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PARABOLIC SYSTEMS: THE GF(3) CASE

THOMAS MEIXNER

Abstract. Parabolic systems defined over GF(q) have been classified by Tim-

mesfeld for q > 4 and by Stroth for q = 2 (see references). We deal with the

case q = 3 .

Parabolic systems have been classified by Niles, Timmesfeld, Stroth, and

Heiss, if the field of definition is G F (2) or has at least four elements. [Ni, Timl,

Tim2, Tim5, Tim7, Stl, St2, St3, He]. We treat the GF(3) case, where only
partial results by Thiel exist so far [Th]. Our result says that strong parabolic

systems in characteristic 3 have spherical diagram, and therefore essentially

generate only finite groups of Lie type with the same diagram. This is the

content of Theorem A. If we drop the assumption that the parabolic systems

have to be strong, some infinite families of systems occur, whose diagrams are

or complete bipartite graphs with only double or triple bonds, and the systems

are classified. This is Theorem B. The results of this paper are used in the

determination of locally finite classical Tits chamber systems with a transitive

group of automorphisms having finite chamber stabilizers. This classification,

in turn, could be used in the proof of the theorem of Kantor, Liebler, and Tits

that determines all classical affine buildings of rank at least 3 having a discrete

chamber-transitive group of automorphisms.
The organization of the paper is as follows. The proof of Theorem A is given

in §3, while the proof of Theorem B is contained in §4. Definitions, notation

and some preliminaries are given in §1, while in §2 the relevant F .F-modules

for some Lie-type groups defined over G F (3) axe determined.

1. Definitions, notation, preliminaries

We are mainly concerned with characteristic 3, hence our flotation and the

definitions reflect this fact. Let G be a finite group, we set G := O3'(G), and

G = G/Oi(G). If S is a subgroup of G, by S g we denote the largest normal

subgroup of G contained in S. If {Xx, i £ 1} is a system of subgroups of

G, we set Xy for the group generated by X¡ and X¡. If X is a finite simple

group of Lie type, PSL2(3) or 2G2(3), or a direct product of such groups (these
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616 THOMAS MEIXNER

groups will be denoted either by their symbol or their name as a matrix group, if

they are classical), then any finite group G satisfying G = G and G/Z(G) = X
is said to be a group of Lie-type X . If X has Lie rank n , then G is said to

be a rank n Lie-type group.

A group of order 24-3 with G = G and 02(G) elementary abelian is named

D (there is only one isomorphism type, and D is a product of two subgroups

isomorphic to PSL2(3)!). A finite group G with G = G whose Sylow 3-
subgroups have three elements and G/Z(G) is isomorphic to D is called of

type D.

(1.1) Definition. Let G be a group generated by finite subgroups Xx, ... , Xn

satisfying the following conditions:

(i) C\X¡ contains a 3-group S such that S £ Syl3(X¡;) for all i, j < n .

(ii) X¡ is a rank 1 Lie-type group in characteristic 3 for i < n .

(iii) Xjj is a rank 2 Lie-type group in characteristic 3 for i ^ j or is of

type D.

Then X = {Xx, ... , Xn] is called a parabolic system of rank n in characteristic

3 in G. If type D never occurs in (iii), the parabolic system is said to be strong.

To a (strong) parabolic system X of rank n in characteristic 3 there belongs

a diagram that serves as a "type" of the system. Vertices (nodes) of the diagram

are the indices i £ I, and no bond (resp. a bond of strength 1, 2, or 3—i.e., a

single, double or triple bond) is drawn between the vertices i and ; , if the type

of Xij is a direct product of two groups that are rank 1 groups or D (resp. is

^(i?), resp. is B2(q), 2A3(q) or 2AA(q), resp. is G2(q) or 3D4(q)) for some

power q of the prime 3. The diagram contains exactly the same information

as a Coxeter matrix M = (m(i, j)¡j), where the entries m(i, j) for i ^ j
are equal to 2 (resp. 3, resp. 4, resp. 6) and we will use both ways to describe

the diagrams of parabolic systems. Forgetting about the strength of the bonds

in the diagram, we get the graph of the diagram and may talk about connected

components of the diagram. In the whole paper, we always assume that together

with a (strong) parabolic system X we are given the 3-group S occurring in

the definition, and the diagram A.
The following theorems are listed for easy reference. They were proved by

Timmesfeld in arbitrary characteristic; we need only the characteristic 3, so we

state them in a somewhat restricted form.

(1.2) Theorem. Let X = {Xx, ... , Xn), n > 3, be a parabolic system in char-

acteristic 3 in the group G having a connected spherical diagram A. Assume

Sg = I ■ Then Go = (Xx, ... , X„) is a normal subgroup of G and the following

holds :

(a) Go is a finite group of Lie type in characteristic 3 with diagram A.

(b) S is a Sylow 3-subgroup of G0.
(c) the groups X, are "essentially" the rank 1 parabolic subgroups of Go

containing the Borel subgroup B of Go normalizing S,

i.e., the groups X, are of the form BX¡.

Proof. [Tim5, (3.2)].

As an immediate consequence we get that a parabolic system in characteristic
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3 is automatically strong, if all subdiagrams of type o o (Ax x Ax) of A are

contained in connected spherical subdiagrams of A.

The nonconnected diagrams are treated in the following theorem. See also

the beginning of §4.

(1.3) Theorem. Let {X¡, i £ 1} be a strong parabolic system in characteristic 3

in the group G having diagram A. Let Aj, j £ J, be the connected components

of A, and let Yj = (03(X¡), i £ Aj). Assume SG = 1 • Then the subgroups Yj
are normal in G and commute pairwise.

Proof. [Tim2, (4.4)].

In §3, we will need to have a list of all connected nonspherical diagrams all

of whose proper subdiagrams are spherical.

( 1.4) Let A be a connected nonspherical Coxeter diagram of rank at least 4,

whose proper subdiagrams are spherical. Assume A contains only single or double

bonds (m(i, j) < 4 for all i, j). Then A is one of the following:

(a) the extended Dynkin diagram of type Ar, Br,  Cr, Dr, E6, Ej, E%,

%  (r>3),
(b)

9—9    o—9

—h

Proof. Clear.

(1.5) Let {Xx, ... , Xn} be a parabolic system in characteristic 3 in the group

G. Assume X, = X¡ for i = I, ... , n and Sg = Z(G) = 1. Let t be an
element of order r, r a prime different from 3, in G normalizing S and X,

for i = 1, ... , n . Then for at least one i, S does not contain [X¡, t].

Proof. Assume the contrary; then [S, t] = [X¡, t] for all i < n, hence [S, t]
is normalized by all X,, and [S, t] < Sg = I ■ Now [X,, t] = 1 for all i < n ,

and t £ Z(G), a contradiction to the hypothesis Z(G) = 1 .

(1.6) Corollary. Let X = {Xx, ... , Xn) be a (strong) parabolic system in char-

acteristic 3 in the group G with diagram A. Suppose X¡ = X, holds for all

i and Sg = I ■ Let, for i = 1, ... , n, t, be involutions in X, normalizing S

that commute pairwise.

(a) Assume that m(n, n - 1) = m(n - I, n - 2) = 3 and m(n, i) =

m(n - 2, i) = 2 for i < n - 3. Then t„tn-2 £ Z(G).

(b) Assume X„ is isomorphic to SL2(3) or SL2(9), and t„ centralizes X¡

for all i with m(i, n) / 2. Then t„ £ Z(G).

Proof. Clearly, the elements /, normalize the subgroups Xj for all j. Con-

sider the case (a). Being involutions, the elements tn and t„-2 centralize X„

(resp. Xn_2) and are contained in the commutator subgroup of Xn , X„_2 re-

spectively. Hence they also centralize all Xj where m(n , j) = m(n-2, j) — 2 .

Inspection of the group (Xn , X„_x, X„_2) shows that t := t„t„-2 also central-

izes X„_] . The result (a) now follows from (1.5).
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Consider case (b). The same argument as above shows [tn, X¡] = 1 . Again

the result follows from (1.5).

The next facts are clear but will be needed in §3.

