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CRITICAL LIL BEHAVIOR OF THE
TRIGONOMETRIC SYSTEM

I. BERKES

Abstract. It is a classical fact that for rapidly increasing (nk) the sequence

(cosrt^x) behaves like a sequence of i.i.d. random variables. Actually, this al-

most i.i.d. behavior holds if (nk) grows faster than ecv/* ; below this speed

we have strong dependence. While there is a large literature dealing with the

almost i.i.d. case, practically nothing is known on what happens at the critical

speed nk ~ ec^k (critical behavior) and what is the probabilistic nature of

(cos/î^x) in the strongly dependent domain. In our paper we study the critical

LIL behavior of (cosnkx) i.e., we investigate how classical fluctuational theo-

rems like the law of the iterated logarithm and the Kolmogorov-Feller test turn

to nonclassical laws in the immediate neighborhood of nk ~ ecv^ .

1. Introduction

The purpose of this paper is to study the probabilistic behavior of lacunary

trigonometric series. Specifically, we shall give essentially optimal lacunarity
conditions under which a subsequence of the trigonometric system satisfies the

law of the iterated logarithm and some of its refinements, e.g., the Kolmogorov-

Feller upper-lower class test. We shall also investigate critical phenomena re-

lated to the LIL, i.e. study the surprising properties of lacunary trigonometric

series in the immediate neighborhood of the gap condition where the law of the

iterated logarithm and the Kolmogorov-Feller test break down.

It is well known that for rapidly increasing (nk) the sequences (sinw^x)^,,

(cosnkx)kx>=x behave like sequences of independent random variables.1 For ex-

ample, if (nk) is a sequence of positive integers satisfying

(1.1) nk+i/nk>q>l        (k=l,2,...)

then by classical results of Salem-Zygmund [14] and Erdös-Gal [6] we have

(1.2) lim -Í-A I 0<x<2tz:V cosnkx <tJÑ/2 \ = O(i)
N—kx> Z7I      \ *-^ I
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and

(1.3) ïïm (7VloglogAO-1/2y"cos«fcx= 1    a.e.2

k<N

where <P(f) = (2n)~xl2 ¡t_ooe\o(-u2l2)du is the standard normal distribu-

tion function. Actually, much more than (1.2) and (1.3) is true: Philipp and

Stout [12] proved that under (1.1) the partial sum process S(t) = S(t, x) =

¿^,k<t cos nkx (t > 0) is nearly Wiener in the sense that without changing its

distribution it can be redefined on a suitable probability space together with a

Wiener process {W(t), t > 0} such that

(1.4) S(t) = W(t/2) + 0(tx/2~p)   a.s. as/^oo

for some constant p > 0. The approximation (1.4) implies not only the central

limit theorem (1.2) and the law of the iterated logarithm (1.3) but it extends a

large class of limit theorems of independent r.v.'s to the sequence (cos nkx).

For example, (1.4) implies easily that (cosnkx) obeys the Kolmogorov-Feller

test, i.e., for any positive nondecreasing sequence cp^ the inequality

y^ COS nkX > y/N/2<PN

k<N

holds a.e. for finitely or infinitely many N according as the series

converges or diverges. Since the same test is valid for the Wiener process, we

see that under (1.1) the partial sum growth of (cosw^x) is exactly the same as

that of i.i.d.r.v.'s.

All the results formulated above concern the case of the Hadamard gap con-
dition (1.1) and in fact most known probabilistic results for (cosnkx) in the

literature assume (1.1). (For a survey of the existing results before 1966 see

[10]; for modern results see e.g. [11].) Erdös was the first to note that the near

independent behavior of (cos nkx) remains valid for a large class of sequences

(nk) growing slower than exponential; in fact he proved the following result:

Theorem A (Erdös 1962). Let (nk) be a sequence of positive integers satisfying

(1.5) nk+i/nk>l+ck/Vk,        ck -> oc.

Then (cosnkx) satisfies the CUT i.e. (1.2) holds. On the other hand, for every

c>0 there exists a sequence (nk) of integers satisfying

nk+\/nk>l+c/Vk       (k>k0)

such that the CUT (1.2) is false.

To understand the meaning of (1.5) let us say, given positive numerical se-

quences (üfi), (è/vr), that un >■ ht/ if fljv+i/fl/vr > bfj+i/bN for N > N0. Then

Erdös' theorem shows that (cos«i-x) satisfies the CLT if nk >- eCk^- for some

ck î oo and for nk >- ec™ the result breaks down. An analogous, but slightly

less precise result for the LIL was found by Takahashi:

2 Relations (1.2), (1.3) remain valid also for sine series ^sinw^x and more generally, for

53 cos(nkx + ¡pk) where (pk are arbitrary real numbers. To simplify the formulas, however, in our

paper we shall deal only with pure cosine series.
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Theorem B (Takahashi 1972, 1975). Let (nk) be a sequence of positive integers

satisfying

(1.6) nkyek\        a>l/2.

Then (cos nkx) obeys the LIL (1.3). On the other hand, there exists a sequence

(nk) of integers satisfying (1.6) with a =1/2 such that the LIL (1.3) is false.3

Theorems A and B show that at the speed nk ~ ecv* the probabilistic be-

havior of (cos nkx) undergoes a fundamental change: from almost independent

the sequence turns to strongly dependent. Due to a series of remarkable papers

by Takahashi (see [15-20]) the behavior of (cosnkx) on the near independent

side of ec™ is fairly well known; on the other hand, practically nothing is

known in the strongly dependent domain. In a recent paper [3] we constructed

the first class of nongaussian limit distributions of normed sums

- y^ COS «i-X - Ô/vT
UN f-1k<N

in the strongly dependent case; no complete characterization of the class of limit

laws of such sums is known (or seems to be easy). It is not known, either, what

asymptotic result replaces the law of the iterated logarithm (1.3) in the strongly

dependent domain.

The purpose of this paper is to study the LIL behavior of (cos«,tx) in the

'critical zone' i.e. in the immediate neighborhood of the critical speed nk ~

e°cV* . In view of the strong relation between the central limit theorem and the

law of the iterated logarithm, it is natural to expect that the gap condition (1.5)

implies also the law of the iterated logarithm (1.3) for (cos«fcx). Surprisingly,

however, this is not the case: in [4] we constructed a sequence (nk) of integers

satisfying (1.5) with a very slowly increasing (ck) such that (1.3) is false. On

the other hand, Theorem B above shows that (1.5) with ck > k£ (e > 0)

implies the LIL (1.3) and in [20] it is proved that (1.5) with ck > k£ implies
also a version of the strong approximation theorem (1.4). These remarks show

that even though the Erdös gap condition (1.5) implies the CLT (1.2) for any

ck —> oo, the partial sum behavior of (cos«^x) follows the independent pattern

only if ck has a certain minimal speed and for very slowly increasing ck (i.e.

near the critical speed ec™) the independent behavior of (cosw^x) breaks

down, e.g. the ordinary LIL (1.3) becomes false. The main result of our paper

will show that the change from independent to strongly dependent LIL behavior

of (cos nkx) takes place at the speed

(1.7) nk ^VMiogiogiT

In fact, as a changes, the LIL behavior of (cos«¿.x) goes through a variety

of types from "very good" to "very bad". For a large, the LIL behavior of

(cosMfcX) is classical: it satisfies not only the ordinary LIL (1.3) but also the
Kolmogorov-Feller test and even a slightly weaker form of the a.s. invariance

principle (1.4), namely

(1.8) S(t) = W(t/2) + 0(tx/2(loglogt)-ß)   a.s.

The second half of the theorem is implicit in Erdös' example in Theorem A.
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where ß = ß(a) -+ oo as a —> oo.   For a small,  (cosn^x) fails even the

ordinary LIL (1.3) and in fact the cluster set of

(/VloglogA0-1/2 53 cos«^x, N> 1
k<N

can be asymmetric around zero and contain points with absolute value > 1. For

an intermediate range of a's the LIL behavior of (cos«fcX) is "transitional":

it satisfies the ordinary LIL (1.3) but fails the Kolmogorov-Feller test and the

upper-lower class behavior of (cosnkx) is described by an asymmetric test

whose form is different from the Kolmogorov-Feller test and becomes, as a

decreases, gradually more and more complicated. At a = 1/2 the test blows

up and even the ordinary LIL breaks down.

We now formulate our results in detail.

Theorem 1. Let (nk) be a sequence of positive integers satisfying

(1.9) nk y e^1«*10**)"

for some a > 5/2. Then (cosnkx) satisfies the Kolmogorov-Feller test i.e. setting

Sn = Ylk<Ncosnkx we have for any positive nondecreasing function cp^

(1.10) P{SN> JÑj2cpN i.o.} = 0   or   l,4

according as

(lid £fe*p(-K)< +oo   or    = +00.

7V>1

Theorem 2. For any 1/2 < a < 3/2 and all sufficiently small A > 0 there exists

a sequence (nk) of positive integers satisfying

(1.12) nk>eyfk/U(\o&\o&kT

such that the Kolmogorov-Feller test (1.10)-(1.11) fails for the partial sums

Sn = J2k<N cos nkx ■ More precisely, given any positive nondecreasing sequence

tpti satisfying

(1.13) 2-1(loglogA01/2 < (pN < 2(loglogAf)1^2

the alternative in (1.10) holds according as

Here a^iV   (v = 0, 1, ...) are explicitly calculable numbers with

,tlo . VÄ 5A(L15) 0^,0=1,    aNA = —,    aNy2 = -—,

(1.16) \aNiA<WS*L.,        N>l,v>l.

4 Whenever they concern the trigonometric system, the symbols P and E mean normalized

Lebesgue measure and integral in (0, 2n), respectively. (Cf. footnote 1.) The symbol "i.o." stands

for "infinitely often".
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Theorem 3. Let (nk) be a sequence of positive integers satisfying (1.9) for

a > 1/2. Then (cosnkx) satisfies the upper half of the law of the iterated
logarithm, i.e.

