of the regular branch on the ¿-axis?
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Figure 13. The intersection of S+

solutions

with the parabolic

The existence of loops makes the phase portrait very complicated and we

hope there are none of them. But frankly we have no idea yet about either their

existence or other properties. This seems to be a very essential and difficult

question.

Appendix 1

We give independent proofs of Propositions 1.1 and 1.2 here.

Proposition 1.1. For any p, co(p) is one of the equilibrium points on £ .

Proof. By (E2), ¿ is positive, exponentially and monotonically decreasing.

Thus /+oc ¿(s) ds < -(-oo and co(p) is in the total expanding manifold where

C = 0.
Recall Figure 3. We can think of £ as not only a curve but also as a surface

in (</>, G, ¿) space. £ divides the phase space into two parts: d<j>/dt > 0 in

one and dcp/dt < 0 in the other. Therefore, the line 4> = 0, <f> - n cannot be

the limit points of 0(p). Thus co(p) must be contained in the curve £ .

We claim that for any given p , G(p, x) will be bounded for all x > 0. Other-

wise, we have a sufficiently large t0 with either G(t0 , p) > 4 or G(t0 , p) < -4.

When G > 4 we have dG/dx > 0 and so G(t, p) > 4 for all x > t0 . Thus

for T > To

dG     j(t)(G + 4)

dx - 4

dG       i(/

G + 4
<

r-X />0O

ln(G(T, p) + 4) - ln(G(T0, p) + 4) <      ¿(5) ds < /    ¿(5) ds.
Jt0 Jr0

Which implies G(x, p) is bounded. A similar argument holds when G(x, p0) <
-4.

If |G(T,p)| <M,then \dG/dx\ < ¿(t)(A/ + 4)/4. Since the derivative of G
is bounded by an integrable function the lim G(p, x) exist as x —» 00 . Denote

this value by Go .
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Since co(p) must lie on the curve £ and G(p, x) —> Go , the co-limit set is

simply the point (<f>, G, ¿) = (cot-12G0, G0, 0).    D

Proposition 1.2. If 0(co(p)) £ £ = £\K

x2(t) = At + Bint + C + 0(ra).

If co(0(p)) = K,

x2(t) = C + 0(ra);        dx2/dt = 0(ra-x)

where A, B, C are constants and A / 0, a is any constant with a < 1.

Proof. From the properties of a two-body problem,

Xi(í) = Ait + Bilnt + Ci + 0(r2'3),     Yf = Ai + Y + °(r5/3) '

where Ai = \fh > 0, B\, Ci are constants depending only on the energy inte-

gral h . By Proposition 1.1,

x2      „ dx2/dt

xi dxi/dt

If Go # 0, we have

X2~Go^i¿,        dx2/dt ~ GqAi.

Going back to (E0), we have

,.,, d2x2 16x2 B       . _,,

(A1) -dW = -(x2 + 4x2)V2=T2+0{t    }>

where B is a constant related only to h and Go .

From (Al),

(A2) £^+*+<,(rl),

where dx2(oc)/dt is a constant. (In fact, it is Go-^i.)

Integrating both sides of (A2) again,

(A3) x2(t) - x2(t0) = (t- 'o/*2^ + B(lnt- Into) + 0(lnt- lnt0).

This is actually:
, ,      dx2(oo)     „, ^.,

x2(t) = t——!- + B In t + 0(ln t),

if we take to fixed and think of (A3) as a function of t.

Now, returning to (E0) and substituting (A3), we obtain

d2x2     B  , „(,_t\     B , __3+a.
(A4) -d7r = T2+0{lnti) = l¿ + 0{t

for any 0 < a < 1 .
Integrating both sides of (A4),

dx2(t)     dx2(oo) _ B , „,2+o

í/í Í5fí í
+ o(r
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Let g(t) = x2(t) - [dx2(oo)/dt]t - Bint. For t sufficiently large, we have an

£ > 0 such that

(A5) \g(ti)-giti)\<s(t;l+a-ql+a).

Since a < 1, this means g(t) —> g(oo) as t -> oo. Denote ti = t and let

t2 —> oo in formula (A5); we have

\g(t)-g(œ)\ = o(rx+a).

This is exactly

jc2(i) = ^^-t + Blnt + g(oo) + 0(t~x+a).

For the case Go = 0, (A1)-(A5) are still correct. What we need to do is to

set B = 0, dx2(oo)/dt = 0 in these formulas. We obtain

x2(0 = C + 0(rx+a) ;       dx2/dt = 0(r2+a).

Replacing I - a by a, we finally obtain the conclusions of Proposition 1.2.

Appendix 2

Here we finish the omitted part in the proof of Proposition 2.4. It is the case

1/0 = 0.

Lemma 2.2'. For any given 0 < k < 1/2 and £3 < 1/2, there are £1, £2, such

that in D,

\(G-4sin2(j)C0S(f>)/(l-^)\<k,

where D: \cf> - n/2\ < ex, \G\ < e2, |¿| < £3.

Proof. It is obvious.   D

Assume po is a parabolic point; then there is a neighborhood of po, say

U(po)' \p - Po\ < S, such that for any p £ U(po), we have xp , 0(x, p) £ D2

for all x > xp according to Lemma 1.1.

Lemma 2.4'. For any p £ U(po), if there is a t2> tp , such that \X(x2 , p)\ > k ,

then this solution will be hyperbolic.

Proof. The same argument as in the proof of Lemma 2.4.   D

For the case i/o = 0 in the proof of Proposition 2.4, assume that we have

Pn . rlo(F~x(Pn)) -* oo and p„ —> po. We can take a neighborhood U(po) of po

so small that for any p £ U(po), there is a xp with \n(xp , p)\ < 1/16. There

will always be infinitely many parabolic points p„ inside U(po). So we can

take Pn £ U(po) such that \n(xp, p„)\ < 1/16. Let

T' = inf{T:T> xp; \ri(x,p„)\ = 1}.

Since f7o(F_1(po))| -» oo, x' is well defined and x' < oo .

Since Pn is a parabolic point, we have

\X(x,Pn)\ <k,        \ri(x,pn)\< 5/4

when t e (tp , t') . Now recall formula (2.2); <3> = n -2X:

¿<D     A   17     i/3¿     X[(l - n2í2?12 - 1}     X     .  „       2e2^
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When x £ (Xp, x'), we conclude \d$>/dP\ < Mo , where Mq is a constant.

Take k< 1/16 and £3 = min{l/2, l/16Af0}- It is easy to see that:  |0(t')-

<D(tp)|< 1/16. But

|<D(t') - <D(tpJ| = |i/(t') - n(xPn) + 2X(xPn) - 2X(x')\

>\n(x')\-\n(xPn)\-2\X(xPn)\-2\X(x')\

> 11/16.

This is a contradiction.
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