
transactions of the
american mathematical society
Volume 338, Number 1, July 1993

ASYMPTOTIC BEHAVIOR FOR A COALESCENCE PROBLEM

OSCAR BRUNO, AVNER FRIEDMAN, AND FERNANDO REITICH

Abstract. Consider spherical particles of volume x having paint on a frac-

tion y of their surface area. The particles are assumed to be homogeneously

distributed at each time /, so that one can introduce the density number

n(x, y, t). When collision between two particles occurs, the particles will coa-

lesce if and only if they happen to touch each other, at impact, at points which

do not belong to the painted portions of their surfaces. Introducing a dynamics

for this model, we study the evolution of n{x, y, t) and, in particular, the

asymptotic behavior of the mass xn(x, y, t)dx as t -» oo .

Introduction

Aerosol dynamics is often modelled by an evolution equation for the number

density n(x, t) of the particles of volume x ,

dn(x, t)

(o.i) ~ Jo
1 fx

+ -J   v{x-Z,Ç)n(x-Ç,t)n{Ç,t)dÇ

where q>(x, c¡) is the collision rate between particles x and t\. The underlying

assumptions are that particles of any volume x are homogeneously distributed

at each time t, and that when two particles of volumes x and t\ collide,

they coalesce, thus forming a new particle of size x + Ç. The right-hand side

in (0.1) is called the coagulation operator. The choice of (p depends on the
physical environment of the particles (see [2, 5]). Some models incorporate

also a fragmentation operator, and some models study the discrete version of

(0.1) whereby

n(x, t) = ^2 nj(t)ô{x - j)    (ô = Dirac function).

7=1

For existence and uniqueness theorems, and numerical calculations, we refer to

[1-12 and 14, 15].
Recently David Ross and Tom Whitesides [13] introduced a new coagulation

model. They consider spherical particles (such as oil drops) that are partially

covered with surfactant (or "paint"). Collision between two particles will result
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in coalescence if and only if the particles touch each other on their "unpainted"

surface at the moment of collision. If we denote by y the fraction of surface

area of the particle which is painted, then the number density n(x, y, t) of

particles (x, y) satisfies the evolution equation given in (1.1) below.

Several questions arise

(a) What is the effect of the surfactant for large times? Do all particles become

painted as t —> oc ?

(b) Does the asymptotic distribution of the mass depend continuously on the

initial distribution?
In this paper we answer these questions. Regarding (a) we prove that

p\       /»OO

(0.2) /    /    xn{x,y,t)dxdy^0   ifi-x»,
Jo Jo

i.e., all the mass is contained in completely painted particles as t —► oc . To do

this we shall introduce in §4 a more detailed description of the evolution of the

system than the one given by (1.1).

Denoting the limiting density number by n(x, y, oc), we also prove that

(0.3)        // (1 +x)\n(x, y, t) - n{x, y, oo)\dxdy -> 0   ifr^oc,

where P denotes the space of all particles (x, y) (when two particles coalesce

they may produce a particle (x, y) with y > 1 ; however, y < 21/3).

Take a family of initial conditions n¿(x, y) (0 < k < 1) and denote by

«¿(x, y, /) the solution corresponding to «¿(x, y, 0) = nK(x, y). We shall

prove the following stability result which answers positively question (b) above:

(0.4)

if // (1 +x)\nx(x, y) - «o(x, y)\dxdy   as k -+ 0

then   / / (1 + x)\nx{x, y, oo) - n0{x, y, oo)\dxdy —> 0   asA^O.
ip

The above results are first proved for the case where the initial data are

continuous functions. In the last section of this paper we extend the results to

initial data that are measures, thus enabling one to compute an approximation

for the mass distribution xn{x, y, oo)dx by working with solutions of the

form

nx(x ,y,t) = Yl Rmk{t)ô{x - xm)ô(y - yk)   (finite sum)

m ,k

whereby Rmk{t) are solutions to systems of ordinary differential equations. A

different numerical approach based on Monte Carlo simulations was carried out

by D. Ross and T. Whitesides [13].

1. The model

Spherical particles with variable volume x are distributed in the entire space

K3. The surface of each particle is partially covered by surfactant; we refer to

the surfactant as "paint" and to the covered area as the "painted area". We

denote by y the fraction of the painted surface area of the spherical particle,

i.e., the total painted area is yyx2/3 where y — 4tí/(^-)2^3 ; for simplicity we

drop the factor y, since it will cancel out in all subsequent calculations.
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We characterize each particle by (x, y). The model assumes that at each

time t the particles are distributed homogeneously. We denote by n(x, y, t)

the density number of particles (x, y), that is, the number of particles in

(x, x + Ax) x (y, y 4- Ay) is approximately n(x, y, ?)AxAy .

Denote by (p(x, £,) the rate at which particles with volumes x and ¿¡ will

collide, per unit time. The model assumes that when two particles (x, y) and

(¿¡, n) collide, they coalesce if and only if they touch each other at the unpainted

portion of their surface. More precisely, the number of aggregations of particles

in (x, x + Ax) x {y, y + Ay) and (£, Ç + Ac¡) x {r¡, n + An) per unit time is

proportional to the numbers n(x, y ) Ax Ay, n(c¡, n)AÇAn, to the fractions of

surface areas 1 - y and 1 - r\ that are unpainted, and to the collision rate

(p{x,£) . This assumption leads to the following evolution equation

(1.1)

'}= - /   f™ <p{x,t:){\-n){\-y)*n{¡í,n,t)n{x,y,t)dc:dn
Jo Jodt

where

♦UT*-« «-«O- "£#)
v  (     * yx2'3-^2'3   \    x2/3    JKJ

xti{Z,ri,t)n\x-Z,     (jc_{)2/3    >*) (X-Ç)2i3dtd*

0 if s > 1 or if ^ < 0,
1

1 - s   if 0 < 5 < 1,
)• = {

the last notation means that the last integral

rx    r\ rx    rmm\i ,y\jf-j

/    /   ••• dt]da, is actually  /    / ■■■dndÇ.
Jo   Jo Jo   ^max(0,y(f)2/3-(^)2/3)

To explain the somewhat complicated form of the integrand in the last inte-

gral in (1.1), we observe that if a particle (x , y) collides with a particle (£, n)

so that they coalesce, then the new particle (z, s) is given by

(1.2) z = x+£,        sz2'3 =yx2'3 + r1c;2'i.