(1.7) Let G be a perfect central extension of PSp6(3) or of Qj(3). Let B be

a Borel subgroup of G, and let Xx, X2, X3 be the three rank 1 parabolic

subgroups of G containing B corresponding to the diagram

1 2 3

Then the following holds:

(i) T27 = PSp4(3) ifandonlyifG^Q1(3).

Let now X2i be isomorphic to Sp4(3), and let t be an involution in X23 cen-

tralizing X2i . Then

(ii) If t£%, then G s Spin7(3) and t £ Z(G).

(iii) If t£X2, then G £ Sp6(3) _or_PSp6(3).

(iv) G^PSp6(3) if and only if Xx3^Sl2(3)*Sl2(3).

Proof. Easy exercise.

(1.8) Let G be Sp2„(3), B some Borel subgroup of G and Xx, ... , Xn the
rank 1 parabolic subgroups of G containing B corresponding to the diagram

1 2 ' '' n-\        n

Let H be some Carian subgroup of G contained in B and t, the involution in

H C\Xj. Then t := txt^.. generates the center of G.

(1.9) Let G be a perfect central extension of Sl2n+i (3) or of Q2n+2(3), let B be

some Borel subgroup of G and X\, ... , Xn the rank 1 parabolic subgroups of

G containing B corresponding to the diagram

1 2    " '   n-\       n

Assume t is an involution in Xn centralizing X„ . Then t £ Z(G).

2. Some FF -modules

In this section, we want to collect material that will be helpful to treat some

cases in §3. There, the situation is similar to the GF(2)-case [St2, Tim7] where

Niles' construction of a Tits system does not work. One considers the amal-

gam of two properly chosen "maximal parabolics" Gi and G2 of the parabolic

system instead, and tries to get contradictions by comparing the action of both
parabolics on their composition factors in the common 3-group S. In this sit-

uation, (definitions will be given in §3), one can sometimes assume that one of

these composition factors is a so-called F .F-module for Gx resp. G2. There-

fore, it is helpful to have a list of all FF-modules for certain Lie-type groups to

work with. But whereas in the characteristic 2 such an enemies' list is available

[Co], we have to determine some F.F-modules for Lie-type groups defined over

GF(3) ourselves.
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Let us recall the definition, p is an arbitrary prime here. Let G be a finite

group that acts faithfully on the elementary abelian p-group V . Assume there

is a nontrivial p-subgroup A of G having the property

(FF) \V\<\A\\CV(A)\.

Assume A is elementary abelian; then A is called an offending subgroup of

G on V, and V is called a failure-of-factorization module (FF-module) in

characteristic p for G.

In the determination of irreducible FF-modules V for a specific group G,

one is almost done as soon as the GF(p)-dimension of V is under control.

Therefore one wants to get hold of a nice offending subgroup A such that G

is generated by few conjugates of A .

(2.1) Lemma. Let V bean F F-module in characteristic p for the finite group

G. Let U be a p-subgroup of G containing an offending subgroup. Assume

NG(U) acts irreducibly on U/cp(U) and <fi(U). ThenU or cp(U) satisfy condi-
tion (FF) on V.

Proof. Set C = {X, X < U) and apply [CD].

(2.2) Lemma. Let G be a finite simple group of Lie type in characteristic p, let

S £ Sylp(G) and B = Nq(S) some borel subgroup of G, H some complement

to S in B. Let P = U • L be a maximal parabolic subgroup of G containing

B. Assume

(i) G is of type Bn, C„, 2An or 2Dn+i   (n>2), or

(ii) G is of type D„ and L of type £>„_i   (n > 3).

Then there is an element g £ G such that G = (U, U8). Furthermore in case

(i), g can be chosen to centralize every involution in H.

Proof. Let (G, B, N, R) be the Tits system with the given B, and with A
normalizing H, and let g £ N be an element mapping onto the longest element

ion in the Weyl group W = N/H (with respect to R). Then in case (i), tun

acts as -1 on the root system ( W is of type C), and hence L, which we may
assume to be generated by H and some root subgroups only permuted by g,

is normalized by g. Also in case (ii), we may assume L is normalized by g .

But certainly P is not normalized by g, hence G = (U, Ug, L). Now,

the subgroup (U, Ug) of G is normalized by G, and the first result follows.

Assume hypothesis (i), and let Pi = Vi • Lx be any parabolic subgroup of G

containing B, with Levi decomposition adjusted to H. Then again g nor-

malizes Li, hence L¡ n H, and hence the section assertion follows from [Ni,

(4.1)].

(2.3) Lemma. Let V be an irreducible GF(3)-module for the finite Lie-type

group G in characteristic 3 of type B„, C„, n > 2, or 2Dn, n > 3. Let

P = U • L be a maximal parabolic subgroup of G containing the Borel subgroup

B, and let h £ B be an involution.

(a) P centralizes Cy(U), if and only if P centralizes V/[V, U].

(b) Assume h centralizes Cy(U). Then [V, h] < [V, [/].

Proof. Take g £ G as in (2.2). Then as in the proof of (2.2), we can see that

h is centralized and L is normalized by g. Then h centralizes Cy(U8) =

Cv(U)g , which by [Tim4] complements [V, U]. The results (a) and (b) follow.
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(2.4) Lemma. Let G be a finite group of Lie type in characteristic 3, V some

irreducible FF-module in characteristic 3 for G. Then there is an element in

G with minimal polynomial (X-l)2 on V.

Proof. [Tim3, (2.3)].

Elements with minimal polynomial (X - l)2 on some module V are said to

be quadratic on V. A group A is said to be quadratic on V , if [V, A, A] = 0.

If a group G acts faithfully on a module V such that it contains a quadratic

element on V, then V is called a quadratic module for G. Quadratic irre-

ducible .rv[G]-modules for finite Lie type-groups in odd characteristic p, K

some algebraically closed field in characteristic p, have been determined by

Premet and Suprunenko [PS]. We recall the part of [PS] that is needed in §3.

(Actually, these quadratic modules have already been determined by Thompson

in unpublished parts of his quadratic pairs paper, but we prefer to refer to the

easily accessible [PS].)

(2.5) Theorem. Let G be a finite group of Lie type in characteristic 3 with

connected diagram; let V be an irreducible GF(3)-module for G, and assume

there is some quadratic element in G. Then, if G is a Chevalley group, V

is a "fundamental module" for G, in particular there is a maximal parabolic

subgroup P = U-LofG suchthat Cy(U) is centralized by P'. More precisely:

(i) If G is of type A„(3), V is an exterior power of the natural module.

(ii) If G is of type B„(3), V is the natural or spin module.

(iii) If G is of type Cn(3), V is an exterior power of the natural module.

(iv) If G is of type Dn(3), V is the natural or a half spin module.

(v) If G is of type 2Dn(3), V is the natural Q.2n(3)-module or the GF(9)-

spin module got from the embedding of G into £22„(9).

Proof. For (i) to (iv), see [PS, Theorem 1]. Since GF(3) is a splitting field

for G in any case, all modules already exist over GF(3). For (v), see [PS,

Theorems 1 and 2]; the (half) spin module for £22„(9) cannot be written over

G F (3) when it is restricted to Q2n(3), whereas the natural module can be

written over G F (3), if it is restricted to G.

Let us determine some irreducible FF-modules in characteristic 3 for some

Lie-type groups defined over G F (3). We assume always that we are given

some Sylow 3-subgroup S of our Lie-types groups in characteristic 3, the Borel

group B = NG(S) and the (parabolic) system of rank 1 subgroups X¡ of G

containing B corresponding to the given diagram. Maximal parabolics G,

(also corresponding to the diagram) will be given in a Levi decomposition G; =

U, ■ L,.
We start with rank 3.

(2.6) Lemma. Let G be of type A^(3) with diagram

1 2 3

Let V be an irreducible GF(3)- module for G.

(i) If V is quadratic for G, then V is a natural, dual, or orthogonal module

for G.
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(ii) If V is FF with A < U2 offending, then V is a natural or dual module,

in particular G = SL4(3).
(iii) Let V be an orthogonal module for G and A some offending sub-

group. Then A is conjugate to Ux or i/3 and [V, A] = Cy(A),

\V\ = \A\\Cy(A)\.