(1.3a) lim (AloglogA)-1/2 y^ COSWfcX

k<N

< 1   a.e.

On the other hand, there is a sequence (nk) satisfying (1.9) with a= 1/2 such

that (1.3a) is false.

There is a gap between the constants 5/2 and 3/2 in Theorems 1 and 2 and

thus the upper-lower class behavior of (cos«j.x) remains open if (1.9) holds

with 3/2<a<5/2. We believe that the example of Theorem 2 is best possible

i.e. Theorem 1 holds actually for a > 3/2. (See in this respect the remarks at

the end of this section.) It seems also likely that Theorem 3 remains valid with

< 1 in (1.3a) replaced by = 1.
To understand the meaning of (1.14) we mention a few special cases.

1. Assume 1 < a < 3/2. Then (1.14) reduces to

EcpN 1   2     \[A       tpl
■t-rrexvi -XÍ0AT- -r-T.—,     ,n   ) < +°°   or

n>i N    l 2     6 (togiog^j

2. Assume 5/6 < a < 1. Then (1.14) reduces to

<Pl_     5.4_<p%

+ 00.

ECPN I    2        V^4„TT-V-i^-Ti(1.17) fax N     H[   2rN       6   (loglogA)"     72(loglog7V)2«J

< +00    or    = +00.

Generally, let ck = (k + 2)/2k, k = 1,2,... . Then Ci = 3/2, c2 = 1,
c3 = 5/6, ... ,cx > c2 > ■■■ and lim^^ck = 1/2. Now if a £ [ck+x, ck)

then (1.14) reduces to

,3E<Pn Í    1   2      ! <Pn

(1.18) N>-X 1 <pkN+2       1
-^aN kT,-1       >ni.     } < +°°     0r      =+00.

2 ^'^ (log log A)*" J

In other words, if a decreases from 3/2 to 1/2 then the test ( 1.10)—( 1.14)

becomes gradually more and more complicated: passing each value ck, one

new term appears in the exponent in (1.18). For a > 1/2 the first term in the

exponent in (1.14) dominates (for cpN satisfying (1.13)) and thus in this case

(cos«fcX) satisfies the ordinary LIL (1.3). For a = 1/2, on the other hand, all
terms in the exponent in (1.14) have the same order of magnitude as the first

term -cp2N/2 and this leads to a change in (1.3). In fact in this case the test

(1.10M1.14) implies

(1.19) Hm(AloglogAf)-1/2y"cos«/tx= l-\\Í2A +0(A2lî)   a.e.

k<N

i.e. for sufficiently small A the lim in (1.3) is < 1 .
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To get further comparisons between the test ( 1.10)—(1.14) and the Kolmogo-

rov-Feller test ( 1.10)—( 1.11) we recall the well-known fact that if the Kolmogo-

rov-Feller test holds then

(1.20) ^ = (21og2A + 31og3A + 21og4A + .-. + 21og/_iA + (2 + e)log/A) 1/2

belongs to the upper or lower class (i.e. the first or second alternative in (1.10)

holds) according as e > 0 or e < 0. (Here log/ denotes the / times iterated

logarithm.) Under the test (1.10)—(1.14) this will change, namely we have to

insert some new terms between 2 log2 N and 3 log3 N in ( 1.20) as the following

corollary shows. Set

(1.21) pE(N) = 31og3 N + 21og4 N + ■ ■ ■ + 21og/_i N + (2 + e) log/ N.

Then we have

Corollary. Let 1/2 < a < 3/2, then

I k(a) \   1/2

(1.22) cpN=    21oglogA + 5]^,;(loglogA)3/2-a-^ + />£(A)

belongs to the upper or lower class with respect to (cosnkx) according as s > 0 or

e < 0. Here k = k(a) is the integer defined by a £ [ck+2, ck+x), d — a—1/2 > 0
and the b^j are explicitly calculable numbers (actually polynomials of the ün,j

in (1.14)). In particular bN,o = -2V2Ä/3, bNtX = HA/9.

Again we mention a few special cases.

1. Let l/2<a<3/2. Then

cpN = (2 log log N - c(loglog A)3/2-«)'/2

belongs to the upper or lower class according as c < 2V2A/3 or c > 2V2A/3 .

2. Let 1 < a < 3/2 . Then

/ 2   fyl \ x'2

<pN= Í 2 log log A-^— (loglogA)3/2-Q + /7£(A)l

belongs to the upper or lower class according as e > 0 or e < 0.

3. Let 5/6 < a < 1 . Then

\  '/2/ O   /O A 1 1   A

<pN = I 21oglogN - -^-(loglogN)3'2-" + —(loglogN)2~2a + pE(N) I

belongs to the upper or lower class according as e > 0 or g < 0.

A remarkable additional property of the sequence (nk) constructed in The-

orem 2 is that the sequences (cos«^x) and (-cos«¿-"O have different upper-

lower class behavior. Indeed, the proof of Theorem 2 shows that for any positive

nondecreasing sequence tpx satisfying (1.13) we have

P{-SN > y/WJÏcpN i.o.} = 0   or    1
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according as

v+1 *■ < +00   or    = +00.
(log log N)a"9fl

Here b^,v (v > 0) are explicitly calculable numbers satisfying the same in-

equalities

i»„.„i<<^,    *>•,,>■

as we have for the a^tV but the sequences (aN>v)v>o and (bN,v)v>q are dif-

ferent. In particular,

h 1      h S*      h 5AON,0=1,      0/v,l= —5- ,      0^,2 = ~~TZ-

An immediate consequence of this asymmetry is that for a = 1/2 the cluster

set of (N log log N)~x/2 J2k<N cos>nkx is not symmetric around zero; in fact we

have

lim (AloglogA)-1/2 ]T cos«fcx = -1 - \^2A + 0(A2/i)   a.e.
/v-^00

Hence

k<N

lim (A log log A)
TV—*oo

-1/2 y^ cos nkx

k<N

> 1    a.e.

if A is small enough.
There is a remarkable similarity between the change of the upper-lower class

behavior of (cosw^x) described by Theorem 2 and the change of the upper-

lower class behavior of independent sequences (X„) under the condition

EXn = 0,    EXl < +00,    s2n = Y^ EX\ -» +00,
(1.23) k^"

\Xn\<Kn     s"     ^        (0>l/2)
(log log s„)ß

as ß changes. Feller [8] showed that under (1.23) the upper-lower class be-

havior of (X„) is described by an integral test whose form is getting more

and more complicated as ß decreases; as ß approaches 1/2, successively

higher and higher moments of the (X„) enter the test. Formal analogy with

Theorem 2 leads to the conjecture that a = 3/2 is the critical exponent for

the Kolmogorov-Feller test for (cosnkx) i.e. Theorem 1 holds actually for

a > 3/2. It is also natural to expect that under conditions similar to those

of Theorem 1 (cosnkx) obeys Chung's test for partial maxima, i.e. setting

Sx = maxx<M<N I J2k<M cos nkx\ we naye f°r anv positive increasing sequence

Vn

(1.24) P{S*N < VÑ/2WÑ1 i-0.} = 0   or    1

according as

(1.25) ^ ^expj-^j <+oc   or    =+00.
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The method of the proof of Theorem 1 shows (see the remark at the end of

§3) that (cos nkx) satisfies the test (1.24)-(1.25) if (1.9) holds with a > 7/2;
whether a > 5/2 (or even a > 3/2) is also sufficient remains open. The proof

of Theorem 1 also shows that under (1.9) with a > 3/2  (cos«fcx) satisfies the

a.s. invariance principle (1.4) in the slightly weaker form

(1.26) S(t) = W(t/2) + 0(^2(loglogi)(5~2Q+£)/4)   a.s.

for any e > 0. It should be noted that the proof of Theorem 1 will not proceed

via the a.s. approximation (1.26). In fact, while this traditional approach would

work, it would mean a loss of precision: (1.26) implies the Kolmogorov-Feller

test (1.10)—(1.11) only for a > 7/2 i.e. under stronger assumptions than we

assumed in Theorem 1. Hence, while in the standard theory of weakly depen-

dent r.v.'s (see e.g. [12]) the a.s. invariance principle, the Kolmogorov-Feller

and the Chung tests are obtained simultaneously, under the same conditions,

in the very delicate trigonometric situation around the critical speed ecV* the

difference between the above limit theorems becomes essential.

It is worth noting that condition (1.13) in Theorem 2 cannot be omitted

completely since (1.16) guarantees the convergence of

¿^„(loglogA)-^

only for |x| < (4SVÄ)~x(log,logN)a and thus for too large tp^ the series in

the exponent of (1.14) may become divergent. However, a standard argument

shows (see [9, Lemma 2] and [8, p. 398]) that for any positive nondecreasing cpN

the probability in (1.10) does not change if we replace cpN by the nondecreasing

sequence y/^ defined by

Vn

' 2~ '(log log A)'/2    if cpN < 2~ '(log log N)x'2,

2(loglogA)1/2       if <pN > 2(loglogA)'/2,

y>N otherwise.

Thus Theorem 2 permits us to decide, for any nondecreasing <pN , if the prob-

ability in (1.10) isOor 1.
In conclusion we note that Theorem 2 states only that the LIL behavior of

(cos«A;X) is bad for some sequences (nk) satisfying (1.9), 1/2 < a < 3/2 but

not that all sequences (nk) with the same speed have bad LIL behavior. As we

shall prove at the end of §4, given any sequence (nk) satisfying (1.12) for some

A > 0, a > 0, there exists a sequence (mk) such that \mk - nk\ < const • k3

(and thus mk ~ nk) such that (cosm^x) satisfies the Kolmogorov-Feller test

( 1.10)—( 1.11). This remark also shows that near the critical speed nk ~ ec^

the LIL behavior of (cos nkx) becomes very unstable: small relative changes in

(nk) lead to essential changes in the behavior of (cosnkx).