We also write

(z,s) = (x,y)e(£, n)

and call (z, s) the impact of (x, y) and (¿;, n). Thus except for the factor

x2/3/(x-c¡)2/3, the integrand in the last integral in (1.1) represents all particles

{Ç, n), (x - £, s) whose impact is (x, y) ; the expression

(yx2/3 - ?7£2/3)/(x - ¿)2/3

for s follows from the definition (1.2). The factor j in front of the integral

accounts for the fact that collisions were counted twice in the integral. To

explain the factor x2^3/(x - ¿;)2/3, consider all the particles in (x, x + Ax) x

(y,y + Ay) obtained by impact of (£, n) and particles from (p, p + Ap) x

(q, q + Aq). Then

x p+Z,        yx2'3 = qp2'3 + nc:2'3,
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and

x + Ax = p + Ap + Ç,        (y + Ay)x2/3 = (q + Aq)p2/3 + nÇ2/3.

It follows that
ApAq x2!3

AxAy      (x - £)2/3

so that, with p = x - £,, q = (yx2/3 - nÇ2/3)/(x - ¿,)2I3 we need to put, in the

last integral in (1.1),

n(f, n, t)n(p, q, f)x2/3/(x - C)2'3    (rather than «(£, n, t)n(p, q, t)).

The impact of two particles may result in a particle (x, y) with y > 1 ;

however, y < 21/3. For this reason the particle space is taken to be

P = {(x, y) ; 0 < x < oc,  0 < y < 21/3}.

Throughout this paper we assume that

<p(x, Ç) = <p(Ç, x),     discontinuous,

(1.3) 0 < y> < C < oo    (C constant),  and

ç(x,Ç)>0   if x>0, ¿ >0.

We shall impose an initial condition

(1.4) /!(x,y,0) = «o(x,y),

and assume that

n0(x, y) is continuous,

/, 5s n0{x,y)>0,        n0{x,y) = 0   ify>l,

/ / «o dx dy < oc , / / xn0(x, y)dx dy < oo .

Theorem 1.1. Under the assumptions (1.3), (1.5), there exists a unique solution

n(x, y, t) of (I A), (1.4) such that n(x, y, t) > 0 and, for every T > 0,

/ / n(x, y, t)dxdy < CT, / / xn{x, y, t)dxdy < CT

if 0 < t < T ; furthermore, n(x, y, t) is continuous.

The proof follows by minor changes from Melzak [11]. This proof is briefly

outlined in §5, where the theorem is generalized to measure-valued solutions.

As in [11] we also find that n(x, y, t) is analytic in t with values in LX{P).

The uniqueness assertion holds also if n is not assumed to be nonnegative.

Remark 1.1. The last assumption in (1.3) is not needed for Theorem 1.1 or

for all other results proved in this section; it will be needed however in the

subsequent sections.

Remark \.2. The boundedness of <p is needed only for uniqueness. Indeed, the

method of Friedman and Reitich [3] (who considered a more general evolution

equation than (0.1)) can be modified to prove existence provided tp(x, £,) <

a{x + £,) where <r(r)/r -»0 as r —► oo .

The next theorem establishes conservation of mass and paint.
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Theorem 1.2. The following relations hold:

(1.6) // xn{x ,y, t)dxdy = It xno(x, y)dxdy,

(1.7) yx2¡3n(x, y, t)dxdy =       yx2¡3no(x, y)dxdy.

Proof. Multiplying (1.1) by x and integrating over P we get

jj xn = - jj jj x(p{x,ti){\-n)*{\-y)*n{ii,n,t)n{x,y,t)
dt ipJJp

-i

(1.8)

+ ~JI dydxj dn jX dixy>(¿¡, x - £)(1 - r¡y

/,     yx2/3-nc;2'3\*   ,_

xWfx-c/-2/3-£3,^
(x-02/3   '7(*-£)2/3'

In the last integral we change the order of integration of (x, y) and (¿;, rç) and

then change variables,

z = x - £   (¿; fixed, so that 0 < z < 00),

(1.9) Vr2/3 _ „¿2/3

Noting that

we get

• 1 ,00 ,2'/3

x2/3
i/z i/s = --r-yrr i/x dy,

(x-çy/3

1        /*! /«OO ¿»Z ' /*00

-\dn\    dt\\     ds       dzç>(z,Ç)(l-rir{l-sr(z + Ç)n(Z,ri,t)n(z,s,t)
¿ Jo      Jo        Jo Jo

and each of the last two integrals coincides with the first integral on the right-

hand side of (1.8). Consequently

and (1.6) follows. The proof of (1.7) is similar.   D

We next establish a stability result that will be needed later on.

Let nx(x, y)  (0 < k < 1) be a family of initial values satisfying:

nx(x, y) is continuous and nonnegative for (x, y) £ P,

jj(l+x)\nx(x,y) - n0(x,y)\ - 0   if k - 0.

Denote by «¿(x, y, t) the solution of (1.1) with initial values n¿(x, y).
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Theorem 1.3. For any T > 0,

(1.11) ÍJ(l+x)\nx(x,y,t)-no(x,y,t)\^0   as k - 0

uniformly in t, 0 < t < T.

Proof. Set

M0= //(l + x)\nk{x, y, í)-«o(x,y, 01-

Write (1.1), integrated in t, for nx and no , and take the absolute value of the

difference. Then, multiply by (1 + x) and integrate over (x, y) £ P . On the

right-hand side we obtain integrals which can be estimated by terms of the form

I dt IJ  11 (I + x)®i\nx - n0\n0, I dt JJ  ¡1(1 + x)<¡>¡\nx - n0\nx

where <I>i ($>2) corresponds to integrals obtained from J0 /Ó^^Jo Jo*) ■ Using

Theorem 1.1 integrals with i = 1 can be estimated directly, whereas for integrals

with i = 2 we first change the order of integration and change variables (cf.

(1.9)). We then easily derive the inequality

ox{t)<C I ox(x)dx + ax{0),
Jo

from which we deduce that

(1.12) ak{t) < CTox(0)   ifO<t<T,

so that (1.11) follows.   D

2. Impenetrable sets

Defintion 2.1. A set S in P is called impenetrable if the impact of any two

points not in S is again not in S.

Example 1. Any set {y < y0} is impenetrable since if (x, y) © (¿¡, n) = (z, s)

then s > min{y, n}. Analogously, {x < xo} is impenetrable.

Example 2. For any C > 0, the set

(2.1) S = {x>Cy3,  0<y < 1}

is impenetrable. To prove this we have to show that if two points (x, y ), (c¡, n)

satisfy x < Cy3, Ç < Cn3 then their impact (z, s) satisfies

_ yx2'3 + ??£2/3     (x + £)'/3

5_    (x + O2/3    >     C'/3     '

and this is obvious.

Example 3. The union of two impenetrable sets is impenetrable.