Proof, (i) follows from (2.5). In (ii), V is quadratic by (2.4), hence let us

assume V is an orthogonal module. By (2.1), also Í72 itself is offending on V,

which is certainly not the case. This contradiction proves (ii). Let us still assume

V is an orthogonal module for G, and let A < S be offending. Claim \A\ —

\V/Cy(A)\ = |[K, v4]| = 33, and A is quadratic. Then the statement follows

easily. Let B be an offending subgroup of S with \B\ \V/Cy(B)\ maximal.

Then by [Tim3, (2.3)], we may assume B is quadratic, and \B\\V/Cy(B)\ =

\V\, Cy(B) = [V, B] of order 33 follows, since [V, B] is a singular subspace

of V. Since \B\ \V/Cy(B)\ < \V\ for every quadratic subgroup on V, we may

assume the given A contains Ux or t/3. But since J(S) = Î72 is not offending

on V, we get the claim.

(2.7)   Lemma. Let G be of type 53(3) with diagram

1      2      3

Let V be an irreducible GF(3)-module for G.

(i) If V is quadratic for G, then V isa 7-dimensional natural module or

an %-dimensional spin module for G.

(ii) If V is an FF-module for G with A < Ux  offending, then  V is the

spin module; in particular Z(G) n X^ ^ 1 ;  if A < <73 is offending on

V, then V is the natural module for G.

(iii) If V is the spin module for G and A < Ux is offending and quadratic

on V, then CV(A) = [V, A] = [V, Ux].
(iv) If V is the natural module for G and A is quadratic and offending

on  V, then \A\ = \V/CV(A)\ = \[V, A]\ = 33  and A is conjugate to
Z(Uj);   A is not contained in U2.

Proof. By (2.4) and (2.5), (i) holds. Hence for (ii), only the natural and spin

modules have to be investigated. Using (2.1), we can assume A = Ux . But then

(ii) follows easily. For (iii), we are done, if A contains elements of rank 4 on

V, hence assume all nontrivial elements in A have rank 2 on V, thus A is a

singular subspace of the natural module Ux for Lx. Then \A\ < 32, and since

G does not possess transvections on V, we have \A\ = 32 , and Cy(A) = Cy(a)

for all nontrivial a £ A. This is clearly impossible.
Finally, assume V is the natural (orthogonal) module for G = f27(3), and

A is quadratic and offending on V . Since A is quadratic, [V, A] is a singular

subspace of V, and CV(A) = [V, Ay1. Now clearly [V, A] is of order 33,

and also \A\ = 33 = \V/Cy(A)\. Since A centralizes [V, A], A is conjugate

to Z(Ui). Assume A < U2. Then [V, A] is contained in the 5-space [V, U2]

and contains the singular 2-space Cy(U2), which is the radical of the space

[V, U2]. Now we may assume A equals Z([/3), since G2 is transitive on the

singular 3-spaces containing Cy(U2). But Z(Uf) is not contained in Í72, a

contradiction. Hence (iv) is proved.
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(2.8)   Lemma. Let G be of type C3(3) with diagram

1 2 3

Let V be an irreducible GF(3)-module fior G.
(i) // V is quadratic for G, then V is the ^-dimensional natural module,

the 13-dimensional nontrivial composition factor of the exterior square of the

natural module, or the 14-dimensional nontrivial composition factor of the third

exterior power of the natural module for G. In particular, if G = PSp6(3), then

dim(K) = 13.
(ii) If V is an FF-module for G with A < Ux or A < Uy offending, then

V is the natural module, in particular G = Sp6(3).

Proof, (i) follows from (2.5). Assume A < Ux is offending on V . By (2.1) we

may assume A = Z(UX), whence G contains transvections on V, and V is

certainly the natural module, or Ux satisfies (FF) on V, whence dim(K) < 10

by (2.2), and again V is the natural module. If A < <73, we may assume A = <73

by (2.1), and (2.2) implies dim(F) < 12. Again the result follows from (i).

We have to treat also some higher rank cases.

(2.9) Lemma. Let G be of type D„(3) with diagram

n-\

o-..-<^    (n>3)

n

Let V be an irreducible FF-module for G in characteristic 3 with A < Ux

offending. Then V is a spin module for G (for n = 4, we may also view the
natural module as a spin module \). In particular, unless n = 4, we have that

Z(G)r\(Xn^2Xn) is not reduced to 1.

Proof. The case n = 3 is just (2.6)(ii), while the case n = 4 follows from (2.5).

Hence we may assume n > 5 , and assume V is the natural (orthogonal) module

for G. But by (2.1 ) Ux is offending on V , which is impossible. Hence F is a

(half) spin module for G, and now the action of G on F forces Xn_2n^x n

to act as Sl4(3), whence the claim by (1.6).

(2.10) Lemma. Let G be of type Bn(3) with diagram o—..—o=o, n>4.
Let V be an irreducible GF(3)-module for G.

(i) If V is quadratic,  V is the natural or spin module for G.

(ii) If V is an FF-module for G with A < Ux  offending, then  V is the

spin module, and in particular Z(G)nX„ is not reduced to 1 .

Proof, (i) follows from (2.5), whereas by (2.1) V must be the spin module

in (ii). The last assertion follows from (2.7)(ii) by the action of G on its spin

module, which behaves somehow "inductive" with respect to maximal parabolic

subgroups of type A .

(2.11) Lemma. Let G be of type Cn(3) with diagram

o— ..—o=o,       n > 4.
I n-\        n
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Let V be an irreducible FF-module in characteristic 3 for G. Assume A is

some offending subgroup with A < Ux or A < Un. Then V is the natural

module for G, in particular Z(G) is nontrivial.

Proof. Assume first A<UX . Then by (2.1) either Z(UX) induces transvections

on V, whence obviously the result follows, or Ux satisfies (FF) on V . Then

by (2.2), dim(F) <4n-2. By (2.4) and (2.5), we know that V is a fundamental
module for G. Let i be such that Cy(U¡) is 1-dimensional. Then i = 1

implies V is the natural module for G, hence assume i > 2. Certainly / ^ 2,

since for i = 2 we know dim(F) = «(2« - 1) - 1 contradicting n > 4. But

for i > 2, Cy(Ux) is neither a trivial nor a natural module for Lx , and so we

get an easy contradiction to dim(F) < 4« - 2.

Hence we may assume A is contained in Un , and so also Un is offending on

V by (2.1). Assume V is not the natural module for G, and choose n minimal

with respect to this. Then by (2.8) we may assume inductively that Cy(Ux) is a

natural module for Lx, using [Tim3, (2.2)]. Since F is a fundamental module,

Cy(U2) must be 1-dimensional, and dim(F) = n(2n - 1) - 1 . But from (2.2)
we know dim(F) < n(n + 1), a contradiction to n > 4.

(2.12) Lemma. Let G be of type 2Dn(3) with diagram

o— ..-o=o ,        n > 4.
1 n-2      n-\ —

Let V be an irreducible GF(3)-module for G.

(i) If V is quadratic, then V is a natural i\2n{3)-module for G or a (half)

spin module (over G F (9)) for Q2n(9) restricted to G.

(ii) // V is an FF-module for G with A < Ux offending, then V is a spin

module, in particular Z(G) n Xn_x is not reduced to 1.

Proof. The first assertion follows from (2.5), and clearly Ux is not offending

on the natural module, hence V is the spin module in (ii) by (2.1). The last

assertion again follows from the "inductive" action, hence needs only to be
verified for n = 3, where it is clear.

In a certain situation in §3, one does not get along with the knowledge of

FF-modules, but has to build up a bit more of the 3-group S. The argument

needed is due to Timmesfeld. We state what together with (2.2) is sufficient for
that situation (in 3.7).

(2.13) Lemma. Let G be a finite group with G/Os(G) isomorphic to PSL2(3),
S72(3), FS72(9) or SL2(9). Let t £ G bean element satisfying (tO^G)) =
Z(G/Oi(G)). Let V be a GF(3)-module for G with proper GF(3)-subspace
W such that the following holds :

(i)  W is invariant under some Sylow 3-subgroup S of G.

(ii)  W = [W,S}Cw(t).

(iii)  V = (WG).