The proof of Theorems 1 and 2 will be given in §§2-3 and in §4, respectively.

As we noted above, for a = 1/2 the sequence (cos«^x) constructed in Theorem

2 fails the upper LIL (1.3a) (see the remarks on the asymmetric behavior of

(cos nkx)) and thus the second half of Theorem 3 is also contained in the proof

of Theorem 2. The proof of the first half of Theorem 3 requires combinatorial

tools similar to those used for Theorem 1 but the details are considerably more
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complicated. Hence to keep our paper at a reasonable length, we will give the

proof in a subsequent paper.

2. Some lemmas

The crucial step of the proof of Theorem 1 is Lemma 2.1 below giving a fairly

sharp estimate for the number of solutions of a certain diophantine equation.

Lemma 2.1. Let {«;, M + 1 < j < M + N} be a finite sequence of positive
integers such that

(2.1) ij+i/nj > 1 + C/V7,        M+l<j <M + N-l.

Let p > 2 be an integer and assume that

(2.2) c/Ñp < VM + N < cA/48.

Let finally ex, ... , ep be a sequence of ±1 's and d an arbitrary integer. Then

the number of solutions of the equation

(2 3) einh+e2nh + --- + epnip=d

['' (M + N>h>i2>--->ip>M+l)

is at most

(2.4) 2(576 logp)p N(VM + N/c)p~2.

For the proof we need some preparatory lemmas.

Lemma 2.2. Let {«j-, M + 1 < j < M + N} satisfy (2.1) and assume that
M + N > c2. Then for any 0 < a < b the interval [a, b] contains at most

2c~xVM + Nlogb/a+ 1

terms of the sequence {n}■, M + 1 < j < M + N} .

Proof. Let nq and nr be the smallest and largest among the n¡ 's (M + 1 <j <

M + N) in the interval [a, b]. Then nr/nq < b/a ; on the other hand by (2.1)

we have

ni >- n (■+jj) * (>+7^y *-» iüéw^' - •>) •

using the fact that 1 + x > ex/2 for 0 < x < 1. The two estimates for nr/nq

imply

whence r - q + 1 < 2c" ' \/M + N log b/a + 1, as stated.

To simplify the writing, in the sequel we shall use the symbol a x 2j to
denote V < a < V+x.

Lemma 2.3. Assume M + N > c2 and consider those solutions of (2.3) where

niJnh+\ x 2-'" iv = 1, ... , p - 1) where jx, ... , jp-X are fixed nonnegative

integers. Then, given «,,,..., n¡k_l (2 < k < p - 1), the number of choices for

n,k is at most

48c-VM + A if'p2-J*>l/&,

(2.5) 4%c-xVM + N-p2-J«    if c/(32VM + N) < p2~J" < 1/8,

1 if p2-ix <c/(32y/M + N).
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The results remain true also for k = 1 (i.e., for the number of choices of «,,)

except that in this case 48c-1 y/Af + Ñ~ in the first line of (2.5) should be replaced
by N.

Proof. Assume k > 2; the argument for k = 1 is identical (the first alter-

native in (2.5) is trivial for k = 1). By nik¡/n¡k x 2*-' we have nik £

[2~À-'~l«,jt_l, 2~-fc->/t/t_l]. Hence using Lemma 2.2 it follows that given n,-,,

... , «it_, , for nik we have at most 2c~x\/M + A log 2 + 1 < 3c~xy/M + N

choices, no matter which assumption on p2~jk in (2.5) holds. Thus the es-

timate in the first line of (2.5) is proved. Assume now p2~ik < 1/8. Let

«,,,..., «,,_, be given and let £i«,, + • • • + efc_,«/j,_l = A . By nik/nik+l x 2¿

it follows that the numbers «/Jr+1, n/|t+2, ... , n¡p axe all < n,k2~ik and thus

|e*+i"»*+1 + ■ • • + epnip\ < pnik2-J*. Hence (2.3) yields

A + eknik(l + 6p2-Jk) = d,       |0| < 1.

Thus, setting B = (d - A)/ek and using p2~jk < 1/8 and the fact that for

|x| < 1/2 we have (1 +x)_1 = 1 + Xx with |A| < 2, we get

(2.6) n,k=B(l + 8p2-jk)-x =B(l + 9'p2-Jk),        \6'\ < 2.

Here B ± 0 since nik ^ 0. Thus using Lemma 2.2 it follows that there are at
most

2c-VM + Alog|^P^ +1 <2c~xVM + N log( 1 + 6p2~jk ) + 1

< 12c-ly/M + Np2-j" + 1

choices for n¡k. It remains now to observe that the last expression in (2.7)

is bounded by 48c-1 y/M + Np2~Jk or 3/2 according as p2~Jk satisfies the
inequality in the second or third line of (2.5).

Remark 2.4. In Lemma 2.3 we estimated the number of choices for n¡k in the

diophantine equation (2.3) provided «,,,..., n¡kl axe given and provided we

consider only those solutions of (2.3) such that niJnK+i x2;» (1 < v < p - 1)

where j¡, ... , jp-¡ axe fixed nonnegative integers. Note, however, that for the

estimate in the second and third line of (2.5) we used only the fact that jk is

fixed (for the estimate in the first line we need also that jk_x is fixed). Observe

also that in the third line of (2.5) the number of choices for n¡k is < 1 not only

for any fixed jk with p2~ik < c/(32\/M + N) but for all such jk 's combined.

In fact, in the proof we saw that if «,,,..., n¡k_x are given and n,k/nik^ x 2>k

with p2-Jx < 1/8, then nik £ Ik , where Ik = [B(l - 2p2~>k), B(l + 2p2~Jk)]

where B is a number uniquely determined by «,,,..., n,k , . We saw also

that for p2~Jk < c/(32\JM + N) the interval Ik contains at most one integer.

Clearly, for increasing jk , the intervals Ik are shrinking and thus the union

U        '*

contains also at most one integer.

Proof of Lemma 2.1. To simplify the writing, we introduce some terminology.

Given a solution («,-,, ... , «,■ ) of (2.3), the ratios n¡k/n,k+í   (1 < k < p - 1)
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will be called the gaps in this solution. For any fixed 1 < k < p - 1, the gap

niklnh+\ will be called sma//, medium, or large depending on whether p2~ik lies

in the intervals [1/8, +oo), [c/(32y/M + N), 1/8) or (0, c/(32y/M + N)),

respectively, where nik/njk+l x 2jk. (That is, the gap nik/n¡k+l is small, medium,
or large according as in Lemma 2.3 the inequality in the first, second, or third

line of (2.5) is valid.) Remark 2.4 shows that given «,,,..., nik] in (2.3) (but

without fixing any of jx,... , jp-X), there is at most one choice for n¡k such

that the gap nik/nik+] is large. We now proceed in steps.

1. Consider first those solutions of (2.3) where n,v/«,„+l x2* ( 1 < v < p-1 )

and all the gaps are small or medium. We separate 2 cases.

(a) The first gap «,,/«¡2 is small. In such a solution, for «,, there are N

possibilities and given «,,,..., n¡k , , 2 < k < p - 1, for n,k there are at most

4%c~Xï/M + Ny/(jk) possibilities where the function y/(j) (j > 0) is defined

by

ri     ifp2-;>i/8,

¥U)     \p2-J   ifp2~J<l/S.

Finally, given «,,,..., nip_i , for n,p there is at most one possibility. Thus the

number of such solutions of (2.3) is at most

p-i

(2.8) N(4%^fMTÑ/cf-2 H y/(jk).
k=2

(b) The gap «¡,/«(2 is medium. In this case for «,, there are at most

48c- ' \/M + Np2~Jl possibilities and the number of choices for the other n,k 's

can be estimated as above. Thus the number of solutions of this type is at most

p-i

(2.9) (4&jMTÑ/c)p-xp2-J> J] y/(jk).
k=2

Adding (2.8) and (2.9) and summing for jx, ... , jp-X we get an upper estimate

for the number of solutions of (2.3) containing only small and medium gaps.

Note that

OO

2>L/)=     E     1+    E    !>2-;<21og8p + l + l/4<121ogp    (p>2)
j=0 p2~i>\ß p2-><l/8

since the last sum is a geometric series with ratio 1/2 and first term < 1/8.

Now in case (a), the gap «,,/«,2 is small i.e., p2~jl > 1/8 thus jx < 21og8p <

121ogp . Hence adding (2.8) for j\, ... , jp-\ we get at most

P-l   / oo \

N(4%yfMTÑ/c)p-2l2logp\[    E Vih)
k=2 \jk=0 J

< N(4WM + N/c)p-2(l2logp)"-x.

In case (b), we have p2~J < < 1/8 i.e., adding (2.9) for ji, ... , jp-i we get at
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most

p-\   I  oo \

(4%sfM+~Ñ/c)p-x     E    P2~h II    E VU*)
p2-'Klß k=2  \A=0 /

< (48v/M + A/c)p-1^(121ogp)"-2

< N(4$VM + N/c)p~2(l2logp)p~2,

where in the last step we used the second inequality of (2.2). Thus we proved

that the number of solutions of (2.3) containing no large gaps is

< N(4WM + N/c)p-2(121ogp)p       (p>2).

2. Let us consider now those solutions of (2.3) where there is exactly one

large gap, say n¡Jnis+í . Then the s-tuple («,,, ... , n,s) and the (p - s)-tuple

(«,s+1, ... , n¡p) contain no large gaps and by Remark 2.4 for «(j there is at most

one possibility provided the previous «,„ 's are given. (The same is trivially true

for n¡p.) Hence the previous argument can be applied for both («,-,, ... , n,s)

and («,s+1, ... , nip) and it follows that for («,,, ... , nis) we have at most

(2.10) N(4SVM + N/c)s~2( 12 logp)s

choices and given («,,, ... ,nis) we have for («,s+1, ... ,nip) at most

(2.11) A(48v/M + N/c)p-s~2( 12 loëP)p~s

choices. Here we assumed 2 < s < p - 2 but the estimates (2.10) and (2.11)

remain valid also for s = 1 and s = p - I. (Indeed, if e.g. 5 = 1 then the

gap «,, /«,2 is large i.e., by Remark 2.4 there is at most one choice for «,,

while (2.10) gives (cN/48y/M + N) - 121ogp which is greater than 1 by the
second inequality of (2.2).) Since the location of the large gap n¡s/njs+¡ can be

chosen in p — 1 different ways, it follows that the number of solutions of (2.3)

containing exactly one large gap is at most

N2(4Sy/M + N/c)p-\l2logp)p(p - 1).

