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ON DUBROVIN VALUATION RINGS IN
CROSSED PRODUCT ALGEBRAS

DARRELL HAILE AND PATRICK MORANDI

Abstract. Let F be a field and let V be a valuation ring in F. If A is

a central simple F-algebra then V can be extended to a Dubrovin valuation

ring in A . In this paper we consider the structure of Dubrovin valuation rings

with center V in crossed product algebras (K/F, G, f) where K/F is a

finite Galois extension with Galois group G unramified over V and / is

a normalized two-cocycle. In the case where V is indecomposed in K we

introduce a family of orders naturally associated to f, examine their basic

properties, and determine which of these orders is Dubrovin. In the case where

V is decomposed we determine the structure in the case of certain special

discrete, finite rank valuations.

0. Introduction

Let F be a discrete valuation ring in a field F and let K/F be a finite

unramified Galois extension with Galois group G (say). Let W be the integral

closure of V in K. In [H] the first author initiated a study of a certain family of

orders over V in crossed product algebras iK/F, G, f). If the two-cocycle /

takes its values in W then one can form in the obvious way a "crossed product

order" Yl Wxa Ç £ Kxa = (K/F, G, f). It turns out that these orders have

many interesting properties. For example they are primary with an explicitly

described radical. Moreover they are a sufficiently large family to include, up
to a suitable notion of equivalence, all of the maximal orders over V, in the

case where the residue field of V is perfect.
In 1982 Dubrovin in [Dx] defined a notion of valuation ring inside an ar-

bitrary simple Artinian ring. These Dubrovin valuation rings have many prop-

erties in common with maximal orders over discrete valuation rings. In par-

ticular the Dubrovin valuation rings with center a discrete valuation ring V

axe precisely the maximal orders over V. In [MW] Morandi and Wadsworth

investigated Dubrovin valuation rings over V in (K/F, G, f) where V is

an arbitrary valuation ring unramified and indecomposed in K . Among other

things they showed that any Dubrovin valuation ring B is integral over V and

that its residue ring B/J(B) is a crossed product algebra. This work gave sim-

pler proofs of many results on the structure of division algebras over henselian
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valuation rings. If V is discrete of rank one this case is the same as that

considered in §2 of [H], but the viewpoint of the two papers is quite different.

In this paper we consider Dubrovin valuation rings over F in a crossed

product algebra (K/F, G, f) where V is any valuation ring of F which is

unramified in K. In doing so we combine the viewpoints of [H and MW], and

extend the results of both papers. Although even in the case of a perfect residue

field the resulting orders do not include all of the Brauer classes as was the case

in [H], the class of algebras we consider contains many interesting examples.

In fact many constructions in the theory of simple algebras have used such

examples.

To describe our results let F be a valuation ring of a field F and let K/F

be a Galois extension in which V is unramified. Let W be the integral closure

of F in Tí and let G = Qal(K/F). Let / G Z2(G, Kx) be a normalized two-

cocycle. The first section of the paper contains some necessary preliminaries.

In §2 we consider the case where V is indecomposed in K. As in [H] we

introduce a special family of orders. Let Y be a finite set of overrings of V,

each overling properly contained in F, and assume V e Y. We may write

Y = {Vx, V2, ... , V„) where V = V„ ç Vn_x C ■ ■ ■ ç Vx ç V0 = F. Each
V, is indecomposed and unramified in K. Let W¡ be the unique extension

of Vi to K. Let Hi = {a G G\f(a, a~x) £ Wx). We say / is standard
for Y if for each i, f(H¡ x H¡) ç Wi+X . It turns out that every cocycle

is cohomologous to one that is standard for Y. Now assume / is standard

for Y. It turns out that in this case the sets 7/, are in fact subgroups of G.

For each a G G we select an overring Wa in Y as follows: If a G Hn we

let Wa = Wn = W. If a G 77, - 77,+1 where i < n then we set Wa = Wi+X.

We then set Bf = J2 Waxa. It turns out that for every choice of Y and

every cocycle / standard for Y the set Bf is a ring and in fact a F-order in
(K/F, G, f). We call this the standard crossed product order for / (and Y).

This family of orders is very well behaved. For example each Bf is a primary

ring with an easily described radical. Part of the interest in this family lies
in the fact that in the case where V is discrete and finite rank any Dubrovin

valuation ring over V in (K/F, G, f) is conjugate to such an order. The main

results in §2 are Theorems 2.14 and 2.17 in which we determine which standard

crossed product orders are Dubrovin valuation rings. The determination is in

terms of conditions on the values of the cocycle and the relations between the

subgroups 77,. To give an idea of the sort of conditions that arise consider

the special case where Y consists of V alone. If / is standard for Y then

there is only one nontrivial subgroup H = {er G G\f(a, a-1) G Wx}. As in

[H] we introduce the partial order on the coset space G/H given by oH <xH

if f(a, <7~'t) g Wx . In Theorem 2.14 we prove that the corresponding order

Bf = lZ Wxa is a Dubrovin valuation ring over V if and only if H is a

normal subgroup with cyclic quotient and there is a distinguished generator

a H of G/H satisfying two conditions: f(o, o~x) G J(W) - J(W)2 and the

partial order is the chain H <aH < a2H <■• < ak~xH where k = \G/H\.