Then the following holds:

(1) There is a G-composition factor in  V which is a nontrivial PSL2(3)

(resp. PSL2(9)) module for G/03(G).
(2) There is no quadratic element in G/0^(G).

Proof. Clearly PSL2(3') has no quadratic module in characteristic 3. Hence

it is enough to show (1). We may therefore assume / is an involution, G =

Oi(G)CG(t), and G = 5 • 0\CG(t)).
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By way of contradiction, we assume that every G-composition factor on V

is either faithful for (t) or trivial for G. But this means that 03(CG(t)) acts

trivially on Cv(t). Consider U = (Cw(t)G) ■ By (ii) and (iii), U = V, whereas

the above shows U <W. This contradiction finishes the proof.

3. Strong parabolic systems in characteristic 3

This section is devoted to the proof of Theorem A, as announced in the

introduction.

Theorem A. Let X = {Xx, X2, ... , Xn} be a strong parabolic system in char-

acteristic 3 in the group G with connected diagram A of rank at least 3. Then

A is spherical and for Go = (Xx, X2, ... , Xn) we have the following: Go is a

normal subgroup of G, and Go/SG is a Lie-type group in characteristic 3 with

same diagram A.

Proof. First of all, if A is spherical, the rest of the statement is clear by Theorem

(1.2). Hence we only have to show that A is spherical.

Assume the contrary, then we may assume the rank n of X is minimal with

respect to being a counterexample, therefore the connected components A; of

all proper subdiagrams are spherical, and so the groups (X,, i £ Aj) axe (mod

the largest normal subgroup in S) Lie-type groups in characteristic 3 with

diagram Aj. In our contradiction proof, we surely may assume X¡ = X¡ for

all i £ I = {1, 2, ... , n), hence G = Go, since Go is a normal subgroup of

G by the argument in [Ni, (4.4)], and SG = Z(G) = 1 .

By (1.4), the diagram A is either one of the extended diagrams Ar, Br, Cr,

Dr   (r = n - 1 ), E(,, F7, F8, F4 , one of the exceptional diagrams,

ó=

Q

or is of rank 3. (If A contains a triple bond, the rank n clearly has to be 3.)

We now try and construct a Tits system inside our group Go following the

method introduced by Niles in [Ni, §4]. In those cases, where the construction

is possible, we end up with a Tits system (Go, B, N, R) of type A that has

the property that B is finite while W = N/BnN is infinite, since the type A is

nonspherical. This together is impossible by [Timl, (2.7)]. In the construction,

we keep as close to Niles' notation as possible. We already have X, = X,, hence

also Xjj = Xij for all i ^ j. Let B¡ denote the normalizer of S in X, for

/ = 1,2,...,«. Then (B¡, Bj) covers the Borel subgroup normalizing S in

the Lie-type groups Xjj for i / j by [Ni, (4.1)] and the group B := (B¡, i =
1,2,...,«) has the following properties:

B normalizes X, and X¡j for all i, j.
B/S is a finite abelian 3'-group.

The just-defined group B will be the B of the Tits system to be constructed.

Let us now change the strong parabolic system X slightly to avoid notational

length.  We replace the rank 1 parabolics X, by X, • B but call these again
X¡. Of course, we get another strong parabolic system with the same diagram

A and the rank 1 and rank 2 parabolics of the system differ from the old ones
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only by some abelian 3'-part at the top. This part can, by the way, only induce

diagonal automorphisms on the X,¡, since it induces diagonal automorphisms

on the X,.

Now pick a complement H to S in B, and define A, as the normalizer of

H in Xj fox i = 1, 2, ... , n . Then Niles' arguments of [Ni, §4] apply directly
to our situation and give:

For N := (N,, i = 1,2, ... , n) we have G0 = (B, N).
B n A is normal in A and N¡(B n N)/B n A is of order 2 for all i.
Let r¡ denote the nontrivial coset of B n A in N¡(B n A), and R := {r,, i =

1,2,...,«}; then (Go, B, N, R) is a Tits system (of type A, of course)

provided the following conditions are satisfied in our groups X-, and X,¡ :

(**) The centralizer of H in S/SXi is trivial.

If X is an //-invariant normal subgroup of S with X • Sx, =

W       X • SX] = S then also X • Sx¡¡ = S.

Therefore in our contradiction proof we may assume that at least one X, does

not satisfy (**), or at least one Xy fails to satisfy condition (*). In particular,

from Niles' Theorem B (in [Ni]) we know that at least one X, must be of type

Ax(3). But we need a bit more detailed information (in our situation!).

(i) Xj does not satisfy (**) if and only if Xi/O^Xi) is a central extension

of PSL2(3).

Proof. The if part is trivial, so assume X, does not satisfy (**) for some i.

Since A is connected, there is j such that m(i, j) is not 2, hence X-, cannot

be of type 2G2(3). Therefore [Ni, (3.2)] tells that Y¡ is of type Ax(3). But if
Xx/0¡(X¡) has some homomorphic image isomorphic PGL2(3), then certainly

(**) holds, hence the claim.

(ii) Xij does not satisfy (*) if and only if Xi} is of type G2(3) or of
type Ax(3) x Ax(3) and X,j has no homorphic image PSL2(3) x PGL2(3) or
PGL2(3) x PGL2(3).

Proof. Again the if part is easy. Hence assume X¡j does not satisfy (*) for

some i ^ j. Summing up the propositions in [Ni, §3], we get that Xy is either

of type G2(3) or of type Ax(3) x L, where L is a rank 1 Lie-type group in

characteristic 3. Assume Xy is of the second type and L is not ^4i(3). But

then in X,¡ the two unipotent radicals Xx¡  and SXj (mod Oi(X¡¡)) are just

centralizer and commutator of H n X,j with S, and (*) holds. Hence we

assume L is ^4i(3) and (ii) follows easily.

As an immediate consequence, we note the following

(3.1) If A is

o—1)—o
1      2      3

then Xx2 is not of type 3/)4(3).

Proof. Assume the contrary. Then, as can easily be seen in Xx2 and X23, (**)

is satisfied in X¡, i = 1, 2, 3. And also (*) holds in X¡j for all i, j by (ii).
Hence Niles' construction works, a contradiction to the above remarks.
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If Xjj is of type Ax(3) x Ax(3), we still have the chance to prove condition

(i) for (**) by embedding the subdiagram o o in a suitable rank 3 subdiagram

of A as follows.
(iii) Assume Xy is of type Ai(3) x Ax(3), then (*) holds in X¡¡ provided

there is a vertex k in A such that for the subdiagram A¡jk on {i, j, k} one

of the following holds:

(a) Aijk is

(b) Aijk is

o-o
j      k

0=0
j *

and (**) holds for Xj n X]k .

Proof. In case (a) the group Xi(XjP\Xjk) has certainly a homomorphic image
PSL2(3) x PGL2(3), whence (*) holds in X¡j. In case (b), the same holds

under the additional hypothesis.

We are now able to rule out quite a lot of the diagrams left.

(3.2) (a) A is not Ar   (r ^ 3), F6, F7, E%, F4 or

(b) If A is of type Cr,   r > 3, at least one of the groups Gx ,   G„   where

Gn = (X\,... , X„_i), GX = (X2, ... ,Xn) is of type C„_, (3).

Proof. Assume (**) is not satisfied in X¡ for some i. Then choose j such

that m(i, j) > 2. This is possible, since A is connected. Now X¡j must be of

type C2(3), since in all other possible rank 3 groups in characteristic 3 the rank

1 parabolics of type Ax(3) have homomorphic images PGL2(3). (a) follows.

But it is also easily seen, that in the diagrams in (a) every subdiagram o o can

be embedded into a subdiagram o o — o, whence for all X-,j (*) holds in

view of (iii). Hence (a). Assume A is of type Cr, r > 3 , and both maximal

parabolics Gx, G„ of type C„-X are not of type C„_i(3). Then as above, (**)

holds for all X¡, and by (iii)(b) also (*) for all X¡¡. Hence (b) follows.

Using work by Timmesfeld [Tim6, Tim7], we can also rule out the rank 3

case.

(3.3) A ¿s not of rank 3.