Theorem 2.1. // S is impenetrable then the integral

n(x, y, t)dxdyIL's
is monotone decreasing in t.
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Proof. Integrating both sides of ( 1.1 ) over S we get

/•OO />1d_

<2-2'    8'

f>  /» /»OO i«Z ' /»OO /*!

//« = -/    i/x /      dy /    ¿£ /   </>/[• ■•]*s(*>J')
^Js Jo Jo Jo        Jo

i     yoo /'2i' /»oo /»l

+ x /    dx /      rfy /    ¿£ /   í/?7[- • • ]^s(x, y)X{o<í<x}
¿ Jo        Jo Jo        Jo

For any fixed (£, n) define a transformation

Tz,n: (x,y)-+{z,s)

by
_ yx2/3 - nÇ2'3

z - x    ç,        5 - ^2/3

Then the second integral on the right-hand side of (2.2) can be written as

/•OO p 1 /»OO /*1

/    dÇ      dn       dz      ds<p(Z,z)(\-n)*(l-s)*
Jo        Jo       Jo        Jo

xn(Ç,r], t)n{z, s, t)X{z>oyXs(x, y)

since
d(x,y) _       1 z2/3 = (x - tp2'3

d{z,s) ~ ds/dy ~ x2'3 ~     x2/3     '

The function Xs(x, y) coincides with the function xt( ,(S)(z . s). and X{z>0} =

1. Hence we get

ffdÇdn ff        <p(Z, ti){l-n)*{l -s)*n{Ç, n, t)n{z, s, t)dzds.
JJp JJrtn(S)

Using this in (2.2) we find that

(2.3)

g¡ Il n(x,y, t)dxdy

= - JJ dctdn jj[(p{x,c:){\-y)*{\-ri)*n(c:,n,t)n(x,y,t)]dxdy

+ i // dtdn ¡f        [g>(Z , z)(l - r/)*(l - s)*n(^, n , t)n(z , s , t)]dzds;
¿JJp J JTi%q{S)

the integrands in the last two integrals are actually identical if we set z = x

and s = y in the last integrand. Setting

(2.4) H = {(Z, n, z, s) £ P x P: T^„(x, y) = (z, s) for some (x, y) e 5},

we shall prove that

(2.5) Hc(PxS)U{SxP);

it will then follow that the right-hand side in (2.3) is < 0, and the theorem is

proved.

To prove (2.5) let (Ç, n, z, s) € H. Then by the definition of T/¡t n ,

(£, n) © (z, s) = (x, y)    for some (x, y) e S.
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Since 5 is impenetrable, either  (£, n)  or (z, s)  must be in S, and (2.5)

follows.   G

Corollary 2.2. If no(x, y) = 0 on an impenetrable set S, then n(x, y, t) = 0

./or (x, y) e S ««</all t>0.

By Example 2 above, for any xo > 0, y > 0, the set

is impenetrable. The set

(2.6) r = {0<x<x0,  y<y<l}

lies in the complement of S. Hence, by Corollary 2.2,

Corollary 2.3. If the support of «n(x, y) lies in a set as in (2.6) then, for any

t > 0, the support of n(x, y, t) lies in

{*<M
In particular, n(x, y, t) = 0 if x > 2x0/y3.

This means that if initially all the particles are partially painted at a uniformly

positive fraction, then the size of the particles remains uniformly bounded for

all times.

3. /0 J0°° ndx dy —> 0 if t —> oo

In this section we prove

Theorem 3.1. There holds
1       /»OO/»I        /»OO

(3.1) lim /    /    n(x, y, t)dxdy = 0.
'-°°7o Jo

This means that the number of particles which are not totally painted goes

to zero as t —> oo . (Compare with Theorem 4.1.)

We first establish

Lemma 3.2. For any 0 < 6 < 1,

¡■6    roa

(3.2) /    /    n(x,y, t)dxdy -> 0   ift^oo.
Jo Jo

Proof. Integrating (1.1) over (x, y) 6 (0, oo) x (0, 1) and proceeding similarly

to the proof of (1.6) to change the order of integration and to change variables

in the last integral on the right-hand side of (1.1), we obtain

'1       /»OOd    f   f°°
—       /    n{x,y,t)dxdy

1        f\       /*oo       /• 1       /»OO

(3.3) <-ö/    /     /    /    <p(x^)(l-n)*(l-y)*n(x,y,t)
¿ Jo Jo   Jo Jo

x «(£, n, t)dxdy dt; dn.
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By (1.3), we see that for any e > 0, there exists ce > 0 such that tp(x, £,) > ce

if x, t\ > e . Using this in (3.3) we get

•1       /»OOd  r1 f°°
—       /    n(x,y,t)dxdy

i rd     /»oo     /»r?     /»oo

(3.4) -~2CeJ   III    (*-*/)*(!-3;)*"(£>'7-')"(*, y, t)

<-^cE(l-e)2n   l°° n(x,y,t)dxdy)   .

Suppose (3.2) is not true; then, by Theorem 2.1 and Example 1,

rd      pOO

/    /    n(x, y, t)dxdy i y > 0   as/|oo.
Jo Jo

Choose e small enough so that

/    /  n0(x,y)dxdy <
Jo Jo

I
2

Since the set {0 < x < e, 0 < y < 1} is impenetrable (if x > e, ¿¡ > e then

x + Ç >e),

/    /  n(x,y ,t)dxdy <^   for all / > 0
Jo Jo 2-

(by Theorem 2.1) and therefore

/    /  n(x,y ,t)dxdy < -   for all í > 0.
Jo Jo 2

It follows that the integral on the right-hand side of (3.4) is  > \  for all  /
sufficiently large, so that

•1    /»oo ) 2

~4d   /"   Z"00 1 y2
— J   j    n(x,y,t)dxdy<--ce(\-ey-.

This implies that J0 J0°° n becomes negative for t large, a contradiction.   D

Proof of Theorem 3.1. By (1.6), for any £ > 0 there exists an x0 such that

fOO      p\

lx0    JO

Choose io positive and small enough such that

Ko   /■■

i»00        P I f*

(3.5) /     /   n(x,y,t)dxdy < — <
Jxn  Jo xo

/     /   n0{x,y)dxdy <-
/o   ^o

and choose ô positive and small such that

/•2Í0    /»l e

/      /     n0{x,y)dxdy < -,.
Jío     J\S ¿

Then, defining

L = {0<x<£o, 0<y<l}uKo<x<2i0,  l-¿<y<l}
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we have

(3.6) n0(x,y)dxdy<e( 2 +22) '

Evidently L is impenetrable, so that

n(x,y,t)dxdy <e(^ + 2j)    V?>0.

On the other hand, by Lemma 3.2,

/»2io    rl-S g

/      /      n(x,y,t)dxdy <p

if t is sufficiently large, say, t >ti . It follows that

/      /   n(x,y,t)dxdy <e( 2 +22 +p)    if t > t{ .

