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Abstract. We define the asymptotic homotopy of trajectories of flows on closed

manifolds. These homotopy cycles take values in the 2-step nilpotent Lie group

which is associated to the fundamental group by means of Malcev completion.

The cycles are an asymptotic limit along the orbit of the product integral of a

Lie algebra valued 1-form. Propositions 5.1-5.7 show how the formal properties

of our theory parallel the properties of the asymptotic homology cycles of Sol

Schwartzman. In particular, asymptotic homotopy is an invariant of topological

conjugacy, and, in certain cases, of topological equivalence.

We compute the asymptotic homotopy of those measure-preserving flows

on Heisenberg manifolds which lift from the torus T2 (Theorem 8.1), and

then show how this invariant distinguishes up to topological equivalence certain

of these flows which are indistinguishable homologically (Theorem 9.1). We

also compute the asymptotic homotopy of those geodesic flows for Heisenberg

manifolds which come from left invariant metrics on the Heisenberg group

(Example 8.1), and then show how this invariant distinguishes up to topological

conjugacy certain of these flows which are indistinguishable homologically.

1. Introduction

Our goal is to investigate the asymptotic topology of orbits of flows on man-

ifolds. The asymptotic homology of orbits was studied by Sol Schwartzman

in [S]. The (real) homology class of a closed orbit in a manifold M may be

computed by choosing a set of closed 1-forms representing a basis of real coho-
mology, and then integrating the forms over the orbit. Schwartzman defined the

asymptotic homology class of any (possibly nonclosed) orbit as the asymptotic

time average of the integrals of these 1 -forms. For measure-preserving flows,

existence almost everywhere of these averages is given by Birkhoff's ergodic

theorem.

In order to extend this method to the study of asymptotic homotopy, one

needs first of all the 'TIi de Rham theorem" of Chen [C2] and Sullivan [Sul].
We present in §3 a simple proof of a version of the theorem. The theorem states

that the "nilpotent torsion free part" of the homotopy class of a closed orbit
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may be computed in terms of iterated integrals of appropriate 1-forms on M.

We consider these 1-forms to be the components of a Lie algebra valued 1-form

on M. Then the iterated integrals give the coordinates of a curve in the Lie

group, which is an "antiderivative" or "Lie integral" (i.e., product integral) of
the curve in the Lie algebra obtained by evaluating the form along the orbit.

We next define the asymptotic homotopy of an orbit in terms of asymptotic

averages of such Lie integrals. At present our theory of asymptotic limits applies

to the integration along a curve on a manifold of any 1-form taking values

in any 2-step nilpotent Lie algebra (this restriction is explained in §5). The

appropriateness of our definitions and theory is supported by showing how the

formal properties of asymptotic homotopy are parallel to the formal properties

of asymptotic homology. (Propositions 5.1-5.7 parallel Propositions 2.1-2.7.)

We also introduce a "homotopy foliation" to exploit the global character of

asymptotic homotopy, which necessarily arises since Ylx(M, p) and Y\i(M, q)

are only identifiable up to conjugacy.
The generalization of Birkhoff's ergodic theorem to this context (Lie algebra

valued functions) has not been studied, so we restrict our applications to cases

where we can demonstrate the existence of these limits either by using Birkhoff's

ergodic theorem, or by making a direct computation. For example, in §5 we

give a proof of the rigidity of nilflows on 2-step nilmanifolds. In Example

8.1, we compute the asymptotic homotopy of geodesic flows for Heisenberg

manifolds and then use this computation to distinguish certain geodesic flows

up to topological conjugacy. As a further example, we compute the asymptotic

homotopy of measure-preserving flows on the Heisenberg manifold which are

lifts of toral flows (Theorem 8.1). We can then distinguish up to topological

equivalence certain of these flows which are indistinguishable using asymptotic

homology (Theorem 9.1, Example 9.1).
David Fried's theory of homology directions [Fr], which can be considered

as a "projectivization" of asymptotic homotopy cycles, gives significant infor-

mation about cross-sections to flows even in cases where a given orbit may have

nonunique homology directions. We may therefore expect our theory to be of

interest even in cases where unique asymptotic homotopy cycles fail to exist

(for homotopy directions see the end of §5).

Asymptotic homology has also been applied to study Hamiltonian mechanics,

the continuous eigçnfunctions of measure-preserving flows (Schwartzman [S],

Arnold and Avez [AA, p. 147]), the asymptotic linking of orbits in R3 (Arnold

[A], Michael Freedman and Zheng-Xu He [FH]), and the structure of the group

of measure-preserving homeomorphisms (Fathi [Fa]). Also the rotation vectors

of maps of the torus which are homotopic to the identity (for recent work see [F,

FM, LM, MZ]) can be considered as the asymptotic homology of the suspension

flow on r3. Asymptotic homotopy cycles may be expected to be of use in these
matters as well.

In §2, we review asymptotic homology. In §3, we describe the Malcev com-

pletion, Lie integrals, and iterated integrals, and state and give a new proof of a

version of the ni de Rham Theorem. In §4, we define and give the properties

of asymptotic limits and averages in 2-step connected, simply connected, nilpo-

tent Lie groups. In §5, we define and give the formal properties of asymptotic

homotopy. As an application we give a new proof of the classification theorem
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for nilflows on 2-step nilmanifolds. In §6, we discuss the homotopy foliation.

In §7, we describe the measure-preserving flows on Heisenberg manifolds, and

then we single out those that lift from flows on the torus. In §8, we compute

the asymptotic homotopy of these lifted flows, while, in §9, we use asymptotic

homotopy to distinguish certain of these flows up to topological equivalence. In

§8 we also compute the asymptotic homotopy of geodesic flows for Heisenberg

manifolds.

Conventions. Unless otherwise noted, all manifolds and 1-forms are taken to be

smooth, and "lim" denotes the limit as t —> oo .

2. Asymptotic homology

In this section we restate without proof some of Sol Schwartzman's results

[S] on asymptotic homology cycles in a form which anticipates the generaliza-

tion to asymptotic homotopy cycles presented in this paper. In particular, we

make explicit the sense in which the asymptotic homology cycles are invari-

ants of the flow and we use this invariance to offer a homological proof of the

classical classification theorem for flows on the torus induced by one-parameter

subgroups. Since we are restricting our attention to smooth flows we can use de

Rham cohomology instead of the Bruschlinsky groups (the group of continuous

functions /: M —> Sx modulo the subgroup of functions which can be lifted to

R) which Schwartzman uses in order to deal with continuous flows on compact

metric spaces. (
Suppose M is a smooth manifold without boundary, H\(M) is the first

homology group with real coefficients, and Hx (M) is the first de Rham coho-

mology group. HX(M) is canonically isomorphic to (H\(M))* [W, p. 154].

If {oi, ... , om} is a basis of Hi(M) with dual basis {[(Oi], ... , [com]} in

Hx (M) then the coordinates of the homology class [a] of a closed continuous

curve a with respect to the basis {oi, ... , om} axe (Jaco\, ... , Ja com) ■ Note

that Ja (Oi is defined, since a can be arbitrarily well approximated by smooth

curves ak [BT, p. 213], and lim^«, Ja o)¡ is independent of the approxima-

tion chosen since the forms <y, are closed.
For the rest of this section, we assume that M, {tr,} , and {&>,} are given

as above, and that if /: M —> M' is a homeomorphism, then M' is similarly

equipped with {a\} and {oj'¡} . f will denote the induced homology isomor-

phism.

Notation 2.1 (Restriction of a curve to an initial segment). If a: R —► M is a

curve, then a\, = ot^0,t] ■

Definition 2.1 (Asymptotic homology). (a) Let a: R —> M be a continuous

curve. Then, if the limits indicated below exist, p(a), the asymptotic homology

of a , is pi(a)oi +■■■ + pm(a)om , where pt(a) = lim \ /Q|( w, .

(b) If ¿: M x R —► M is a continuous flow and a is the trajectory of ¿

starting at a point p in M (i.e., a(0) = p), then p¡(p) = p¡(a) and p(p) =

p(a).

We will write p¡ and p if the curve or point is understood, and we will

sometimes consider p to be the ra-tuple of numbers (p\, ... , pm), where the

basis {a\, ... ,am} is understood.
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The following propositions, especially Propositions 2.1 and 2.2, justify the

term asymptotic homology.

Proposition 2.1 (Asymptotic homology agrees with homology on a closed path).

Let a: R —► M be a smooth curve for which there exists T > 0 such that, for all

t, a(t + T) = a(t). Then p(a) exists and equals y([cx\T]) .

Definition 2.2 (bounded closings). Suppose a: R -» M is a continuous curve

starting at p and p is a lift of p to M, the universal covering of M. A family

of closings of a is a collection of continuous paths {ßt\t > 0} such that ßt

starts at a(t) and ends at p . The family is bounded if there is some compact

set in M which, for all t > 0, contains the lift ßt of ßt which ends at p .

Observe that a family of smooth closings is bounded iff the set of their lengths

is bounded, where length is measured in some Riemannian metric on M. Also

note that, since M is assumed to be compact, a family of bounded closings

always exists.

Proposition 2.2 [S, p. 275] (Asymptotic homology in terms of integrating 1-forms

agrees with asymptotic homology in terms of closing paths). If a: R —> M is

a smooth curve, {ßt} is a family of bounded closings of a, yt = a\tßt is the

resulting loop based at p, and [yt] is its class in Hi (M), then p(a) exists iff

lim[yt]/t exists and if they exist they are equal.

Proposition 2.3 (Asymptotic homology is constant along a path). If a: R —► M

is a continuous path and ß: R —> M is given by ß(t) = a(t + to) for some

to £ R, then p(a) exists iff p(ß) exists and if they exist they are equal.

Definition 2.3 (Topological conjugacy). The flows ¿ and ¿' on the manifolds M

and M' axe topologically conjugate if there exists a homeomorphism /: M ->
M' such that for all x £ M and t £ R, f o <¡>(x, t) = ¿'(f(x), t). That is, a
topological conjugacy takes orbits to orbits preserving the parameterization.

Proposition 2.4 (Asymptotic homology is an invariant of parameter-preserving

homeomorphisms). (a) If f: M —> M' is a homeomorphism taking the curve a

on M to the curve a' on M' (i.e., a' = foa), then p(a) exists iff p(a') exists

and f*p(a) = p(a'), where f is the induced map on homology.

(b) If f: M —> M' is a topological conjugacy of the flows ¿ and ¿', then

p(p) exists iff p(f(p)) exists and if they exist f*p(p) = p(f(p)) ■

Definition 2.4 (Closed and open rays in H\(M)). Suppose o is a nonzero ele-

ment in Hi(M). Then {ro\r > 0} is a closed ray and {ro\r > 0} is an open

ray.

Note that since the zero element is in each closed ray, being in the same

closed ray is not an equivalence relation.

Definition 2.5 (Reparametrization of a curve). The continuous curve a: R —► M

is a reparametrization by s of a continuous curve a' : R —► M if a(t) = a'(s(t)),

where s: R —» R is a continuous monotone function such that 5(0) = 0.

Definition 2.6 (Topological equivalence). The flows ¿ on M and ¿' on M'

axe topologically equivalent if there exists a homeomorphism /: M —> M' such

that, for all x £ M, there exists 5 : R —> R such that foa is a reparametrization

by 5 of a', where a(t) = ¿(x, t) and a'(t) = ¿'(f(x), t).
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Proposition 2.5 (Asymptotic homology and reparametrization). If a: R —► M

and a' : R —> M are continuous curves such that a is a reparametrization by s

of a', then if p(a) and p(a') both exist they are on the same closed ray, and if

they are both nonzero they are on the same open ray. The following statements

provide more detail:

(a) If p(a') and p(a) exist and p(a') is nonzero, then r = lim y exists

and p(a) = rp(a').

(b) If p(a') and r = lim y exist, then p(a) exists and equals rp(a').

Note that it is possible for p(a') to exist, and lim y to be infinite or oscillat-

ing making p(a) diverge to infinity or oscillate. Also note that if p(a) = p(a') =

the zero element, then no conclusion can be drawn about lim j .

Proposition 2.6 (The invariance of asymptotic homology for homeomorphisms

not preserving the parameter), (a) Let a: R —> M and a': R —► M' be con-

tinuous curves, and let f:M—>M' be a homeomorphism such that foa is

a reparametrization by s of of. If p(a) and p(a') exist, then f*p(a) and

p(a') are on the same closed ray, and if both p(a) and p(a') are nonzero, then

fp(a) and p(a') are on the same open ray.

(b) ///: M -► M' is a topological equivalence of flows ¿ and ¿', then f*p(p)
and p(f(p)) are on the same closed ray if they both exist, and they are on the

same open ray if in addition p(p) and p(f(p)) are both nonzero.

Definition 2.7 (Lattice in a Lie group). A lattice in a Lie group G is a discrete

subgroup A such that C7/A (and equivalently A\G) have finite (/-invariant

Borel measures which are positive on open sets.

Definition 2.8 (Flows induced by one-parameter subgroups). If ¿: R —> G is a

one-parameter subgroup of a Lie group, and V < G is a lattice, then

¿*:(Y\G,R)^(Y\G)

is the flow given by right translation by ¿, i.e., ¿*(Yg) = Y(g¿(t)).

Definition 2.9 (Affine map). Suppose Y and T' are lattices in the Lie groups

G and G', the element a is in G', and_the isomorphism A: G —> G' extends

an isomorphism from r to F . Then äA : Y\G —> r'\C7', Yx >-> Y(Ax)a is an
affine map.

Proposition 2.7 (Homology proof of classical theorem on toral flows; see [I, p.

36; B, p. 502] for alternate proofs). Suppose the element ueR" determines the

one-parameter subgroup ¿v: t •-> tv ofW, which induces the flow cf)*v on T" =

Z"\R" (Definition 2.8). Let {ox, ... ,on} be the standard basis of H{(Tn), i.e.,

o¡ is the class of the closed curve in Tn which lifts to the line segment in R"

from (0,... ,0) to (0, ... , I, ... , 0), where there is a one in the ith place.

(a) For all p £ T" , p(p) exists, and, with respect to {o¡}, p(p) = v .