Proof. Assume the contrary. Then it follows from [Timó, (2.3)] and Theorem 2

that A has to be a string. In [Tim7, Theorem 1], Timmesfeld also shows that in

the cases, where A is a string (say m(l, 3) = 2), 0^(XX2) (resp. Oi(X2t,)) are

centralized by Xx2 (resp. X2i). In fact, he gives a list of all parabolic systems in

rank 3, that have a connected diagram. By inspection, a contradiction follows.

(Recall that the parabolic system X Ris assumed to be strong!)



PARABOLIC SYSTEMS: THE GF{3) CASE 627

It should be remarked, that the situation in (3.3) is highly restricted, so in

fact one uses only a very small part of [Tim7].
The discussion above shows that in A there are only bonds of strength 1 or 2,

leaving us with the following possibilities: A is of type Br, Cr or Dr (r > 3)

or A is one of

-9

Ö-

We have to use a different method now, to get a contradiction, since in the

remaining cases (i), (ii), and (iii) do not apply. We choose in our diagram A

over / = {1, ... , «} two maximal subdiagrams, An = {1,...,«- 1} and

A! = {2, ...,«}, say. Then, the groups Gn = (Xi, ... , Xn_x) and Gi =
(X2, ... , Xn) intersect in Gi ;„ = (X2, ... , Xn_x), which maps onto a maximal

parabolic subgroup of both Lie-type groups Gx and G„ (by (1.2), since Ax and

A„ are spherical; the intersection contains a maximal parabolic subgroup of each

group and if this containment was proper, two rank 1 parabolics of X would

have to coincide in G, which is certainly not the case).

Now we consider the coset graph T(l, «) = T(G; Gi, G„). The arguments

to follow will give a contradiction independent of the particular group G only

using the way Gi and Gn are amalgamated, i.e., the way their intersection

Gi„ is embedded in these groups. Hence we may without loss assume in our

contradiction proof that G is the amalgamated sum of G¡ and Gn , amal-

gamated along Gin . (Now we left the strong parabolic system X, since we

replaced Xi „ by the (infinite) group Xx *B Xn , but still have SG = Z(G) = 1

and G = (SÖ)B\)
Recall the structure of the groups G, : we have G, = G,■■, B and G, is

finite Lie-type group in characteristic 3 of type A, ; set A/, := 03(G,) which

is Sg, ■ The advantage of assuming G is Gx *Gln G„ lies in the fact that G;,

/ = 1, « , are now self-normalizing in G, and the graph T(l, «), on which G

acts faithfully by right multiplication, is a tree. The vertices of T = T(l, n)
are cosets G¡x , i £ {1, «} and x £ G (two different vertices being adjacent,

if their intersection is not empty), and the stabilizer in G of the vertex G¡x is

just Gf.
Vertices of T will be denoted by Greek letters, and if a is G¡x, then its

stabilizer Ga in G will be Gf . Moreover, if Z, is a normal subgroup of G,,

then the normal subgroup Za := Zf of Ga is well defined. In particular, we

have Ma = Os(Ga), and certainly Ma fixes all vertices adjacent to a . On the

locally finite connected graph Y, we have a natural distance function d(a, ß)

defined as the minimal length of a path from a to ß in Y, which is even

unique since T is a tree, and will be denoted by (a, a+l, ... , ß - I, ß).

Assume now that Mi ^ 1 / M„, and Z¡ is a G,-invariant nontrivial el-

ementary abelian subgroup of Z(M,), i = 1, «. Then Ma ± 1 for all a,

and we have defined Za for all vertices a as above. Clearly ZQ is not con-

tained in all Mß, ß in T, since G acts faithfully on Y, hence for a we

have da := min{d(a, ß):Za < Mß} and even d := min{da: a £ Y}. A pair

(a, ô) of vertices is called critical, if d(a, 5) = d and Za ¿ M¿ . Since G

is transitive on the two types of vertices (cosets of Gj and Gn), we obviously
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have four (different) possibilities for critical pairs, corresponding to the orbits

of a and ô . If a is in the orbit of the vertex G, and ô in the orbit of Gj ,

i, j £ {1, «} , then we say the critical pair (a, ô) is of type (i, j).

This notation is the setting for the so-called amalgam method and is used in

the many papers written on amalgams recently; one of the fundamental prop-

erties of critical _pairs (a,S) is the following:
(*) Assume G, acts nontrivially on Z; for G, in the orbit of a and in the

orbit of S , then Za (or Zg) is an FF-module in characteristic 3 for Ga (resp.

Gg), and Zg (resp. Za) induces a quadratic offending subgroup on Za (resp.

Zg).
Hence for the choice of Z, one is led to pick a G,-invariant subgroup Z, of

Qi(Z(Af,)), / 6 {1, «} , with nontrivial G,-action, if possible. If Q1(Z(Af,))

is a trivial G,-module, hence lies in the center of S (and G,), we denote this

situation by G, < N(Z). If not, we put G, ^ A(Z). Of course, the case Gx <

N(Z) and G„ < N(Z) lead to Mx n M„ = 1, since otherwise Q.X(Z(MX)) n
Sl\(Z(Mn)) would be a nontrivial normal subgroup of G contained in S. Then

MxMn is a direct product and MXM„/MX is contained in the unipotent radical

of G\t„/M\. This bounds the order of Mn , often implies that M, is trivial

under the action of G,, i = 1, «, then MXM„/Mi is trivial for Gi„ and

therefore one usually gets a contradiction.

We will treat the remaining cases now one after the other, by choosing the

two nodes (denoted 1, « above) in the diagram A properly, forming the corre-

sponding coset graph Y of the amalgamated sum G and investigating the action

of G on T. Since in some situation we have to collect information from more

than one amalgam and do not want to change labelling in the diagram A, we

will be free to pick two nodes i, j and form the tree Y(i, j) in exactly the

same manner as T(l, «). In every case, we have to give the labelling of A, the
choice of T(/, j) and to define Z, and Zj, if M¡ and M¡ are not trivial.

(3.4) A is not

1 2

Q—o     __     __
(A3 = D3).

—o

Proof. Since at least one X¿ is of type Ax(3),v/e know that all G, are of type

yl3(3). Assume Mi = 1. Then all M, axe equal to 1, and |5| = 36. But
then J(S) is normalized by Xx-$, X24 hence by G, a contradiction. Hence

M,: ̂  1 for / = 1, 2, 3, 4, and we may choose labelling of the diagram such

that Gi i N(Z) and GjJ, N(Z). Without loss, QX(Z(MX)) is an FF-module

in characteristic 3 for Gx, with offending subgroup contained in Oi(X24)/Mx .

Now there is also a Gi-composition factor of Qi(Z(Mi)) with the same proper-

ties, and by (2.6)(ii)^24/C^(^24) S SL2(3) x SL2(3). But now some involution

t in H centralizes X, for 1=1,2,3,4 by (1.6) and (1.5) gives a contradic-

tion.

(3.5) A is not
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(ZV1;«>5).

2 n

Proof. As in the proof of (3.4) we may assume M¡ ^ 1 and G, is of type

/)„_i(3) for /' = 1, 2, « - 1, « (recall « > 5). Therefore we may also assume

that Gi ¿ N(Z) and G2 ^ A(Z). Hence we may assume by (2.9), that in

QX(Z(MX)) there is a Gj-spin module involved. For « > 6, (2.9) implies that

some involution in HnX„t„-2 centralizes X¡, i > 2. But now again (1.6)

and (1.5) yield a contradiction. For n = 5 , the same contradiction follows with

some involution in H n L, where L is X2¿,, X2<,, or X^ .

(3.6) A is not

")o-...-o=o     (£„_,,«> 4).

2

Frao/. Assume the contrary. Then by the structure of Xn-X%n the groups

Gi and G2 must have the same type (compare (1.7)): C„_i(3), Bn-X(3),

or 2D„(3). By (1.6) we may assume Xx2 is isomorphic to SL2(3) * SL2(3).

Assume Mx n M2 = 1. If now Mx ^ I, then Gi is of type C„_i(3) and
\MX\ = \M2\ = 3. Comparing the orders of Z)„_i(3) and C„_i(3), one sees

that M„ cannot be 1, but must be contained in 0¡(GX¡„), a contradiction to

the action of GXn on 0$(Gx,n). If Mx = M2 = 1, this contradiction is got

rightaway.

