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REGULARITY PROPERTIES OF SOLUTIONS
TO TRANSMISSION PROBLEMS

LUIS ESCAURIAZA AND JIN KEUN SEO

Abstract. We show that the gradients of solutions to certain elliptic and para-

bolic transmission problems with internal Lipschitz boundary and constant co-

efficients at each side of the internal boundary are square integrable along the

internal boundary.

0. Introduction

In [E, F, V] we considered a weak solution u £ WX>2(B), the space of

square integrable functions on the unit ball, B = {X e R"| \X\ < 1} with

distributional derivatives in L2(B), of the divergence form operator Lu =

div(A(X)^Ju(X)) = 0, where A(X) = kxD + Xvi"\D and D denotes a Lipschitz
domain contained in the ball of radius 1 /2 centered at zero, Bx¡2 (see the body

of the paper for the relevant definitions). There we showed that the gradient

of u has a restriction to the boundary of D, 3D, and that it lies in L2(dD).

In particular, if N(Vu+) and A(Vu~) denote respectively the nontangential

maximal functions of the gradient of u from inside and outside of D, there is

a constant C depending on the Lipschitz character of D such that

l|Ar(Vw±)||L2(aD)<C||W||(i,1,2W.

To obtain this result we first showed that the operator XI - K* is invertible

on L2(dD), where \X\ > 1/2, and

K"(f)(P) = p.v.~ f    {PTpQ'!!l{nP))f(Q)do(Q)   fox feL2(8D),
°>n JdD \F - Q\

where do and N(P) denote respectively the surface measure on 3D and the

outer unit normal at a point P on dD, ton the surface area of the unit sphere

in R", and (•, •) denotes the scalar product on R" . As a consequence, we

obtained a representation of u in a neighborhood of D as the sum of a single

layer potential and of a Newtonian potential. In this paper we will obtain similar

results for more general equations. In particular, we will show that the same

regularity holds when

(0.1) Lu = diw(A(X)Vu(X))   with A(X) = Qxd + C2Xw\D,
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where the matrices Ci and C2 axe constant symmetric positive definite, and

Ci - C2 is positive or negative semidefinite. There are some works where the

regularity of solutions to this type of equations is studied [L, R, U], but in them

the boundary of D is required to be sufficiently smooth so that the boundary

can be flattened. Of course, in this case the regularity of the solution is much

better; for instance, when 3D is locally the graph of a function in the class

Wp ' " and p > n the gradient of u is Holder continuous up till the boundary

on both sides of D (see [L, R, U]).
We will also show that the same type of regularity holds when ü = (ux, ... , u")

£ [Wx'2(B)]n is a weak solution to a divergence from elliptic system

(0.2) Sau = Di(a'/Jß(X)DjUß) = 0   for all a = 1, ... , n,

where
<*ß( v\ _   f ^iaaßöij + OißÖja) + XSjßOai      foX X £ D ,

a,J        ~ l fi(SaßSjj + SißSja) + XojßSai   for X £ R"\D,

and

(0.3) p,p>0,    X>-2p/n,    X>-2p/n;

that is, the coefficients coincide with those of two elasticity systems with Lamé

constants p, X, and p and X respectively in the interior and exterior of D.

In this case our method only yields the regularity result when p < p and X < X

or p > p and X > X.
The method we use here to obtain the above estimates relies on the Rellich-

Necas indentities [N], and the so called paraproducts which where introduced

in [D, K, V, 1] to solve the Dirichlet problem for the biharmonic operator in

Lipschitz domains. Though this method gives directly after some technical ar-

guments the above estimates, we have chosen to show first that certain mappings
associated to the single layer potentials of the operators at both sides of D axe

invertible, and as a consequence, as in [E, F, V], to obtain these estimates. In

particular, we will show that when 5 and S denote respectively the single layer

potentials of the constant coefficient operators in the interior and exterior of D

in (0.1), the mapping

L2(3D) x L2(3D) -> L](3D) x L2(3D),

if, g) - (S(f)-S(g), (CiN, VS(f)+) - (C2N, VS(g)-)),

is invertible, where the superscripts + and - denote respectively the restric-

tions of the gradients to the boundary of D from the interior and exterior. Anal-

ogously, we will show that when S and S denote respectively the single layer

potentials of the constant coefficient operators in the interior and exterior of D
in (0.2), the operator from [L2(3D)]n x [L2(3D)]n -» [L2(3D)]n x [L2(3D)]n

mapping (/, g) into

(s(ñ-s(g),ls(fy--^s(g)-),

where 3/3v and 3/3v denote the conormal operators (so-called tractions)

associated respectively to the elasticity systems in (0.2), is also invertible.

We will also show that the same method applies to obtain analogous estimates

for solutions to parabolic problems with transmission conditions; that is, if u £
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C([0, T], L2(B))nL2([0, T], WX<2(B)) with u(X, 0) = 0 is a weak solution to

Dtu-div(A(X, t)Vu(X, t)) on Bx[0, T], with A(X, t) = d^-r^R^n,. ,
and where f2r is a Lipschitz domain in time and space contained in Bi/2 x

[0, T] whose lateral boundary is not horizontal, and Ci, C2 satisfy the same

conditions as before, then

||A(Vw  )llL2(d£irnAx[0,r]) + IIA«||z.2(fl3/4x[0,r])

< C{\\u\\L2{[otT],WU2(B)) + IIAw||¿2(tf)},

where C depends as before on the Lipschitz character of Q.j and K is a

compact subset of B x [0, T] away from the lateral boundary of Q.t • Here,

L2([0, T], WX-2(B)) denotes the space of functions u £ L2([0, T] x B) such

that u(-, t) lies in rfl,2(5) for almost every Mn [0, 71, and

\\uWh([0,T],w^HB)) = /    / l"(x' 0I2 + \Vu(X, t)\2dXdt < oc.

Throughout this paper we will assume that the dimension n is greater or

equal than 3, leaving the details when n = 2 for the reader.

1. Notation and definitions

The letter X will denote a point in R" and the letters P and Q points on

the boundary of a bounded open domain D. Derivatives 3/3X, will often be

written D¡, and time derivatives Dt. An open ball of radius r centered at a

point X will be denoted as Br(X), and if the center of the ball is the origin

we will simply use the notation Br. In particular B = Bi.

We will often use the index summation convention of repeated indices, and

the action of a matrix A = (atj) on a vector £ = (£1,..., f„) is defined as

(Ai)i = auc¡j for i=l,...,n.
A bounded open connected domain D in R" is a Lipschitz domain if for

each point P £ 3D there is a coordinate system (x, s), x £ R"~x , s £ R, so

that with respect to this coordinate system P = (0, 0), and a double truncated

cylinder Z centered at P with axis parallel to the s-axis and whose bottom

and top are at a positive distance from 3D, and a Lipschitz function <p with

\\^<P\\l°°(R"-1) < m, so that Z Ci D = Z n {(x, s)\s > tp(x)} and Z n 3D =

Z n {(x, s)\s = y>(x)}.
If u is a function defined on a neighborhood of D we define the interior

and exterior nontangential maximal functions of u at P £ 3D as

N(u+)(P)=   Sup   \u(X)\   and   N(u~)(P) =   Sup   \u(X)\,
xer+(/>) xer-(P)

where T+(P) = {X £ D/d(X, P) < \d(X,3D) and d(X,3D) < r}, Y~(P) =

{X £ Rn\D/d(X, P) < \d(X, 3D)}, where r is chosen so that the above set is

strictly contained in the interior of D. When u is only defined in the interior

of D we define its nontangential maximal function as

N(u)(P)=   Sup   \u(X)\.
xer+{P)

We say that / e LP(3D), l<p<oo,iff£ L"(3D) and for every cylinder
Z as in the above definition with associated Lipschitz function y>, there are
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U(3Dï\Z) functions gi, ... , gn-i such that

/     h(x)gj(x, tp(x))dx = - /      —h(x)f(x, <p(x))dx
JRn-l JRn-l   OXj

whenever h £ C^iR"'1 n Z).