(b) ¿*v and ¿*v, are topologically conjugate, iff ¿*v and ¿*v, are affinely

conjugate, which holds iff there exists an invertible integral nxn matrix

A such that Av = v'.
(c) ¿*v and ¿*v, are topologically equivalent iff ¿*v and ¿'*, are affinely

equivalent, which holds iff there exists an invertible integral nxn matrix

A and r > 0 such that Av = rv'.
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Proof, (a) Let co¡ be the 1-form on T" induced by dx¡ on R" . Then {[a>,]}

is dual to {cr,}. If a is any integral curve of ¿*v and à = (xi,... , x„) is its

lift to R" , then

/   oju ... ,       œ„    =      /   dxu ... ,       dxn

= (Xi(t) - JC,(0) , ... , Xn(t) - Xn(0)) = tV .

So dividing by t and taking limits, we obtain p(a) = v .

(b) If /: Tn —* T" is a homeomorphism, then, with respect to the basis

{oí} , /* is an invertible integral nxn matrix. Av = v' follows by applying

Proposition 2.4(b) on topological conjugacy and part (a) above.

(c) Apply Proposition 2.6(b) on topological equivalence, and part (a) above.

Q.E.D.

Proposition 2.8 (Asymptotic homology exists almost everywhere for a measure-

preserving flow). Lei ¿ be a measure-preserving flow on M. Then p(p) exists

for almost all p £ M.

Proof. Apply Birkhoff's ergodic theorem to the functions co¡(V), where V is

the vector field inducing ¿.   Q.E.D.
We conclude with the following comments.

(1) David Fried [Fr, p. 357] defined homology directions for flows as follows.

Let ¿ be a flow on M, m a nonwandering point, and (mk,tk) a closing se-

quence (i.e., mk —> m and ¿(mk, tk) —► m). Let ak be the time tk trajectory

of ¿ through mk , ß'k a bounded family of paths from m to mk , and ßk a

bounded family of paths from ¿(mk , tk) to m . Let yk be the resulting loop

ß'kotkßk based at m, and [yk] its homology class in H¡(M). Let Dm be the

disjoint union of the space of open rays in H\(M) and the zero element. Let

p: Hi(M) —> Dm . {p(yk)} has accumulation points in DM since DM is com-

pact. Such accumulation points are called homology directions for ¿. Taking

the union of all homology directions for all closing sequences, for all nonwan-

dering points of ¿ we obtain D^, a compact nonempty set in Dm ■ Fried

then proves several theorems relating D^ to cross-sections of the flow. The

strength of the approach to asymptotic homology through homology directions

is that it is clearly an invariant of topological equivalence (since D^ = D^ if

¿' is any reparametrization of ¿), and the existence of D^ does not depend

on ¿ being measure-preserving. On the other hand, to show the uniqueness

almost everywhere of asymptotic homology one needs measure-preserving flows

and the ergodic theorem (but see [Rh]), and besides one might be interested in

conjugacy questions, where the parametrization is used. The two approaches

are complementary, and it would be useful to generalize as far as possible both

approaches, in any development of asymptotic homotopy.

(2) if /: M —► M is a continuous function, we suspend f and obtain a

continuous semiflow on (^^-, where (m, 1) ~ (f(m), 0). We obtain a flow if

/ is a homeomorphism. Loosely speaking, the asymptotic homology cycles of

Schwartzman or the asymptotic homology directions of Fried are invariants of

these semiflows which in the case of M = Sx or M = T" give us the standard

rotation numbers [Fr, p. 364].
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3. Ill de Rham theory

For T any finitely generated group, the Malcev completion is a collection of

homomorphisms into a tower of nilpotent Lie groups satisfying certain proper-

ties. This notion is an extension of the tensor product Y ® R, which is usually

defined only for abelian groups. The Oi de Rham theorem of Chen and Sulli-

van states that for a closed manifold M there exist Lie algebra valued 1-forms

whose "Lie integrals" on closed paths give the Malcev completion of Yli(M).

These integrals can be evaluated using iterated integrals in the sense of Chen.

In what follows, (g, h) is the commutator ghg~xh~x for elements g and h

in a group. If H and K are subgroups, then (H, K) is the subgroup generated

by commutators (h, k), with h £ H and k £ K .

3.1. Malcev completion. Recall that the lower central series X, (Y) of a group Y

is defined by A,(T) = r and Xi+i(Y) = (Xt(Y) Y). The root of X¡(Y), ̂ /ÖÜ,
is {g £ Y I g" £ X¡(Y) for some n £ Z}. y/X¡(Y) is a normal subgroup of Y,

and Y/^/Xj(Y) is a torsion free nilpotent group [P, p. 472].

Also recall that if A is a lattice in a nilpotent Lie group G (Definition 2.7),

then G/A must be compact [R].

Definition 3.1 (Malcev completion). Let Y be a finitely generated group. A

Malcev completion of Y is a tower of nilpotent Lie groups

••• ^ Nn -> Nn-l -:•••-> N2 - N = 1

together with a set of homomorphisms {Y —► N¡} such that, for all /,

(a)   iV,+i —> N¡ is a surjective homomorphism,

(b)

Ni+i

Y ->    N¡

commutes,

(c) the image of Y -> N¡ is a lattice in /V,,

(d) the kernel of Y -* N¡ is </X~(Y).

Malcev showed that any finitely generated, torsion free, nilpotent group is

isomorphic to a lattice in a connected, simply connected nilpotent Lie group,

and that isomorphisms (epimorphisms) of lattices in such Lie groups extend

uniquely to isomorphisms (epimorphisms) of the Lie groups [M]. It follows

that any finitely generated group has a Malcev completion which is unique up

to isomorphism. Furthermore, isomorphisms (epimorphisms) of such groups

induce isomorphisms (epimorphisms) of their Malcev completions in a functo-

rial manner. The homomorphisms from a group to its Malcev completion are

natural with respect to those functors.
Note that N2 is r/(r, Y) <g>R, the abelianization of Y tensored with R.

N2 is also equal to N^/(N^, /V3), the abelianization of /V3.
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3.2. Lie integration of Lie algebra valued 1-forms. We will now define indefi-

nite and definite integrals of Lie algebra valued functions and 1-forms. We call

these integrals "Lie integrals" to distinguish them from the ordinary "additive"

integral which treats the Lie algebra as a vector space. Such integrals are also

referred to in the literature as "product integrals" [DF].

Definition 3.2 (Lie integrals of Lie algebra valued functions). If /: [a, b] —>

L(G) is a continuous path in a Lie algebra L(G) of a Lie group G, we define

an indefinite left Lie integral ¿// to be a C1 curve F(t) in G such that

F'(t) = f(t), where we identify F'(t) £ TF(t)G with an element of L(G) = TeG

by left translation by F(t)~x . The right integral r J f is defined similarly using

the identification of tangent spaces by right translation.

Note that f(t) may be viewed as a time dependent left invariant vector field

on G, and so the local existence of F(t) and its uniqueness given a speci-

fied initial condition follow from the elementary theory of ordinary differential

equations. For global existence (in t) see [KN, p. 69]. (The authors of [KN]

identify tangent spaces using right translation.)

Definition 3.3 (Definite Lie integrals of Lie algebra valued functions). If /: [a, b]

-* L(G) is a continuous path in a Lie algebra L(G), we define its definite left

Lie integral LJa f to be the element of G equal to IimIT?=1 exp(f(t*)At¡),
where exp: L(G) —► G is the exponential map and the limit is taken over par-

titions and choices of t* as in the standard definition of the Riemann integral.

The right definition Lie integral R ¡a f is limnf=n exp(f(t*)At¡).

The existence of ¿ fa f and the "fundamental theorem of calculus," the fact

that L Ja f = F(a)~xF(b), where F is an indefinite integral L J f, follow from

the proof of the existence and uniqueness of solutions of ordinary differential

equations using the method of e-approximations [CL, pp. 1-20]. Similarly

Rj'f=F(b)F(a)-x,whexe F =R J f.

Definition 3.4 (Integration of Lie algebra valued 1-forms). If a: [a, b] —> M is

a smooth path in a manifold M, and to : TM —> L(G) is a Lie algebra valued

1-form, then ¿/a<y is defined to be LJ co(a'(t))dt. L ¡aco is defined for

piecewise smooth a by ¿ ja co = YI L Ja œ, where the a, are the smooth seg-

ments of a. Similarly the right integral is defined by r Ja co = r f œ(a'(t)) dt.

Observe that ¿ Jaœ and r Ja œ axe independent of the parametrization of

a. Also note that if a and ß axe piecewise smooth paths in M such that aß

is defined, then L jaß œ = L Ja o) L ¡ß co, while RJaßca= RJßco RJaoj. This

explains our preference for the left Lie integrals.

Definition 3.5 (Flat 1-forms). The Lie algebra valued 1-form « is flat if da> =

-[co, œ] [Sp, Vol. 2, p. 376].

Note that some authors (e.g., [KN]) use different conventions in defining

wedge products and the exterior derivative, and so for them a flat 1-form satisfies

dco = -\[co, to] [W p. 60; KN, p. 77; Sp, Vol. 1, p. 549].
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Proposition 3.1 (Homotopy invariance of ¿ Ja co for flat co). If co is aflat Lie

algebra valued l-form, then ¿ Jaco = L Leo when a and ß are homotopic rel

endpoints.

Proof. Any L(G) valued 1-form co on M determines a connection 1-form co

on the trivial right principal bundle (M x G) —> M in a standard way such that
co = a*co, where a: M —> (M x G) is the identity section [KN, Proposition

1.4, p. 66].

Then Q = dco + [co, co] is the pullback via o of £2 = dco + [co, co], which

is the curvature 2-form of co. Hence, if Q vanishes, then Q vanishes on

the identity section. Since Q(X, Y) vanishes if X or Y axe vertical (this is

true by definition for any curvature form [Sp. Vol 2, p. 371]), Q must vanish

identically, i.e., the connection co is flat. It follows that parallel translation

about a contractible loop is trivial [KN, p. 93].
Let y be a curve in M from p to q, (p, g) an element in the fiber over

p, and y the curve in M x G given by y(t) = (y(t), g). Then the parallel

translate of (p, g) along y is (q, g(R j- -co)) [KN, p. 69; Sp, Vol. 2, p. 364],

which equals (q, g(R J -co)), since by definition of co, co is the pullback of

to via any constant section. Since R J -co = (lLoj)~x , it follows that l/w

is the identity for a contractible loop y. Letting y = aß~x and using the

multiplicative property of ¿ / co, we obtain the desired result.   Q.E.D.

Note that when co is flat, ¿ ¡a co is defined for any continuous curve a,

since a can be approximated by smooth curves a,, and, by Proposition 3.1,

lim^oo L Ja co is independent of the approximation chosen.

3.3.    ni   de Rham theorem.    We next state and prove a version of the Hi

de Rham theorem of K. T. Chen and D. Sullivan [C2, H, Sul, GM]. A compar-
ison of our approach with those of Chen and Sullivan follows afterward.

Theorem 3.1 (Yli de Rham theorem). If M is a closed manifold, then there exist

a tower of connected, simply connected, nilpotent Lie groups

...^Nn^Nn-l^---^N2-*Ni = l

and a sequence of flat Lie algebra valued l-forms, {co¡: TM —> L(N¡)}, such

that for p £ M the family of homomorphisms {Yli(M, p) -* N¡} given by left
Lie integrals {[a] i-> ¿ / co¡} is a Malcev completion of Yli(M, p). (We refer

to the co i as the representing forms.)

Proof. For a fixed p £ M, let YI = Ui(M, p). YI has a Malcev completion
determining a family of epimorphisms {f,^ : n -> A,} , where the A, are lattices

in the Lie groups N¡ (Definition 3.1). Since the N¡ axe connected, simply

connected nilpotent Lie groups, exp: L(N¡) -> N¡ is a diffeomorphism [V, p.
196]. Therefore N¡ is contractible, which implies that ni/,=A, for the space

/, = A,-\iV,-, and the higher homotopy groups vanish. That is, 7, is a K(A¡, 1)

space.

Lemma 3.1. If K is a connected CW complex and X is a connected space such

that Yii(X) = 0 for i > I, then the correspondence f i-> Ylif induces a one-to-

one correspondence of the homotopy classes of maps from (K, ko) to (X, Xo)

with the homomorphisms from YliK to YliX (see [Wh, p. 225] for a proof').
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By the above lemma, it follows that the homomorphisms {f: YI -> A,} de-

termine continuous maps {F¡: (M, p) -» (J¡, A¡e)} unique up to homotopy,

such that HiF¡ = f . Since any continuous map between compact manifolds is

homotopic to a smooth map [BT, p. 213], the F¡ can be chosen to be smooth.

We now show that the F¡ can be chosen compatibly, i.e., so that Fi+i is a

lift of Ft. The epimorphisms prt from (Ni+i, Ai+i) to (N¡, A,) given by the
Malcev completion (Definition 3.1), induce smooth maps ~¡JT, from Jl+i onto

J¡. Since pF¡oFi+¡ and F¡ induce the same homomorphism of Tli(M, p) onto

rii(y,, A¡e), they are homotopic by the lemma above. Since the homotopy can

be chosen to be smooth, and can be smoothly lifted to J¡+\, it follows that Fi+X
can be chosen to be a lift of F¡.

Let cbi be the canonical L(N¡) valued 1-form on N, obtained by left trans-

lating tangent vectors to the identity.

Since, by definition, a curve ô in N¡ is a "left" antiderivative of the curve

coi o ô' in L(N¡), it follows that the definite integral L Js cbi = ô(0)~xâ(l).
Since cbi is left invariant, it induces co¡ on J¡ which is pulled back by F¡

to the desired co, on M. Therefore for any curve y in M, its left Lie integral

is obtained by mapping y into J,, lifting to N¡, and taking the difference of

the endpoints. That is, L Jy co¡ = L fF.y cbi = l J7 cbi = y(0)_1y(l), where y is

any lift to N, of F¡y.
It is now easy to see that co¡ has the desired properties. For any loop y

based at /j in M, f[y] = YliFi[y], which by the standard identification of the
fundamental group with the fiber in the universal covering equals y (I), where

y is the lift to A7, starting at e of the loop F¡ o y based at A,e . By our remark

in the previous paragraph, J co¡ = 7(0)-17(l) = y(l).

Therefore L J co¡ = f[y]. Since {/,} is a Malcev completion of Yli(M, p),

{L J co¡} gives a Malcev completion of Yli(M, p).

We next show that for any q £ M, the homomorphisms [a] i-»¿ / co¡ give

a Malcev completion of Yli(M, q). Let ß be any path in M from p to q ,

ß: Yli(M, q) -* Yli(M, p) be the induced isomorphism, and (/?),- = LLco¡.