Hence we may assume Mx , M2, and Mn to be nontrivial, and G, < A(Z)
for at most one i £ {1,2,«}. Assume Gx < N(Z).  Then we consider the

graph T(2, «), taking Z, := Cíx(Z(M¡)), i = 2, ... , n . Since H n G„ cen-

tralizes QX(Z(S)) by the structure of ^2, by (2.5) Z„ cannot be a quadratic

module for G„ , and any critical pair (a, 3) must be of type (2.2). Consid-

ering Gx < N(Z) and using (2.5), some composition factor of Z2 must be

a natural module for G2 = Sp2„_2(3) or Q2„_i(3) or Q2n(3). But again the

action of Xx2 on Qi(Z(S)) gives a contradiction. Hence we may assume Gi,

G2 jf A(Z). Now without loss some composition factor of ilx(Z(Mx), is an

irreducible FF-module in characteristic 3 for Gx with offending subgroup

contained in 0¿(GX2/Mx). If Gx has type C„_i(3), we get a contradiction

using (2.11), (1.8), and (1.5). If Gi has type 2Dn(3), the contradiction fol-

lows with (2.12), (1.9), and (1.5). If Gx is of type 5„_i(3), the contradiction
follows from (2.10), (1.9), and (1.5).

(3.7) A is not

o=o-...-o=o    (C„_i,  « > 4).
I 2 »i-l n

>-<
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Proof. Note first, that Gx and G„ axe of type Bn_x(3)± C„_i(3)_, or 2Z>„(3)

and H is an abelian 2-group. By (3.2)(b), one of Gx and Gn is of type

C„_i(3). Assume first Mx = 1. Then S is isomorphic to a Sylow 3-group of

Sp2n_2(3), Q2„_i(3), or Q.2n(3), and now clearly also M„ = 1 and Gx and G„
are both of type C„_i (3), since the type is determined by the structure of the

Sylow 3-subgroup. But then Z(S) is normalized by Gi2 and G„_i„, hence

by G, a contradiction. Hence Mx and Mn axe both nontrivial.

Assume Gi < N(Z) and G„ < N(Z). Then the introductory remarks show

that Mx n M„ = 1 and Gx t n (viewed as a Levi complement of a maximal

parabolic of the group of type C„_i(3)) must act trivially on its unipotent

radical, of course a contradiction.

^Assume Gi jt N(Z) and G„ < N(Z). If now Qi(Z(S)) i Mn, then

G„ = Mn • C„ , where Cn is the centralizer of Mn in G„ , and Gi t n has only

central composition factors in M„ , hence the only noncentral Gi, „-composition

factors of Ot,(Gi„) are contained in Oi(Gx,„/M„). But Gi>n has noncentral

composition factors in ilx(Z(Mx)) and 0}(Gx,n/Mx) and we get a contra-

diction for all possible types of Gx and G„. Hence Çlx(Z(S)) < Mn, and
therefore QX(Z(S)) = Q.x(Z(Mn)). Now Gx cannot have a trivial submodule

in Q1(Z(Af1)),and G\,H normalizes QX(Z(MX)) n Z(S).
Consider r=T(l, 2) with Zi some irreducible G i-submodule of Q.X(Z(MX)),

and Z2 the (unique) irreducible Gi2-submodule of Zx. Clearly, Z2 is a non-

trivial G2-module. Let (a,ô) be a critical pair in Y. Clearly, a is of type

1 ; if now also Ô is of type 1, then Zx is an FF-module in characteristic 3

for Gx, and by the action of Gi „ cannot be a natural module for Gx of type

Q_i(3), 5„_i(3),or 2F>„(3). Hence in this case by (2.10), (2.11), and (2.12),
Gi must be of type fi„_i(3) or 2Dn(3) and Zx a spin module. In this case,

however, (1.6)(b) gives a contradiction. Therefore (a, Ô) is of type (1.2). The
same argument as above shows [Za, Zg] = 1 . Assume d = 1 . Then we may

take (a, ô) — (1,2) and Zx/Zx n M2 is centralized by Gii2. But then by
(2.3), Gi)2 fixes Zi n Z(S), a contradiction. Hence d > 3, and in particular

V2 := (ZxGl) = (Zxx") is elementary abelian. Since Xx does not fix Zi , Xx acts

as (P)SL2(3),or (P)SL2(9) on V2. Let (t) = Qx(HnXx), then t centralizes

Z\ n Z(S), hence Zi/[Zi, S] by (2.3), and we may apply (2.13) to li, t,
V2, and Zi. It follows that elements in Xx acting quadratically on V2 axe

contained in 03(^1). But this contradicts the quadratic action of (Zf°+I) on

i^gli).
Hence we may assume Gi ^ N(Z) and Gn < N(Z). Clearly, Zi n Z„ >

Qi(Z(S)). Consider T = T(l, «J_with Z( = fi1(Z(M,)), i = l,n. Without
loss, Zx is an FF-module_for G{, and hence by (1.6), (1.9), (2.10), (2.11),

and (2.12), all noncentral Gi-composition factors in Zi are natural modules for

Gi, which is of type C„_i(3), Bn-X(3) or 2Dn(3),and Gi)2 is the normalizer

in Gi of £li(Z(S)). Now G„ does not have a trivial submodule on Z„,

and hence we may choose Z„ an irreducible nontrivial G„ -submodule and

Z„_i < Z„ an irreducible nontrivial G,,-!-submodule for T(«, « - 1). Now

the same arguments as above show that either Z„ is a quadratic module for

G„ , which contradicts the action of Gj 2, or we get a contradiction to (2.13).

(3.8) A is not
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1 2

9-9

0=^
4 3

Proof. Assume the contrary. Since one of the X, is of type ^4i(3), by the

structure of X34 we get that (without loss) Gi is of type 53(3) and G2 is of

type C3(3). Now clearly Mx ^ 1 and M2±l, (trivially also M4 ± 1 / M-f)

and the structure of X^ together with (L6_) and (1.7) tells G¡_= PSp6(3)

and G4 = PSL4(3). This implies easily G~x = Spin7(3) and G¡ = SL4(3)
by (1.7). And obviously G, < A(Z) can hold for at most one i, and if so,

Q1(Z(MI)) = n1(Z(5)).
Assume first G2 ¿ A(Z) and G4 ¿ A(Z). Then the G;-module fl,(Z(M/))

involves a natural SP6(3) (resp. SL4(3))-module by (2.6) and (2.8), i = 2
(resp. 4), which is certainly a contradiction.

Assume next G4 < N(Z). Consider the graph T = T(l, 2) with irreducible

nontrivial G,-submodules Z; of clx(Z(M¡)), i = 1,2. Let (a, S) be a crit-

ical pair, and let the order be chosen so that Zg is an FF-module for Gg

with ZaMg/Mg offending. Then by (2.8)(ii) the type of (a, 6) is not (2, 2)
or (1,2); and it is not (2, 1) either: by (2, 7) the group ZgMa/Ma act-
ing quadratically on Za would have order at least 34, being contained in

Oi(Ga,a+x/Ma), which is certainly impossible. Hence its type is (1.1), and

again Zx is an 8-dimensional spin module for Gx . Let a - 1 be any vertex

of T adjacent to a different from a + 1. Then, since (a - 1, ô - 1) is not

critical, Za_i is contained in Mg-i , hence in Gg and moreover [Zg, Za] =

[Zg , Oi(Gs,ô-\)] = [Zg, ZaZa-i] by (2.7)(iii). In particular, [Zg, Za-{\ < ZQ .
Since a - 1 was chosen arbitrarily, we get [Va, Zg] < Za for the Ga-module

Va = (ZG_X). Hence Ga acts trivially on Va/Za, and hence also Gx2 on

Z2/Zx n Z2. Now by (2.3), Z2 must be contained in Zx , which is clearly
impossible.