It is easy to see that given / £ LP(3D) it is possible to define a unique

vector V,/, at almost every P £ 3D so that \\Vtf\\ij>(dD) is equivalent to the

sum over all the coordinate cylinders in a given covering of 3D of the LP

norms of the locally defined functions g¡ for /, occurring in the definition of

LP(3D). The resulting vector field Vtf, will be called the tangential gradient

of/. If F is a function defined on R", V,F is orthogonal to the normal

vector A, and VF = V,F + (A, VF)A. In local coordinates V,F may be

realized as ((VF, T\), ... , (VF, Tn-i)), where T{, ... , Tn-i axe "tangent"

vectors to 3D at P = (x, tp(x)), given by

Tj = (o, ... , 1, ... , 0, ¿?W) [1 + |Vç>(x)|2r1/2,

where the number 1 is located in the jth coordinate. LP(3D) may be normed

as WfWuidD) + W^tf\\v(dD) and for F as above we have

n

VF = (VF, N)N + 5^(VF, Tj)Tj   almost everywhere on 3D.

7=1

The following formulation of Poincaré's inequality will be of use to us.

Theorem 0. Let D be a Lipschitz domain. Assume JdD F do = 0. Then

[   \F\2do<C f   \V,F\2do,
JdD JdDIdD JdD

where C depends only on the Lipschitz character of D.

Given a constant coefficient elliptic operator

n

Lu = ^2 aijDiju>    with aij = ajt fox all i, j = I, ... , n,
',7 = 1

and satisfying for some c > 0

c|£|2 < ¿ a,jt¿j < c~x\i\2   for all {eR",

¿,7 = 1

we will consider the single layer potential associated to L in the domain D,

given by

S(f)(X) = [   T(X- Q)f(Q) do(Q)   for X £ R" and / 6 LP(3D),
JdD

where T(X) is the fundamental solution of the operator L . It is well known

that the following properties are satisfied:

LS(f)(X) = 0 on R"\3D, and S(f) is continuous at almost every P £ 3D

with respect to surface measure do . If

Kt(f)(P) = p.v. /   D,Y(P - Q)f(Q) do(Q),
JdD
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then

\\Ki(f)\\^dD)<C\\f\\mdD),

iiATvwnii^) + \\N(vs(fy)\\mdD) < c\\f\\maD),

for all I < p < +00, where C depends on the Lipschitz character of D and c

[C, Mc, Me]. Standard arguments yield the trace formula [F, J, R]

jj   1W/XX) = t\ {AN^P)N{P „/(/■) + «Wl,

where /4 is the constant coefficient matrix A = (a,j). In particular, the conor-

mal associated to L has the following trace on 3D when acting on S(f):

(1.2) lim    (AVS(f)(X),N(P)) = ^-f(P) + K(f)(P),
xer±(7') 2

X-tP

where

(1.3) K(f)(P) = p.v. [  (AVr(P-Q),N(P))f(Q)do(Q)   foxP£dD.
JdD

Also,

lim   (VS(f)(X), TA =    lim    (VS(f)(X), TA   for all 1 <i< n - 1.
xer+(/>) A-er-(P)

^-»P X-+P

In the case of an elasticity system pAü + (X + p)V(divu) = 0, with Lamé

constants p and X, p > 0, and A > -2p/n , the single layer potential is given

by S(f) = (S(f) !,..., S(/)„), where

S(A-W = /   r'J(X - Q)fj(Q) do(Q)   foxX£Rn,i=l,...,n,
JdD

f=(fi,...,fn)£ [U(3D)]n ,  1 < p < oc , and (PJ(X)) is the fundamental
solution matrix

where ^= x2(l/p + l/(2p + X)) and B = \(l/p-l/(2p +X)).
As before, the following properties are well known:

pAS(f) + (p + X)V(div(S(f))) = 0

on Rn\3D, S(f) is continuous at almost every P on 3D, and from the results

in [C, Mc, Me] we have

(1.5)

\\NiVSif)+)\\u(BD) + \\N(VS(f)-)\\mdD) < C\\f\\u(ôD)   for 1< p < oc,

where C depends on the Lipschitz character of D, X, and p .

As before, standard arguments yield the trace formulas:

lim   D,S{J)jiX) = ± i^-NifjiP) - BN,Nj(N, /(F))}
Er±(/>) [2p J

+ p.v. /   DiTik(P-Q)fk(Q)do(Q).
JdD

xe^iP)
x->p
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We will write the matrix a"? associated to an elasticity system as a"f =

ß(oaßöij + aißSja) + XSjßöai, fox a, ß, i, j = I, ... , v ; so that the conormal

3/3v associated to the system is given by the so-called traction,

p- = pÇVû + W^N + Xdiv(u)N,

where V« denotes the matrix (D¡uJ) and Vu1- its transpose (DjU1). In par-

ticular,

(1.6) lim    %-S(f)(X) = ±\f + K(f),
X€T±(P)  OV I

X^P

where K isa bounded singular integral operator on [Lp(3D)]n , I < p < oo .

2. Case of a single equation

In this section we will prove the following theorems.

Theorem 1. Let u £ WX'2(B) be a weak solution to (0.1) on B, where the

constant matrices Ci and C2 are symmetric and elliptic, and G - C2 is either

positive or negative semidefinite, and D is a Lipschitz domain contained in

Biß. Then there is a constant C depending only on the Lipschitz character of

D, the ellipticity constants of G and C2, and the smallest and largest of the

absolute value of the nonzero eigenvalues of Ci - C2 so that ||A(VM±)||L2(aZ)) <

C|lMll»"-2(fl) •

Theorem 2. Let Ci, C2, and D be as in Theorem 1, and S and S denote

respectively the single layer potentials of the constant coefficient operators with

coefficient matrices Ci and C2. Then the mapping

L2(3D) x L2(3D) -» L\(3D) x L2(3D),

(f,g)^(S(f)-S(g),(CiN,VS(f)+)-(C2N,VS(g)-)),

is an invertible operator.

We will first show how to prove the first theorem.

Proof of Theorem 1. Let u be as in the statement of Theorem I, tp £ C0x(Rn)

with <p = 1 on t33/4 , and tp = 0 outside B-¡/$. If C2 = (c,j) and we define

h = 2Z"j=iajjDjj(u(p)xi!L»\D, we have ||/z||L2(Rn) < C\\u\\wt.2iB). Setting w =

utp -Y(h) + S(g) for X £ Rn\D and w = u + S(f) for X £ D, where S

and S axe as in Theorem 2, and Y(h) denotes the Newtonian potential of h

associated to the constant coefficient operator outside D, one can show as in

[E, F, V, Theorem 1] that for any / and g £ L2(3D) the function w satisfies

for all (j) £ C0°°(R")

/ (G Vw , V0> dX+ I      (C2Vw , V<^) dX
JD JR"\D

= [  {(CiN,VS(f)+)-(C2N,VS(g)-)-(C2N,VY(h))}ct>do.
JdD

From Theorem 2 we can find / and g in L2(3D) so that S(f)-S(g) = -Y(h)

and (GA, VS(f)+) - (C2N, VS(g)~) = -(C2N,VY(h)) on 3D. With this
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choice of / and g the function w lies in W¿¿2(Rn), w(X) = 0(\X\2~n) at

infinity, and satisfies

L(CiVw(X),V<p(X))dX

[     (C2Vw(X), VrjJ(X)) dX = 0   for all <¡> £ C0°°(R").
JR"\D

+   ,

"\D

These and the maximum principle for weak solutions to divergence form elliptic

equations imply that w is identically zero. Therefore, we obtain a representa-

tion formula for m in a neighborhood of D, which combined with Theorem 2,

(1.1), and the estimate ||Vr(/z)||Loo(ß3/4) < C||m||^i.2(B) implies the theorem.