Since

{ft ° ß)[<*] - Mß-'ocß] =L¡        co, = (ß)~x (L j co) (ß)t,
Jß-'aß \    Ja       J

it follows that

L [col = (ß)i((foß)[a])(ß);x.
Ja

Therefore the homomorphism [a] —► ¿ fa co, is onto a lattice in N¡ conjugate

to the original lattice A,. The kernel of the homomorphism is y/Xj(Yli (M, q)).

Q.E.D.
In our proof we start from the Malcev completion of the fundamental group,

construct a "nonabelian Jacobian" F,: M —» J¡, then produce the 1-forms co,

by pulling back from J,. Chen and Sullivan construct the Malcev completion

from the algebra of differential forms on M.

Chen starts with n closed forms determining a basis in HX(M,R). He

inductively constructs a noncommutative power series connection, i.e., a flat 1-

form taking values in the tensor algebra generated by the vector space R" [C2,

pp. 184, 197]. By taking appropriate quotients, he obtains flat Lie algebra valued
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1-forms determining connections on trivial vector bundles [C2, pp. 191, 192].

The holonomy homomorphisms from YlxM to the Lie groups are computed

using iterated integrals. The kernel of these homomorphisms are shown to be

the groups {y £ YliM\y - 1 6 /'} , where /. is the augmentation ideal of the

group algebra RYll [C2, Corollary 2, pp. 192-196]. For any finitely generated
group T, {7 e r|y —le /'} is sometimes referred to as the z'th dimension

subgroup Dj(Y), which is isomorphic to the group \fX¡Y [P, p. 474].
Sullivan inductively constructs a minimal model of the differential algebra

of 1-forms. The minimal model is shown to be a homotopy invariant using a

Postnikov tower construction. It is similarly shown that the dual Lie algebra to

the minimal model is the Lie algebra corresponding to the Malcev completion of

n. [Sul, pp. 41, 48-49; DGMS, p. 259; GM, Chapter 12]. The 1-forms selected
by the minimal model can be considered to be the Lie algebra valued 1-form

referred to in Theorem 3.1. The Yli de Rham theory using minimal models

can be proved for triangulable spaces which are not necessarily manifolds.

Both Chen and Sullivan show that if M has a Riemannian metric, then

the Hodge decomposition allows the power series connection [C2, p. 187] or

minimal model [Sul, p. 42] to be chosen canonically. Presumably this would

correspond to the F¡ in our proof being harmonic in some sense.

Chen and Sullivan also show that, using similar constructions, n„M<g>R can

be determined for n > 2 [C3, Su2].

3.4. Iterated integrals. If G is any Lie subgroup of Gl(«, R), then the left
Lie integral of L(G) valued 1-forms can be computed using iterated integrals

in the sense of Chen [C2, p. 185; Cl].

Definition 3.6 (Iterated integrals). Let s/ be an associative algebra over the

reals and {n,}ni=x a collection of $f valued 1-forms on a manifold M. If

a : [a, b] —> M is a smooth path in M then the iterated integral

J m m ■ ■ ■ nn = J f (ti)f2(t2) ■■■f„(tn),

where S is the simplex  {(tu ... , t„) \ a < ti < t2 < ■ ■ • < tn < b}  and

f,(t) = n,(a'(t)).

For example, if rji and n2 are real valued 1-forms, then

rb

Jj^ = J  [f fis)ds^f2(t)dt,
where f(t) = if,(a'(0) and f2(t) = n2(a'(t)).

Theorem 3.2 (Chen, Hain [H, §2]; evaluating Lie integrals with iterated inte-

grals). If G is a Lie subgroup of Gl(n ,R), co: TM -> L(G) is a Lie algebra
valued l-form, and a is a smooth path in M, then the left Lie integral ¿/„w

is equal to the sum of the infinite series of iterated integrals

I +     CO+ / coco +  / cococo +
Ja Ja Ja

Furthermore, if G is nilpotent and a Lie subgroup of the group of upper triangular

matrices (with 1 down the diagonal), then the terms of the series become zero

after finitely many steps.
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Theorem 3.2 is proved by applying the Picard iteration technique to solve

the ordinary differential equation F'(t) = (LFit))mf(t) with initial condition

F(0) = I, where f(t) = co(a'(t)). Note that in defining the iterated integral

Ja coco ■co we are considering co as taking values in the associative algebra of

nxn matrices over the reals.

Example 3.1. If N is the group of upper triangular 3x3 matrices, and

(0   coi   tfV
0    0    co2

0    0      0

is an L(N) valued 1-form on a manifold M, then

L     co-1 +     CO+     coco
Ja Ja Ja

/0   J>,    J>3\      /0   0   facoiCo2
= 1+    0      0      Jaco2 )+    0   0        0

\0      0 0   /      \0   0        0

Z1      ./>!      J>3 + J>lG>2
=       0 1 J>2

\0      0 1

where JacoiCo2 is an iterated integral of real valued 1-forms.

The condition that co is flat, i.e., that dco = -[co, co], is equivalent to

dco-x, = -COi A G>2 •

4. Asymptotic limits and averages in nilpotent Lie groups

The average of an infinite sequence in the abelian Lie group R" is given by

an asymptotic limit of its partial sums. That is A.\ôt = lim j Y^'s=i ̂  > where

s £ Z. For a connected, simply connected, 2-step nilpotent Lie group N, we

define an average of an infinite sequence of elements to be the "asymptotic limit"

of its partial products. The average, in this sense, of a periodic sequence gives

the expected result. We similarly define the average of {St £ L(N)\t £ R}, a

family in the Lie algebra L(N), in terms of the asymptotic limit of the family

{gt £ N\t £ R, gt = i J Ss}. We have not yet determined the appropriate

definition of the asymptotic limit for «-step nilpotent Lie groups, where n > 2

(this restriction is explained in §5).

4.1. Preliminaries. A group Y is 2-step nilpotent if X^(Y) = (Y, (Y, Y)), the
third term in its lower centered series, is trivial. It is clear that for any such
group, the commutator subgroup X2(Y) = (Y, Y) is central in Y.

For a connected, simply connected, nilpotent Lie group N with Lie algebra

L(N), the exponential map exp: L(N) -> N is a diffeomorphism with an in-

verse denoted by log: N —* L(N) [V, p. 196]. Therefore for all h £ N and
r £ R, hr is defined to be exp(rlog(h)). In particular, elements in N have

unique tth roots.

Throughout this section, A7 is a connected, simply connected, 2-step nilpo-

tent Lie group with Lie algebra L(N), (N, N) is its commutator subgroup,

N = N/(N, N) is its abelianization, and g £ N is the image of g £ N under

the canonical projection.
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Definition 4.1 (Commutator for N taking values in (N, N)).lf g is in N and

h and k axe in N, then (g,h) = (g,h), (h, g) = (h, g), and (h, k) =
(h,k).

These commutators are well defined since if h\ = h2 and k{ = k2, then hi,

and h2 and ki, and k2 differ by elements in (N, N) which is central in N.

This commutator is functorial, i.e., o(g, h) = (og, oh), o(h, g) = (oh, og),

and o(h,k) = (öh, ok), where o: N -> N is a homomorphism inducing

W : N —► N. Note that ( , ) : N x N -* (N, N) is an alternating bilinear form

on the vector group (i.e., vector space) N taking values in the vector group (i.e.,

vector space) (N, N).

We make some of our computations for N by considering the isomorphic

"pullback group" N.

Definition (4.2) ( N, the pullback group). If N is a connected, simply connected,

2-step nilpotent Lie group, then N is the isomorphic group with its elements the

elements of the Lie algebra L(N), and its multiplication x given by g x h =

g + h + j[g, h], where [ ,  ] is the Lie bracket in L(N).

By abuse of notation, we consider N to be simultaneously a Lie algebra with

its addition, scalar multiplication, and bracket, and a Lie group with multiplica-

tion x . N is the group obtained by pulling back the group structure of N to

L(N) by means of the exponential map. That is, g x h = log(exp(g)exp(/z)),

which is evaluated using the Baker-Campbell-Hausdorff formula [V, p. 114].

Lemma 4.1 (Properties of N). (a) If g £ N, then gr = rg, where rg is a scalar

multiple of g. In particular, g~x = —g.

(b) If g and h arein N, then the commutator (g, h) equals the Lie bracket

te,h].
(c) If g £ Ñ and h £ (Ñ, Ñ), then gxh = g + h.
(d) [gxh,k] = [g,k] + [h,k].

Proof, (a) follow since L(N) = N and exp: L(N) —» TV is the identity. The

proofs of (b), (c), and (d) are straightforward computations, where we use the

fact that since N is 2-step nilpotent, all commutators of the form [g, [h, k]]

vanish in L(N).   Q.E.D.

4.2. Definitions of Alim and average. The following definition makes precise

the notes of a family of elements being asymptotic to a one-parameter subgroup.

As is usual in this paper, lim denotes the limit as t —> co .

Definition 4.3 (Alim and average). If gt is a sequence (t £ Z) or family (t £ R)

in N then:

(a) p = lixn'gjt £ N is the abelian asymptotic limit.

(b) An element p £ N is an asymptotic limit of gt iff lim(p~'gt)x/' = e,

i.e., iff the tth root of the displacement from p' to gt goes to the

identity. We write p = Alim gt.
(c) If ôt is a sequence in N, then we say p = Av ôt, an average of ö,, iff

p = Alim gt, where g, = Y[s=\ & •
(d) If ôt is a family in L(N), then we say p = Avrî,, an average of ôt, iff

p = Alim gt, where gt = l /0' à* ■
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We will show below that Alim gt and Av ôt axe, in this sense, unique when

they exist (Proposition 4.2). However the results below continue to hold for

s/ limgt = {Alimgtk\gtk a subsequence of gt},

which is the set of asymptotic limits of subsequences.

Note that we do not assume that our families {gt\t £ R} axe continuous.

4.3.   Properties of Alim.

Proposition 4.1 (Alim is an isomorphism invariant). If o~: N —► N' is an iso-

morphism, then p = Alimg, iff op = Alim erg,.

Proof.
olim(p-'gt)x/' = lim((op)-'ogt)x".

So p = Alimgt iff lim(p-'gt)x/' = e, iff ]im((ap)-'(agt))1/' = e, iff op =
Alim og,.   Q.E.D.

Note that in the following formula we first compute the abelian asymptotic

limit and then use that result to compute Alim.

Proposition 4.2 (Formula for Alim, uniqueness of Alim). If gt is a sequence

or family in N, then p = Alimg, iff p = lim g}''(gt, p)xl2 (Definition 4.3).
Therefore Alimg, is unique if it exists.

Furthermore p, the abelianization of p, equals p, the abelian asymptotic

limit.

Proof. If p = Alimg,, then lim(p~'gt)x^ — e. If we abelianize this expression,

we obtain lim(-tp + ~gt)/t = 0. That is p = lim~gt/t = p . (So the existence of
an Alimg, implies the existence of p .)

Lemma 4.2 (Alim in N). If gt is a sequence or family in N (Definition 4.2),

then p = Alimg, iff p = limgt/t + \[gt, p]. (Note that Definition 4.1 and
Lemma 4.1(b) allow us to make sense of the expression [gt, p].)

Proof. In N, p = Alim g, iff

lim(-tp x g,)/t = e

iff lim i-tp + gt + \[-tp, gt]) /t = e

iff lim gt/t+^[gt, p] = p

iff lim gt/t + \[gt, p] = p (Definition 4.1, Lemma 4.1(b))

iff lim gt/t + \[gt, p] = p.   Q.E.D. (Lemma 4.2)

Proposition 4.2 follows for a sequence g, in N by considering the isomor-

phism exp: N —> N, and applying the isomorphism invariance property of

Alim (Proposition 4.1).   Q.E.D.

Proposition 4.3 (Alim is unchanged by bounded perturbations on the right). If

{«(} is bounded in N (i.e., is contained in a compact set), then Alimg, exists

iff Alim gth, exists and if they exist they are equal.

Proof. We can assume that gt, h,, and g't = gtxht axe in N (Definition 4.2).

Suppose Alim gt exists. Since p = lim(g,/i) exists, the boundedness of ht

implies that p' = lim~g't/t = limg~t/t + h,/t exists and equals p. Suppressing
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the subscripts, we obtain

Alim g' = lim £- + X- [g1, p']   (Lemma 4.2)

g     h      I 1 1
= limt+l + Yt[8, k]+ 2[8, ß]+ 2[h,ß] = Alim^'

since limh/t = 0, and lim^[g, h] = limj-^g, h] = ¿[p, h] = -\[h, p].

The converse follows by setting gt = g[ x hfx .   Q.E.D.

Proposition 4.4 (Av<5, = Alimg, is correct for periodic sequences), (a) If S, is

a sequence of period T in N and gt = Yl's=i as, then Avöt = Alim g, = gy =

(Sl-ST)1'T.

(b) If ôt is a family of period T in L(N) and gt = lJq^s, then A\ôt =

Alimgt = g1T/T = (LJ0Tôs)x/T.

Proof, (a) If t is written as nT+e, where n and e are integer valued functions

of t with 0 < e < t, we define g't =ôi--- ônr = (gr)n ■ Note that lim ^ = j .

Therefore the abelianization ~g't = ngp, so p' = lim g'/t = gr/T, which is

the abelianization of g\!T. So (g[, p') = (gj, g]!T) = e (Definition 4.1).

Therefore (suppressing subscripts),

Alims' = limg^x"\g',p')x'2 = limg'W = limglT/T.

Since g't = gtht, where ht is some bounded sequence, the result follows by

Proposition 4.3.

(b) Define g[ =¿ JQ"  ôs and use the same proof as in (a).   Q.E.D.

The following example shows the necessity of including the correction term

(gt, ß)1^2 m the definition of Alim.

Example 4.1 (Necessity of correction term). Let 6t = {a, b, a, b, a, b, a, ...}

be a sequence in M. If g¡ = TJ^=, Js, observe that g2, = (ab)' and g2t+i =

(ab)1 a . Therefore um g]/2' = (ab)1'2.

For the odd terms, we assume the sequence is in Ñ (Definition 4.2). Then

git+\ = t(a x b) x a = t(a x b) + a + =[t(a x b), a] = t(a x b) + a + -[b, a].

So
..     g2t+i      axb     lrI
hm2TÍTT = —+ 4[è'fl]-

Therefore if the sequence is in N,

lim(g2t+i)xl^ = (ab)xl2(b,a)xl*.