Assume finally G2 < N(Z). Then iïx(Z(S)) = £lx(Z(M2)), and we pick

irreducible nontrivial G,-submodules Z, in Q1(Z(M,-)) for i = 1, 3,4. Con-
sider the graph T = T(l, 4) first. Let (a, ô) be a critical pair. We want to

show that Zx is an FF-module for Gx, which must be a natural 7-dimensional

module then by (2.7)(ii). Hence assume, there is no critical pair of type (1,1)

and (a, S) is of type (1,4) or (4,1). Then Zx is still quadratic and the

result follows from (2.7) and the action of Gi2 on Zi . Hence we may assume

(a, ô) is of type (4,4), Z4 is an orthogonal module for G4 by (2.6) and the

action of G24 on Z4 , and ZQ and Zg both offend on each other by (2.6)(iii).
Now the same proof as in the case G4 < N(Z) implies G4 centralizes

(Z[G")/Z4. But this contradicts the action of Gi4 on Z\/Z\ n Z4. Hence

indeed we have Zj a natural module for Gi.
Consider now the graph I" = T(l, 2) with the same Z¡, and Z2 the central-

izer of S on Zi . Then pick a critical pair (a, 6), it must have type (1,2) or

(1, 1). The second case, however, contradicts (2.7), hence the type is (1,2).

Assume d = 1. Then [[Zx, Af2], Zx] = 1 and all noncentral G2-composition

factors of M2 axe quadratic, hence 13-dimensional by (2.8). If, however,

d > 3, then V2 = (Zx) is abelian, and Va+X and Vg act quadratically on each
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other. Again, (2.8) tells that all noncentral G2-composition factors on V2 axe

13-dimensional. Let V be a minimal nontrivial Gi2-submodule of V2. Then

by what we just said and the action of Gi2 on the 13-dimensional fundamen-

tal module the noncentral Gi2-composition factor of V is 4-dimensional. But

inside Zx, we see a 6-dimensional submodule with 5-dimensional noncentral

composition factor. This contradiction finishes the proof.

(3.9) A is not

2 3
Q-Q

ö-ö
1 4

Proof. Assume the contrary; clearly (**) holds for all X,, hence at least one

rank 2 group of type Ax(3) x Ax(3) is involved in the parabolic system, and

we know immediately the types of G,■■, i = 1,... ,4. Without loss Gx is

of type ^3(3) and G2 is of type C3(3) by the structure of Xi4 and (1.7).

Also by (1.7) and the structure of Xxi, and X24, we get Gx = G3 = Spin7(3)

and ~G2 = G¡ = PSp6(3). Clearly M,■ ¿ 1 for 1: = 1, 2, 3, 4 since Sylow
3-subgroups of B^(3) and C3(3) are not isomorphic. Also QX(Z(S)) < M¡ for

all i, and finally G, < N(Z) can be true for at most one i.

Assume G2 ̂  N(Z) and G4 ̂  N(Z). Then consider the graph T(2, 4) with

Z, = Qx(Z(Mj)). We immediately get a (quadratic) FF-module for G2 or G4

and hence by (2.8), noncentral composition factors of, say, Z2 are isomorphic

to the 13-dimensional fundamental module V for G2 , moreover an offending

subgroup is contained in the unipotent radical U of a line stabilizer P. By

(2.1), and since no transvections are reduced on by G2 , also U satisfies (FF)

on V . This is impossible, since P fixes a point on V .

Hence assume G2 < N(Z). Then consider the graph T(l, 4). Let Z, be

irreducible G,-submodules of ¿ix (Z(M¡)), / = 1, 4, and let (a, ô) be a critical

pair. By (2.8), the type is not (4,4). By (2.7), Zx is a spin module for Gx ,
and hence again by (2.7), and the structure of Ot,(GX4/M4) , we get that the

type of (a,ô) is (1,1). Therefore again [ZaZa-X, Zg] < Za follows, and

hence Ga acts trivially on (Z^_x)Za/Za, a contradiction to the action of G)4

on z4/zx n z4.

4. Parabolic systems that are not strong

In this section, we consider parabolic systems in characteristic 3 that do

not have to be strong any more. That means, X,¡ of type D is allowed. The

following lemma will be used later in the proof of Theorem B, but also indicates

why we may restrict our interest to the case of connected diagrams.

(4.1)   Lemma. Let {Xx,X2,X-¡} be a parabolic system in characteristic 3 in

G with diagram

1      2      3
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i.e., m(l, 2) = m(l, 3) = 2 and m(2, 3) > 2. Then the parabolic system is
strong.

Proof. Assume by way of contradiction that XX2 is of type D. Of course, we

may assume X¡ = X¡ for i = 1, 2, 3 and Sg = Z(G) = 1. Then Xx is not
contained in X2i and clearly X23 has index 4 in G. Let K be the largest

normal subgroup of G contained in X2i, then S ¿ K, and even PSL2(3) is

a subgroup of XXK/K. Since 0$(X2i) is not contained in K, there is x £

Oî(X2î) < 0¡(X2) = Oy(Xi) not contained in K . This contradicts the structure

of Xx.

If X is a parabolic system in characteristic 3 in a group G having a diagram

A that is not connected, then we may apply a version of Theorem (1.3) to get

a decomposition of 03(G) corresponding to the decomposition of A.

Consider now a parabolic system X in characteristic 3 in the group G that

is not strong, i.e. there are i, j in the diagram A such that X¡j is of type D,

and assume A is connected. Then it is interesting, how the vertices i, j axe

"embedded" in A.

(4.2) Lemma. Let {XX,X2,X3} be a parabolic system in characteristic 3 in

G, with connected diagram A and Xn of type D. Assume SG — Z(G) — 1.

Then XX2 = X2^ and one of the following holds:

(a) m(l,2) = 4 and Xx2  is isomorphic to PSp4(3),  Z3 x PSp4(3), or
<74(3). _

(b) m(l, 2) = 6 and Xx2 is isomorphic to G2(3) or 3Z)4(3).

Proof. As already used in the proof of (3.3), work by Timmesfeld [Tim7] shows

that XX2 and X2i act trivially on 0^(XX2) (resp. 0^(X23)). Now inspection

of the outcome of [Tim7, Theorem 1] gives the desired result.

It should be mentioned that unless Xx2 is of type G2(3) or PSp4(3), the

types of the X, (i.e., the labelling) is uniquely determined in (4.2).

We come now to the proof of Theorem B.

Theorem B. Let X = {Xi, ... , Xn] be a parabolic system in characteristic 3

in G, with connected diagram A, « at least 3. Then either the system is strong

(and A is spherical by Theorem A) or A is one of the following:

(i) a complete bipartite graph with only triple or only double bonds

(Ü)

o-o-. -o==o    ,      r,s>2,
12 r r+\

hence of type Y(r, s) in the notation o/[St].

Proof. We may assume X  is not strong.   Then assume first that there is a

triple bond contained in A, say m(i, j) = 6 for some i, j £ A. Let k be an

arbitrary vertex in A different from i and j .

Claim the subdiagram on {i, j, k) is either

(1-c D    or   (i-ii-ri
k j i k
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The claim follows from (4.2), if k is connected to i or j in A, since the

subsystem {X,, Xj, Xk} is not strong by Theorem A. Hence, by way of contra-

diction, we may assume k is at distance 2 from {/',/'} in A. Thus, we have a

vertex ueA, connected to i or j and to k, while k is connected to neither

/ nor j . Clearly, by Theorem A, the system {X¡, Xj, Xk, Xv} is not strong,

and also the system {X,, Xj, Xv} is not strong. Without loss, the diagram on

{i,j, v} is

(>-cF==n

i j V

and hence also the system {Xv , Xj, Xk} is not strong and its diagram is also

(i-o-n
j v k

Hence the diagram on {i, j, v , k} is

o-ti-ti-í)
i j v k

and we get a contradiction to (4.1).
This contradiction proves the claim and it follows that all bonds in A are

triple bonds, every vertex being adjacent to either i or j, and by (4.2) case (i)

follows. So we may assume there are no triple bonds contained in A. If there

are no single bonds either contained in A, then the same argument as above

gives case (i) again.

So we may assume there are single bonds contained in A. Let /, j in A

such that the Xy is of type D. Then i and j are connected in A by a path

(i,k, ... ,v , j), and by (4.1 ) and (4.2) we have the subdiagram

o=o=o
k      j

Consider the graph A got from A by first removing all single bonds, then all

isolated vertices.
Claim: A is a star with central vertex k .