Next choose another small positive ô such that

r4io   /»1r%o    /•• g

/      /     n{x,y,t¡)dxdy<^¿,
J2ín     J\-S ¿Ilia   Ji-S

and introduce the set

Li = {0<x<2£o, 0<y < 1} U {2£0 < x < 4£0,   \ - Ô < y < 1}

This is again an impenetrable set. Since

(3.7) //  n{x,y,t)dxdy<e(-2 + 2j + 2j + ^i

for t = ti , the inequality holds for all t > i» . By Theorem 1.3,

/»4io    /»l-¿ g

/      /       n(x,y,t)dxdy<^r
Jlia   Jo ¿

if t is sufficiently large, say t > t2. Thus, together with (3.7),

/      /   n(x,y,t)dxdy<22T¡   if t>t2.
Jo    Jo j=] ¿J

After a finite number of steps we conclude that

rxo    /■■rxo    /»1

/ n{x,y,
Jo   Jo

t) dxdy < e

if t is sufficiently large.   Combining this with (3.5), the assertion (3.1) fol-

lows.   D

From (1.1) we see that, if y > 1 , then n(x, y, í) increases as t increases.

Set

( lim n(x,y, t),       y > 1,
(3.8) «oo(x,y) = n(x,y, 00) = •{ '-*°°

[0, 0 <y < 1.

From Theorem 3.1 and the monotone convergence theorem we then have
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Theorem 3.3. As t -» oo, n(x, y, t) —► n^x, y) in L\P).

4.  J0 J0°° xn(x, y, t)dxdy —> 0 if t —> oo

In this section we consider the mass contained in particles which are not

totally painted

/»I       /»OO

(4.1) M(t)= \    \    xn(x, y, t)dxdy,
Jo Jo

and prove

Theorem 4.1.  M(t) -> 0 if t -> oo.

Notice that (3.1) does not imply Theorem 4.1 since, in principle, a positive

amount of mass could concentrate in a small number of very large and not

completely painted particles. In order to prove the theorem we therefore resort

to a more detailed description of the evolution of the system than the one given

by (1.1).
Consider a particle (x, y) at time t. Necessarily, there were, at t = 0, parti-

cles (£1, >/i), (£2, n2), (£3, f/3),..., that eventually combined to form (x, y)

at time t ; that is to say,

(x,y) = (iu t]i)(ë(cl2, r/2)©(£3, >&)©••• •

In order to track back in time the particles contributing to (x, y), we define

•^í ,r¡{x, y, f, t) = number (density) of particles (x, y) (at time t)

such that a fraction / of x consists of particles which were

originally (t = 0) of type (£, n).

With this definition, the quantity

/»21/3    /»oo    /»l

/       /     /   fxA(^{x,y, f,t)dfdxdy
Ji     Jo   Jo

is the total mass in {y > 1}, at time ?, originally contained in (Ç, //)-particles.

Thus,
,     /»21/3    /»oo    /.l/»Z  ' /»OO        /> 1

/       /     /   fxhi^{x,y,t)dfdxdy
Ji     Jo   Jo

is the number of (£, ^-particles (at time t = 0) whose mass is contained, at

time t, in completely painted particles. Finally, if we set

1 r2]ß r /•'
(4.2) N(c;,n,t) = no{í,v)-Tl       I     I   fxAi¡t,(x, y, f, t)dfdxdy

then N(Ç, n, i) represents the number of (£, ^-particles whose mass has re-

mained in particles that are not totally painted, up to time t. We clearly have

the "mass relation"

/» 1       /»OO /> 1       /»OO

(4.3) /    /    xn{x,y,t)dxdy=        /    ÇN{Ç, r¡, t)dÇdri.
Jo Jo Jo Jo
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Also the total paint in particles with y < 1 can be expressed either in terms of

n or in terms of N, so that

i»l       /»OO /»l       /»CO

(4.4) /    /    x2l3yn{x,y,t)dxdy=       /    ¿2/3//7V(£, n, t)dc\dn.
Jo Jo Jo Jo

From the considerations above we should also have that

(4.5) N>0,

and that A¿ ; n increases with time for y > 1 , so

(4.6) m,»,t)l    if tU

We now have

Lemma 4.2. If there exists a measurable function N(Ç, n, t) defined for 0 <

¿; < oo, 0 < »/ < 1, / > 0 and satisfying (4.3)-(4.6) then

/»l       /»OO

(4.7) /    /    x«(x, y, t)dxdy —> 0   ift—>oc.
Jo Jo

Proof. Set N0{Ç, n) = lim,.,«, N(Ç, n, t). By (1.6) and Theorem 3.1

/   rx2l3n{x,y,t)dxdy<(f   [°° xn)      If   f°° n)      ̂ 0
Jo Jo \Jo Jo       )      \Jo Jo     j

as t —> oo . Hence also

•1       /»OO

lim /   /
>^°°Jo Jo

x2l3yn(x, y, t)dxdy = 0.
o Jo

From (4.4) and the monotone convergence theorem we then deduce that

» 1       /»OO/» 1      /»oo

/    /    eßnNo{li,n)di;dn = 0;
Jo Jo

hence N0 = 0. By the monotone convergence we then also have

■1       /-OO

lim  i   f
'^Jo Jo

ZN(t,ri,t)dZdTi = 0

and, upon recalling (4.3), the conclusion (4.7) follows.   D

To prove rigorously that a function N as above in fact does exist, we shall

first write down the evolution equation for A¿ n. The number A¿,n{x, y, f, t)

decreases by collision of particles (x, y) with any particle in the system; on

the other hand, it increases as a result of collisions of particles (x', y') and

(x-x',s) containing (£, »7)-particlesin fractions f and ^X~JX^ • respectively.
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Thus, Af v must verify the following equation

d f°°
^Aíi^(x,y,/, í) = -Aí,f/(x,y, f, t) I    dx'

x / ¿y'(l-y')(l-yMx',x)«(x',y',i)
Jo

(4.8) + I T ¿x' /' ¿y' /' df'Ks^x', y', f, t)
1 Jo Jo        Jo

x Ai,, (x-x',5, ^l{/X/, t\ (1 -y')*(l -*)*

x2/3 x
x 9>(x -x', x')-

(x - x')2/3 X - X' "

We would also like to determine initial conditions for A, to prove that there

exists a solution to (4.8) with these initial conditions, and to verify the relations

(4.3)-(4.6) for N defined by (4.2). However A is a complicated mathematical

object, which is "singular" at / = 0 (for example if t — 0).