Therefore, if a and b do not commute, the limit of the ith root of the

partial products, lim(nj=1 âs)x/t = lim(gi)x/', fails to exist.

Proposition 4.5 (Alim hgt for a constant h). If h is an element in N, then

Alirngi exists iff Alim hgt exists, and then

Alimhgt = h(Alim gt)h~~x = (Alim gt)(h , p),

where p = limg,//.
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Proof. If Alim «gr exists, then

Alim hgt = Alim hgh~x    (by Proposition 4.3),

= h(Alimgt)h~x    (by Proposition 4.2).

Letting p = Alimg,, we have hph~x = (h,p)p = p(h,p) = p(h,p) =
p(h,p).

The converse follows by setting gt = h~x(hg,), and applying the same argu-

ment.   Q.E.D.

Definition 4.4 (Open and closed rays). The elements g and h in N axe on the

same closed (open) ray if g = hr for some r > 0  (r > 0).

By Proposition 4.6 below, if gt = g'Si is an order-preserving reparametriza-

tion of g't, then under certain conditions on g and s, p = Alim g and

p' = Alimg' are on the same closed ray. In particular, p and p' axe on the

same closed ray if either the correction term (gt, p) is bounded, or if st = ct

for same constant c.

Proposition 4.6 (Alim and reparametrization). Let {gt\t £ R) and {g't\t £

R} be families of elements in N such that gt = g'Si is an order-preserving

reparametrization of g'. Define p = limg/t and p' = limg[/t, when they

exist. (In the following statements and proof, consider s and g's to be functions

of t, and lim, as usual, to denote the limit as t —► co.)

(a) Assume p = Alim gt and p' = Alim g\ exist.

(i) If p' ^ 0, then r = lim y exists. Furthermore, p and p' are on the

same closed ray iff p = p'r iff lim(g,, p')^/'-^ = e.
(ii) If p = p' = 0 and p' ^ e, then r = lim L exists and p = p'r.

(b) Assume p' and r exist. Then p exists iff lim(gt, p)^/'~^ exists.

Proof. (a)(i) p = lim g~i/t = lim(gl/s)(s/t). Since p' = limg'Jt = lim^/s is
assumed to be nonzero, r = lim y exists, and p = rp! .

If p and p' axe on the same closed ray, then p = p'a for some a > 0,

which implies that p = ap'. Since p = rp', we obtain a — r and p = p'r.

Assume gt and g\ are in N (Definition 4.2). We have

gt      I
p = Ahm gt = hm — + -z[gt, p]    (Lemma 4.2)

= lim^ + i[ft',,y].

rp' = rAlimg' = r (lim ^ + l-[g't, p']j = r (lim | + l-[g>, p'fj .

Therefore p = rp' iff lim(r - s/t)(g{./s) = 0. Since lim g¡./s + \[g's, p'] = p',

we obtain p = rp' iff lim(r - s/t)[g's ,//'] = 0, iff lim(r - s/t)[g,, p'] = 0.
Therefore for a sequence in N,

p = p"   iff   lim(gt,p'f-s'^ = e.
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(a)(ii) Assume gt and g't are in TV. If p = p' = 0, then p = limgt/t =

lim(g's/s)(s/t) and p' = lim g't/t = limg'Js. So if p' ^ e, then r = lims-

exists, and p = rp'.

(b) Assume gt and g't are in N. From the proof of (a)(i) above,

gt/t + \[gt, fi] = r(g's/s + {-[g',, p']) + (s/t - r)(g's/s).

Therefore, p = Alimgt = limgt/t+ j[gt, p] exists iff lim(r-s/t)(g's/s) exists,

which holds iff lim(r - s/t)[g's, p'] exists, iff lim(r - s / t)[gt, p] exists.   Q.E.D.

5. Asymptotic homotopy cycles

The definition and properties of asymptotic homotopy cycles follow directly

from the ni de Rham Theorem (Theorem 3.1) and from the properties of

asymptotic limits (§4). We restrict ourselves to asymptotic homotopy cycles

taking values in 2-step nilpotent Lie groups pending a suitable definition of

Alim for «-step nilpotent Lie groups. (Propositions 5.1-5.4, which give the
desired properties of asymptotic homotopy cycles, depend on the invariance

of Alim under bounded perturbations on the right (Proposition 4.3). Alim, as

defined by Definition 4.3, does not have this invariance property for «-step

nilpotent Lie groups, n > 2.)

5.1. In this section, unless otherwise stated, all curves are assumed to be con-

tinuous. As usual, manifolds are assumed to be smooth.

Definition 5.1 (Asymptotic homotopy cycles). If M is a closed manifold with

N = Ny the 2-step nilpotent Lie group in its Malcev completion and co : TM ->

L(N) a representing 1-form given by the Y\x de Rham Theorem, then an ele-

ment p = p(a) £ N is the asymptotic homotopy cycle of a curve a : R —> M

if p(a) = Alim¿ Ja  co, where a\t is a restricted to [0, t] and ¿/   co is the

left Lie integral of a\t (Definitions 3.1, 4.3, 3.4, Theorem 3.1).

If N = N2 is the abelianization of N and ID: TM —> L(N) is the corre-

sponding form, then p(a) = lim j Ja  co is the asymptotic homology of a.

Note that the above definition of asymptotic homology agrees with that given

in §2. Furthermore, when p exists, its abelianization ~p is p.

For the rest of this section, we assume that M, N, and co axe given as

in Definition 5.1. If /: M —► M' is a homeomorphism, we assume that M'

comes similarly equipped with N' and co'.

Definition 5.2 (Homotopy image of curves and homotopy classes). If a: I —► M

is a curve defined on a finite interval, then (a) = L Jaco is its homotopy image in

N. If [q] is a homotopy class rel endpoints, then ([a]) = (a) is its homotopy

image.

We can then express the asymptotic homotopy cycle p(a) as Alim(a|f), the

asymptotic limit of its homotopy images.

We can also express p(a) = Alim/. /   co as Avco(a'(t)), the average of the

infinitesimal displacements of the homotopy images of a (Definition 4.3).
Also note that the multiplicative property of left Lie integration (Definition

3.4 and following), can be expressed as (aß) = (a)(ß), for curves a and ß

on M.
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5.2. Properties of asymptotic homotopy. The formal properties of asymptotic

homotopy are given in Propositions 5.1-5.7. These Propositions parallel Propo-

sitions 2.1-2.7 which give the properties of asymptotic homology, and hence

show the appropriateness of our definition of asymptotic homotopy.

Proposition 5.1 (p(a) gives expected answer for loops). If a: R —> M is a

curve of period T, then the asymptotic homotopy cycle p(a) exists and equals

(a\T)xlT, the Tth root of the homotopy image of the loop a\T.

Proof. Since a and its derivative a' has period T, cyoa': R —► L(N) has

period T. Therefore p(a) = Avco(a'(t)) = Alim L J0'co(a'(s)), which equals

(LJ0Tco(a'(s)))x'T = (alT)x/T by Proposition 4.4(b).   Q.E.D.

Proposition 5.2 (Asymptotic homotopy is terms of integrating 1-forms agrees

with asymptotic homotopy in terms of closing paths). If a: R —► M is a curve

in M with {ßt} a family ofbounded closings (Definition 2.2) and yt = a\tßt the

resulting loop based at a(0), then p(a) = Alim(a|i) exists iff Alim(yi) exists,

and if they exist they are equal.

Proof. Since {ßt} is bounded, {(ßt)} is bounded. Since (yt) = (a\t)(ßt), it

follows from Proposition 4.3 that p(a) = Alim(a|() exists iff Alim(yi) exists.

Q.E.D.
We next show that asymptotic homotopy changes in the expected way along

a curve. The following characterization of this change was suggested by Bob
Williams.

Definition 5.3 (Identification of YliM and its Malcev completion for different

basepoints). (a) If <5 is a curve in M from p to q, then ô: Yli(M, p) —►

Yli(M, q) is the standard identification taking a class [a] in Yli(M, p) to the

class [ô~xyô] in Yli(M, q).

(b) ö induces ¿, : N —► N, since N is the Malcev completion of both

ni (M, p) and Yli (M, q) by means of the integral ¿ / co, that is, by the map
taking a class [a] to its homotopy image (a).

Lemma 5.1. (5, is conjugacy by (S)~x.

Proof. Yli(M, p) and Yli(M, q) map onto lattices Ap and Aq in N via the
homomorphism taking a homotopy class [y] to its homotopy image ([y]) = (y)

(Definition 5.2). ô: Yli(M, p) —> Yli(M, q) induces an isomorphism from Ap

to Aq which extends uniquely to ¿, : N —> N. For (y) £ Ap, ô,(y) is the

homotopy image of ô[y]. Since ô[y] = [ô~xyô], we have ô(y) = (ô~x)(y)(ô).

Since a* is determined by its action on Ap , ôt(g) = (ô)~xg(ô) for all g £ N.

Q.E.D.

Proposition 5.3 (Change of asymptotic homotopy along a curve). If a: R —* M

is a curve in M, let ß: R —> M be obtained from a by choosing a(to) as an

initial point. That is, for some io^R, ß(t) = a(t + t0) for all t. Let ô be the
curve along a from q(0) to ß(0) = a(to) ■ Then p(a) exists iff p(ß) exists and

then p(ß) — ô*p(a) = (ô)~xp(a)(ô) = p(a)(p, (ô)), where p is the asymptotic

homology of both a and ß.

Proof. Since alt+,0 = oß{, as curves, (a{l+,0) = (Sßlt) = (o)(ß{,). Therefore, by
Proposition 4.5, p(a) = Alim(o:|í+Í0) exists iff p(ß) = Alim^,} exists, and in



ASYMPTOTIC HOMOTOPY CYCLES FOR FLOWS 513

that case p(a) = (ö)p(ß)(o)~x . So p(ß) = (ô)~xp(a)(S), which, by Lemma

5.1, is ô*p(a), where ô* is the isomorphism induced by the curve ô .

Since N is 2-step nilpotent, p(a) = p(ß)((S), p(ß)), and thus p(ß) =

p(a)(p(ß), (ô)). Since the abelianization p(ß) of p(ß) equals p, p(ß) =

p(a)(p,(S)) (Definition 4.1).   Q.E.D.

Proposition 5.4 (Asymptotic homotopy is a homeomorphism invariant). If a: R

—► M is a continuous curve and f: M —> M' is a homeomorphism, then p(a)

exists iff p(foa) exists, and in that case f*p(a) = p(fo a), where fi: N -> N'

is the isomorphism induced by Ylif: Yli(M, a(0)) -> Yli(M', f(a(0))).

Proof. Let a' = f o a. If {ßt} is a family of bounded closings of a and

yt = a\tßt is the resulting family of loops approximating a, then {ß't} = {fßt}

is a family of bounded closings of a', and y't = a',tß't = f(yt) is a family of

loops approximating a' (Definition 2.4).

Assume p(a) and p(a') exists. By Proposition 5.2, p(a) = Alima|, =

Alimy, and p(a') = Alim(a(f> = Alim(y;> = Alim(fy,). But (fy,) = ([fyt]) =

i^iñy,]) = M[y,]) = My,), by definition of YIJ and /.. So Alim</yt) =
Alim/»(yi), which equals ftAlim(yt) by the isomorphism invariance of Alim

(Proposition 4.1). Therefore p(a') = /* Alim(yi) = fip(a).

The same line of argument shows that p(a') exists iff p(a) exists.   Q.E.D.

Notation 5.1. If ¿ is a flow and a is a trajectory starting at p , then p(p) = p(a)

and p(p) = p(a).

Corollary 5.1 (Asymptotic homotopy is an invariant of topological conjugacy). If

f: (M, p) -> (M', p') is a topological conjugacy of flows ¿ and ¿' (Definition

2.3), then p(p) exists iff p(p') exists. In that case fip = p', where f: N -+ N'
is the isomorphism induced by Ylif: Yli(M, p) -* Yli(M, p').

Except in special circumstances, the asymptotic homotopy of a curve and its

reparametrization are not a rescaling of each other, i.e., not on the same open

ray in N. However, they are on the same open ray when the reparametrization
is multiplication by a constant, or when the "correction term" ((«1,), p) is
bounded

Proposition 5.5 (Asymptotic homotopy and reparametrization). Suppose a is a

reparametrization by s of a' (Definition (2.7). If both curves have nontrivial

asymptotic homology p and p' then r = lim y exists and is nonzero. If further-

more, the asymptotic homotopy p and p' of a and a' exist, then p and p'

are on the same open ray with p — p'r precisely when lim((a|i), p)sl'~r = e.

(For the cases not covered in the above statement, apply Proposition 4.6.)

Proof. Apply Proposition 4.6(a)(i), with g, = (a\,) and g¡ = (a',t). Since we

are assuming both p and p' axe not zero, p' = £. Therefore the condition

that lim(g,, p')s/'~r = e is equivalent to the condition lim(g,, p)s/'~r = e.

Q.E.D.

Proposition 5.6 (Homeomorphisms not preserving parametrization). Suppose
f: M —» M' is a homeomorphism taking a curve a to a reparametrization by s

of a curve a' (Definition 2.5), and that f: N —> N' is the isomorphism induced

by Ylif:Yli(M,a(0)) -► Yli(M, a'(0)).   If both a and a' have nontrivial
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asymptotic homology p and p', then r = lim y exists and is nonzero. If further-

more, the asymptotic homotopy p and p' of a and a' exist, then fip and p'

are on the same open ray with fip = p'r precisely when lim((a|/), p)s/t~r = e.

Proof. The curve /oa has asymptotic homotopy fip by Proposition 5.4. The

result follows, since foa is a reparametrization by 5 of a', and the conditions

of Proposition 5.5 are satisfied for foa and a'.     Q.E.D.

Corollary 5.2 (Asymptotic homotopy and topological equivalence). Suppose f:

(M, p) -* (M', p') is a topological equivalence of flows ¿ and ¿' (Defini-

tion 2.6), /»: N -» N' is the isomorphism induced by Ylif: Yli(M, p) —»
Yli(M', p'), a and a' are the trajectories starting at p and p', f(a(t)) =

ct'(st), and the asymptotic homology and homotopy p = p'(p), p' = p'(p),

p = p(p), p' = p(p') are all nontrivial. Then r = limy is nonzero, and fip

and p' are on the same open ray precisely when lim((a|,), p)s/'~r = e.