It is clear that A is connected, since A does not contain subdiagrams of type

o=o-..—o=o

or circuits. The corresponding subsystem would have to be strong, contradicting

Theorem A.
For the same reason, for v , w , in A that are no adjacent in A, we also have

miv, w) = 2 (they are not adjacent in A), and hence the above argument

shows that A is a complete bipartite graph with only double bonds. Let t be a

vertex in A-A that is adjacent to some « in A. Certainly, « is contained in

a subdiagram of type

0=0=0   or   0= =0= =0
h x y x h y

in A. In the first case, by (4.1), m(t, x) = 3 or m(t, y) = 3, both contradicting

Theorem A. Hence A contains a vertex h, that is not at distance 2 from any
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other vertex of A, hence A must be a star, and clearly k must be the central

vertex, hence the claim follows.

Moreover, k must be equal to « . This implies that any vertex in A-A that

is adjacent to some vertex in A, is adjacent to k and to no other vertex. But

since A does not contain triangles nor subdiagrams of type £3 by Theorem A,

we also get that t was unique. But now A-A is a connected subdiagram of A

containing only single bonds, and hence is spherical by (4.1) and Theorem A.

If it is of Type Ar, we get conclusion (ii).

Hence assume it is of type Dx or Ex , then however A contains a subdiagram

of type Bf, a final contradiction.

Let still X = {Xx, ... , Xn} be a parabolic system in characteristic 3 in G,

that is not strong, but has a connected diagram. We want to say a bit more on

these systems.

(4.3) Assume some Xy is isomorphic to 3Z)4(3). Then A is a star. If j is the

central vertex of A, Xj is of type L2(21) and Sq = SXjk for all j ^ k.

Proof. Any connected subdiagram on {i, j ,k), say, looks like

o—<.y^ED
j k

by Theorem B, and is clearly not strong, hence Xj is of type L2(21). Obviously,

A is a star with central vertex j. By (4.2), SX¡¡ = SXjk for all k / j, hence

this group is normal in G.

(4.4) Assume some Xy is of type G2(3). Then Sg = SXiJ for all i^j adjacent
in A.

Proof. Easy application of (4.2).

(4.5) Assume A is a complete bipartite graph with only double bonds involved.

Assume some Xy is of type 2^3(3). Then A is a star, with central vertex j,

say, and Xj is of type Ax(9), and Sg = SXjk for all k ¿ j.

Proof. Same as (4.3).

Let us fix some notation for the rest of the paper. Recall that the parabolic

system X is defined on the index set / = {1, 2, ... , «}. For any nonempty

subset J of / we set Xj = (X,■, i £ J), and Qj = SXj . If J consists of all
vertices of / but i, we set (as in §3) G, := Xj and M, = Qj .

(4.6) Let A be of type Y(r, s), r, s > 2. Let J = {1, ... , r} and J¡ =

J U {r + i} for all i < s. Then all groups Xj are of the same type (Br+X (3),

Cr+X(3) or 2^2r+1(3)), and SG = SXj for i= 1,2, ... ,s.

Proof. We may assume Sq = Z(G) = 1. Since A is not spherical, the system

is not strong, and hence obviously Xr+i,r+j is of type D for all 1<;/j<j.

The type of X~ji is clearly determined by the system {Xr, Xr+X} (for the case

B/C see (1.7)), hence by (4.2) independent of i. For the last claim, assume

SG = 1. We may assume í = 2. Consider first the case r = 2 .

We have to show M3 = M4 = 1 . Assume M^M4 > M4. Then M^M4 is a

normal 3-subgroup of XX2, hence is contained in Qx2 and equals Qx2, unless

G3 and G4 are of type B^(3). But Af3 < Q4 = ß3, since the system is not
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strong, and we get a contradiction, if M^M4 = Qx2, because in G4 we see that

QX2/M4 is not contained in Qi/M4 .

Hence we may assume G3 and G4 are of type 53(3) and M^M4 is the

unique A^-invariant subgroup of ßi2 with Af4 < M3M4 < Qx2 .

Assume Af3 < Mx. Then M^M4 is contained in MXM4 = Q23 and ß]2, a

contradiction to the above.

Therefore, we may assume M3 -f. Mx , hence M^MX/MX has order 3 by (4.2).

Since Af3A/4/M3 = M4/M^C\M4 is a nontrivial Xi2-module, we have nontrivial

action of Gi on M¡ for i = 3, 4, and of course also for / = 1. We again

apply the amalgam method to get a contradiction.

Assume first Gi < N(Z). Then by the discussion above QX(Z(S)) =

Qi(Z(A/i)) and we consider the graph T(3,4) with irreducible nontrivial sub-

modules Z, of Qi(Z(M¡)), i = 3, 4. Without loss, Z3 is an FF-module for

G3, and hence a natural module by (2.7).

Consider T(3, 2) with the natural module Z3 and Z2 contained in Z3.

Then a critical pair (a, ô) is of type (3, 3) or (3, 2) by the choice of Z2. But

type (3, 2) is impossible, since 03(G3,2) = M2 , while type (3, 3) contradicts

(2.7)(iv). Hence we may finally assume Gx ^ A(Z) and also G4 -f. N(Z).

Consider T(l, 4) with Z, = Q,(Z(M,-)), i = 1, 4. Let (a, a) be a critical
pair. Then it is not of type (4, 4) by (2.7), (1.9), and (1.6). But if it is of type
(1, 4) or (4, 1), then transvections are induced on the quadratic module Z4

and we get a contradiction, by (2.7).

Hence it is of type (1, 1), and the usual argument yields that V4/Z4 is

trivial for G4 , contradicting the action of X23 on Zx /Zx n Z4 . This finishes

the case r = 2, and we use induction on r, still s — 2. But now clearly

Mr+2 < 02,...,r,r+i = Mx and also Mr+i < Mi, and we get Mr+X = Mr+2 = 1

as in the case r = 2.

(4.7) Let A be a complete bipartite graph with only double bonds involved. As-

sume Xjj is of type C2(3) for some i, j. Then \SXlJ '■ Sq\ < 3.

Proof. We may assume Sg = Z(G) = 1 . For « = 3 , this is contained in (4.2),

so consider the case « = 4 next. Assume first A is

ö= =ö
1 4

Then we may assume without loss |ß23 : Mx\ — 3. Also \Qu : Mx\ = 3 and

\S : Mx | = 35. Now, X¡ is isomorphic to SL2(3), and Xx2 = X23 = X34 S X4X ,

hence M4 = Qx2 = ß23 and M2 = Q34 = Qx4. Therefore, Mi is contained in

M2 and M4, and also Af3 < M2 n M4 . So, since \M2M4 : Mx\, \M2M4 : M3|

are at most 32, we have either Mx = M3, or Mx M3 = M2nM4 . In both cases,
Mi M3 = Sg = 1 • The claim follows. Assume now that A is

1 4 3

and assume Mi < M2. Then clearly Mi M2 = Q34, and if M2 < M¡ , then

\S: Mi\ = 34, and also Mi = Q24, whence M3 < A/j .   Now M2 = Mz or
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M2M3 = Mx, so in any case M2M3 = Sg = 1 and again the claim follows.

Hence assume finally in rank 4 that for all pairs (i, j) with i, j different

elements of {1,2,3} we have M, < Mj and M¡ < M¡. Then, however,

Mj n Mj < Mk for {/, j, k} = {1,2,3}, and therefore M¡ n Mj n Mk =
Mj n M, for all choices of i, j. Hence Mx n M2 n A73 is normal in G, and

A/, n A/,• = SG = 1. But now the action of G4 on M4 gives a contradiction.

Thus we are lead to « at least 5.

For given /*, j we pick three more vertices 1,2,3 in A, by the above

\Qij '■ Mk\ < 3 for k = 1, 2, 3 . If now Mx is contained properly in M2 , then
also Mi is contained properly in M2, and we get the claim Af2 = MXM3 —

Sg = I ■ But if no Mk is properly contained in M„ for any different k, h in

{1,2,3}, then we get ß,7 = MXM2 = MXM3 = M2M3 = SG = 1, again the

result.
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