Proof of Theorem 2. The operator in Theorem 2 is one-to-one. To see this

observe that if / and g £ L2(3D), and S(f) - S(g) = 0, (C{N, VS(f)+) -
(GA, VS(g)~) = 0 on 3D, the function u defined as u = S(f) on D and

u = S(g) on Rn\D lies in W¿¿2(Rn) with u(X) = 0(\X\2~n) at infinity, and

is a weak solution on R" to Lu = 0 with L as in (0.1). Thus, u must be

identically zero. On the other hand, the identities

/     (CiVS(f),VS(f))dX = - [   S(f)(QN,VS(f)+)do,
Jw\D JdD

í(C2VS(g),VS(g))dX= [   S(g)(C2N,VS(g)-)do
JD JdD

show that S(f) and S(g) are identically zero on R", and from the jumps on

3D of the conormals derivatives of S(f) and S(g) (see (1.2) and (1.3)) we

get / = g = 0 on 3D.
Next, we will show that the following estimate holds:

(2.1)

WfWLHdD) + UWLHdD)

< C |||S(/) - S(g)\\L2(m + IKG A, vsc/T) - (GA, vs(g)-)\\LHm

+   [   S(f)do +   [   S(g)do },
JdD JdD )

where C is as in Theorem 1. To prove (2.1) we set u+ = S(f) on D and

u~ — S(g) on R"\D, and observe that the function u defined on R" as u+ and

u~ respectively in the interior and exterior of D, satisfies for all 4> £ C0X(R")

[ (CiVu, Vtp) dX+ f     (C2Vu, V(f>) dX
JD JR"\D

= i  {(CiN ,VS(f)+) - (GA ,VS(g)-)}W<r,
JdD

u+ - u- = S(f) - S(g)   on 3D.

After a linear change of coordinates and abusing the notation we may assume

that G = A and C2 = I, where / denotes the identity matrix, and A is a
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diagonal matrix with diagonal elements ai, a2, ... , and an , so that now u

satisfies for all <¡> £ Cfi°(R")

f (AVu, V<f>) dX + [     (Vu, Vr/3) dX
JD JW\D

(2.2) = /  {(AN, Vu+)-(N, Vu-)}<t>do,
JdD

u+-u~=h\   and   (AN,Vu+) - (A, V«") = h2      on 3D,

where hi £ L\(3D) and h2 £ L2(3D). It is easy to check that under the change
of coordinates, the assumption that G - G is positive or negative semidefinite

is preserved, and becomes a, - 1 < 0 for all i = I, ... , n or a¡ - 1 > 0 for

all i = 1, ... , n . In this context we will show the following inequality:

l|Vw+||¿2(aD) + || Vu~ \\L2{9D)

< C{||Ai||z,2(8l)) + \\h2\\L2{dD) + ||VM+||L2(D) + ||Vtr||L2(l>NI))},

where C depends on the Lipschitz character of D and the smallest of \a,■ - l\

with a, - 1 t¿ 0. Returning to the original coordinates and recalling that

and

[(CiVS(f),VS(f))dX= f   S(f)(CiN,VS(f)+)do
JD JdD

i     (C2VS(g),VS(g))dX = - [   S(g)(C2N,VS(g)-)do,
Jr»\d JdD"\D

we will get from (2.3) and Theorem 0 that

l|vs(/H|L2(aD) + ||vsuri|L2(aD)

<c{\\S(f)-S(g)\\Li{dD) + \\(CiN,VS(f)+)

-(C2N,VS(g)-)\\L2{dD) + [   S(f)do +   [   S(g)do).
JdD JdD )

Moreover, from the results in [V] and by a simple linear change of coordinates

there is a constant C depending only on the Lipschitz character of D and the

ellipticity constants of the matrices G and G, so that for / e L2(3D) the
following holds:

WfWmdD) < c jiivsco+H^w,) +1^/)^} ,

\\g\\mdD)<cl[\\vs(g)-\\L2{dD)+ ¡dDS{g)do } ,

and from the last three inequalities we get (2.1).

To prove (2.3) we recall that there is a vector field ß £ C0x(B3/4) such that

iß, N) > C with C depending only on the Lipschitz character of D [V], and

the following Rellich-Necas [N] identities:

di\(ß(AVu+ , Vu+)) = 2div((ß, Vu+)AVu+) + 0(\Vu+\2)   onD,

di\(ß(Vu~ , Vu')) = 2div((/J, VîOVu") + 0(\Vu~\2)   on R"\fl.
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Integrating on D the first identity we get

/  (ß, N)(AVu+,Vu+)do = 2 f  (ß,Vu+)(AVu+,N)do + 0(\\Vu+\\2L2(D)).
JdD JdD

Since

(AVu+, Vu+) = (AVu+ , T¡)(Vu+ , T¡) + (AVu+ , N)(Vu+, N)

and

{ß, Vu+) = (ß, N)(Vu+ , A) + (ß, T¡)(Vu+, T,),

we obtain from the above integral equality the following formula:

f  (ß,N){(AVu+, T¡)(Vu+, Ti)-(AVu+,N)(Vu+,N)}do
(2.4) JaD

= 2      (ß, T,)(Vu+, T,)(AVu+ ,N)do + 0(||VM+||22(D)).
JdD

Similarly we get for u~~ the following formula:

/  (ß, N){(Vu- , T,)(Vu~ , T,) - (VW , N)(Vu- , N)}do
JdD

= 2 [  (ß, T,)(Vu- , T,)(Vu- ,N)do + 0(\\Vu-\\2L2(B^D)).
JdD

From the transmission conditions (2.3) we can rewrite the above formula in

terms of the gradient of u+ , hi, and h2 on 3D, obtaining

/  (ß,N){(Vu+, T¡)(Vu+, T,) - (AVu+ , N)(AVu+, N)}do
JdD

(2-5) =2 [  (ß,T,)(Vu+,Ti)(AVu+,N)do
JdD

+ 0(\\Vu-\\2L2{BXD] + ||Vm+||L2(8D){||A, ||L2(ÖD) + \\h2\\L2{dD)}).

Subtracting (2.5) from (2.4) we have

(2.6)

/  (ß,N)((A-I)Vu+,T,)(Vu\T,)do
JdD

+ 1  (ß, N)((A-I)Vu+, N)(AVu+ ,N)do
JdD

= 0(||VM-|||2(BXD) + ||VW+||22(0) + HVm+IL^ÍJIA.II^, + \\h2\\L2(dD)}).

From the orthonormality of the linear base {A, T,■, ... , T„} we have

{(A - I)Vu+ , T,)(Vu+ , Ti) + ((A - I)Vu+ , N)(AVu+ , N)
n

(2.7) = ((A - I)Vu+ , AVu+) - £((/! - I)Vu+ , T,)2
i=\

= ((A - I)Vu+ , Vu+) + ((A - I)Vu+ , A)2.

From the above equalities, (2.6), and the transmission conditions (2.2), we get

(2.3) when A-I is positive or negative definite. When A-I is only semidefinite
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we only obtain control on some of the partial derivatives of u+ on 3D.  In

particular, if H — {i\a¡ — 1^0} we get

£ \\Diu+\\h(D) < c{||vh-||£W) + llvM+ii22(ö)

(2.8) i€H

+ l|V«+||L2(aD){(||Ai||L2(aD) + \\h2\\L2(m)}.

But (2.2) can be formally rewritten in the following way

(2.9)

/ (Vu, V<t>) dX = - Y [ (l-ai)D2u+(pdX
Jw iÇHJd

+ Í   J h2 + £( 1 - ai)DiU+Ni \ cf)do   for all 0 G C§°(Rn),
>dD ,        ieH

u+-u' = hi,    and   (AN,Vu+) - (N,Vu~) = h2       on 3D.