Similarly, the number of solutions of (2.3) containing exactly / large gaps

(0< / <p- 1) is at most

N'+\Aiy/M + N/c)p-2-2l(l2logp)p (P~,X\

Adding fox I = 0, I, ... , p - I and using (p~¡x) < pl we get that the total

number of solutions of (2.3) is at most

p-i
E A/+1(48v/A/r + A/c)"-2-2/( 12 logp)V

/=o

= A(48v^^/cr2(121og//E U^+A))

< 2N(4iVM + N/c)p~2( 12 log/))" ,

where in the last step we used that Nc2p < M + N by the first inequality of

(2.2). Hence Lemma 2.1 is proved.
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From Lemma 2.1 we immediately get the following moment estimate for

block sums of (cos nkx).

Lemma 2.5. Let {«;, M + 1 < j < M + N} be a finite sequence of positive

integers satisfying (2.1), further let p > 2 be an even integer and assume (2.2)

holds. Then

1    (2n

2n Jo

M+N

E    cos nkx
k=M+l

dx < 2(576p logp)pN(VM + N/c iP-2

Proof. Using cosa cos ß = [cos(a + ß) + cos(a - ß)]/2 it follows that the inte-

grand in (2.12) equals 2~p ^cos(±«/, ± • • • ± n,p)x, where the sum is extended

for all M + 1 < ii, ... , ip < M + N and all possible choices of the signs ± 1.

Since J0 n cos nxdx = 0 or 2% according as the integer « differs from zero or

not v/e get that the left side of (2.12) equals 2~p times the number of solutions

of the equation

(2.13) ±nh±---±nip = 0       (M+l <ii,... ,ip<M + N).

Fixing the signs in (2.13) and assuming ii > i2 > ■■■ > ip, the number of

solutions of (2.13) is bounded by the expression in (2.4). Since there are 2P

possibilities for the choice of the signs ±1 and p\ < pp possibilities for the

order of ii, ... , ip , (2.12) follows.

We complement Lemma 2.5 with the following simple estimates for the first

and second moments of the trigonometric sums appearing in (2.12).

Lemma 2.6. Let {n¡, M + 1 < j < M + N} be a finite sequence of positive

numbers satisfying (2.1 ) with some c > 1. Then for any 0 < a < b < 2n we

have

rb  ( M+N \

(2.14) /        E   cos"^ ] dx = 0(N/nM+i),
Ja    \j=M+l J

fb   I M+N \ 2 .

(2.15) /        E   cos«;*      dx = ^N(b-a) + 0(N3M/nM+i),
J"    \j=M+l J

where the constants implied by the O are absolute.

Proof. (2.14) follows immediately from the fact that

(2.16) /   cos yx dx
Ja

<V\y\     (v^O).

Since the integrand in (2.15) equals

I ,    M+N
-N+-   E   cos2«;x+ E [cos(«„ + nß)x + cos(«„ - «^)x]

j=M+\ M+\<fi<i><M+N
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(2.15) follows from (2.16) and the estimate

1               1     A
+-    <

,«!/ + «„     «i/-««/ *—' nv - «„
M+\<p<v<M+N   v p ^J        M+\<n<v<M+N ß

M+N-X . M+N-X     /—        ...i,,,   ,    »n

!A   V   —i_<2A   V   ^<2iV(M + 7V).2A   E    -i-<2A   Y   ^
v=M+\ v=M+X

In the proof of Theorem 1 we shall also make use of a recent upper-lower

class result for martingales, due to Einmahl and Mason [5] which we state here,

for the purpose of reference, as a lemma.

Lemma 2.7. Let {X„,&~„,  « > 1} be a martingale difference sequence with
finite second moments such that

n

(2.17) s2„:=yE(X2\^j-i)^+oc   a.s.

j=i

and

(2.18) |X„|<Ms„/(loglogs„)3/2   a.s.

for some constant M > 0.  Let S„ = J2"j=i Xj ■   Then for any nondecreasing

function cp: (0, oo) —> (0, oo) we have

(2.19) P(S„ > sncp(s2n) i.o.) = 0   or   I

depending on whether

(2.20) f°° ^ exp (--\<p2(t) j dt < +oo   or    = +oo.

Moreover, if cp: (0, oo) —» (0, oo) is nondecreasing and satisfies

(2.21) 2-1(loglog01/2<p(0<2(loglogi)1/2       (t>t0),

then

(2.22) P(Sn > sncp(s2n) i.o.) = P(Sn > sn(p(s2n) i-o.)

for any sequence {s„,  n > 1} ofr.v. 's such that

(2.23) sn = sn(l + 0((loglogsn)-x))   a.s.

Relation (2.22), which is implicit in [5], complements the upper-lower class

test (2.19)-(2.20) by stating the stability of the probability in (2.19) at small per-
turbations of sn . This fact will be useful in extending Lemma 2.7 to unbounded

martingale difference sequences (see Corollary 2.8) and for small perturbations

of martingale difference sequences appearing in the proof of Theorem 1.

Corollary 2.8. The conclusion of Lemma 2.7 remains valid if condition (2.18)

of the lemma is replaced by

(2.24) E (l0gl°2gJn)3'E(\X„\2I(\Xn\ > M5„(loglog5„)-3/2)|^_i) < +oo   a.s.

n>\ S"

Proof. This follows from Lemma 2.7 by a simple truncation procedure like e.g.

in [8, pp. 399-401]. Without loss of generality it suffices to consider functions



CRITICAL LIL BEHAVIOR 567

cp(t) satisfying (2.21) (see [9, Lemma 2]). Assume that {X„, « > 1} satisfies
the conditions of Lemma 2.7 with (2.18) replaced by (2.24) and put

bn = Msn/(l0gl0gSn)3'2,

X* = XnI(\Xn\ < K) , X*n* = XnI(\Xn\ > b„) ,

Yn = X* - E(X*\&n-\) = X* - an ,

an= I        xdvf"-'(x),
J\x\<b„

here Vn"~x is the conditional distribution function of Xn given ^n-X . Clearly,

\Yn,&n, « > 1} is a martingale difference sequence with \Yn\ < 2b„ ; set s*2 =

£"=1 E(Yj\9j-{). Following the argument in [8, pp. 399-401] with obvious

modifications (the only change is that V„ used in [8] should be replaced in our

case by Vn"'1) we get

(2.25) 5*2 = 52(l + 0((loglogj„)-3))   a.s.

and

E Xi = E * + 0(^/(loglogi„)3/2)   a.s.
¿=1 ;=1

Now Lemma 2.7 applies for {Y„, « > 1} and thus for any nondecreasing

function cp: (0, oo) —> (0, oo) satisfying (2.21) and any sequence {s„ , « > 1}

of r.v.'s satisfying (2.23) we get, using the fact the convergence or divergence

of the integral in (2.20) is not affected if we replace <p(t) byy>(t) ± C/cp(f) for

any constant C > 0,

P lyXi > Sn(p(fn) i.O. j   = P [y Y, > Sntp(fn) + 0(Sn/(l0gl0gSnf12) i.O. j

= p (e y' > s*w® + °(^(^2)"')] i-0-)

= p (e y< > win)io)

= p(yiYi>s*Msf)i.oA ,

where in the last step we used the fact that sn = s*(l + 0((loglog5*)-1)) a.s.

by (2.23) and (2.25). Hence the proof of Corollary (2.8) is completed.

Remark 2.9. In Philipp-Stout [13] and Einmahl-Mason [5] various further limit

theorems for martingales under conditions similar to (2.17), (2.18) are proved.

We formulate here two which we shall need in §3 to prove some supplements

to Theorem 1. Let {Xn ,^n, « > 1} be a martingale difference sequence with

finite variances satisfying (2.17) and

(2.26) |*n|<A/s„/(loglogs„r    a.s.
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for some constants M > 0 and ß > 0. Let Sn = Y!i=ixi and S(t) =

T,{i>ij<t} xi for t > 0. In [5] it is proved that if (2.17) and (2.26) hold

for some ß > 5/2 then {X„, « > 1} satisfies the upper-lower class test cor-

responding to Chung's LIL, i.e., for any nondecreasing cp: (0, oo) —> (0, oo) we

have

(2.27) P ( max \Sj\ < sn/cp(sl) i.o. ) =0   or 1
V</<« /

depending on whether

roo ,„2lt\ /     Rm2(,\\

dt < +00    or    = +00.(,28)       fäu«p(-^l)
Whether the original conditions of Lemma 2.7 or of Corollary 2.8 imply the test

(2.27)-(2.28) is still an open problem. In Philipp-Stout [13] it is proved that if
(2.17) and (2.26) hold for some ß > 1/2 then without changing its distribution

the process {S(t), t > 0} can be redefined on a suitable probability space

together with a Wiener process {W(t), t > 0} suchthat

(2.29) S(t) = W(t) + 0(tx'2(log log i)(3"¥)/4)   a.s.

Using the truncation method in [8, pp. 399-401] it follows that the same con-

clusion holds if (2.26) is replaced by

y (loglogSn)2ß t

^ s2
E(\Xn\lI(\Xn\ > Mjn(loglogs„)-")|^_,) < +00   a.s.

n>\ Jn

For ß large, (2.29) implies both the Kolmogorov-Feller and Chung tests and

much more; on the other hand, to get just the tests (2.19)-(2.20) and (2.27)-

(2.28), the direct arguments used in [5] require slightly weaker rates. (For

example, (2.29) implies the Kolmogorov-Feller test (2.19)-(2.20) for ß > 5/2
while in Lemma 2.7, (2.26) is assumed only for ß > 3/2.)