The following rigidity result was proved in greater generality in [B], using,

however, very different techniques.

Proposition 5.7 (Rigidity of nilflows). For N a 2-step connected, simply con-

nected, nilpotent Lie group and w £ N, let ¿w: R —» N be the one-parameter

subgroup given by ¿w(t) = w'. For Y a lattice in N, let ¿*w be the induced

flow on the nilmanifold M = Y\N (Definition 2.8). Let the representing form

co: TM —> L(N) be the canonical form defined by lifting a tangent vector to TN

and left translating to the identity.

(a) For all p £ M, p(p) exists and equals w .

(b) The flows ¿w and ¿w, are topologically conjugate iff they are affinely

conjugate (Definition 2.9), which holds iff there exists a £ N and an

automorphism A of N extending an automorphism of Y such that
a(Aw)a~x = w'.

(c) The flows 4>*w and ¿w, are topologically equivalent iff they are affinely

equivalent, which holds iff there exists r > 0, a £ N, and an automor-

phism A ofN extending an automorphism of Y such that a(Aw)a~x =
w'r.

Proof, (a) As we showed in our proof of the Hi de Rham Theorem (Theorem

3.1), for any curve ô in M, its Lie integral ¿/¿w = f5(0)~'r5(l), where ô

is any lift to N of ô. Since any trajectory a of ¿^ is the projection of a

curve à in N of the form q(/) = g¿w(t) for some g £ N, it follows that

(a\t) = L Ja oj = ¿wit) = w'. Therefore p(a) = Alim(a|,) = w .

(b), (c) We showed in Lemma 5.1 that for any two points p and q in M,

the lattices Ap and Aq which correspond to Yi\(M, p) and Yli(M, q) are

conjugate by some element in N. Suppose p = Ye . Then Ap = Y. If /» : N -►
N is the isomorphism induced by a homeomorphism /: (M, p) —* (M, q)

and Aq = aYa~x , then /, followed by conjugation by a is an automorphism

A extending an automorphism of Y. So f* : g >-> a(Ag)a~x for any g £ M.

Since we showed while proving (a) above that (a\t) = w', the correction term

((a^), p) = (w', p) = (wl = w) = e. Therefore the condition of Proposition

5.6, for invariance of asymptotic homotopy under topological equivalences, is

satisfied.
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So if /: (M, p) -* (M, q) is a topological conjugacy (equivalence) of ¿w

and ¿w,, then f*p(p) = p(q) (f*p(p) = p(d)r) by Corollaries 5.1 and 5.2.
Since p(p) = w and p(q) = w' ((a) above), and fiw = aAwa~x, we have

shown a(Aw)a~x = w' (= w'r).

It is straightforward to show that for any w and w', a(Aw)a~x = w' iff

¿w and ¿^ axe conjugate by the affine map a~x A (Definition 2.9).   Q.E.D.

We conclude this section with the following comments which parallel our

comments at the end of §2.

(1) We define homotopy directions for flows as follows. Assume M, {N,} ,

and {co,} give a Malcev completion of IL (A/), as in Theorem 3.1. Let R¡ be

the space of open rays in N, disjoint union the identity element (Definition 4.4).

R, is topologically a sphere disjoint union a point. For a flow ¿ on M and

a closing sequence (mk , tk) based at a nonwandering point m (§2 (end)), let

{[7k]} be the resulting sequence in Yli(M, m) and {(yk)i} its homotopy image

in N¡. The sequence of rays determined by {(yk)i} has accumulation points

in R, since R, is compact. We call these accumulation points /-homotopy

directions for ¿ at m . Taking the union of all /-homotopy directions over all

closing sequences based at M, we obtain R¡(¿, m), a compact, nonempty set

in Ri.
The strength of the approach to asymptotic homotopy through homotopy

directions is that it is clearly an invariant of topological equivalence (since

R¡(¿, m) = R¡(¿', m) if ¿' is any reparametrization of ¿), and the existence

of R,(¿, m) does not depend on ¿ being measure-preserving. However the

example discussed in Example 4.1 indicates that R¡(¿, m) could contain more

than one ray even when the trajectory of ¿ through m is periodic.

(2) If the diffeomorphism f: T2 —> T2 is homotopic to a map induced by

a matrix which is conjugate to ( ¿ Í ) f°r some k £ Z+ , then the suspension

flow is a flow on a Heisenberg manifold Yk\H, where H is the group of 3 x 3

upper triangular matrices and Yk is a lattice depending on k [AGH, p. 47].
The asymptotic homotopy of the suspension flow is then a homotopy rotation

element for the diffeomorphism. We thus can extend the notion of rotation
vector, which has previously only been defined and studied for maps of the

torus which are homotopic to the identity [LM, MZ].

6. Homotopy foliation

Asymptotic homology and asymptotic homotopy are finer invariants when

viewed globally; that is, when one considers not just the collection of all asymp-

totic cycles but rather the function which assigns to a point its asymptotic cy-

cle. This is especially true of asymptotic homotopy. Since Yli(M, p) and
Yli(M, q) are only identifiable up to conjugacy, their Malcev completions are

also only identifiable up to conjugacy. Therefore it only makes sense to talk of

the collection of all conjugacy classes of asymptotic homotopy cycles. Though

this is adequate in some cases (Example 8.1), in most cases a lot of information

would be lost. Therefore we proceed as follows.

Loosely speaking, if p: M -» N and p': M' —> N' axe the asymptotic ho-

motopy of two flows ¿ and ¿' (Notation 5.1), then a topological conjugacy
takes graphs to graph/?' while (in certain cases) a topological equivalence

takes graph p to a rescaling of graph p'. It is therefore desirable to determine
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invariants of graph p . We will define a "homotopy foliation" of M x N, the

leaves of which are preserved by the map of M x N induced by a homeo-

morphism of M. Therefore topological characteristics of the intersection of

graph p with leaves of the foliation are invariants of the flow ¿. (For an ap-

plication of these ideas, see Theorem 9.1.)

6.1. Graph of asymptotic homotopy. Assume that a manifold M and a nilpo-

tent Lie group N are given as in Definition 5.1. A function w from a subset of

M to N determines in the usual way graph n, which (by abuse of notation)

can be thought of as a subset of M x N or as a function from the given subset

of M to MxN.
Note that the asymptotic homotopy function p (Definition 5.1, Notation

5.1) is not necessarily defined on all of M, and it is not necessarily continuous.

The following definition is useful in dealing with questions of topological

equivalence.

Definition 6.1 (Projective equivalence of graphs). Two graphs in M x N axe

projectively equivalent if they have the same domain and if (p, g) being in

one of the graphs implies that (p, gs) is in the other graph for some s > 0.

A homeomorphism of M can be lifted algebraically to MxN.

Definition 6.2 (Algebraic lift of a homeomorphism). A homeomorphism f:M->

M' induces the algebraic lift f#: M x N -> M' x N', which is the homeomor-

phism given by f»(p, g) = (f(p), fp-(g)), where fp-: N -» N' denotes the
isomorphism induced by Ylif:Yli(M,p)^Yl(M', f(p)) via Malcev comple-
tion (Definition 3.1).

Clearly fit takes graphs to graphs. Also note that if one thinks of M x N

as the trivial bundle over M, then fit has the interesting property of being
topological on the base and algebraic on the fiber.

The following remark follows directly from Corollaries 5.1 and 5.2.

Remark 6.1 (Invariance of graph/?). Suppose ¿ and ¿' axe flows on M and

M' with asymptotic homotopy p and p'. If / is a topological conjugacy

of ¿ and ¿', then f# (graph/?) = graph/?'. If / is a topological equivalence

of ¿ and ¿', and if, furthermore, the conditions of Corollary 5.2 hold, then

f# (graph/?) is projectively equivalent to graph/?'.

6.2. The homotopy foliation. Recall that a path ô from p to q in M induces

an isomorphism r5„ from N to N via Malcev completion (Definition 5.3).

6.3 (Homotopy foliation), (p, g) and (q, h) axe on the same leaf of the

homotopy foliation ¡F of M x N if there exists a path ô from p to q in M

such that <5*(g) = « .

Note that (p, g) and (p, g') are on the same leaf iff g and g' are conjugate

in N by the homotopy image of some loop based at p (Lemma 5.1). If one

uses the leaf topology as opposed to the induced topology, then the restriction

to leaves of the projection (M x N) —> M is a local homeomorphism.

Proposition 6.1 (Algebraic lifts preserve the homotopy foliation). If f: M —► M'

is a homeomorphism, then the algebraic lift f#: M x N —► M' x N' takes the

homotopy foliation SF of M x N to the homotopy foliation SF' of M' x N'.
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Proof. Let (p, g) and (q, h) be points on the same leaf of &. We need to

show that fit(p, g) = (f(p),fp.(g)) = (/?', g') and f#(q, h) = (f(q),fr(h)) =
(q', ft') are on the same leaf of y .

Suppose ô is the path in M from p to q such that S*(g) - h. We wish

to show that if Ö' = f o 3 , then S't(g') = ft'.

If ô and 5' are the usual maps on fundamental groups (Definition 5.3), then

the following diagram clearly commutes:

Ui(M,p)   —i-*   Yli(M,q)

n,/ n,/

Yli(M',p') -^ Ui(M',q')

Since Malcev completion is functorial, then the following diagram also com-

mutes:

N —^->  N

A. A.

Therefore #(g') = WP.(g)) = U(S.(g)) = /„(A) = ft'.   Q.E.D.
Since we have shown that both graph p and the homotopy foliation y are

preserved by ./# (Remark 6.1, Proposition 6.1), it follows that topological char-

acteristics of the intersection of graph /? with leaves of y are indeed invariants

of the flow ¿.

7. Flows on Heisenberg manifolds

In this section we characterize all measure-preserving flows on Heisenberg

manifolds, and then we restrict to those measure-preserving flows which are

lifts of flows from the 2-torus. We use standard techniques.

7.1. Measure-preserving flows on Heisenberg manifolds and tori. The Heisen-

berg group is the only three-dimensional connected, simply connected, non-

abelian, nilpotent Lie group. It is often represented as the space of 3 x 3 ma-

trices with zero below the diagonal and one down the diagonal. However, for

most of our purposes, we prefer to consider the isomorphic "pullback group"

(Definition 4.2, Lemma 4.1) obtained by using the exponential map to trans-

fer to the Lie algebra the group structure of the matrix group. Therefore the

Heisenberg group, H, will be the set of elements (x, y, z), where x, y , and

z are in R, with a topology as in R3, and with group multiplication given by

the rule

(x, y, z) ■ (x', y', z') = (x + x', y + y', z + z' + Xy .yX

Note that (0,0,0) is the identity in H. In this representation of the Heisen-

berg group, since the exponential map is the identity, we can identify the Lie

algebra L(H) with H. The Lie bracket in L(H) is given by

[(a,b,c), (a,b',c')\ = (0, 0, ab' -a'b).
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For k a natural number, let Yk = (I, m, n/k + (lm)/2) \ I, m, « e Z} . Yk
is a lattice in H (Definition 2.7). For k / k', Yk is not isomorphic to T^.-.

Every lattice r in H is isomorphic to some Yk . (See [AGH, p. 46]. Note that

we use a different representation of H.)

Definition 7.1 (Heisenberg manifold). If Y is a lattice in H, then the homoge-

neous space Y\H is called a Heisenberg manifold. If Y is one of the lattices

Yk , then Y\H is called (by us) a standard Heisenberg manifold.

Recall that Malcev [M] showed that isomorphisms of lattices in simply con-

nected nilpotent Lie groups extend to isomorphisms of the Lie group. Thus

every Heisenberg manifold is affinely equivalent (Definition 2.9) to a standard

Heisenberg manifold. In what follows we state our results for standard Heisen-

berg manifolds, since, via the affine equivalence, they can easily be translated

to any Heisenberg manifold.

For the remainder of this section we will use the following assumptions and

notation.

Convention. M = Y\H is a standard Heisenberg manifold, fn - 2-§n , §z +

| f¡ , and ^ are a basis of left invariant vector fields on H, with a dual basis

dx ,dy, dz+\ dx-\dy of one-forms. These induce vector fields X\,X2,X3,

and one-forms coi, co2, co3 on M which span the tangent and cotangent spaces

at each point p e M, and such that co¡Xj(p) = ô,j. A vector field V on M

can be written FiXi + V2X2 + V3X3 and a one-form n on M can be written

r¡\Oi\ + n2co2 + rjicou where the V, and n, are functions on M. co = co¡ A

co2 A û>3 = coico2cOi is a volume form on M which induces the measure on M

which we are considering.

Proposition 7.1 (Measure-preserving flows on Heisenberg manifolds). Let V =

FiXi + 12X2 + F3X3 be a vector field on a standard Heisenberg manifold M =
Y\H. Then the following are equivalent:

(a) The flow ¿ induced by V is measure-preserving.

(b) The 2-form iyco is closed, where iyco is the interior multiplication of
V and co [W, p. 68].

(c) Xi V\ + X2 V2 + X-i V-$ = 0, where the vector fields X, are considered as

differential operators.

(d) Vi = ßi+X2n3-X3n2, V2 = ß2 + X-ir\i-Xin-i,andV-i, = Xin2-X2ni-

«3, where r\i,r\2, and «3 are functions on M, and ßi and ß2 are real

numbers.

Proof, (a) iff (b) [Ma, p. 35]. V induces a measure-preserving flow on M iff
¿¿v-co = 0 (Sfy is the Lie derivative), iff iv dco + divco = 0 [W, p. 70], iff
diyco = 0, iff ivco is closed.

(b)iff(c). ivco = Vi(cû2r\Cû-i) + V2(co-ir\COi) + V-i(coi/\co2) [W, p. 61]. diyCO =

(Xi Vi +X2V2 + Xj,V3)coico2co3. So divco = 0 iff Xx Fj + X2V2 + X3V3 = 0.

(b)iff(d). [0J1] and [co2] generate HX(M;R). By Poincaré duality, [co2 A

&?3] and [crJ3 A coi] generate H2(M; R) [W, p. 226]. Therefore any closed

2-form on M can be written ßi(co2 A co?) + ß2(co3 A coi) + dn.

dn = d(n\CO\ + n2co2 + n-¡co{) = dnx A coi + dn2 Aco2 + dn3 AC03- n3(coi A co2),
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since dcoi — dco2 — 0 and dco3 = -coi/\co2. Since dn, = (Xini)coi+(X2t]i)co2+

(X3n,)co3, it follows that

dn = (X2ni-X3n2)co2AcOi + (Xini-Xin3)co3Acoi + (Xin2-X2ni-ni)coiAco2.