Let Y(X) and S denote respectively the fundamental solution and the single

layer potential for Laplace's operator in D, and w be the solution to Aw = 0

on D with w = hi on 3D. We define the function

v = w + YÍz2(l-a'íDiu+X°)
\ieH I

-5Í/z2 + E(l-a¡)Aw+Arl-(Viü, A))    onD,
V i€77 /

and

v = y[Yj(1-<*1)D2u+xd\
\i€H I

- S Ih2 + 5^(1 - a,)Aw+A, - (Vw , A) j     on R"\D.

At this point we will recall the following result which is essentially proved in

[K, V, D, 1] and whose proof we postpone to the end of this section.

Lemma 1. Let u satisfy Au = 0 in the interior of a bounded Lipschitz domain

D, where A is a constant coefficient second order elliptic operator, and K be

a smooth homogeneous even function of order 2 - n ; i.e., K(XX) = X2~"K(X)

and K(X) = K(-X) for all A > 0 and X £ Rn , and set

H(X) = f K(X - Y)D,u(Y)dY   for X £ R" for some 1 < i < n.
JD

Then, there is a constant C depending on the Lipschitz character of D and the

ellipticity constants of A suchthat || A^"( VJF/"±)||¿2íaí)) < C\\u\\L2(qD) . Moreover,

VH+ = VH~ almost everywhere on 3D, and H(X) = 0(\X\2'") at infinity.

From Lemma 1 and the well-known estimate, ||A(Vui)||L2(ôfl) < C||/<i||L2(ÔD)

[J, K, 1], we conclude that v(X) - u(X) = 0(\X\2-") at infinity. On the other
hand, it follows from (2.9) and (1.2) that v - u is harmonic on R" . Hence,
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u = v on R". From this representation formula for u, Lemma 1, and the

above estimate we obtain

l|V«+||L2(ÖD) + ||Vw-||L2(aß) < C\ ||Ai||L2(az)) + ||A2||L2(aD) + ]T \\DiU+\\Li(dD) \ ,

I i&H )

which together with (2.8) implies inequality (2.3) as we wanted.

It is easy to show by means of a compactness argument that the estimate (2.1 )

implies that the operator in Theorem 2 has closed range (see [V]). As in [V],

approximation of D by smooth domains and the estimate (2.1) imply that the

operator in Theorem 2 has dense range, provided it is known that the range of

this operator is dense when D is a smooth domain. But, it is an easy exercise

to show using the classical variational methods and Sobolev imbedding that

there is a constant C depending only on the Lipschitz character of D, such

that when given Ai and h2 in Co°(R"), there exists a function u satisfying

div((CiXD + C2Xr"\D)Vu) = 0 on Rn\3D, u+ - u~ = hi in the sense of trace

operators, (C\N, Vu+) - (C2N, Vu~) = h2 on 3D, and so that

(2.10) ||m||l.(r-) + IIVmH^r») < C{\\Vhi\\L2{Rn} + \\h2\\L2{aD)},

where q = 2n/(n - 2). To see this one could find for each r > 1 the weak

solution wr £ Wx'2(Br) ; the closure of Cg°{Br) in Wx>2(Br), to

div((G*o + C2XRn\D)Vwr) = - div((G*D + C2XRnXD)Vhi) + F,

where F acts on test functions as F(<j>) = JdD <f>h2 do . Since the estimate (2.10)

holds uniformly when u is replaced by wr, we have that wr converges to a

function w, and setting u+ = w + hi on D, u~ = w on the complement,

one constructs such a u . Moreover, from the arguments in [L, R, U] and when

D is smooth, it follows that the gradient of this function u at both sides of

D is a bounded continuous function. Also, Theorem 2 in [S, W] shows that
u(X) = 0(\X\2~n) at infinity. From all these facts, it follows after a linear

change of coordinates (see [V]) that u can be represented inside and outside
of D in terms of some densities with respect to the single layer potentials

associated to the operators inside and outside of D respectively. From all

these we conclude that the range of the operator in Theorem 2 is dense when

D is smooth.
We will now indicate how to proceed to prove Lemma 1. By a simple linear

change of coordinates and again abusing the notation we may assume that u

is harmonic in D. After this change of coordinates the function K will turn

into a new potential with the same homogeneity. Also, without loss of general-

ity we might assume that the gradient of u is square integrable in D, so that

the integral defining H is absolutely convergent. In this case it is obvious that

VH+ = VH- almost everywhere on 3D. In [D, K, V, 1, Lemma 1.3, 1.4]
Lemma 1 is proved when K(X) is the fundamental solution of the Laplace

operator, but an analysis of the proof of the first lemma which we mentioned

in the above reference, shows that the same proof can be carried over when

substituting this particular potential by an arbitrary potential K satisfying the

conditions in Lemma 1. The only minor difference in the proof of the general-

ization of this result is that instead of solving AB(X) = \X\2~" on R" , as in the

proof of Lemma 1.3 in [D, K, V, 1], we would have to solve AB(X) = K(X),
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observe that F is a smooth homogeneous even function of order 4 - n, so

that from the results in [C, Mc, Me] and the method of rotations [C, Z], the

principal value operators

p. v. /  D]jkB(P - Q)f(Q) do   for all i, j, k € {1,... , n}
JdD

define bounded operators on L2(3D) ; and repeat the same integration by parts

argument which is done in their proof. That VH+ = VH~ almost everywhere

on 3D follows from standard arguments and the fact that this is the case when

the gradient of u is square integrable in D. The last statement in the lemma

is a consequence of the representation of H which is obtained when repeating

the argument in [D, K, V, 1, Lemma 1.3].

Remark 2.1. We would like to observe that when the argument given to obtain

the estimate (2.3) is localized one obtains the following estimate, if P lies on

3D, r > 0, and Ar(P) = Br(P) n 3D then

< C{\\Vthi\\L2(hr(P)) + \\h2\\L2(&r(P)) + \\Vu\\L2(Br(P)) + \\Vu\\L2(dBÁP))}.

Well-known arguments (see [K] and [D, K, V, 1, Theorem 4.1]), and the above

estimate show that given a Lipschitz domain D, there exists e = e(D), so

that our results extend in the obvious way to hi £ LP(3D) and h2 £ LP(3D),

2-e<p<2 + e. So that under the same conditions as in Theorem 2 we

obtain that this operator is invertible from LP(3D) x LP(3D) onto LP(3D) x

LP(3D). In particular, this and the argument in Theorem 1 show that under

the conditions of this theorem a solution u to a transmission problem satisfies

||A(VM±)||L2«(aD)<C||M||[yI.2(jB) with e = e(D).

Remark 2.2. The reader will observe that the method we used in the proof of

Theorem 2 can be carried out when the matrices at both sides of D axe given

by two symmetric elliptic nonconstant matrices C¡(X) and C2(X), satisfying

that Ci(X) - C2(X) is positive definite on 3D, and whose gradients are uni-

formly bounded on D and B\D respectively. This and the techniques in [J,

K, 1,2] show that the same type of regularity can be obtained for solutions to

transmission problems with coefficient matrices as above and internal Lipschitz

boundary.

Remark 2.3. Finally, we would like to point out that the method we used to

obtain the above estimates does not work in all the situations. For instance,

when trying to extend the above estimates for arbitrary constant matrices at

both sides of D, one could think of trying to choose different vector fields ß

at each side of D, say ß+ and ß~ , so that when applying the Rellich-Necas

identities to u+ and «_ , and rewriting the identity corresponding to w" and

ß- in terms of u+ , and subtracting this new formula from the original Rellich-

Necas identity corresponding to u+ and ß+ , then one could choose suitable

boundary values for ß+ and ß" so that the formula obtained in this way would

yield an L2 estimate for Vu+ on 3D. But even in the simple case when 3D

is a line segment and n = 2, the reader will easily verify that if G is a diagonal

matrix with entries a and I/a, where a > 0, and G is the identity matrix,
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I

then there is no choice of ß+ and ß~ which would give control on the L2

norm of Vu+ along this line segment. Essentially, this is due to the fact that

in this case when the Rellich-Necas identity for u~ is written in terms of u+ ,

one obtains a multiple of the original Rellich-Necas identity for u+ .