To conclude this section we formulate a maximal inequality for partial sums

of Fourier series which we shall need for the proof of Theorem 1.

Lemma 2.10. Let p > 2 be an even integer and let f £ Lp(0, 2%) be an even

function with nonnegative Fourier coefficients. Let s„ (f) denote the nth partial

sum of the Fourier series of f. Then

(2.30) r f sup|%(/)| )   dx < Ap r \f\pdx,
Jo      \k>\ J Jo

where A > 1 is an absolute constant.

Proof. We first note the well-known fact that for any f £ LP , p > 1 we have

(2.31) i'   [snp\ok(f)\]   dx < K i2" \f\p dx,
JO       \k>l J Jo

where ok(f) denotes the /cth (C, 1) mean of the Fourier series of / and

K > 1 is an absolute constant. (See [21, Chapter IV, Theorem 7.8] and the

remark after Theorem 7.5 concerning Ar.) Next we observe that if p > 2 is an

even integer and g = Y,T=o ̂k cos kx, h — Yl'kLo ck cos kx axe L2-convergent

sums with 0 <bk <ck   (¿ = 0,1,...) then \\g\\p < \\h\\p (where the p norms
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can also be +00). Clearly we can assume \\h\\p < +00 ; let gN and hN denote
the Ath partial sum of the series defining g and «. Expanding \gpj\p as in
the proof of Lemma 2.5 we get

\\gN\\p = 2-p       E       bii---bipy/(Eiii+--- + epip),
0<h,...,ip<N
e¡.£,,=±1

where y/(x) = 1 or 0 according asx = 0orx^0. A similar expansion

holds for ||«/v||£ and thus we get ||gjv||p < ||«/v||p. By ||«||p < +00 we have

||«/v||p —> ||«||p as N —> 00 (see [21, Chapter VII, Theorem 6.4]) and thus the

partial sums gN , N > I and consequently also the (C, 1) means of the Fourier

series of g remain bounded in LP norm whence we get \g\p < +00. (See the

remark preceding Theorem 5.12 in [21, Chapter IV]). Thus \\gN% —> \\g\\P and
our above claim follows.

Assume now that / = JZ^Lo ak cos ̂ x and p satisfy the assumptions of the

lemma. Set A# = Y,2N<k<2N+\ akcoskx, N = 0, I, ... , and

/1 =a0 + axcosx+  y AN,       f2 = E an-
N even Ai odd

Since f £ L2, the series defining fx and f2 converge in L2 norm and by

f £ Lp and the above remark we have fx £ Lp , f2 e LP . Clearly, if N is odd
then sk(fi) does not change for 2N < k < 2N+X and thus

2Ns2n (f\ ) = s2n (fi ) + s2N+i (/]) + ■•■ + S2N+I_ 1 (f\ )

= 2N+xo2N+l_x(fx)-2No2^i(fx),

whence

1^2"(/l)l = 1*2^'(/l)l < 2|ff2W+1_,(/,)| + |<T2*-l(/l)l < 3sup|(Tfc(/,)|.
k>\

A similar remark holds if fx is replaced by f2 and thus using (2.31), / =

/1 +72, ||/i||p < ||/||p, II/2ÜP < ||/||p and the Minkowski inequality, we get
(2.30) with A = 6K.

3. Proof of Theorem 1

Assume that (nk) satisfies (1.9) with a > 5/2. Then we get, using the mean

value theorem,

We now approximate the trigonometric functions Xk = cosnkx by step-

functions Yk as follows. Given k > 1 , define / = l(k) and m = m(k)

by 2l < nk < 2/+1, m = [I + 51og/c] where [ ] denotes integral part. Then

set Yk = E(Xk\^'m(kf) where !7j denotes the o field generated by the intervals

[2ni2~J', 2n(i + 1)2~7') (0 < / < 2j - 1) and E, P denote expectation and
probability in the probability space ((0, 27t), SB, (2n)~xX). Clearly

(3.2) I** -Yk\<nk- 2n2~m < 4n ■ 2~iXoik « k~3,
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where < means the same as the O notation. Let us divide the set of positive

integers into consecutive blocks Ai, A',, A2, A2, ...  such that

(3.3) \Ak\ = k\        \A\\ = k3,

where \A\ denotes, for any set A c R, the number of integers contained in A .

Set

Tk = y Xv,      T'k = e Xv,
VEA, "éa;

Dk = yYv,    D'k = yY„,
i/eAt ^6a:

Dk = Dk-E(Dk\$k_x),

■ , Afc-i .where &k-i denotes the a -field generated by Dx, .

Lemma 3.1. We have

\E(Dk\S?k_i)\ = 0(k~2),        E(D2\S?k_x) = i|A,| + 0(k'2),

where the constants implied by the O are absolute.

Proof. Let p = p(k) and q = q(k) denote the largest integer of the block

Ak_x and the smallest integer of the block Ak, respectively. Let / be the

integer defined by 2l <np < 2l+x and set m = [I + 5 log/?]. Clearly, each Yv ,

1 < v < p, is SFm measurable and thus &k-\ ^&m- Thus to prove Lemma 3.1

it suffices to show that for every atom [a, b) of %, we have

(b-ay

(3.4)

/ Dk
Ja

dx = 0(k~2),

(b-a)~x j D2dx = ^\Ak\ + 0(k-2).

Now by (3.2), (3.3)

(3.5) \Dk - 7*i « yw3< e ^"3 « k~*
v€Ak v=(i-l)4

and thus by \Tk\ < k4 we get

(3.6) \D\ - T2\ « k~\

Here, and in the rest of the proof of the lemma, the constants implied by <

are absolute. Clearly q = *52i<k_x(iA + i3) + 1 < 2k5, q -p — (k - l)3 and thus

by (3.1)

9-1

>

(3.7) j=p

> exp

n '+
9-1

i^)>-iix + 7j)>-i^

¿i<l-p)/y/q)>exp\ly/kj       (k>ko).

q-p

Hence using Lemma 2.6, relations (3.1), (3.3), (3.7),  b - a — 2n2 m, and

2m < 2lp5 < npp5 < npk2i, we get

(3.8)
rb

(b-a)~x /   Tkdx
Ja

« 2mk4/nq « (np/nq)kii} « k
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and

rb i

« 2mkX2k5/nq « (np/nq)k42 < k~2.(3.9) (b-a)~x j  T2dx-X-\Ak

Now (3.4) follows from (3.8), (3.9), (3.5), and (3.6).

Put Uk = E(Dk\&k_x) then

E(p\\$k-X) = E((Dk - Uk)2\$k_x) = E(D2\$k_x) - U2,

since Uk is &k-X measurable. Thus Lemma 3.1 and (3.5) imply

(3.10) E(D2k\$k_i) = \\Ak\ + 0(k-2)

and

(3.11) \Dk-Tk\ = 0(k-2),

where the constants implied by the O axe absolute.   Now we state our key

lemma.

Lemma 3.2. Let
n

/=2,
(3.12) s2n = yEÍD¿k\3?k_x).

k=\

Then for any nondecreasing function cp: (0, oo) —> (0, oo) we have

(3.13) P [yDk > sn<p(s2n) i.o.) =0   or   I

depending on whether the integral in (2.20) converges or diverges. Moreover, for

any nondecreasing function <p:(0, oo) —► (0, oo) satisfying (2.21) we have

(3.14) P I yok > Sn<p(s2„) i.o.\ =p[yDk + xn> sncp(s2n) i.o\

for any sequences {x„,  n > 1} and {s„,  « > 1} ofr.v.'ssuch that

(3.15) Xn = O(Sn/(l0glogSn)X/2)     O.S.,

(3.16) ¿„^„(l + Oaioglogs,,)-1))   a.s.

Remark. Relation (3.14) expresses the fact that the probability

/  n \

P[yDk > SnCp(S2n) Í.O.

\k=\

does not change at small perturbations of Y!k=\ ̂ k and s„. Actually, it suffices

to prove the statement for x„ = 0 since the convergence or divergence of the
integral in (2.20) is not changed if cp is replaced by cp ± C/cp for any constant

C > 0 and by (3.15), (3.16), and (2.21) we have

P [yDk + T„ > SnCp(s2n) ¿-O.)  = P (¿A* > Sn(cp(s2n) + 0(tp (s2„)~X )) i.O.) .
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Proof of Lemma 3.2. Clearly,  {Dk,&k,   k > 1}  is a martingale difference

sequence with finite variances and thus by Corollary 2.8 it suffices to prove that

(3.17)      y (loëlop)3E(D2kI(\Dk\ > sk(loglogsk)-3/2)\&k_x) < +oo   a.s.
k>\        sk

To verify (3.17) we first observe that by (3.12), (3.10), and (3.3) we have

n

(3.18) s2n = \y\Ak\ + 0(l) = ^n' + 0(n%
L k=\ 1U

Next we note that setting  pk = sk{loglogsk)~3l2  we have, for any integer

Pk>2,

E(D2kI(\Dk\ > pk)\^x) < pk{Pk-2)E(\Dk\Pk\^k_x)

since pk is S'k-i measurable. Hence a sufficient condition for (3.17) is

E(1ogiogy^£(-nä,_|)<+oo as>
k>\ Sk

which, in view of (3.18) and the Beppo Levi theorem, will be proved if we show

that

(3.1») £(8.oS.o^)V.^(|5in<+oo

k>\

We now choose pk = 2[loglog/c] and use Lemma 2.5 to get

^5/2)^-2)
(3.20) E(\Tk\Pk) < 2(516pk logpk)Pkk4[-

rPk-1
Ck

where ck = (loglogfc)a/4. (To verify the assumptions of Lemma 2.5 in the

present case note that by (3.1) we have «;+)/«; > 1 + c/v7 f°r 7 G At with

c = ck and also

/ k k-x   \ x'2

ckik*Pk)xl2< [ys+yn  <<**4/48
Vi=i    i=i y

for k > ko.) (3.11) and the Minkowski inequality show that (3.20) remains

valid, with an extra_factor 2Pk on the right-hand side, if Tk on the left-hand

side is replaced by Dk . Thus the kth term of the series in (3.19) is

<'(8.og1og*)*^(576"'+'>"16"
(3.21) k (log log k)a(~Pk-2^

1 /237)loslogfc 1 1

k (loglog/c)(2"-5-2<01oglogi:-2a  -  /t (loglog/c)(2«-5-3£)loglog<:

^WoJkT2    (*-fco)
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for any sufficiently small e > 0 since a > 5/2. Thus (3.19) is verified and the

proof of Lemma 3.2 is completed.