To circumvent this difficulty we can work instead with a more regular "func-

tion:"

(4.9) Ks<tl(x,y,t)= f fA(,,(x,y,f,t)df.
Jo

i /■2'/3 r
(4.10) N(Z,ri,t) = no(Z,tl)-çJ      J    xKi<r,{x,y, t)dxdy.

• i

Indeed, from (4.2),

P2'/3

'1      Jo

Of course, so far everything is formal; rigorous proofs will be given below.

If we integrate both sides of (4.8) with respect to fdf, we get

dK(y„(x,y,t) _
-g-t- -Ai>(,(x,y, t)

/■OO /■ 1

x        dx'      dy'{\ -y')(l -y)<p{x', x)n(x', y', t)
Jo Jo

(4.11) +UXdx' fdy' fdf ffdf-^-As^(x',y',f,t)
L Jo Jo        Jo        Jo x - X

.       / ,       fx-fx'
xAï,r,[X-X   ,S,      x_x>      ,t

X2'3
x(l-y')*(l-i)>(x-x',x')-

(x-x')2/3'

To integrate on / in the last integral we change variables

q{x-x>) + fx> df^L_i=da,
X x - x'
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the last integral becomes

fdx' f dy1^—^- /,1í//'Aí,f7(x',y',/',0^í,,(x-x',5,/)
Jo Jo X     Jo

x2ß
x (1 -y')*{\-s)*<p{x-x',x'){x_xi)2ß

•1 v-/        /»I

+ /   dx' /   dy1— I   dqAç^ix-x',s, q, t)K(t^(x',y', t)
Jo Jo X Jo

v-2/3

x(l-y')*(l-s)>(x-x',x')-
(x-x')2/3'

Formally

(4.12) n(x',y',t)= f df A^^x', y', f, t),
Jo

since (x, y) always contains some fraction of (£, n) (possibly zero fraction).

Using this remark to simplify the preceding two integrals, we then obtain from

x(l-y')*(l-y)*<p(x',x)n(x',y',t)

(4.13a) +l2lodXÍ!dy' n(x',y', t)K(tn(x-x',s, t)
x

+—n(x-x',s, t)KÍ!tl{x',y', t)

x2'3
x(l -/)*(! -<?)>(x-x',x')-

(x-x')2/3'

where

(4.14) y'x'2/3+s{x-x')2/3 =yx2'3.

Notice that, upon a change of variables, (4.13a) can be written as

idK^n{x,y,t) [°°     , fl     ,
—-^LQ-t-= -Kitq{x,y,t)J    dx'J   dy'

io Jo

x(l-y')*(l-y)*<p(x',x)n(x',y',t)

(4.13b) rx ,1rx       r     x'
+      dx'      dy'—n{x-x',s,t)Ktn(x',y',t)

Jo        Jo        x
v-2/3

x (1 -/)*(! -s)*<p(x-x' ,x'
(x -x')2/3

Further, since

/   dt\dn I  dxdyxK^ n(x,y,0)
Jw Jv

{mass contained in V a

/      xn0(x,y)dxdy,
Jvr\w

'w Jv

— {mass contained in V at t — 0 which is in W at t — 0}
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we see that

(4.15) Kit,(x,y,0) = ô(x-i)S(y-n)no(x,y).

One can show that the system (4.13), (4.15) has a measure-valued solution.

However, in order to prove (4.3)-(4.6) it is much easier to work with smooth

functions K71 which are approximations to K^ ri. The functions Kj? will

solve (4.13) with initial conditions

(4.16) K^(x,y,0) = Sm(x - Ç)Sm(y - r,)n0(x, y)X   j*        ,

where ôm(t) is a smooth approximation to the Dirac measure S(t), i.e. "an

approximation to the identity:"

Sm(t) = 9{mt)m,

where

0€CO°°(-1, 1),        O<0<1, 16=1,
Js.

and xa is the characteristic function of the set A .

Lemma 4.3. There exists a unique solution K™ (x, y, /) of (4.13), (4.16) which

is continuous in (Ç, n, x, y, t). Furthermore,

(4.17) *í% = °   íft^¿   or   ^w'

,2'/3    ,00

(4.18) sup/      /   (l+x)/s:f„(x,y,0^^y<Cr.

Proof. The proof of existence and uniqueness of a solution satisfying (4.18)

can be established by the method of successive approximations. Uniqueness

(for each (¿f, n)) and (4.16) clearly implies (4.17). To prove that Kf is

nonnegative, write the second term in the right-hand side of (4.13b) as

//
*«,!,(*', y', t)B(x,x',y,y', t)dx'dy'

A(x)

where A(x) = {{x',y'): 0 < x' < x , 0 < y'< 1}.
We now replace A(x) by

JA(x), x<M,
Am{x) = \a(M),        x>M,

and add the number M to the right-hand side of (4.16).
Denote the solution corresponding to this problem (with 0 < x < M) by

K™'M(x, y, t). One can easily show that, for any fixed (x, y, t),

K^M(x,y,t)^K^v(x,y,t)   asM-*oo.

Therefore it is sufficient to prove that K™ 'M > 0. The function y/(x, y, t) =

K?'M(x, y, t) satisfies (for 0<x<A/,0<y<l) an equation of the form

-^+ai// = f,        y/{x,y,0)>0,
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where f(x, y, 0) > 0 and f(x, y, s) > 0 for all 0 < s < t if y/(x, y, s) > 0
for ail 0 < s < t. A simple argument shows that y/(x, y, t) must then remain

strictly positive for all / > 0.   D

The following two lemmas will be used later on for establishing (4.3) and

(4.4).

Lemma 4.4. Let nm denote the solution of (I A) with initial values

p\ /»OO

nm(x,y,0) = nQn(x,y) = J  dn j    dÇK?Jx, y, 0).

Then

/■l /»oo

(4.19) nm(x,y,t)=      dn       dtK¡TJx,y,t);
Jo       Jo

furthermore

(4.20) nm —> n in L'((l +x)dxdy) as m —> oc,  uniformly for 0 < t < T.

Proof. Denote the right-hand side of (4.19) by T(x, y, t). Integrating both
sides of (4.13a) (for K71 ) with respect to (£, n) we see that Y satisfies

the same evolution equation as K71 . Since nm also satisfies (4.13a) and

nm(x, y, 0) = T(x, y, 0), (4.19) follows by the uniqueness of solutions to

(4.13).
Using (4.16), we can write

no(x, y) = Í /   dn /    dÇôm{x - Ç)ôm{y - fl)Xy>±Xm>i>i ) "o(x, y)

= y/m{x, y)n0{x, y).