Since iyco = Vi(co2 A co3) + V2(co3 Acoi) + V3(coi A co2), (b) iff (d) follows by

equating the coefficients of co2 A co3, co3 A coi, and coi A co2.   Q.E.D.

Using a similar technique one obtains the following characterization of mea-

sure-preserving flows on the 2-torus T2 - R2/Z2. The measure on T2 is, as

usual, that induced by ordinary Lebesgue measure on R2 .

Proposition 7.2 (Measure-preserving flows on T2). A flow on the torus T2 is

measure-preserving iff there exist constants ßi and ß2 and a doubly periodic

function f:R2 —► R such that all trajectories of the lifted flow on R2 satisfy

x' = ßi + fiy and y' = ß2 - fx .

7.2. Lifted flows. A standard Heisenberg manifold M = Y\H (Definition 7.1)
is a circle bundle over the 2-torus T2 - R2/Z2 as follows. The homomorphism

(x, y, z) i-+ (x, y) from H to R2 induces a map from M to T2 such that

the following diagram commutes, where the maps H -» M and R2 —> T2 axe

the natural projections:
H -v R2

I       I
M --♦ T2

These circle bundles are topologically nontrivial.

Convention. For the rest of this paper we will refer to functions, vector fields,

and flows as lifted if they are lifted from T2 to a standard Heisenberg manifold

by means of the canonical projection defined above.

Recall now our conventions from the previous subsection. The vector field

X3 is tangent to the fibers of the bundle M —► T2. Therefore a function

g: M —> R is lifted from a function on T2 iff X3g = 0. Since X\ and X2 lift
from T2, it follows that a vector field V = VXXX + V2X2 + V3X3 on M lifts
from T2 iff X3 Vi and X3 V2 = 0. It remains, then, to characterize those vector

fields on M which both lift and are measure-preserving.

Proposition 7.3 (Lifted measure-preserving flows). Let V = Fi^i + V2X2 + V3X3

be a vector field on a standard Heisenberg manifold M = Y\H. Then the fol-

lowing are equivalent :

(a) The flow ¿ induced by V is both measure-preserving and lifted from

T2.

(b) X(V\ +X2V2, X3Vi,X3V2, and X3V3 are all 0, where the X, are

considered as differential operators on functions.
(c) dd = 0 and X3V3 = 0, where 6 is the l-fiorm Vico2 - V2coi.
(d) Vi =ßi+X2f, V2 = ß2-Xif, and V3 = F, where ßx and ß2 are real

numbers and f and F are functions on M which are lifts of functions
on T2.

Furthermore, if the above conditions hold, then the flow on M is lifted from

a flow on T2 which is itself measure-preserving (with respect to the measure

induced by Lebesgue measure on R2).
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Proof, (a)iff(b). By Proposition 7.1, V is measure-preserving iff XiVi+X2V2+

X3 V¡ — 0. Since, as we observed above, X3 Vx = X3 V2 = 0 for lifted flows, it
follows that for V a measure-preserving lift we have

0 = X3(XX Vi +X2V2 + X3V3) = XXX3VX + X2X3V2 + X3X3V3 = X3X3V3.

(X3 commutes with Xi and X2 .) However, for all M, g, and X, where M

is a compact manifold, g a function on M, and X a vector field on M, if

XXg = 0 then Xg = 0. (XXg = 0 implies Xg is constant along trajectories,

which implies that g increases or decreases without bound unless Xg is 0.)

So X3X3V3 = 0 implies X3V3 = 0. Since Xx Vx + X2V2 + X3V3 = 0, condition
(b) holds.

Conversely, if (b) holds, Xx Vx + X2 V2 + X3 V3 = 0, which shows that V is
measure-preserving (Proposition 7.1), and X3VX = X3V2 — 0, which shows that

F is a lift.
(b) iff(c).  6= ViCo2- V2cou

d0 = dViC02 - dV2coi = [(Xi, Vx)cox + (X2V2)co2 + (X3V3)co3]co2

- [(Xi V2)coi + (X2V2)co2 + (X3V3)co3]coi

= (XXVX +X2V2)coiC02 - (X3Vx)co2co3 - (X3V2)co3coi.

Therefore, dd = 0 iff X\ Vx + X2 V2 = X3 Vx = X3 V2 = 0.
(c)iff(d). Since HX(M;R) is generated by [coi] and [co2], it follows that

any closed 1-form on M can be written in the form aicoi + a2co2 + df, where

a! and a2 are real numbers and / is a function on M. Therefore, since 8

has no co3 component, 6 is closed iff

6 = a¡coi +a2co2 + df= (qi + Xif)cox + (a2 +X2f)co2,

where / is a function on M such that X3f = 0. But 9 = Vxco2 - V2coi .

Therefore, 6 is closed and X3V3 = 0 iff Vx = ßx + X2f, V2 = ß2 - XJ, and
V3 = F, where / and F are functions on M which lift functions on T2,
ßi =a2, and ß2 = -ai .

Finally, it is easy to see that a vector field satisfying condition (d) projects

to a vector field on T2 which satisfies the conditions of Proposition 7.2, and

which, therefore, induces a measure-preserving flow on T2 .   Q.E.D.

8. Asymptotic homotopy for lifted flows on Heisenberg manifolds

In §8.1 we first obtain an expression for the asymptotic homotopy of a curve

on any manifold M which has the Heisenberg group H as the group N = N3 in
the Malcev completion (Definition 3.1 ) of its fundamental group. (An example

of such an M which is not homeomorphic to a Heisenberg manifold (Definition

7.1) is the connected sum of two copies of Sx x S2. The fundamental group

of this manifold, which is the free group on two generators, has its N3 = H.)

We then restrict to the case when M is in fact a Heisenberg manifold. In §8.2

we evaluate the resulting expression in the case of measure-preserving lifted

flows. In §8.1 we also compute the asymptotic homotopy of the geodesic flows

for Heisenberg manifolds, and we use this computation to distinguish certain

of these flows up to topological conjugacy.
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8.1.   Asymptotic homotopy on Heisenberg manifolds.

Proposition 8.1 (Asymptotic homotopy when the Malcev completion is H). Sup-

pose M is a manifold which has the group N = N3 of its Malcev completion

equal to the Heisenberg group H (§7.1), and that (cox, co2, co3) is the repre-

senting L(H) valued I-form given by the Yli de Rham Theorem (Theorem 3.1).

Then, when the limits exist, the asymptotic homotopy (Definition 5.1) /? of a
curve a on M is given by

P = (Pl,p2,P3+Pl2),

where, in terms of integrals and integrated integrals (Definition 3.6), we define

p, = lim - /   co,,

and

pn EElim I— /  (coico2-co2coi) + - I p2 /   w, - p{ I   co2 j j .

Proof. By our remarks at the end of §3.2, we can assume that a is smooth.

Also note that in our representation of the Heisenberg group the exponential

map is the identity, so we can identify L(H) with H.

Recall that the asymptotic homotopy p(a) = Alim¿ Ja (coi, co2, co3) (Defi-

nition 5.1).

If we let fi(t) be co, evaluated on the tangent vector a'(t), and let / =

if\, h, h) be the resulting L(H) valued function, then L Ja (cox, co2, co3)

equals ¿ J0'f (Definition 3.4), which we can directly compute.

Lemma 8.1. (a) If f: [a, b] —> L(H) is a continuous function given by f(t) =

(fi(t), flit), hit)), then L Ja f exists and equals

{f.*-f.A-f.í'+\{f.{f.mé')mit
-ÍAÍmds)md'))-

(b) If (coi, co2, co3) is a L(H) valued l-form then

L (COu C02 , C03) = ( COu C02, C03 + -   /     COiC02 - CO2C0i \  .

Ja¡, \,'a¡i •'aii ■'"¡i •'«»li /

Proof. By using Definition 3.3 and the fact that exp is the identity, we obtain

L Ja f(t) dt is a limit of products of the form

(fl(t*)Atx , f2(t\)Ati , f3(t\)Atx) ■ ■ ■ (fix(t*„)Atn , MQAtn , f3(t*„)Atn)
In n n

= (E/iCDAii. 2>(fr)Aí,, ¿¿(ídaí,
\í=i        /=i        i=i

+ \ Ê E /' WYútMfjWj - hUDAtif (t})Atj2
>=2 1=1
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By using the Riemann integral for the single sums and the Riemann double

integral and Fubini theorem for the double sums, we see that the limits exist

and have the form indicated.

The result for the 1-form follows by using the definition of iterated integrals

(Definition 3.6). (An alternative proof of part (b) of the lemma uses Example

3.1.)   Q.E.D. (Lemma 8.1)
We can now compute p(a) = Alimz. Ja (coi, co2, co3) by using the formula

for Alim in Lemma 4.2. Note that since the homomorphism (x, y, z) >-> (x, y)

is the abelianization of H, we have p = (pu Pi) (Proposition 4.2). Also recall

that the Lie bracket in L(H) is given by [(a, b, c), (a', b', c')] = (0,0, ab' -
a'b).     Q.E.D.

We now consider the special case where M = Y\H is a Heisenberg manifold
(Definition 7.1). The following Corollary shows that when M is a Heisenberg

manifold, the asymptotic homotopy of a curve on M can be easily expressed

in terms of its lift to H.
Our proof of the Ylx de Rham Theorem (Theorem 3.1) showed that the

representing L(H) valued 1-form on M is given by lifting a tangent vector

from TM to TH and then left translating to the identity. Therefore any

choice of a basis of left invariant 1-forms on H induces a representing 1-form

on M.

Definition 8.1 (Standard representing 1-form). If M is a Heisenberg manifold

(Definition 7.1), then the standard representing l-form on M is the 1-form

(coi, co2, co3), which is induced by the L(H) valued 1-form (dx, dy, dz +

\dx - jdy) on H (§7.1, conventions).

Corollary 8.1 (Asymptotic homotopy on Heisenberg manifolds). Suppose M is

a Heisenberg manifold, (coi, co2, co3) is the standard representing l-form, a is
a curve on M, and à(t) — (x(t), y(t), z(t)) is the position at time t of a lift of

a to H. Then, when the limits exist, the asymptotic homotopy p of a is given
by

P = (Pi, Pi, ß3 + Pu),

where

Pi=limX^-X^,        p2 = lim^-/W,

p3 = lim (2(0~Z(0) + jt J\(s)x'(s) - x(s)y'(s)ds)j ,

px2 = lim (1 l'((x(s) - x(0))y'(s) - (y(s) - y(0))x'(s)) ds

+ ^(p2(x(t)-X(0))-pl(y(s)-y(0)))-

(For our purposes, it is not helpful to simplify in the obvious way the p3 + px2

term.)
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Alternately, observe that

L [ ((01,(02, co3) = ä(0)-xä(t) = (x(t) -x(0), y(t) -y(0), z(t) - z(0)
Jau

+l2(x(t)y(0)-y(t)x(0))),

and p(a) is Alim of this expression.

Example 8.1 (Asymptotic homotopy of geodesic flow on Heisenberg manifolds).

In this example, we compute the asymptotic homotopy of the geodesic flow for

Heisenberg manifolds, and show that we can thereby distinguish up to topolog-

ical conjugacy certain of these flows which are indistinguishable by asymptotic

homology.
Let us assume that a standard Heisenberg manifold M = Y\H has a metric

induced by a left invariant metric on H, and that ¿ is the geodesic flow on the

unit tangent bundle Tx (M). Using left translation, we will consider Tx (M) as

M x U, where U is the sphere of unit tangent vectors at Ye.

Since Ylx(Ti (M)) = Ylx (M), the asymptotic homotopy of any curve in Tx (M)

is equal to the asymptotic homotopy of its projection to M. Therefore the

asymptotic homotopy /?(/?, v) of the trajectory of ¿ starting at the point (p, v)

in M xU is simply the asymptotic homotopy of the geodesic a on M starting

at p in the direction v. By Corollary 8.1, p(a) = Alimg,, where gt is the

curve in H obtained by lifting a to H and left translating to the identity.

Since the metric is left invariant, g, is the geodesic starting at the identity with

initial direction v . Thus p(p ,v) = p(Ye ,v) = Alim g,.

We have therefore reduced our problem to determining the geodesies in H

which start at the identity and then computing their asymptotic limit.

Our basis of left invariant vector fields on H is given by

Y       d      y d d      x d d

Äl~dx'~2dz''   Xl-by + 2cTz>   ^-cTz-

(In §7, X, denoted the induced vector field on M.) These vector fields evalu-

ated at the identity are a basis of the Lie algebra L(H) which is given by the

brackets [Xx, X2] = X3 and [Xx, X3] = [X2, X3] = 0. Since the exponen-

tial map from L(H) to H is the identity, the automorphisms of H axe the

Lie algebra automorphisms of L(H). These automorphisms are given by the

matrices
(B 0     \

\bc   det(B))

where B is in GL(2, R), and b and c are in R. It is easy to see that for

every left invariant metric on H there is an automorphism A of H which is

an isometry to a metric which is determined on L(H) by the matrix

1 0 0
0 1 0
0   0   e2

[Pa, Introduction]. In computing asymptotic homotopy it suffices to consider

such metrics since Alim,4(gf) = ^(Alimg,) (Proposition 4.1). We will there-

fore assume that such a metric, which we will call an e-metric, is given.
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We first determine the Riemannian connection V, which for any left in-

variant vector fields X, Y, and Z satisfies the conditions of being torsion
free,

VXY-VYX = [X,Y],

and of preserving the metric,

(VxY,Z) + (Y,VxZ) = 0.

By permuting the variables we obtain

(VXY, Z) = ±«[X, Y],Z)- ([Y, Z],X) + ([Z , X], Y))

[Mi, p. 310]. It follows that

Vjr, Xi = VXlX2 = Vx,X3 = 0,        VXl X2 = - V^X, = \X3,

Vx,X3 = V^X, = -(e2/2)X2,        VX2X3 = VXiX2 = (e2/2)Xx.