3. Case of transmission for elasticity

In this section we will show that the methods used before apply to obtain sim-

ilar results for solutions to transmission problems associated to some systems.

In particular we consider solutions ü £ [Wx '2(B)]n to Sü = 0 on B, where S

is as in (0.2). That is, ü satisfies for all $ = (</>', ... , </>") e [C0°°(R")]"

p(Vu + Vir1) V^ + X div(w) dxv($) dX

+ f     ~p(Vü + Vü^)V4> + Xdi\(ü)drv(4>)dX = <d,
JB\D

where (Vü + Vüx)V$ = (D¡uj + DjU')D¡(j)j, and where (0.3) is satisfied.

We recall that a system of elasticity with Lamé constants p and X satisfying

(0.3), and whose coefficient matrix is written as p(öaßoij + oißoja) + Xojßoal
is the standard example of a linear system satisfying the Legendre-Hadamard

condition; i.e., aff(X) = a^(X) and C|£|2|,7|2 < a*f(X)Z£jnanß for some

constant C, and for all X, Ç, and n in R". From condition (0.3), we also

have that the matrix afNx) in (0.2) satisfies the Legendre-Hadamard condition

on R" . Also, there is a constant C depending on p, X, p , and X [D, K, V, 2,

Theorem 1.12] such that

(3.1) C~x\Vv + Vv±\2 <a°f(X)DjVßDjVa < C|W + Vwx|2

for all vector functions v , where

„„ a f (p/2)\Vv + Vv±\2 + Xdiv(v)2   foxX£D,
a°?(X)DJvßDlva = \^1  n ',...,

17 J \ (fi/2)\Vv + Vv±\2+Xdiv(v)2   for^eR"\D,

and \Vv + Vv±\2 = J2"j=iiDiVJ +DjV')2.

In this case the conormals associated to the operators in the interior and

exterior of D axe given respectively by

//(Vw+ + Vi7+-L)A + /ldiv(t?+)A   and
3v

3u~

~3v~
= p(va~ + va~L)N + Ädiv(ß-) a.

We will now prove the following two theorems which are the analogues of

Theorems 1 and 2.

Theorem 3. Let u = (ux, ... , u") £ [Wx<2(B)]n be a weak solution to Sü = 0

on B, where S is as in (0.2), and D be Lipschitz domain contained in BXj2.

Also, assume that (0.3) holds. Then, if p < p and X <X or p> p and X> X,

there is a constant C depending on the Lipschitz character of D, p, p., X, X,

and the smallest of the absolute value of the nonzero numbers p - p and X- X

such that HWiVw^H^aD) < C\\U\\Wt.iiB).



418 LUIS ESCAURIAZA AND J. K. SEO

Theorem 4. Let p, p, X, X, and D be as in Theorem 3, and S and S denote

respectively the single layer potentials on 3D associated to the elasticity operators

with Lamé constants p, X, and p, X respectively. Then the mapping

[L2(3D)f x [L2(3D)]n -► [L\(3D)f x [L2(3D)f,

if, g) - (S(f) - S(g), §¿S(f)+ - -^S(g)-)

is an invertible operator.

Proof of Theorem 3. Since the proof of this theorem is similar to the proof

of Theorem 1 we will only sketch the main details. As in Theorem 1, we

consider tp £ C0x(Rn) with tp = 1  on y33/4, and tp = 0 outside 737/8, and

define h = {pA(ü<p) + (p + X)V(div(ü<p))}xR><\D ■ As before we have ||A||l2(r») <

C\\Ü\\ ffri. 2(B)-

We introduce the function w defined as

w = utp-f(h) + S(g)   foxX£Rn\D,    and   w = u + S(f)   foxX£D,

where S and S are as in Theorem 4, and Y(h) denotes the Newtonian potential

of A associated to the elasticity system outside D (here Y = (Y'J) as in (1.2)

but with p and X replaced by p and X respectively). From Theorem 4 we

can choose / and g in [L2(3D)]n such that S(f) - S(g) = -f(A) and

Ist/r-§-J(gr = -§,m o„ao.

With this choice of / and g and as in Theorem 1 it is easy to check that

w £ [W^c'2(R")r , and for all $£[Cg°(Rn)]n

p(Vw + Vw1-) V$ + X div(ii)) dïv(4>) dXh
+ [    p(Vw + Vw^)V4> + X div(uJ) div(^) dX = 0.

Jb\d>B\D

Now we will show that w = 0. Let n £ Co°(B2r) with r\ = 1 on Br. From

Plancherel equality, the Legendre-Hadamard condition, and (3.1) we have

[\V(wn)\2dX < C Í ^\V(wn) + V(w-Lr])\2 + Xdiv((wn))2dX

<CJ   |*d + |xr»\d
1„\i2

\V(wn) + V(w±r])\

+ [¿Xd + X~Xr"\d] diy((wn))2 dX.

The above estimates also hold when w is replaced by w-wr, where wr denotes

the average of w on B2r\Br. These and standard arguments [G, Chapter 3,

Proposition 2.1] imply

f \Vw\2dX <6 j   \Vw\2dX   forallr>0,
JB, JB2r

where 0 is a number in the interval (0,1) depending on p, p, X, and X. Since

Vw(X) = 0(\X\X~"), the above inequality implies after letting r tend to infinity
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that Vw is identically zero on R" . The behavior of w at infinity shows that

w is identically zero on R" . Thus, we obtain as in Theorem 1 a representation

formula for ü in a neighborhood of D, which combined with Theorem 4, ( 1.5),

and the estimate ||vr(A)||¿oc(B3/4) < C||w||t^i,2(Ä) proves Theorem 3.

Proof of Theorem 4. Let S and S be as in Theorem 4. An argument similar to

the one we gave in Theorem 3 to show that the function w is identically zero

shows that when / and g £ [L2(2D)]n satisfy

S(f) -S(g) = 0,        ^S(f)+ - ^S(g)- = 0   on 3D,

then S(f) and S(g) axe identically zero in the interior and exterior of D

respectively. Since

/      %\VS(f) + VS(f)x\2 + Xdiv(S(f))2 = - (   S(f)-§-S(f)-do
JR"\D ¿ JdD ov

and

[ /±\VS(g) + VS(g)^\2 + Xdiv(S(g))2= f   S(g)-^S(g)+do
JD ¿ JdD ov

we have S(f) = S(g) = 0 on R" , and as in Theorem 2 we get from the jump

relations of the tractions (1.6), f = g = 0d on 3D. Therefore, the operator is

one-to-one.
As in Theorem 1 to show that the range is [L2(3D)]n it suffices to obtain an

estimate of the form

(3.2)

WfhHdD) + II^IIl2(öd)

<c\\\S(f)-S(g)\\L2{dD) + lS^+-^
L2(dD)

+ \L+(f)\+\L.(g)\

where L+ and L_ denote bounded linear operators on [L2(3D)]n whose norm

only depends on the Lipschitz character of D.

getting u+ = S(f), u- = S(g), hx = S(f) - S(g), and h2 = 3S(f)+/3v -
3S(g)-/3v we will show that

l|Vi7+||¿2(aD)-r-||V¿7-||L2(ao)

(3.3) < CIJA,\\L2{dD) + \\h2\\maD) + l|V«+ + Vu+±\\L2{D)