Then

p\ /»OO

Vm(x,y)=       dn       dÇmd{m{x-cl))m6(m{y-ri))x ^j_X  ^.t
JO Jo y> m    m>í>m

my \    /   fini

6(s)x    ids]     /     9{z)x i dz
(X-y)m        »Il       /  U-oo Um>x-zlm>^(I-

(çmy \    /   rinx-\

Xi e(s)ds)[ 6(z)d:
y> m J-(\-y)m J   \J-m1+mx

so that, for 0 < y < 1 , x > 0,

0 < y/m < 1    and   \\/m —► 1    asm^oc.

Therefore, the dominated convergence theorem implies

«g1 —► «o   in Lx{{\ + x)dxdy)   asm^oc

and this in turns implies (4.20), upon using Theorem 1.3.   O

A similar argument can be used to establish
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Lemma 4.5. Let nm denote the solution o/(l.l) with initial values

~ ~ rl       f°°     x1/3 n
n»(x,y,0) = nZ(x,y) = J   dn J    d^JK^x, y, 0).

Then

~ rl     r°°    x1/3 n
(4.21) n»{x,y,t)=      dn       dÇ—j^Jx, y, t);

furthermore

.   „. nm(x, y, t) -> «(x, y, t) in L1{{1 +x)dxdy)   as m -* oo,

uniformly for 0 < t <T.

Next, define (cf. (4.10))

(4.23) Nm(Z,ri,t)=~hJ(Ç,ri)-U0°dxf     dyxKfJx, y, i)

where

(4.24) -nj^,n) = ^l°° dx j     dyxK^(x, y, 0).

Lemma 4.6. The functions Nm , n™ satisfy
(i)  /V">0,

(ii) Nm(x, y, t) is nonincreasing in t for (x, y) /bcec/,

(iii) A2Ó" —> «o j'w L'((l+x)í/xú?y) <zs ra-+oo.

Proo/". To prove (i), it suffices to show that

,oo ,2'/3

(4.25) /    dx dyxK? Jx,y,t) = tn$(t,ri).
Jo        Jo

Denoting the left-hand side of (4.25) by fi{t), (4.25) will follow from (4.24)
once we prove that

(4.26) p'(t) = 0.

Multiplying (4.13b) by x and integrating in (x,y) we obtain

/»oo /»21' /.oo /-l

ß'(t)=-        dx dyxK?Ax,y,t)\    dx'      dy'
Jo        Jo Jo Jo

x(l-y')*(l-y)>(x,x')«(x',y',0

/»oo /•21''3 /-x /-l

+ /    dx j      dy I   dx' /   dy'x'n(x - x', s, t)
Jo Jo Jo        Jo

x2<3
xK^(x',y',t)(l-y')(l-sy<p(x-x',x'){x_xi)2ß

= -h+I2.

Now, once again we use Fubini's theorem and a change of variables to show

that Ii = I2, thereby establishing (4.26).
From (4.13) it is clear that

dKm
-JLl(x,y,t)>0   ify>l,

and (ii) follows.
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Finally, we want to prove (iii). Making a change of variables, we get

-«/«     x     !   r°  j    /•(2'/3-")m ,   /_     ZN

xo(z)o(í)«o(€ + ¿,»7 + ¿).
\      m m>

Hence,

,oo ,2"3

/      dM d!/(l+É)|Hff(É,»l)-/Io(í,»/)|
JO JO

/»oo    /»21/3 /.oo /.(21/3-*7)m

</     /      dc;dn(l+c;) dz ds(l + z/m£)
Jo     Jo J-im        J-i\m

* ^J.,/m^±^^J.ö(z)ö(J)lwo('i + z/w, n + s/m) - noii, n)\
1+»/m>m    m><,> m

poo    ,2'» /»oo /»(2''J--/)m

/     /     dÇdnii+cDnoic;,*) dz ds(l + z/mc¡)
Jo     Jo J-äm        J-nm

XX \X        i8{z)6{s)-l

= j,m + jy.
'1    T •>!

But, clearly

-»1/3
/oo /»oo /»oo /»2 '

dz \    dsd(z)d{s)       dÇ        dn{l+cl)
-oo J-oo JO JO

as m —» oo and

'o        Jo

x \n0{c¡ + z/m, n + s/m) - n0(Ç, n)\ -> O

J2m -> O   as m —► oo.   G

Next, we estimate the "mass" and "paint" for the functions Nm .

Lemma 4.7. For any T > 0,

/•OO /» 1 /»OO /• 1

(4.27)        /    dt      dnZNm{£,,», t)=        dx      dyxn{x, y, t) + am(t)
Jo        Jo Jo        Jo

where am {t) —> 0 as m —> oo, uniformly for 0 < t <T.

Proof. Integrating (4.23) and using (4.19), we get

/»OO /»I /«OO /. 1

/    dt /   </^iV"({, r/, /) = /    dSl   dri&ffß, n)
Jo        Jo Jo        Jo

/•oo /-l /-oo /-21'3

- /    di      dn       dx dyxK?,
Jo Jo       Jo J\
/»OO /»l /»OO /»2 '

= /    dZ\dn&¡%-¡    dx dyxnm{x,y,t).
Jo Jo Jo J]
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Now, from (1.6), we know that

/•oo ¡.2^

/    dx        dyxnm(x, y, t)

/»OO />1 /«OO p\

=       dx      dyxnQ(x,y)-       dx      dyxnm(x,y,t).
Jo        Jo Jo        Jo

Hence,

/•OO /»l /»OO /»l

/    dt\\  dnÇNm(èl,n,t)=       dx      dy xn(x, y, t) + am{t)
Jo        Jo Jo        Jo

where
/■OO /»l

ffw(0= /   ¿<S / dnt(hJ(c:,n)-no(Ç,n))
Jo        Jo

/»oo /»l

+ /   dd dní{no^,n)-n'on{í,n))
Jo Jo

/»oo p\

+       dx     dyx(nm{x,y,t)-n(x,y,t)).
Jo        Jo

Finally, (4.20) and Lemma 4.6(iii) imply

am(t) —> 0   as m -* oo, uniformly for i1 < T

as desired.   D

In a similar way, but using Lemma 4.5 instead of Lemma 4.4, one can prove

Lemma 4.8.
/»OO /» 1 /»OO /• 1

(4.28)/    dt\      dneßnNm(t,n,t)=       dx      dyx2^yn(x,y,t) + ym(t)
Jo        Jo Jo        Jo

where ym(t) —► 0 as m —> oo, uniformly for 0 <t <T.

The existence of a function N is established in the following

Theorem 4.9. 7>ji?/r ex/sis a function N(x, y, t) such that, for any T > 0,

(4.29) Nm{'> t] "* ^ ° '" L'((1 +x)^^)

as m —> oo,  uniformly for 0 < t < T.