We observe that the sectional curvatures are given by K(XX, X2) = -|e2,

and K(Xi, X3) = K(X2, X3) = ±e4 [Mi, p. 311].
We may now write down the geodesic equations. We denote by v the (unit)

tangent vector of a geodesic and write v = Vi Xi + v2X2 + v3X3. We then obtain

the following equation by expanding the geodesic equation V„v = 0, using the

formulae derived above for the covariant derivatives:

úiXi + v2X2 + v3X2 - ViV3e2X2 + v2v3e2Xx = 0,

where the dot denotes differentiation in the parameter t of the geodesic (i.e.,

/ = V„/). Collecting terms, we get the three equations:

i)x + e2v2v3 = 0,    v2 - e2vxv3 = 0,    i)3 = 0.

We assume that our geodesic starts at the identity element (0,0,0) in H

with its initial tangent vector the unit vector (a, b, c). It follows from the

third equation above that v3 — c, and that vx and v2 satisfy the linear system

of ordinary differential equations

i)X = -ce2v2,       v2 = ce2vx.

If c ,¿ 0, the solution is vx(t) = Rcos(ce2(t+t*)) and v2(t) — Rsin(ce2(t+tt)),

where R and U are constants. The vector (vi, v2) thus rotates around a circle

of radius R = Va2 + b2 with angular velocity ce2 . If c = 0, the solution is

vi = a and v2 - b.
We may now easily pass from the velocity vector v(t) to the coordinates

x(t), y(t), and z(t) of the geodesic. By using the definitions of Xu X2, and

X3, we obtain x — Vi, y = v2, and z = v3 + \(xv2 - yvi). If c / 0,

then the point (x, y) rotates with constant speed around a circle of radius

R = R/(\c\e2). This circle starts at (0, 0) and the period P is 2n/(\c\e2).

Now notice that we can write z = c + \(xy - yx) = c + À, where A(t) is
the signed area swept out by the vector (x(t), y(t)) in time t. Therefore,

z(t) = ct + A(t). If c = 0, we obtain x = at, y = bt, and z = 0.
We now need to determine the asymptotic limit of the geodesic g, =

(x(t),y(t), z(t)). We use the formula /? = Alimg, = limgt/t + \[g,,p]

(Lemma 4.2).
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If c t¿ 0, then p(0, 0) since x(t) and y(t) axe bounded. Therefore

p = lim g,/t = lim(x/i, y/t, z/t) = (0, 0, c + lim A(t)/t).

Since A(t) is periodic of period P, when c > 0 we obtain

lim A(t)/t = A(P)/P = 7iR2/P = ce2R2/2 = R2/(2cs2) = (1 - e2c2)/(2ce2),

where we use the fact that R2 + e2c2 — a2 + b2 + e2c2 = 1, since (a, b, c)

is a vector of unit length. Therefore p = (0,0,(1 + c2e2)/(2ce2)). When c

is negative we obtain the same formula for /? since, in that case, A is also

negative.

If c = 0, then p = (a, b) and so [g,, p] = p2x(t) - piy(t) = 0. Therefore

p = 1imgt/t = (a,b,0).
Let us summarize. Suppose we have an e-metric on M, i.e., a metric induced

by a left invariant metric on H for which the vector fields Xi, X2 and X3 are
orthogonal, with Xi and X2 of unit length and X3 of length e > 0. If
v — (a, b, c) is a unit vector in U, then /?(/?, v), the asymptotic homotopy of

a trajectory of the geodesic flow starting at (p, v), is (0,0,(1+ c2e2)/(2ce2))

when c ^ 0, and is (a,b,0) when c = 0. The asymptotic homology p(v, p)

is (0, 0) when c / 0, and is (a, b) when c = 0. Therefore asymptotic

homology does not depend on e. Also note that both asymptotic homology

and asymptotic homotopy are discontinuous at c = 0.

We now show that if s ^ e', then the induced geodesic flows ¿£ and ¿¿ are

not topologically conjugate.

Recall that if p and q are points in some manifold M, then the Malcev

completions of Y1X(M, p) and Yli(M, q) axe conjugate. That is, if Yp and Yq

are the lattices in N corresponding to p and q , then there is a conjugacy of

N taking Yp to Yq (Lemma 5.1). From this it follows that if /: M —► M' is a

topological conjugacy of flows ¿ and ¿', then for any two points p £ M and

p' £ M' there is a lattice-preserving automorphism A: (N, Yp) —* (N', rp<)
which preserves central asymptotic homotopy cycles. That is, A induces a

bijection from {p(q)\q £ M, p(q) central in N} to {p(q')\q' £ M', p(q')

central in N'}.
In the present case, the two manifolds are M x U and M x U', the groups

are N = N' = H, and the lattices, Y(P<V) and r^-,„-) depend only on p and
/?'. If we take p = p' = Ye , we obtain YtptV) = r(p< _„/) = Y, where Y is one
of the standard lattices r*. (§7.1). The center of H consists of elements of
the form (0, 0, z). The characterization given above of the automorphisms

of H shows that, for an automorphism A : (H ,Y) —> (H, Y), the associated

B is in GL(2, Z), and thus the determinant of B is 1 or -1. Therefore the

characterization of automorphisms shows that A either fixes the center or takes

central elements to their inverses. But if £ ^ s!, such an action cannot take the

set of central elements /? for ¿e to the set of central elements /?' for ¿ei. The

reason is that, for a given e, the minimum of the set of nonzero \z\, such that

(x, y, z) is a central asymptotic homotopy element, is 1/e which is achieved

when a — b — 0 and c2e2 = 1.

8.2. Asymptotic homotopy for lifted flows. Asymptotic homotopy for lifted

flows can be expressed in terms of "ergodic averages" of functions.
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Definition 8.2 (Ergodic average). If ¿ is a flow on a manifold M, then Av(f)p ,

the ergodic average of / at a point p , is equal to lim j /0 f(a(s)) ds, where a

is the trajectory starting at p .

The terms p, which appear in the expression for asymptotic homotopy

(Proposition 8.1) are just the ergodic averages of the functions co,(V), where

V is the vector field inducing a flow ¿. Consequently, by Birkhoff's ergodic

theorem, if ¿ is measure-preserving, then p, exist almost everywhere. Unfor-

tunately, for general measure-preserving flows, it is unclear whether and where

the p i2 term exists.

The situation improves when we restrict to measure-preserving flows on a

Heisenberg manifold which are lifts of toral flows. In that case, as Corollary

8.1 indicates, pl2 depends entirely on the toral flow, which is itself measure-

preserving (Proposition 7.3). Furthermore the trajectories of a measure-preserv-

ing flow on the 2-torus are quite explicitly computable. We are therefore able,

in Theorem 8.1 below, to prove the existence almost everywhere of asymptotic

homotopy, and to express it in terms of ergodic averages along the toral flow.

Recall that a lifted measure-preserving flow is determined by constants ßi

and ß2 and by functions / and F which we can think of as defined on the

torus (Proposition 7.3). The partial derivatives fx and fy are also functions

on the torus.

Theorem 8.1. (Asymptotic homotopy exists for measure-preserving lifts). Sup-

pose M is a standard Heisenberg manifold with the standard representing L(H)
valued l-form, and that the measure-preserving lifted flow <j> is determined by the

constants ßi and ß2, and by the functions f and F defined on T2 (Proposition

7.3). Let p denote the projection to T2 of a point p in M. Then the following

statements hold when the indicated ergodic averages along the toral flow exist:

(a) pi(p) = Av(/?i + fy)p, p2(p) = Av(/?2 - fx)p, and p3(p) = Av(F)p.

(b) // ßi # 0, then pn(p) = Av(f)p-Av(ffy)p/ßi - pj(p)/ßi.
(c) // ß2 ¿ 0, then px2(p) = Av(f)p - Av(ffx)j/ß2 - p2f(p)/ß2 .
(d) If ßi = ß2 — 0, then, for almost every p, p is fixed or periodic for the

toral flow. Ifp is fixed, then pi2(p) = 0. Ifip is periodic of period T,
then

Pn(p) = ¿ j WO - x(0))y'(t) - (y(t) - y(0))x'(t) dt,

where (x(t), y(t)) is a lift to R2 of the loop based at p .

Consequently the asymptotic homotopy p = (pi, p2, p3 + pn) exists almost

everywhere on M. Furthermore, wherever p is defined by (a)-(d) above, it

satisfies the condition to be an invariant of topological equivalence (Corollary

5.2).

Proof, (a) By Proposition 8.1, p¡ = Av(co¡(V))p = Av(V¡)p, where V is the

vector field which has components V¡ and which determines the flow ¿. Since

the flow is lifted, the components V¡ also lift from functions on T2. But for

lifted flows, if g is a function on M which lifts from a function g on T2,

then Av(g)p equals Av(g)p. Since Vi, V2, and V3 lift from ßi+fy, 02—fx,
and F respectively (Proposition 7.3), part (a) of the theorem follows.

(b) We need the following lemma which characterizes trajectories of measure-

preserving flows on T2.
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Lemma 8.2 (Measure-preserving flows on T2). Suppose a measure-preserving

flow on T2 is determined by the equations x' = ßi + fy and y' = ß2 - fx

(Proposition 7.2).

(a) If f is the derivative of f along the trajectory (x(t), y(t)) of the lifted

flow on R2, then

-ß2x'(t) + ßiy'(t) + f'(x(t),y(t)) = 0

and

-ß2(x(t) - x(0)) + ßi (y(t) - y(0)) + f(x(t), y(t)) = f(x(0), y(0)).

(b) If pi and p2 are the ergodic averages of the components of the vector

field, then they exist almost everywhere, and where they are defined we

have -ß2pi + ßipi = 0.

Proof, (a) If we multiply the equation for x' by y' and the equation for y' by

x' and then subtract, we obtain -ßix' + ßxy' + fyy' + fxx' = 0. Since fyy' +

fxx' = /', we obtain the first expression. Then we integrate this expression

from 0 to t to get the second expression.

(b) Since pi = lim(x(t)-x(0))/t and p2 = lim(y(t)-y(0))/t, if we use part

(a) of this lemma and divide

-ß2(x(t) - x(0)) + ßi (y(t) - y(0)) + f(x(t), y(t)) = f(x(0), y(0))

by t, and then take the limit, we obtain -ß2px + ßip2 = 0. We use the fact

that the function / is bounded since it lifts from a continuous function on the

torus, pi and p2 exist almost everywhere by the ergodic theorem. Q.E.D.

(Lemma 8.2)
Now fix a point p in M for which pi(p) and p(p) are defined. The

trajectory of the flow ¿ through p lifts to a curve on H whose position at

time t is (x(t), y(t), z(t)). By Corollary 8.1

pn = lim fi J\(x(s) - x(0))y'(s) - (y(s) - y(0))x'(s)) ds

+ \(p2(x(t) - x(0)) - pi(y(s) - y(0)))) .

Since the flow ¿ is measure-preserving and lifted, x(t) and y(t) determine

a trajectory of a measure-preserving flow on T2 and therefore satisfy Lemma

8.2. Now think of f, f, fx , and fy as doubly periodic functions on R2, and

let f(t), f'(t), fx(t), and fy(t) denote their value at the point (x(t), y(t)).

Since we are assuming that ßx ^ 0, we can divide by ßx in Lemma 8.2(a), and

obtain

ßi ß\

Also, if we let k = pi/ßi, we obtain by Lemma 8.2

p2(x(t) - x(0)) - pi(y(t) - y(0)) = k(ß2(x(t) - x(0)) - ßy(y(t) - y(0)))

= k(f(t)-f(0)).
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We can now substitute into the expression for px2 and obtain

Pn = lim [~-t f(x(s) - x(0))(-f'(s) + ß2x')

- (/(O) - f(s) + ß2(x(s) - x(0)))x'(s) ds + t(f(t) - f(Q))

= lim(^-tj\f(s)-f(0))x'(s)ds

2ßitJ0
(x(s)-x(0))f'(s)ds + ^-(f(t)-f(0))

We then integrate by parts and obtain

Pn = lim (^ f(fis) - f(0))x'(s) ds - 7^ WO - x(0))f(t)

+ 2pSif X'(S)AS)ds + \ifit) - /(0))

= lim (J-t fx'(s)f(s) ds - ¿^ WO - x(0))

- ¿7^(0 - x(0))f(t) + \f(t) - |/(0))

'k     x(t)-x(0)
+ f(t)

2 2ßxt

,—Ay((ßi+fy)f)p-kf(0) + 0
1

Kt
= Av(fi)p - j- Av(ffy)p - ^-fi(p).

So part (b) of theorem is proved.

(c) The proof of part (c) is similar to the proof of (b).

(d) T2 is the disjoint union of the sets A, B, and C, where, for the function

/, A is the set of critical points, B is the set of regular points whose images

are regular values, and C is the set of regular points whose images are critical

values, (p is a critical point iff both fx(p) and fy(p) axe 0 [Hi, p. 22].)

Lemma 8.3 (Regular points with critical images are measure 0). The set C has
measure 0.

Proof. Let D = B U C be the set of regular points of /. D is open. By the
implicit function theorem [Hi], f on D looks locally like the projection n from

R2 to R. That is, for each p £ D, there exists an open set U containing p and

a diffeomorphism ft : U —> Q c R2 such that f\u = n o ft , where n(x, y) = x .

By Sard's Theorem [Hi, p. 69], the set S of critical values of the function /

has measure 0 in R. Therefore n~x(S) has measure 0 in R2, and fiyX(S) =

h~x(7i-x(S)) has measure 0 in T2. Note that j¡¿l(S) = U n C. By the

Lindelöf theorem [D, p. 174], every open cover of D has a countable subcover.
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Therefore we can find a countable subcover {[/,} of D such that U, n C has

measure 0. Therefore C has measure 0. (This proof applies to any smooth

/: M -> R, where M is a second countable manifold.)   Q.E.D. (Lemma 8.3)

Since we are assuming that ßi and ß2 axe 0, it follows that the equations

x' = fy and y' = —fx determine the flow on T2. Note that p is a critical

point (i.e., p £ A) iff it is a fixed point of the flow on T2 . Therefore if p £ A ,
then pii(p) = 0 (Corollary 8.1).

If p is in B, then f(p) — c is a regular value, and so f~x(c) is a compact

embedded 1-manifold in T2 [Hi, p. 22]. That is, f~x(c) is a disjoint union of
circles. Furthermore, the vector field is tangent to and nonvanishing on these

circles. Therefore each of these circles is a periodic orbit of the flow.