Observe now that by (3.3) the sequence {V2k~3/2Tk} is an orthonormal
system and thus the Rademacher-Mensov convergence theorem (see e.g. [21,

Chapter XIII, Theorem 10.21]) implies that J2k>\ k~2(logk)~2Tk is a.s. con-

vergent. Hence by the Kronecker lemma and (3.18) we get

n

yrk = 0(n2log2n) = 0(sn / (loglogsn)112)   a.s.

k=\

The last relation, together with (3.11), yields

n n

(3.22) y(Tk + T'k) = yDk + 0(Sn/(loglogSn)X12)   a.s.
k=\ k=\

Moreover, setting Nk = £/=i('4 + i3), (3.3) and (3.18) yield

(3.23) v^72 = S,(l + 0((loglog5,)-1))   a.s.

From (3.22), (3.23), and Lemma 3.2 (cf. also the perturbational statement

(3.14)) it follows that for any nondecreasing function cp: (0, oo) -> (0, oo) sat-

isfying (2.21) and any sequence {xk, k > 1} of r.v.'s satisfying (3.15) we

have

P I ¿(7) + T'j) + xk> ^fÑk~j2cp(Nk/2) i.o. 1=0   or    1

depending on whether I(cp) converges or diverges. Here, for brevity, we in-

troduced the symbol I(cp) for the integral in (2.20). Since I(cp) < +oo iff

I(cpx) < +00, where cpx(f) = cp(t/2), we have proved the following lemma.

Lemma 3.3. Let S/v = Y1!J=X cosn¿x. Then for any nondecreasing function

cp: (0, oo) —> (0, oo) satisfying (2.21) we have

(3.24) P(SNk > ^fÑk~j2cp(Nk) i.o.) = 0   or    1

depending on whether I(cp) converges or diverges. Moreover, the probability in

(3.24) does not change if we replace S^k by S^k + xk , where {xk, k > 1} is

any sequence of r.v.'s satisfying xk = 0((Nk/loglogNk)xl2) a.s.

To complete the proof of Theorem 1 it remains to show that for any nonde-

creasing function cp: (0, oo) —> (0, oo) satisfying (2.21) we have

(3.25) P(SN > JÑJ2tp(N) i.o.) = P(SNk > ^Ñk~¡2cp(Nk) i.o.).

This statement will be an easy consequence of the following lemma.

Lemma 3.4. Let Mk = ma\Nk<j<Nk+i \Sj - SVJ . Then

(3.26) Af^O^/loglogAfc)1/2)   a.s.

To deduce (3.25) from Lemma 3.4 note that if I(cp) = +oo then the right-

hand side of (3.25) and thus also the left-hand side is 1 and hence we may
assume I(cp) < +oo . Then the right-hand side of (3.25) is 0 and by (3.26) and

the last statement of Lemma 3.3 we have Snk + Mk < ^jNk/2cp(Nk) a.s. for
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k > ko . But then for any Nk < N < Nk+X, k > kg we have Sn < SNk + Mk <

^/Ñjj2<p(Nk) < y/Ñj2cp(N) i.e., the left-hand side of (3.23) is also 0.

Proof of Lemma 3.4. Set

Nk+I

Zk =   E   cos«;X,    p(k) = max{i:n, <2k},    H = {p(l), p(2), ...}.

j=Nk + \

Clearly

(3.27)     Mk<     max     IS,-- SV| +     max     \p(i + 1) -p(i)\ := Jx + J2.
Nk<j<Nk+i {i:p(')<Nk+l}

By (3.1) we have for k > ko

p(fc+i)-i
TT       f*       (10glOgw)Q\

m=p(k)+\ V JVm       J=p(k)+l

P(^_1 (loglogmr ,,,     .Moglogp(k+l)r
-l+Jk)+>-^- 1 + {P{ k+l)~m "1}     3V^+D      '

whence p(k + l)/p(k) —► 1 and

p(/c+l)-Jp(^)«p(/c)1/2(loglogp(/c))-a.

Thus for J2 in (3.27) we get, using Nk+X/Nk —» 1 and a > 1/2,

(3.28) ^«(AWloglogA*)'/2   a.s.

On the other hand, applying Lemma 2.10 for / = Zk we get for any even

integer p > 2

(3.29) E\JX\P < A"E\Zk\p ,

where A > 1 is an absolute constant. Hence choosing p = pk = 2[loglog/c]

and using (3.29), Lemma 2.5, Nk ~ /c5/5 , A^+i - Nk ~ /c4 , and the Markov

inequality, we get, setting cfc = (loglogrc)Q/4,

P(\A\ > y/Nk/loglogNk) < il0gl°lNk)Pk/2APkE\Zk\Pk

(3.30) fc
(121oglogrc)"*/2    A. ,„,    ,        ._ ,4(Â:5/2)to-2)

*  -¿ft/2 4^(576p,logp,rfc4V      ;_2     .
Ck

Observe that for k > ko the last expression in (3.30) is smaller than the first

expression in (3.21) and thus it cannot exceed rC_1(logrc)~2. Hence (3.30) and

the Borel-Cantelli lemma imply

(3.31) IJiK^/loglogA^)'/2   a.s.

Now Lemma 3.4 follows from (3.27), (3.30), and (3.31).

The just completed proof of Theorem 1 yields, with trivial modifications,

various related limit theorems for (cosnkx) under condition (1.9). For exam-

ple, replacing Lemma 2.7 in the proof of Theorem 1 with the martingale version

of the Chung test formulated in Remark 2.9 we get that (cosnkx) satisfies the
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Chung test (1.24)-(1.25) if (1.9) holds with a > 7/2. Similarly, using the a.s.
invariance principle mentioned in Remark 2.9 we get, without any difficulty,
the a.s. invariance principle (1.26) for (cos«,tx).

4. Proof of Theorem 2

Lemma 4.1. We have

(4.1) i_£M¿C0S;X)   dx = ^N2 + 0(N),

i   r2n ( " \ i
(4.2) — /        Ecos^     dx = 2Ni + °iN^-

Proof. We prove (4.2). As in the proof of Lemma 2.4, the left side of (4.2)
equals 1/16 times the number of solutions of

(4.3) ±jx ± j2 ±j3±j4 = 0, 1 < 7i, j2 , j3 , 74 < N.

Simple calculations show that the equation

±7, ±j2 = V, l<jl,J2<N

has 2A, 2A - 1 - |i/|, 2A + 1 - \v\, or 0 solutions according as v — 0,

1 < \v\ < N, N + 1 < \u\ < 2N, or \v\ > 2N. Thus the number of solutions
of (4.3) equals

(2A)2+    E   (2N-l-\u\)2+       y      (2N + I - \v\)2 = ^1 + 0(N2)
\<W\<N /V+l<|i/|<2iV

and (4.2) is proved.

Let ak = 2kl, mk = L4/c/(loglogÂ:)2Q] (k > 3) ; w, = m2 = 0 and Mk =

Y!¡=i mi where a > 1/2 and A is an absolute constant with 0 < A < 10~6.

Using the easily verifiable formula

JU       k? 1 nß+x

(loglogk)y     ß + l (loglog«)?
k=i

we get

(4-5) Mi = i(togW(1+0((l0êl0g*r,))-

Let Ik = {ak , 2ak , ... , mkak} ; clearly the sets Ik , k = 1,2, ... , are disjoint.
Define the sequence (nk) by (nk) = \J°°=xIj. We prove that (cos«i.x) satisfies

the requirements of Theorem 2. As a first step we show that

(4.6) «^expj^v^loglog^rj.
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Indeed, if Mk_x < j < Mk then setting i = j - Mk_{ and using (4.5),

Mk/Mk_i —> 1 and the mean value theorem we get

^■=i+i>i+-L>i+(iogy2a

«; i mk Ak

> 1     (loglogM^)» > {     (log log 7)° >        /(loglog7)"A

lyfÄyßÄ^ " 2v%/7   -        \  4y[Asß  )

> exp (jl= {/7+T(loglog(7 + l))a - ^7(loglog7)Q})

for j > jo ■ On the other hand, if j = Mk then«;+i/«; = ak+i/(mkak) > 2 >
1 + l/mk i.e., we get the same lower bound for «;+i/«; as above. Thus we

proved (4.6). Set now qk = ak+i/ak and

Mk mk

Xk=       E      COS«;X, fk(x) = y¡COSJX.

;=Mt_,+i ;=i

Further let pk(x) (0 < x < 2n) be the function which equals 2itj/qk provided

2ttj/qk < (akx)2n < 2n(j + l)/qk for some integer 0 < j < qk - 1 ; here (t)2n

denotes the residue of t mod 2n. Clearly, pk(x) is constant on each interval

[27T7'/a^+i, 27r(7 + l)/a^;+i) (0 < j < ak+i - 1) and is periodic with period

2n/ak . Thus the functions pk(x), k = 1, 2, ... , axe independent r.v.'s over

the probability space ((0, 2n), ¿@, (2n)~xX). Further,

(4.7) \pkix)-iakx)2n\<2n/qk       (0<x<2n).