Before giving the proof of the theorem, we notice that N is the desired
function, that is

Corollary 4.10. The function N in Theorem 4.9 satisfies (4.3)-(4.6).

The corollary is an imm<
4.9.

Proof of Theorem 4.9. Set

The corollary is an immediate consequence of Lemmas 4.6-4.8 and Theorem
4.9.

2l/3

rm^,n,t) = ̂ l°°dxl     dyxK?Jx, y, t).

By (4.23) and Lemma 4.6(iii), (4.29) will follow if we show that

(4 30)    {P"('' t)} converSes in L'«1 +Z)dtdn)

as m —> oo,  uniformly for / < T.
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Clearly, (4.13) and GronwalPs inequality imply, for t <T,

,00 r2"3
/   dç      dn(i+ç)\rj(t,ri,t)-rk(c:,n,t)\
Jo        Jo

(4.31) <cT rdÇ f" dn{-^-
Jo        Jo i

/.21/3

x /oo ñ¿--
dxj      dyx\KJitfl{x,y,0)-K^{x,y,0)\

so that it suffices to show that the right-hand side of (4.31) converges to zero as

j, k —> 00 . Since

/■oo /-2'/3 /1    ,   ï\     /-oo /.2I/3

J    dtj     dnK-^ J    dxj     dyx\KJcn(x,y,0)-K*tn(x,y,0)\

= /    dx /     úfyx>io(x,y)
JO Jo'0 Jo

X {r^jT^^^-^^-'M^)
4(*-<%(>>-^1X^11

f°°       f2"3 f°°      f2'ß     (l+«f)
= /    i/x /      dyxn0{x,y)       dt\ \     dn ^|Ay- — Afc|

Jo        jo jo        Jo Ç

it is enough to prove that

r°°       r2"3      (l+i)
(4.32) x        di dn{-^-\Aj-Ak\ = Ijk<C(l+x)

Jo        Jo <=>

for some constant C > 0, and that

(4.33) Ijk —> 0   as 7 , /: —> 00.

The inequality (4.32) is an immediate consequence of

xfufi^U,
(4 34)      Jo Jo ç

ryj rxj-l / 1 \

= / ds dz9(z)6{s)x i[Ti-r-^+x    ,

while (4.33) can be easily proved using (4.34).   □

5. Asymptotic stability

Using Theorem 4.1 we can extend the stability result in Theorem 1.3 to the

case / = 00 :

Theorem 5.1. Under the assumption (1.10),

(5.1) /      dy       x\nf (x,y)-nf{x,y)\dx-*0   ask->0.
J\ Jo
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Here nf(x, y) is the Ll(P)-limit of nx{x, y, t) as t -> oo.

Proof. Consider the family of functions, parameterized by / :

/»l /»oo

f,{k)=      dy       xnx(x, y, t)dx,        0<k<l.
Jo       Jo

By Theorem 1.3, f{k) -* f,(0) as k -> 0, for any t > 0. Since dnÁ(x, y, t)/dt
> 0 if y > 1, it follows from (1.6) that

/((A) I    if t T .

By Theorem 4.1

(5.2) limft{k) = 0   for any A.
t—»oo

We can therefore apply Dini's lemma to conclude that given e > 0 there exist

k0 > 0 and T > 0 such that, for all 0 < k < k0 , we have f(k) < s if t > T.
By the conservation of mass and since «£°(x, y) > «¿(x, y, /) if y > 1, it
follows that

r2"3

/L '        /»OO/    x\nf{x,y)-nx(x,y,t)\dxdy<e

if t > T   and   0 < k < k0.

We can now estimate the left-hand side of (5.1) by

/»21/3

/Z ' /»OO/    x\nf{x,y)-nx{x,y, 7

T)\

I-VI'    ,oo

(5-4) +/       /    x\nx(x, y, T) - n0(x, y,

r2"}      ,00

+ /       /    x\n0{x,y,T)-n0x(x,y)\.

By (5.3), the first and the last terms are bounded by e . Finally, the middle term

in (5.4) tends to zero as k -» 0, by Theorem 1.3, and Theorem 5.1 follows.   D

6. Initial values that are measures

In this section we consider the case of initial data that may be measures.

Consider first the case where the initial distribution is

(6.1) n0x\x,y) = ^2kmkS(x-xm)S{y-yk)

m ,k

where xm and yk are all positive, (xm, yk) belong to a finite set A c P and

kmk are nonnegative constants, kmk = 0 if yk > 1. We may try to find a

solution of the form

(6.2) «W(x, y, 0 = E Rmk(t)S(x - xm)S(y - yk),
m ,k
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where (xm , yk) £ A c P and A is the closure of A under impact, which is also

a finite set. The Rmk(t) satisfy the system of ordinary differential equations

^ííl = - Y, <p(xm, xm,)(l -yk,T(l -yk)*Rm,k,(t)Rmk(t)
m' ,k'

+ \ £ <p(Xi,Xj)(l -y,ni-y9)'Rrit)Rj,{t)
X¡-rXj=Xm

V2'3,,   4-Y-2'3,,    -V2'3,,x¡   yi+Xj  yq-xm yk

where

(6.4) Rmk(0) = kmk.

One can show (as in the proof of Theorem 1.1) that the system (6.3), (6.4)

has a unique solution; actually, as will be shown later on, (6.2) is the only

measure-valued solution of (1.1), (6.1).

Suppose now that «o(x, y) is a function satisfying (1.6) and approximate it

by a sequence n0 '   of measures of the form (6.1),

(6.5) \\n[k'] - «oil + \\x(n{¿j) - /i0)|| -> 0   as ; - oo,

where ||g||  stands for the total variation of the absolute value of a (signed)

measure g. Our goal is to prove that n(X'\x, y, oo) exists, as a measure, and

||(1 + x)[«(Aj)(x, y, oo) - n(x, y, oo)]|| ^ 0   if ;' —> oo.

This implies that the distribution of the mass of n(x, y, oo) can be approx-

imated by the distribution of the mass of n(X'\x, y, oo) and, therefore, by

solving ordinary differential equations of the form (6.3), (6.4).

Let us recall some ideas from Melzak [11] that will be further developed in

the sequel.
Define the brackets

[f,g](x,y) = = l /    /   <p(Z,x-i)(\-n)(\i{U*--*,-«(-z£H&=
yx2'3-nt2/}\      x2'3      ._.

(x_¿)2/3     j  (x_g)2/3^^

/» 1        /»OO

f(x,y)     /   <p{x,C){\-n){\-y)g(£,n)dtdn
Jo  Jo

-g(x,y)J* jf%0,0(i - *)(i -y)M, nWdnl

so that equation (1.1) can be written in the form

(6.6) ^j = [n,n].