So suppose p is a point in M whose image p in T2 is a periodic point for

the flow on T2. Proposition 8.1 shows that if a is the trajectory through p ,

then

AlimL /  (coi, co2, co3) = (pi, p2, p3 + px2).
Ja\¡

The same proof shows that

AlimL /   (to,, g>2 , 0) = (pi, p2, pn)IJai,

But since (cox, co2, 0) when evaluated on a is a periodic function into L(H),

we can apply Proposition 4.4(b) and conclude that

v l/r

AlimL /   (to., w2,0) =  [L I   (toi,to2,0), /  (toi, to2,0)= [L /
Ja\, \    Jay

which, by Lemma 8.1(b),

Therefore

1   /• If If
— I    wx,—       co2,— \    coxco2 - co2cox
■*   Ja\r J a\r Ja\T ¡

Vn=2fj   coxco2-co2cox = — j (x(t) - x(0))y'(t) - (y(t) - y(0))x'(t)dt.

So part (d) of the theorem is proved.

/? exists almost everywhere since the ergodic averages in parts (a), (b), and

(c) above exist almost everywhere by the ergodic theorem, while case (d) is itself

a statement of existence almost everywhere. It remains to show that /? is an

invariant of topological equivalence by verifying that the condition of Corollary

5.2 is satisfied.
First assume that px and p2 are not both 0. It is sufficient to show the

boundedness of the "correction term" ((a|,), p) (Definition 4.1), where p =

(px, p2) (Definition 5.1). But

(i(*\,), p) = [(a\,), p] = p2      cox-pxj   co2
Ja\, Ja|,

= p2(x(t) - x(0)) - px(y(t) - y(0))
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(Lemma 4.1(b), Definition 5.2, Lemma 8.1(b)). If ßx and ß2 are not both 0,
then

p2(x(t) - x(0)) - px (y(t) - y(0)) = k(ß2(x(t) - x(0)) - ßx (y(t) - y(0)))

= k(f(t)-f(0)),

which is bounded (Lemma 8.2(b), proof of Theorem 8.1(b)). If ßx = ß2 = 0,
then almost every orbit on T2 is stationary or periodic. In either case it is easy

to see from the definitions of px and p2 that p2(x(t) - x(0)) - px(y(t) - y(0))

is bounded.
If px = p2 — 0, then we use Proposition 4.6(a)(ii) to see that p is an

invariant of topological equivalence.   Q.E.D.

9. Asymptotic homotopy distinguishes regular hypercircular flows

In this section we discuss "regular hypercircular" flows on standard Heisen-

berg manifolds. These flows are a class of lifted measure-preserving flows for

which asymptotic homology and homotopy are defined everywhere. They all

have the same asymptotic homology, but differences in asymptotic homotopy

allow some of them to be distinguished up to topological equivalence.

We have previously used the fact that a Heisenberg manifold is a circle bundle

over the 2-torus (§7.2). It is also a torus bundle over the circle Sx = R/Z as

follows. The homomorphism (x, y, z) >-> y from H to R induces a map from

a standard Heisenberg manifold M to 51 such that the following diagram

commutes (Definition 7.1), where the maps H —> M and R —> Sx axe the

natural projections:
H -►  R

I        I
M -> Sx

These torus bundles are topologically nontrivial.

Notation 9.1 (The fiber of the torus bundle). The fiber over the point y + Z will

be denoted by Ty .
The flows defined below have the property that the tori Ty axe invariant sets,

that the flows on Ty axe conjugate to the usual linear flows on tori (Definition

2.9), and that under the standard map M-»i2 (§7.2) the flows on Ty project

to unit speed flows on a circle.

Definition 9.1 (Regular hypercircular flows). A lifted measure-preserving flow

on a standard Heisenberg manifold is a regular hypercircular flow determined

by a function of period one, x : R —* R, if it is determined by the vector field

having components (Proposition 7.3) Vx = 1, V2 = 0, and V3 = F, where

F(Y(x, y, z)) = x(y), and where the function given by x(y) - y has only a

finite number of critical points on the unit interval, and all those critical points

are nondegenerate (x" / 0).

Proposition 9.1 (Asymptotic homotopy of regular hypercircular flows). The

asymptotic homotopy of a regular hypercircular flow determined by x exists at

every point on a standard Heisenberg manifold M, and is given by the formula

p(Y(x, y, z)) = (1,0, x(y)). At every point in M, the asymptotic homology
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p = (px, p2) = (1, 0). The asymptotic homotopy is an invariant of topological

equivalence in the sense of Corollary 5.2.

Proof. We apply the formulas in Theorem 8.1, using ßx = I, ß2 = 0, f — 0,

and F as given in Definition 9.1. Since f = 0, at all p £ M we imme-

diately obtain pi = 1, p2 = 0, and pn = 0. Since V2 = 0, y remains

constant along the lift to H of every trajectory (§7.1, Conventions). Since F

depends only ony, it remains constant along every trajectory. Therefore at

all p = Y(x, y, z), we have p3 = Av(F)p = F(p) = x(y). By Theorem 8.1,
p = (pi, p2, p3 + pn) satisfies the condition required to be an invariant of

topological equivalence, p = ( 1, 0) is the asymptotic homology since it is the

abelianization of/? (Definition 5.1).   Q.E.D.
We will distinguish regular hypercircular flows by using the homotopy folia-

tion (§6).

Theorem 9.1 (Distinguishing regular hypercircular flows). If the regular hyper-

circular flows determined by Xi and x2 are topologically equivalent (Definition

2.6), then the functions given by xi(y) -y and x2(y) -y have the same number

of critical points on the unit interval [0, 1).

Proof. We first note that in this setting the homotopy foliation (Definition 6.3)

can be computed more explicitly.

Lemma 9.1 (Homotopy foliation of standard Heisenberg manifolds). Suppose

p = Yb and q = Yc are two points on a standard Heisenberg manifold M = Y\H

(Definition 7.1). Then (p, g) and (q, ft) are on the same leaf of the homotopy

foliation y of M x H iff there is some a £ H such that a translates p to q
and a~x conjugates g to h (i.e., ba = c and a~xga = ft).

Proof, (p, g) and (q, ft) are on the same leaf iff there exists a path S from p

to q such that (ô)~xg(ô) = ft , where (ô) = l /¿(^i , to2, to3) for the standard

representing 1-form (toi, co2, to3) (Definition 6.3, Lemma 5.1, Definition 5.2,

Definition 8.1). But one can compute (or see) that if a curve ô: [0, 1] —» M

lifts to a curve ô on H then ¿/¿(toi, to2, a?3) = S(0)~XS(1) (Lemma 8.1(b),
Proposition 5.7 (proof)). So for a curve ó from p to q in M which lifts to a

curve in H from b to c, we have (S) = b~xc. The lemma follows by letting

a = b~xc.     Q.E.D. (Lemma 9.1)
We now define two rather ad hoc invariants of the intersection of graph /?

with the homotopy foliation y which are suited to this problem.

Definition 9.2 (Disconnecting set and FTI property), (a) Suppose /? is the

asymptotic homotopy of a flow ¿ on a manifold M. Then a point p £ M is

in the disconnecting set S if for any neighborhood U of p there exists some

leaf S? of y such that the projection to U of the intersection 3? n graph p n

(U x H) is disconnected topologically.

(b) A flow on a standard Heisenberg manifold M has the finite torus intersec-

tion (FTI) property if for every leaf ¿¿f the projection to M of the intersection

Sf n graph p is equal to the disjoint union of a finite number of tori in M.

Remark 9.1 (Disconnecting sets and the FTI property are conjugacy invariants).

If two flows are topologically conjugate by the homeomorphism /, then /
restricts to a homeomorphism of their disconnecting sets, and they both have

or both lack the FTI property (Remark 6.1, Proposition 6.1).



532 DIEGO BENARDETE AND JOHN MITCHELL

Lemma 9.2 (FTI property and disconnecting set for regular hypercircular flows),

(a) Regular hypercircular flows have the FTI property. Moreover the projection

of S? n graph/? is the disjoint union of tori of the form Ty (Notation (9.1).

(b) The disconnecting set S of a regular hypercircular flow determined by x

(Definition 9.1) is the union of the tori Ty for all y which are critical points of

the function given by x(y) - y.

Proof, (a) Let ¿¿fg0 be the leaf containing the point (Ye, go) in MxH. (Every

leaf J? can be represented (nonuniquely) as an ¿2fg0.) Then (p, g) is on Jz^0

iff there exists an a such that Y a = p and a~xgoa = g (Lemma 9.1). In

particular, -2^0 intersects graph /? at (p, p(p)) iff there exists an a such that

Ya = p and a~xg0a = p(p). If we let g0 = (*o, yo, ¿o) and a = (x, y, z),

this last condition becomes (x0, yo, z0 - (xyo - yxo)) = (1,0, x(y)), which

is equivalent to xo = 1, yo = 0, and z0 = x(y) - y (§7.1, Proposition 9.1).

Therefore (p, p(p)) is on the leaf Jz^0 iff there exists a real number y such

that p is in the torus Ty , and x0 — 1, yo — 0, and x(y) -y = zq ■ This implies

that whenever a leaf Sf intersects graph /? over a point p in M, then that

leaf intersects graph /? over the torus Ty which contains p . The FTI property

follows since, for any z0, the equation x(y) - y = z0 has only finitely many

solutions (Definition 9.1).

(b) Now note that j> is a critical point of x(y) -y iff for all neighborhoods of
y there exist numbers zo for which the equation x(y) - y = zq has more than

one solution (Definition 9.1). Therefore if p is in Ty and y is a critical point

of x(y) -y , then for all neighborhoods U of p there exists a leaf ¿zf such that

the projection to U of S? ngraph pf~\(U x H) has nontrivial intersection with

finitely many, but more than one, tori of the form Ty . Therefore such a point

p is in the disconnecting set. If p is in Ty and y is not a critical point of

t(y) - y > then there exists an interval / containing y in which, for all z0, the

equation of x(y) - y = zq has at most one solution. Let U = {JTy , where the

union is over y £ I, and let 5? = ¿z?g0 for some go = (1, 0, Zo) ■ By part (a)

above, the projection of J? n graph pn(U x H) to U consists of finitely many

tori of the form Ty , and furthermore any such y must be contained in some

integer translate of /. Suppose that Tyi and Tyi are both in the projection

but that yi ^ y2. Then both r(yi)-yi and x(y2) - y2 equal z0. This is

impossible if yi and y2 are in the same translate, and if we pick / small

enough it is impossible even if they are in different translates (Definition 9.1).

So the projection is empty or it consists of a single Ty , which is a connected

set.

Therefore p is in the disconnecting set S, iff p is in Ty for y a critical

point of x(y) - y .   Q.E.D. (Lemma 9.2)
Observe that as a direct consequence of Remark 9.1 and Lemma 9.2 we

obtain a weaker version of Theorem 9.1 in which "topological equivalence" is

replaced by "topological conjugacy." To deal with topological equivalences we

need to understand the effect of reparametrization on the disconnecting set.

Lemma 9.3 (Rescaling and the disconnecting set). Let p and /?' be the asymp-

totic homotopy with disconnecting sets S and S' of the flows ¿ and ¿' on a

standard Heisenberg manifold M, where ¿ is regular hypercircular while ¿' has

the FTI property. Furthermore suppose that there is a positive rescaling function
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r: M -> R+ such that p'(p) = r(p)p(p) for all p £ M (Lemma 4.1 (i)). Then
S' is a subset of S.

Proof. If x is the determining function of ¿ (Definition 9.1), then p(p) =

(1,0, t(y)) and p'(p) = (r(p), 0, r(p)x(y)), where p = Y(x, y, z) (Proposi-

tion 9.1). As in the proof of Lemma 9.2(a), a leaf ¿2?g0 determined by go =

(xo, yo, zo) intersects graph/?' at (p, /?'(/?)) iff there exists (x, y, z) suchthat

p = Y(x,y, z) (i.e., p £ Ty) and x0 = r(p), y0 = 0, and z0/x0 = x(y) - y .

Since x(y)-y assumes any value zo/xo at most finitely many times, a leaf J?

intersects graph /?' over some subset of finitely many disjoint tori of the form

Ty. However, by the FTI property hypothesis on ¿', the intersection must

project onto some finite number of tori, which we now see must be of the form

Ty . Therefore on any torus Ty the function r(p) must be constant.

Now assume p £ S'. By our remarks in the previous paragraph, this can

only occur if, for any neighborhood U of p, there is some leaf ¿¿?g0 such that

the projection to U of ¿¿fg0 n graph/?' n (U x H) contains points in two or

more tori of the form Ty . Let p be in Ty for some y . Then for any open

interval / about y, there exists a real number zq/xq such that the function

x(y) - y assumes the value z0/xo two or more times. Let ftn = (1, 0, z0/x0).

Then, by our argument in the proof of Lemma 9.2(a), the projections to U of

.2fc0 n graph/? n(U x H) contains points in two or more tori of the form Ty .

This implies that p £ S.   Q.E.D. (Lemma 9.3)
We can now prove Theorem 9.1 Suppose ¿i and ¿2 axe equivalent regular

hypercircular flows determined by t] and T2, and that the equivalence / is

a conjugacy of ¿i with a continuous flow ¿3 which is a reparametrization of

¿i. Let «i and «2 be the number of critical points on the unit interval of

tiiy) - y an(1 Ti{y) - y • By Lemma 9.2, ¿1 has the FTI property and the

disconnecting set 5*1 of ¿1 consists of «1 tori of the form Ty. By Remark

9.1, ¿3 has the FTI property and the disconnecting set .S3 of ¿3 consists of

«1 tori. By Corollary 5.1 on topological conjugacy, fipi(p) = piifip))- By
Proposition 9.1, the asymptotic homotopy and homology of both ¿1 and ¿2 are
everywhere nontrivial, and the condition for applying Corollary 5.2 is satisfied.

By Corollary 5.2 on topological equivalence, there exists r:M-»R+ such that

Pî(p) = r(p)pi(p). By Lemma 9.3, the disconnecting set S3 is contained in the

disconnecting set 52 of the flow ¿2. By Lemma 9.2, S2 consists of «2 tori.

Therefore «1 < «2. Since topological equivalence is a symmetric relation, we

can similarly show «2 < «1 ■ Therefore «1 — n2.   Q.E.D.

Example 9.1 (Flows distinguished by asymptotic homotopy). On any standard

Heisenberg manifold, no two of the regular hypercircular flows determined

by the functions x„(y) = cos(2nny) axe topologically equivalent, where n =

0, 1,2, ...  (Theorem 9.1).
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