+ \\Vu- + Vu-±\\L2{B\D) + \l+(u+)\ + \l-(u~)\} ,

where /+ and /_ are respectively linear forms on WX'2(B) and WX'2(B\D),

whose norms depend respectively on the measure in R" of D and B\D, and

with C as in Theorem 4. On the other hand, from [D, K, V, 2] there is a

constant C with the same dependence, so that

(3 4) WfWmdD) < c{||va+||L2(aD) + |L+(/)|},

\\g\\mdD)<C{\\VÜ-\\L2(dD) + \L_(g)\}.
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Once we have proved (3.3), inequality (3.2) will follow from (3.3), (3.4), the

identities

/ %\VÜ+ + VÜ+±\2 + Xdiv(Ü+)2= í   ^-Ü+do,
Jd 2 JdD vv

[      ^\Vu~ +Vü~±\2 + Xdiy(ü-)2 = - [   u~ ̂ -u~ do,
JR«\D 2 JdD        OV

(3.1), and Theorem 0.
To prove (3.3) the following formulas will be of use to us. Let {N ,T\,... ,

Tn-i) be the orthonormal basis defined in §1 and associated to almost every

point P £ 3D, where A is the exterior unit normal at P, and Ti, ... , F„_i

are n - 1 tangential vectors at P on 3D. Then, for any vector valued function

v
n-\

\Vv + VvL\2 = ((Vv + Vv^)N, A)2 + 2^((Vu+ W±)A, F,)2
1=1

H-l

+ £<(Vt7 + Vt7-L)7i,7)}2,

¿,7=1

(3.5)

1 ""'
(3.6) div(tf) = ={((Vv + Vvx)N, N) + £((Vu + V^F,, F,)},

/=!

[Ja*'"
2p + X

n-l

((Vü + WX)A , A) + - ]T((W + VvL)Ti, T,),
i=\

(3.8) ■S-v, T;) = p((Vv + Vv±)N, Ti)   for all /'= 1, ... ,n- 1.
3v

These identities derive from the orthogonality of the base {A, T\, ... , F„_i}.

From the above identities we have

Xdiv(v)2 + ^\Vv + Vv±\2

1

2p + X \3

2     1 "U / 3d-v,N)   + -£(f¿,F(
>i> /       p ¿-*1 \3v

i=i

(3.9)
+

pX
2(2p + X)

n-\

n-\

^((W + W^F,, F,)
L/=l

+ f E<(Vtr + Vtfx)7},7))2.
',7=1

As in Theorem 2, we will consider a vector field  ß £ Cqx(Bt,/4)  so that

(ß, N) > C, with C depending only on the Lipschitz character of D [V], and

the following Rellich-Necas [N] identities:

div (ß \xdiv(u+)2 + ||Vw+ + Vw+±|2])

= 2div (^D¡ü+ • ¡Xdiv(u+)I + ^(Vu+ + Vu+-L)}^j + 0(|Vw+|2)   on D,
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div(/3[Àdiv(«-)2 + ||V«- + VîTx|2])

2diviv (ßiDiÜ- • | XdW(u-)I + f (Vw~ + V«~x)} ) + 0(|V«-|2)'})

onR"\D,

where / denotes the identity matrix and • the multiplication of matrices. In-

terating on D the first identity above we get

(3.10)

Observing that

/  (ß,N) {Xdiv(u+)2 + ^\Vu+ + Vw+X|2} do
JdD *• 2

= 2 [   ßiDiü+^-ü+do + 0(\\Vü+\
JdD OV

LHD))-

ßiDiU+^Ü+ = (ß, N)
1 13

2\3v

(3.11)

u+, N)((Vu+ + Vü+±)N, N)

+ (Vu+Tl,N)/~u+,Tl

VÜ+-^Ü+,Ti

we get the following formula after substituting (3.9) and (3.11) in (3.10):

(3.12)
2       ,  n-\   i   a N 2

Jj-Mihifr-»)+&{**■*
+ pX

n-l

^((V«+ + Vw+±)F,,F,)
L/=l

2(2p + X)

+ %¿ZiW+ + Vü+±)Ti,Tj)2
1,7=1

- ((Vu+ + Vu+±)N, N) ( —-w+ , A
3v

n-\
d  ^

-2^(Vi?+F,, A)^w\F,)

= 2I ¿Zi$> r<> (v"+¿"+ ' T>)da + °(nv"+ili2(D))-

From the identities

2pkx(la+>N)   -i(^ + VÜ^)N,N)(^,N

(3.13)
i    Id

2p + X \3v
u+, A

n-l

+ 5m(5ïr-w;g«vr+vr±,3""r'>'
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n-1   /   r, v  2 n-1

(3.14)

= E (¿"+ > T) «VM, Ti) - <V«+XA, T,)),

i=i  ^ '

and (3.12) we obtain

/  iß,N)\--^(^ü+.,
JdD 2p+ X \3v

r-~—— ( —"+, A
2/1 +A \dt>

«-i

£((Vw+ + V£+±)F,,F;)
i=i

(3.15)
2(2/7 + X)

n-\

n-1

£((vw+ + vw+x)f,,f,)
.1=1

+ f £<(v«+ + vw+x)7,,Fy>2
i,7=l

+ E(¿"+' t\((Vu+N, Ti)-(VÜ+±N, T,))\ da

= 2jdDz2iP> Ti>(Va+di;a+> T>) drr + 0(\\Vu+\Il2(D))-

The same argument leads to an identity similar to (3.15) but with u+ , p , X,

and 3/3v replaced respectively by u~ , p., X, and 3/3v . Since hi = u+ - ü~

and h2 = 3u+3v - 3ü+u.-3v on 3D, and from (3.7) and (3.8) it is easy to
rewrite this second identity by replacing u~ by u+ to obtain the formula

(3.16)

/   iß,N)
JdD

1      / 3

2p + X \dv

X      / 3

u+, A

+

+

2/i + X \dv
ü+, N

n-1

£((Vw+ + Vw+x)F,, F,)

L/=l

pX
n-1

£<(Vw+ + Vw+x)F,, Ti)

i=i2(2p + X)

+ § "¿((vr + vrx)F, f,>
1,7=1

n-1

+ Ê(X*+' Ti) (^<V*+A, F,) - |<V«+XA, F,))! do
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n-1

Vm+-"+. Ti) do
3v

--2Í   ¿Z(ß,T,
JdD /=1

+ 0(\\VÜ~ \\lHB\D) + l|Ai||L2(az)) + ||Â2||z.2(9m

+ l|Vir-||L2(8/,){||A,||Lj(az)) + \\h2\\LH0D)}).

Subtracting (3.16) from (3.15) and using the identities (3.7) and (3.8) we get

(3.17)
( ¡n-l

£((Vw+ + V«+x)F,,F,)/  (ß,N){A((Vu+ + Vu+±)N,N)2 + B
JdD 1=1

n-1

+ C((Vw+ + V«+x)A, A)

n-1

+ £>£((V«+ + Vw+X)A, T¡

£((V«+ + Vw+X)F,,F,)

Li=l

2

i=l

n-1

+ F Y^ ((v"+ + Vw+X)F, Tj)2 \ do
',7=1

where

A =

= O(||Vm+||22(0) + ||V«  \\lHB\D) + \\V3+\\maD){\\h\\meD) + INIl2(W

+ l|Ai|li2(oO) + l|A2||¿2(aD)),

(4pp + 2(p + p)X + X2)(X - X)(2p + X)(2(p-p) + (X-X))

2/i + X
B =

(2p + X)(2p + X)

c=2(2p + X)(X-X)      D=4p(p-p)      and   E = 2{ß_ßy
2/Ï + X P

A short calculation shows that the determinant of the 2x2 matrix

A     \C~

\C     B

equals (X - X)(p - p)(2p + X)/(2p + X). Therefore, when p > p and X > X the
above matrix is definite positive, and from (3.17) and (3.5) we get

(3.18)
|Vi?+ + V¡7+x||22(aD)

< QINfeao) + INIÍ2(aí)) + \\Vü+\\Li(dD)[\\hi\\L2{dD) + \\h2\\L2(OD)]

+ l|v«+|li2(D) + ||vrn22(ßVO)}.