Proceeding analogously to [11], a function

oo

(6.7) n{x,y,t)^Ya^x^y)tk
k=o
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will be a formal solution to (1.1), (1.4) if and only if

1

k+l
(6.8) a0 = «o,        ak+i = 7—— £ [a¡, aj]

i+j=k

The estimate

(6.9) //f|[/,,ll<c(//p|/|)(//p|,|

can be established as in [11] and it can then be used to derive the inequalities

(6.10) //|afc|-(//N)m*

for some positive constant m depending only on //|"ol- If //l"o| < °°,

this yields a nonnegative solution of (1.1), (1.4) for times t < l/m. Since

//1 «| = // n is nonincreasing, the solution can be continued step-by-step to all

times.
We wish to extend this procedure to the case in which «0 is a finite measure.

To do this, we use the fact that the space of finite signed measures on P is the

dual space of C°(P) = {y/ £ C(P): y/ vanishes at oo}. We first notice that if

f,g£Ll(P) and y/ £ C°{P) we have

(6.11)
/•l       /"OO

([f,g],y)=       /    V(x,y)[f,g]{x,y)dxdy
Jo Jo

=H i!r/(x 'y) dx dy {i! [ xo<^ w^ ^'^
í2/3

' ^(x+¿2/ln)^^)dídn

pi       /-OO

/    /    f(x,y)dxdy
Jo Jo

x L(x, y)£ I™ <p(x, £)([ - y)(\ - n)g(£, n)dtdn)

/■l     /»oo

/    /    g{x,y)dxdy
Jo Jo

ys(x,y)£ l°°<p(x,c:)(i-y)(\-n)nt,n)dtdn\\.

Therefore the definition of [/, g] can be extended, in the obvious way, to the

case in which / and g are finite measures. Hence, [/, g] is also a finite

measure with the property (cf. (6.9)).

(6.12) |([/^],^l<C||/||||g|||^|Loc

for any y/ £ C°(P), and therefore

(6.13) ll[/,S]||<C||/||||s||.
Definition 6.1. A function n: K+ —» ̂# = {space of finite (signed) measures on

P} is a measure-valued solution of (1.1) if (6.6) holds, where [n, n] is defined

by (6.11) and |j is the strong derivative of n .
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Theorem 6.1. If no is a nonnegative finite measure with finite \\xno\\, then there

exists a unique measure-valued analytic solution n(t) of (I A) such that n(0) =

no- The function n(t) is nonnegative, and with finite ||«(0II> \\xn(t)\\ for each
t>0.

Proof. The proof of existence was already outlined above. We seek a solution

in the form (6.7) where the ak 's are finite measures. Then (6.6) reduces to the

relations (6.8). Using the estimate (6.13), we can establish (cf. (6.10)) that

(6.14) l|a*ll<l|no||w*,        m>0,

which yields a unique analytic measure-valued solution t —► n(t) for all t <

l/m , satisfying ||«(i)ll < oo , ||x«(f)|| < oo . If we can show that n is nonneg-

ative, then ||«(Oil is nonincreasing, and proceeding step-by-step, we extend the

solution to all t.

To prove that « is nonnegative-valued we approximate «o by smooth non-

negative data «oj. The corresponding solutions n¡ are nonnegative functions

(by Theorem 1.1). If we can show that

(6.15) \\nj{t) - n(t)\\ ^ 0   as;' —oo,

then the nonnegativity of n follows.

The assertion (6.15) is a special case of the following lemma.

Lemma 6.2. Let «q(0 < a < 1) be a family of nonnegative measures such that

(6.16) K-«o|HO   ifa^O.

Then, for any T>0, the corresponding solutions na{t) satisfy:

(6.17) ||«,T(0-«0(0ll ^0   ifa-^0,     uniformly for 0 < t < T.

Proof. One can show that

if Ha,-a||-^0,        ||ô„-ô||-+0   as rj-0

1 '    } then||[a(T,ô(,]-[a,ô]||-»0   asrj-0.

Writing «CT(x, y, t) in the form (6.7),

oo

(6.19) «'(i) = $>*'*
k=0

it follows that for any k > 0,

(6.20) \\aak - a°k\\ ̂  0   ifa-0.

On the other hand (6.14) implies that

oo .

y>2ii/*^o if/<^, y-oc
t-*1    K 2m
k=j

uniformly in a. Combining this remark with (6.20), the assertion (6.17) fol-

lows.   D
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Lemma 6.3. If no is a nonnegative measure with compact support in 0 < x < oo,

0 < y < 1, then the corresponding solution «o(i) satisfies:

/»l       /»OO

(6.21) IN(0II= /    /    »oO-O,
Jo Jo

/»l       /»OO

(6.22) ||x«0«ll = /   /    xn0(t) - 0
Jo Jo . .

as t —> oo.

Proof. We approximate «o by continuous nonnegative functions na(x, y) with

support in a set 7o < y < 1 , 0 < x < x0 where 7o > 0, Xo < oo . By Corollary

2.3, the corresponding solutions na{x, y, t) have, for all t, their support in

some set

(6.23) 7o<y<2lß,        0<x<x,    (x-<oo).

The inequality (3.4) holds for each n„ ; letting o —> 0 and using Lemma 6.3

we deduce that (3.4) holds also for «o . This inequality can be used to establish

the relation
f8    /»oo

(6.24) /    /    n0(0-»0   iff-K», O<0<1,
Jo Jo

as in the proof of Lemma 3.2. Here we use the fact that

(6.25) / / «o(0 I    if t î provided S is impenetrable;

the proof follows by approximating n0 with n„ . Having proved (6.24) and

(6.25), the proof of (6.21 ) follows as in Theorem 3.1. Finally, since the supports

of all the na(t) lie in (6.23), the same is true of the support of «<-(0 • This fact

together with (6.21) yields the assertion (6.22).   D

We now specialize to the case where «o(x, y) is a function (1.6) and intro-

duce nonnegative measures n0' of the form (6.1) (with yk all positive) such

that (6.5) holds.

Theorem 6.4. Denote by n(X>\t) the measure-valued solutions corresponding to

«o    . Then the limit measure n(k>\oo) exists and (6.5) implies that

(6.26) ||x(«^>(oo)-«(oo))||-0   ifj^oo.

Proof. The proof of existence of «(/t^(oc) follows by (6.21) and monotonicity

on {y > 1}, much as in Theorem 3.3. By Lemma 6.3, for each j ,

/> 1     />oo

(6.27) f(j)= /    /    xn^(t) 10   if/Too.
Jo Jo

We can now proceed to establish (6.26) as in the proof of Theorem 5.1.   D
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