Now let Yk = fk(pk(x)), then using Xk = fk(akx) = fk((akx)2n), \fk\ < m\ ,

(4.7), and the mean value theorem we get \Xk - Yk\ < 2nm\/qk c 2~k which,
in view of EXk = 0, implies

(4.8) \Xk-Zk\^2~k,

where Zk = Yk - EYk. Moreover, the Zk are independent r.v.'s over the

probability space ((0, 2n), 38, (27r)_1A). Since \Xk\ < mk , the last relation
and the mean value theorem imply

(4.9) \X\ - Z2\ « 2-kmk « 2-fe/2

and similarly

(4.10) |X3-Z3|«2-fc/2, \XAk - Z4k\ < 2-k>2.

Now using (4.5) and (4.9) we get

(4.11) a\ := EZl = EX¡ + 0(2~k'2) = X-mk + 0(2-k'2),

(4.12) s2n:=yEZ2=X-Mn + 0(l),
k=l

whence we get by (4.5)

<4-13» s- = f(i3gT^(1+0«,08l08',r'»»-
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Further using Lemma 4.1, Xk = fk(akx), the periodicity of fk, (4.10), and
(4.4) we get

" " " 1 /-/It

yEZ3 = yEX3 + 0(l) = y—        f3(akx)dx + 0(l)
fc=l        k=l k=\ln h

(4.14) =¿¿ i2"f3(x)dx + 0(l) = y\m2 + o(ymk
k=\        J° k=l \k=l       >

= T(togT^<1 + 0«l°81<*">~'>>'

Similarly

(4.15) ¿jfzi.^—^d+ojdo,!,.,,-.)),

(4.16) ±(EZ¡f = l^^d +0((loglog»)-')).

Set

(4.17) 4 = 4v/I(loglog«)-a.

Then by (4.8), |A^| < mk , and (4.13) we have

\Z„\<Xnsn       (n>n0).

Also by (4.13), a > 1/2, and A < 10"6 we have

A" - 2ÖÖ^l0gl°gS^"1/2       ^" - "°)'

Hence applying Feller's general upper-lower class criterion (see [8, Theorems 1

and 11]) for the independent sequence {Z„, n > 1} we get that for any positive
nondecreasing sequence y/n we have

(4.18) plyzk>s„y/„i.o.\ =0   or    1

depending on whether

r2

or    = +00

n>\

Here Qn(x) = Y^f=xqn,vx" is a function analytic for |x| < 1/(12A„) whose

coefficients can be explicitly calculated from the moments of the Z, 's. Actually

qn, v depends on the first v + 2 moments of Zx, ... , Zn, e.g.

1    "
4«.i = w¿ZEZk>

" k=i

(4.20) 2

^ = T^E^4-¿t^2)2-¿(t^  •
lzi« fc=l ^» *=1 *Ä« \k=x     /

(4.19) E^^exPÎ-^«2(1 + Ô«(^))}<+(X)
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Further

(4.21) |<7„,„|<y(12Â„r       (»>1,  v>l).

Using (4.13)-(4.16), (4.20), and (4.21) we get

JÄ
(4.22) q„A = Y(loglog")-a(l +0((loglog«)-')),

5/1
(4.23) qn,2= -^-(loglog«)-2a(l+0((loglog«)-1)),

and

(4.24) \qniV\ < WyY'(loglog/i)-^       (« > 1,  i/ > 1).

From (4.21) we easily get

(4.25) |ß„(x)|<l/4,        \Q'n(x)\<l2Xn   for |Anx| < 1/24.

We also note the fact that if 4_1(loglog«)1/2 < y/„ < 4(loglog«)'/2 (actually,

it suffices to assume X„¥n < 1/48) then replacing y/„ by y/n ± C/y/n (C > 0

is an arbitrary constant), the convergence or divergence of the series (4.19)

is not affected. (This is observed in [8] and easily verified since (4.25) and

the mean value theorem show that replacing y/„ by y/„ ± C/y/n the exponent

in (4.19) changes by 0(1) if A.„y/n < 1/48.) This remark implies that the

probability in (4.18) does not change if J2l=x Zk is replaced by J2l=\ zk + T«
where {xn, « > 1} is any sequence of r.v.'s such that x„ = 0(sn/(loglogsn)x/2) ■

Now letting SV = Y,j<n cos nix > we nave °y (4-8) and (4.13)

k k k

sMk = yx, = yz, + o(i) = yz,+o(sk/(iogiogSk)x/2)
i=i     i=i i=i

and thus we proved the following result.

Lemma 4.2. Assume cpn is a nondecreasing sequence satisfying

(4.26) 2-'(loglog«)1/2 < tp„ < 2(loglog«)1/2.

Then

(4.27) P(SMk > skcpMk i.o.) = 0   or    1

depending on whether

(4.28) y^-<pMkexpl--tp2Mk(l + Qk(<pMk))\ <+oo   or    = +oc.
k>\ sk i >

Here
oo

(4.29) Qk(x) = y „    Cyk'"ls    x"
y       ' ^ky  '     fa (log log AC)™

is a power series converging for |x| < lO^oglog«)" whose coefficients ckv are

explicitly calculable numbers with

\f~Â —5/f
(4.30) ckA = Y(l+0((loglog/c)-')),    C*,2 = —(l + 0((loglogfc)-')),
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and

(4.31) \Ckv\<^^L       {k>l, v>l).

In what follows we shall prove that

P(SN > \/Ñ/2y>N i.o.) = P(SMk > skcpMk i.o.)

and we shall also write the sum (4.28) in a simpler form, not containing quan-

tities depending explicitly on the sequence Mk . We break the argument into

steps.

Lemma 4.3. Let the nondecreasing function y>„ satisfy (4.26) and assume that

<P2Mk -<P2Mk_l<1- Then

(4.32) \<p2(l + Q^cpi)) - cp)(l + Qk(cpj))\ < 2   for Mk_x <i<j< Mk.

Proof. Clearly the left side of (4.32) is bounded by

(4.33) (cp2 - (p2)(l + \Qk(cpi)\) + <p2\Qki<Pi) - Qk(<Pj)\.

By a > 1/2, A < 10~6, (4.5), (4.17), and the second inequality of (4.26) we

have Xkcp, < 1/24, Xkcpj < 1/24, and thus (4.25) implies \Qk(<Pi)\ < 1/4.
Hence the first term in (4.33) is < (cp2M - (p2M _ ) • 3/2 < 3/2. On the other

hand, using (4.25) and the mean value theorem it follows that the second term

in (4.33) is

< cp) • I2kk(cpj - tpi) < cpj ■ I2lk(cp) - cp2) < l2Xkcpj < 1/2.

Hence (4.32) is proved.

Lemma 4.4. Assume that <p„ is nondecreasing and satisfies (4.26). Then the

series in (4.28) is equiconvergent with

(4-34) ^^expi-^l+âW)},

where Qn = Qk for Mk_x < n < Mk .

Proof. Let %? denote the set of those integers k > 1 suchthat <P2Mk-<P2Mk _, < 1 •

Using the monotonicity of cp„ , (4.11), (4.12), Lemma 4.3, Mk/Mk_x -* 1, and
the fact that by (4.26) and (4.5) cpMk/cpMkx is bounded, we get for k £%',

y      ^exp{-i^(l + ß«(^))}

Mk^i<n<M,

x      E      ^1exp{-i^(l + ß,(^)) + 0(l)
(4.35) Mk_t<n<Mk       k

Mk-Mk_i„    __      1

Mk
r2

{"

<PMk exp { --^¡(PmM + Qk((pMk))

X C^-<pMkexp i-^Ç)2Mkil + Qki<PMk))\ ,
Jk

where ck x dk means that ck/dk lies between positive constants independent

of k. On the other hand, in the proof of Lemma 4.3 we saw that \Qk(<pn)\ < 1/2
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for any Mk_x < n < Mk , k > 1 (regardless whether k £ ßV) and thus for any

k g ß? the first sum in (4.35) is bounded by

E      Mj^- exP {_4^_, j « <PMk exo{-Ccp2Mk} « exp j--cp2Mk I

Mk_\ <n<Mk

for some constant C > 0 ; here again we used the boundedness of <PMk/<PMk_, ■

Since cp\¡ - cp2M _ > 1 for k 0 ß?, the terms of the sum

Eexp{-|^|

decrease at least exponentially and thus the sum of converges. Since o\/s\ < 1 ,

the same argument shows that adding the terms of (4.28) for k & ßtf we get a

convergent series. From these facts, the equiconvergence of (4.28) and (4.34)

follows immediately.

By (4.29) and the definition of Qn we have

00 r-

(4.36) ß„(x) = E
x (loglogn)«"

where « is defined by M„_x < n < M„. The sum (4.36) is similar to (4.29) but
the coefficients on the right-hand side contain the powers of (loglog n)a instead

of (loglog«)a . As the following lemma shows, replacing log log« by log log«

in (4.36) will not affect the convergence or divergence of (4.34).

Lemma 4.5. Let cpn be a nondecreasing sequence satisfying (4.26). Then the

series (4.34) is equiconvergent with

(4.37) ^^eXp{-^2(l+ß*(^))},

where
oo

(4-38) Qfn(x) = y _( (loglog«)ai/
X'

Proof. By (4.5) we have yfh~ < « < « and thus log log «-log log« < 1 for large
enough « . Hence by the mean value theorem we get

|(loglog«)-al/ - (loglog«)-al/| < Qi/2ai/+l(loglog«)-QI'-1       (« > H0).

Thus using (4.31), (4.26), a > 1/2, and A < 10"6 we get

oo

92n\Qn(<Pn) - CTnÍ9n)\ < vi E \C"^ 2ai/2a"(loglogn)"^"1 q>"n
1/=1

< 2a      cp2n      yv Í2a-4*y/A<p„Y

1 log log« fa    I   (log log n)a J
oo

<<0(1)E^-" = 0(1)

and Lemma 4.5 follows.
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The coefficients Cj¡v in (4.38) depend on «, v in a rather complicated way.