The same reasoning shows that the above estimate holds when p < p and

X < X. At this point we recall the following form of Korn's boundary inequality

(see [D, K, V, 2]).
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Theorem 5. Let ü satisfy pAü+(X+p)V(divü) = 0 in the interior of abounded

Lipschitz domain D contained in By2 (respectively on B\D), with Lamé con-

stants p and X, p > 0, and X > -2p/n . Then there is a constant C depending

on the Lipschitz character of D, p, and X so that

l|V«||L2(aD) < C{\\Vu + Vwx||L2(aD) + \l(u)\},

where I is a linear form on W2(D) (W2(B\D)) whose norm only depends on

the measure in Rn of D  (B\D).

On the other hand, from the classical Korn's [F] inequality we have

l|V£+||L2(D) < C{\\VÜ+ + VÜ+±\\L2{D) + \l+(ü+)\},

l|Vu~||¿2(S\0) < C{||Vm_ + Vi?-X||L2(5\D) + |/_(«~)|},

where /+ and /_ are as in (3.3). From these inequalities, Theorem 5, the

transmission conditions, and (3.18) we obtain (3.3) when p < p and X < X or

p > p and X > X.
Also observe that when X = X the integrand in the left-hand side of (3.17)

can be rewritten as

iß-ß) iß, N) { 2^t±R((VÜ^ + VÜ^)N, A)2

n-1

+ 4^J]((Vm+ + Vm+x)A, T,)2
ß i=i

n-1

+ 2^, ((Vu+ + Vu+±)T, Tj)2
',7=1

which as above gives (3.18).

When p = p and X / X, and using (3.6), the integrand in (3.17) can be

rewritten as

2(2p + X)(X-X)  ¿ _+ 2
„.     .--iß, N)div(u+y,
2p + X

to obtain the estimate

l|div(«+)||Í2(aD) < C{||Äi||2f(ao) + ||Ä2||i2(a0)

(3.19) + ||VM+||¿2(az))[||A,||£2(ao) + IIA2 ll^^o)]

+ l|V«+|IÍ2(D) + ||Vw-||22(BVD}.

Observe that in this case the same argument gives

l|div(w-)|||2(aD) < CiP,!!2,^ + ||A2|||2(aD)

(3.20) + llVM-ll^ao^HA.II^ai,) + \\h2\\LHdD)]

+ \\Vü+\\2L2{D) + \\Vu-\\2L2{BXD)}.
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At this point we will proceed as in the last case of Theorem 2.  The weak

formulation of the equation satisfied by ü on R" can be rewritten as

L
(3.21)

p(Vü+Vü±)V(ßdX

= - í Xdiv(ü)(div(<p)dX- I     Xdiv(u)div(¿)dX
JD JR"\D

= I  [XVdiv(ü+)xD + ~XVdiv(ü-)xR»\D]4>dX
JR"

+ [ {h2 + [Xdiv(u-)-Xdiv(u+)]N}$do
JdD

for all test functions $ £ [C0°°(R")]" , and u+ - ur = h{ on 3D.

If we let Y(X) and S denote respectively the matrix fundamental solution,

and single layer potential of the system of elastostatics with Lamé constants

p > 0 and X = 0, and w be the solution to pAw + pV div w = 0 on D,

w = hi on 3D, and define the function

v = S(h2 + [Xdiv(ü-) - Xdiv(u+)]N + p(Vw + Vrôx)A)

- Y(XVdiy(u+)xD + ~XVdiv(u-)xRr,\D)   onR"\ö,

and

v = w + S(h2 + [Xdiv(u-) - Xdiv(z?+)]A + p(Vw + Vw1)A)

- f(/lVdiv(w+)^ö + lVdiv(S)-)^Ri,\0)   onD,

it turns out from (3.21) and (1.6) that v-u satisfies pA(v-u)+pV(div(v-u)) =

0 on R" . From Lemma 1 and its obvious generalization to the exterior of D,

the fact that div(w+) and div(w~) are harmonic functions on their domains

of definition, and arguments similar to those we used in Theorem 3, we have

í = íonR". From this representation formula for ü, Lemma 1, (1.5), and

the estimate \\N(Vw)\\L2{aD) < C\\hi\\Li{aD) (see [D, K, V, 2]) we get

(3 22) Hv«±lli2(a/)) ̂ C[ll^i \\L](dD) + I|A2||l2(ôo)

+ || div(i?+)||L2(aD) + || div(i/-)||L2(aD)].

From (3.22), (3.21), and (3.20) we get (3.3).
Finally, as in Theorem 2, the estimate (3.2) and the fact that the operator in

Theorem 4 is invertible when D is smooth (this can be proved with arguments

similar to those in Theorem 2) imply Theorem 4. We will leave these details as

an easy exercise for the reader.

Remark 3.1. In this case, and for analogous reasons to those given in Remark

2.1 there is also an e = e(D) and a constant C, so that when u is as in

Theorem 3 the following estimate holds:

l|Ar(VM±)||L2«(a/)) < C\\»\\tr<-HB)-

Remark 3.2. A more careful analysis of the identity (3.17) shows that Theorem

3 also holds under the assumptions 2p + kX > 2p + kX for all k — 2, ... , n,
and p> p.
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4. Transmission for parabolic equations

In this section we will show that the methods outlined before also apply to

obtain regularity properties for solutions to parabolic equations with transmis-

sion conditons. In particular, and for the sake of simplifying we will only con-

sider the operator Dtu - div(A(X, t)Vu(X, t)) on B x [0, T], T > 0, where

A(X, t) = kIxciT + IXR"^\aT, &T is a Lipschitz domain in time and space

contained in B\¡2 x [-00, F] whose lateral boundary is not horizontal, and /

is the identity matrix. In this case we have the following theorem.

Theorem6. Let u£C([0, T], Wx/2(B))nL2([0, F], WX<2(B)) beaweaksolu-

tion to the above parabolic operator on B x [0, F] with u(X, 0) = 0 on B. As-

sume that the lateral boundary of Q.t is given by Y = {(X, t)\t — tp(X), t < T},

so that the interior of dp is the region Q£ = {(X, t)\t > tp(X), t < T) c t3i/2 x

[-00, T], and the exterior the complement ¿lj = {(X, t)\t < tp(X), t < T),

where <p is a Lipschitz function for which there is a positive number y such that

y~x < \Vtp(X)\ and <p(0) < 0. We will also assume the following conditions:

a. For each t < T the level set Y, — {P £ Rn\tp(P) = t} is the boundary of a

bounded connected Lipschitz domain D, in Rn , such that when 0 < t < T, their

Lipschitz character is uniformly controlled and their diameters are proportional.

b. There exist numbers a and r0 in (0, 1) such that for each (Q, t) £dD¡,

0 <t <T, and X £ Y+(Q) with \X - Q\ = r < r0 (respectively X e Y~(Q))
the cylinder B2ar(X) x [t - 4(ar)2, t] is contained in Q£ (respectively in Q^).

Also, for each (Q, t) £ 3Dt with 0 < t < T, the surface measure on 3Q.T of

the set Br(Q) x [t - r2, t) n 3Qt is bounded from above and below by as"+x

and a-xsn+x for all r <r0.

Then there is a compact subset K c B x [0, F] away from the lateral boundary

of QT cinda constant C depending on y, a, T, and the Lipschitz character of

the domains D,, such that

ll^(VM±)||L2(ar27.nBx[o,7-]) + IIAw||/,2(fl3/4x[o,r])

< C{||m||z.2([o,t),»".2(B)) + ||A"|Il2(a:)}-

Proof. As usual, to show the above estimate we might assume that the spatial

and time derivatives of u are bounded continuous functions at both sides of

£lp (which is the case when the boundary of Qp is smooth (see [L, R, U]), and

standard methods will give the above estimate under the conditions of Theorem

6.
Let u be as in Theorem 6, then u satisfies

J   JuD,<l>-((kIxnT + IX*^\nT)Vu,V<t>)dXdt = 0

for all fjjeC0°°(73x[0, T)).

Observe that the above weak formulation and the continuity of u across the

lateral boundary of Q7- imply that D,u- k Au = 0 on D.T , D,u - Au = 0 on

73 x [0, T]\Q.T, and k(Vu+, A,) = (Vu~ , N,) when tp(Q) = t, 0 < t < T,
Q £ Biß , and where A, is the exterior unit normal to Dt at (Q, t) £ 3D,.
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We have the following estimate:

T

[   f   (D,u)2dXdt
Jo   Jb}/4

(4.1)

<C /   /   [\Vu+\2 + \Vu-\2]dotdt+ f   [ \Vu\2dXdt
JO    JdD, JO    JB

To see this, let y/ £ Cq°(B) with i// = 1 on t33/4 and y/ = 0 outside t37/8 .
Then integration by parts gives

/    ¡(Dtu)2\p2dXdt

= D,u(kxnT + XR»+<\nT)&uv2 dX dt

(4.2) = f    [   [k(Vu+,N,)D,u+-(Vu~, N,)Dtu-]y/2do,dt
JO    JdD,

-\j  JikxaT+X^\aT)D,i\Vu\2)ip2dXdt

- 2 /    / (kxnT + XR^\nT)D,uy/VuVy/dXdt.

From the fact that u is continuous across the lateral boundary of Qt , the

tangential derivatives of u+ and u~ should coincide across this boundary.

Thus, DjU+ + Dtu+Dj(p = D¡u~ +Dtu~Di<p when t = <p(X) and i = I, ... , n ,

which implies (Vu+ - Vu~ , V<p) = (Dtu+ - Dtu-)\Vtp\2 for t = <p(X). Hence,
\Dtu+ - Dtu~\ < C|V«+ - Vu~\ on the lateral boundary of Q.p ■ On the other

hand, the integrand in the second integral on the right-hand side of (4.2) equals

[k(Vu+ , Nt)(Dtu+ - Dtu-)]t//2, and the third integral is larger than

u (\Vu~\2-k\Vu+\2)(X, (p(X))\¡/2(X)dX.
{0<<p(X)<T}

Using the co-area formula [M] this integral equals

(\Vu~\2 -k\Vu+\2)\i/2\Vtp\-x do,dt.1/7 (
2 Jo    JdD,

From all these and Schwartz's inequality we get (4.1).

Defining for each time / the function

w(X, t) = u(X, t) - U(D,u(-, t)XBV4)(X) + v'(X),

where the second term denotes the Newtonian potential of D,u(-, í)xbví , and

v' £ Wl<2(B3/4) the unique weak solution to div((kIxD, + IXr»\d,Wv'(X)) =

Ft, v' = 0 on 3#3/4, where F, denotes the linear functional given by

Ft(<f>)= [   (k-l)(VYi(Dtu(-,t)XBiß),Nt)<p:dot,
JdD,

it turns out that w(-, t) is a weak solution to div((kIxD, +IXr"\d,)^u(X)) = 0

on t33/4 . From Theorem 1 and the obvious generalization of this theorem we
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get for all 0 < t < T

||A(VM±(-,0)llL2(aA)<C{||M(.,0l^./2(fi3/4)

(4.3) +l|A7(vn±(Aw(-,0^3/4))ll^(aD/)

+ \\Yl(Dtu(-,t)XBvMm.HBy4)}-

On the other hand, we will show that there is a number 1 < p < 2 such that

UT Ï 1/2
¡^ |A(vnx(AW(., t)xByi))\2dotdt\    < ciiAwlli^xro.n)

and

(4.5)    \\Il(Dtu(>,t)XB»<)\\m.HBm) < C\\D,u(-, t)\\mBy4)   for all 0 < t < F,

where C is as in the statement of this theorem. Squaring both sides of (4.3),

integrating in time from 0 to F, and using Holder's inequality together with

(4.4) and (4.5) we obtain

||A(VM±)||L2(a£2rn7Jx[0,r])

< C{\\u\\lH{0,T],W'1{B)) + \\^M\lHKc) + E\\DtU\\L2(BV4x[0,T])} ,

where £ > 0 is any positive number and Ke  is a compact subset of B x

[0, T]\QT • Choosing e > 0 sufficiently small we get from (4.1)

||A(VM±)||L2(a£2rnßx[o,r]) + IIAw|L2(ß3/4x[0,r])

< C{\\u\\l2([0,T],W'.1(B)) + \\DtU\\L2(K)} ,

where K is a compact subset of B x [0, F] away from the lateral boundary of

Q.T-

Inequality (4.5) follows from fractional integration [St]. To show (4.4),

we observe that for (0,0 6 3D, and (X, t) £ Y+(Q) with r = \X - Q\,
|Vn(A«(-, O**/«)Wl is bounded by

t    \X-Y\x-"\D,u(Y,t)\dY
JBj/4

<C I \Q-Y\x~n\Dtu(Y,t)\dY + r sup \D,u(Y, t)\
Bi/A\Ba,(X) B„r{X)

The first term on the right-hand side is bounded by

Ii(Q,t)= sup
0<5<1

mà^LlDMY',)l'XB''-dï
i/p

when 1 < ß < p .

On the other hand, since tp(0) < 0 we might extend u as zero for / < 0 as

a solution to the parabolic operator inside ÍV on a cylindrical neighborhood

below the set Do x {0}. From well-known interior estimates we have

r Sup \Dtu(Y, 01 < C-¿r / / \DtuxBV4\dYds
Bar(X) r  T    JB2ar(X) Jt-4(ar)2

<c\—+{—p!       f     \DtUXByXdYds)      ,
{ r"+¿   P JBlr(Q) Jt-W J
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and if I2(Q, t) denotes the supremum for 0 < r < 1 of the above integrals we

have

N(Vn+(Dtu(-, t)XsV4))(Q, 0 < C[Ii(Q, t) + I2(Q, t)],

and a simple Vitali covering argument [St] shows that

\\ii(-, t)\\mdD,) < c\\Dtu(-, t)\\mBv4)

for 2 < p(n - l)/(n - ß). Also a parabolic Vitali covering argument and

condition b in Theorem 5 gives \\I2\\L^daT) < C\\DM\u>(Bytx[o,T\) for p >

2(n + 2)/(n + 3). A similar argument gives similar estimates for the exterior

nontangential maximal function of VU(Dtu(-, í)xbví) • Choosing ß with 1 <

ß < p, and p > max{2(« + 2)/(n + 3), 2(« - ß)/(n - 1)} proves the claim and

completes the proof of this theorem.

Remark 4.1. The reader will observe that when Q.T has the shape of a cone

(g)(0) = 0, and 0 < tp), condition b in Theorem 6 can only hold uniformly for

points (ß,0e 9Dt with 0 < e < / < F. But even in this case, the argument

in Theorem 6 and the estimate

l|Vn(/)|b(aA) < C\\f\\mBv4]    for 2 < p^± and / £ Lp(3Dt)

(this follows again from a Vitali covering argument) show that

\\^u  llL2(ö£irnj?x[0,r])+IIAw||L2(ß3/4x[0,7-]) < C{IMIl2([0,:t],i*"-2(ä)) + I|A"IIz.2(a;)},

where C depends only on the uniform Lipschitz character of the domains D,,

0 < t <T. In this case, for the nontangential maximal functions, which should

be defined with respect to cones fitting the domains D,, 0 < t <T (the heights

of this cone should decrease with t e (0, F]), we get

ll^(VM±)||)L2(önrnßx[£,r]) + IIA"IL2(B3/4x[o,r])

< C{\\u\\LmO,T],Wi-HB)) + \\DtU\\L2(K)) ,

where now C depends on the Lipschitz character of the domains D, and £ > 0.
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