However, as we shall not explicitly compute them (with the exception of the

first two), it is worth changing the notation and to write

oo

(4-39) Qnix) = y n      ,"'" x     ■*" >v        ; v¿«V   /     Z^   log log«)0"
v—\

where, in view of (4.30), (4.31) and loglog« ~ loglog« we have

an,i = ^-(l + 0((loglogn)-x)),

(4.40) 3
a„)2 = -^(l + 0((loglog«)-1)),

(4.41) \an,„\ < {48^r       (n>l, v > 1).

Moreover, the convergence or divergence of the series (4.37) is not affected

if we change the coefficients an,i and a„,2 in (4.39) by deleting the error

terms 0((loglog«)_1) in (4.40). (Indeed, the error made by these deletions in

<P2nQn(<Pn) is « ç»jj(loglogn)-a~x + cp4n(loglogn)-2a~x which is 0(1) by (4.26)

and a > 1/2.) Thus instead of (4.40) we can write

,, „„s VÄ 5A
(4.42) fl*ti = -j-,        fl"'2 = ~36"

Lemma 4.6. Let cp„ be a nondecreasing sequence satisfying (4.26). Then

(4.43) P(SN > */Ñj2cpN i.o.) = P(SMk > skcpMk i.o.).

Proof. By Lemma 4.2 the right-hand side of (4.43) is 0 or 1 according as the

series (4.28) converges or diverges. Moreover, the remark following (4.25) shows

that the right-hand side of (4.43) does not change if we replace cpMk by cpMk ±

lO/9Mk. Further, by (4.12) we have s„ = y/Mn/2 + 0(Mnl/2).
Assume that the right-hand side of (4.43) is 1.  Using the above facts and

(4.26) it follows that with probability one we have for infinitely many k

S¡uk > sk(cpMk + 10/cpMk)

> (^Mj2-0(Mk-xl2))(cpMk + (loglogk)-x'2) > ^Mj2cpMk

and thus the left-hand side of (4.43) is also 1. Assume now that the right-hand

side of (4.43) is 0. Then it remains 0 if we replace cpMk by cpMk - l0/cpMk and
thus we have almost surely for large enough k

SMk <sk(cpMk-4(loglogk)-xl2)

(4.44) < (^Mk~j2 + 0(M-l/2))((pMk - 4(loglog/c)-1/2)

<jMk~J2(cpMk-2(loglogkyx'2).

Now if Mk < N < Mk+X then by (4.5), a > 1/2, and A < 10"6 we have

\SN -SMk\ < mk+x < ^Mk(loglogk)-x/¿       (k > ko)

and thus by (4.44) we have

SN < ^ßhj2(<pMk - 2(loglog/c)-'/2) + JWk(loglogk)-x'2

< ^Mk/2tpMk < ^Ñ]2cpN       (N > No).
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Thus the left-hand side of (4.43) is 0 and the proof of Lemma 4.6 is completed.

Now Theorem 2 follows immediately from Lemmas 4.2-4.6 and the remarks

made after the proof of Lemma 4.5.

Remark. Note that we obtained the validity of the test (1.10)—(1.14) for all
a > 1/2, regardless whether a < 3/2. For a > 3/2, however, the series (1.14)

is equiconvergent with (1.11) (see the computations below) and thus the test

(1.10)—(1.14) of Theorem 2 reduces to the Kolmogorov-Feller test.

In conclusion we prove the remarks we made in the Introduction concerning

the test (1.10)—(1.14). First we note that if cpN satisfies (1.13) then using (1.16)

we get for a > 1/2, 0 < A < 10-6 , and any k > 1

(4.45) a (log log A)«"

A

<yloglogA E (96v/^î(loglogA)1/2-T
u=k+\

Z_,    , fN

< (loglog#)i-(*+i)(°-i/2)       (/y > No)

Thus if a £ [ck+x, ck) then the total contribution of all terms v > k + 1 of

the sum in the exponential in (1.14) is 0(1) and thus for such a, (1.14) is

equivalent to (1.18). (If a > 3/2 then the last expression in (4.45) is 0(1) for

k — 0 and thus, in this case, the sum in the exponential in (1.14) is ajv.o^/vr +

0(1) = tp2N + O(l) i.e., the test ( 1.10)—( 1.14) reduces to the Kolmogorov-Feller
test.) (4.45) also shows that if a > 1/2 and (1.13) holds then the contribution

of all terms v > 1 in the sum in (1.14) is < (loglog A)1-(a_1/2) = o(cp2N) whence

it follows immediately that (cosw^x) obeys the ordinary LIL (1.3). Next we

prove that for a = 1/2 the test (1.10)—( 1.14) implies (1.19). Observe to this

end that for a = 1/2 and cpN = c(2loglogN)xl2, 0 < c < 2 the exponent in

(1.14) becomes exp(-fN(c) loglog N) where fN(c) = EZo2"'2^,»^2 ■ BY
(1.16) the total contribution of all terms v > 2 in the last sum is O(A) and

thus by (1.15) we get

(4.46) fN(c) = c2 + ±V2A c3 + 0(A),

where the constants implied by the O 's are absolute. Let

cx = l-\V2Ä + A2'3,        c2 = I --\\f2A - A213.

Substituting into (4.46) we get by a simple calculation

fN(ci)=l + 2A2'3 + O(A),        fN(c2) = 1 - 2^2/3 + O(A),

and thus Tat(ci) > 1, fN(c2) < 1 if A is small enough. Hence (1.14) converges

foxcpN = ci(21oglogN)xl2, diverges for cpN = c2(21oglogA)1''2, and thus the

lim in (1.19) lies between ci and c2, completing the proof.
Next we prove the Corollary concerning the upper-lower class behavior of

the function cpN in (1.22). For simplicity, we shall give the proof for the case

k(a) = 1 (i.e., for 5/6 < a < 1) when the sum in (1.22) contains two terms.

(This is exactly the third special case listed after the Corollary.) The proof in

the general case is the same.

Assume 5/6 < a < 1 ; then, as we already observed, (1.14) is equivalent to

(1.17). Set

(4.47) <pN = (2 log log N + c(loglogN)3'2~a + c* (loglog N)2~2a + pE(N))x'2,
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where c and c* are arbitrary constants and ps(N) is defined by (1.21). Writing

cpN as

cpN = (2loglogAT)1^ (i + C-(loglogN){l2-a + 0((loglog A)1"2«))17

and using the power series of (1 + x)3/2 we get

(4.48)
(loglog N)~acp3N

= ^(loglogN)3l2~a (l + ^(loglog A)xl2~a + 0((loglogN)x~2a

= Vl(loglogN)3l2~a + ^j^ (log log A)2"2" + 0(1).

Similarly

(4 49) (loglog A)-2>^ = 4(loglog A)2~2q(1 + 0((loglog A)1/2""))

= 4(loglogA)2-2a + 0(l).

Substituting (4.47), (4.48), and (4.49) for the terms of the exponent in (1.17),
the exponent becomes

-log log A + \-C- - ^-P ) (log log N)3'2~a

(4.50)
2        3    /

^_çV2Â + 5Aylo^N)2_2a_^+om

Choosing c = -2\f2Ä/3 and c* = 11A/9 the coefficients of (loglog A)3/2-"
and (loglog A)2_2q m (4.50) become 0 and thus the series (1.17) reduces to

E(1+o(1))PJogj^exp(   loglogW_^V)+0(1)|_
N>1 *■ '

which is clearly convergent if e > 0 and divergent if e < 0.

Regarding the first of the special cases listed after the Corollary, its validity

clearly follows from the Corollary for c < 2v/2^4/3 and c > 2\[2A/3. In the

case c = 2y/2A/3, cpN belongs to the lower class for arbitrary 1/2 < a < 3/2

since the coefficient bt[,i = 11A/9 in the sum in (1.22) is positive. (Hence to

decide for arbitrary 1/2 < a < 3/2 if

(I- \  1/2

2 loglog A- ^y^loglogA)3/2"" + ^(loglogA)2-2")

belongs to the upper or lower class (for 1 < a < 3/2 it is upper class and for

5/6 < a < 1 it is lower class by special cases 2 and 3 listed after the Corollary)

one has to compute coefficient bN,2 in (1.22).)
In conclusion we prove the remark made at the end of the Introduction i.e.,

we show that if («fc) is the sequence in Theorem 2 or more generally (nk) is any

sequence satisfying (1.12) for some A > 0, a > 0 then there exists a sequence
(mk) suchthat \mk - nk\ -C k3 and (cos«^x) satisfies the Kolmogorov-Feller

test (1.10)—(1.11). In fact, let Ik = [nk - 4k3, nk + 4k3]  (k > 1);  clearly the
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intervals Ik axe disjoint for k > ko . Now the desired (mk) can be constructed

by induction as follows. Let mk = nk for 1 < k < ko t'A if for some k > ko ,

mx, ... , mk axe already constructed, choose mk+x £ Ik+X so that it is different

from all numbers of the form +«,, ± «,2 ± «,3, 1 < i'i, i2, i3 < k . Since the

number of such sums is < 8/c3 and Ik+i contains more than 8/c3 integers, this

choice is possible. Clearly, the so constructed sequence (mk) has the property

that for large enough v the equation

v = mk±m¡       (k > I > 1)

has at most one solution. Also, \mk - nk\ < 4/c3 (k > 1) and since (1.12)

implies nk y e™ , we get

mk+i_ > nk+i-4(k + l)3 = nk+1        Q^-Vk^

mk   ~       nk + 4/c3 nk

íexp(^)(1+o(t"))í0 + 47f)(1-¿

> 1 + —=       (k > ko).

Hence by Theorem 3 of [2] (cos nkx) satisfies the a.s. invariance principle ( 1.4)

and consequently the Kolmogorov-Feller test ( 1.10)—( 1.11).
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