This is a generalization of Theorem 2.3 of [H]. The arguments make heavy use

of the notion of a value function as introduced by Morandi in [M].

In the third section we consider the case where V is unramified in K but

not necessarily indecomposed.   This case turns out to be considerably more
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complicated and we restrict our attention to those valuations that are discrete

of finite rank. Let W be the integral closure of V in K. It turns out once again
that a Dubrovin valuation ring in the crossed product algebra (K/F, G, f) =

Y2 Kxa is conjugate to an algebra of the form B = £ Waxa where each Wa

is an overling of W contained in K. The aim is to determine the Wa and

to see what one can say about the group G and the values of /. Part of

the difficulty arises from the fact that unlike the indecomposed case B is not
necessarily integral and so the theory of value functions does not apply. Each

Wa is a Prüfer ring and thus equal to the intersection of the valuation rings

that contain it. We first prove that the determination of the rings Wa can be

reduced to the determination of the single ring Wid. We say a prime ideal

P of W belongs to B if WXd is contained in the valuation ring WP. If P

is any prime ideal of W we let D(P) denote its decomposition group and

H(P) = [a G D(P)\f(a, a~x) g" P}. We prove two basic facts about these

groups: If P is a prime of height i belonging to B then 77(P) acts transitively

on the set of primes of height i + 1 that belong to B and if Q D P is a height
i+l prime belonging to B then the group 77(0 is normal in D(Q)C\H(P) with

cyclic quotient generated by a coset oH(Q) satisfying two conditions similar

to those described above. Again these results generalize §3 of [H]. Along the

way we once again give an explicit description of the radical of B . One of the

ideas in the proofs is to show that one can find for each prime P a Dubrovin

valuation ring "related" to B that satisfies the conditions of §2. This allows us

to apply the results obtained there to B . We end with an example in rank 2.

1. Preliminaries

We begin this section with a brief introduction to Dubrovin valuation rings.

First recall that a ring B is primary if the Jacobson radical J(B) is a maximal

ideal of B , that is B/J(B) is simple. The ring B is said to be Bezout if every

finitely generated one-sided ideal of B is principal. A Dubrovin valuation ring

is a prime PI ring B which is primary and Bezout. For brevity we will often

refer to such a ring simply as a valuation ring. Let S be the simple Artinian ring
of quotients of B. It is shown in [D, , D2] that BZ(S) = S, BnZ(S) = V

is a valuation ring of Z(S), and two-sided ideals of B axe linearly ordered

by inclusion, as are overrings of B in S. Furthermore if A is an overring of

B in S, then A is a valuation ring, A = BZ(A), J(A) ç B, and B/J(A)
is a valuation ring of A/J(A). If 5 is a central simple F-algebra and V a

valuation ring of F, it is shown in [D2, §3, Theorem 2] and [BG, Theorem

3.8] that there is a valuation ring B of S with B n F = V. Also any two

valuation rings of S with center V axe conjugate [W, Theorem A]. For a fuller

introduction to valuation rings see [W].

Let F be a valuation ring of a field F and K a finite Galois extension

of F with Galois group G. Let W be the integral closure of V in K. In

this paper we will only consider the case where V is unramified in K, that

is for all maximal ideals M of W, the ramification index of WM over V is

one, the residue extension WM/J(WM) over V/J(V) is separable and K/F is
defectless with respect to V (so Y.M[WMIJ(WM) : V/J(V)] = [K : F]). It
follows that WM/J(WM) is Galois over V/J(V) [E, 19.12]. If in addition V
is indecomposed in K, that is W is a valuation ring, we say K/F is inertial
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with respect to V. The ring W will be of considerable importance in this

paper, so we mention some properties that will be used throughout. Because

F is a valuation ring, IF is a Prüfer ring. Hence any localization of W at

a prime ideal is a valuation ring, and the extensions of V to K axe precisely

the localizations of W at its maximal ideals. Furthermore because K/F is

finite, W is semilocal. Every overring of IF in AT is also Prüfer and is a finite

intersection of localizations of W. Proofs of these statements can be found in

[E, 11.9, 13.4, 13.7].
Let / G Z2(G, Kx) be a normalized two-cocycle and X = (K/F, G, f) the

corresponding crossed product algebra. Thus we have X = Y2aeG Kx„ where

multiplication is given by xaa = a(a)xa for all a G K andxCTxT = f(a, x)xaT

for all a, x e G. With K as above, if B is a valuation ring of X lying over

V then we want to show that a suitable conjugate of B can be written in a

form compatible with the decomposition X = Yla€G Kxa and that the precise

structure of B can be obtained from K/F and /. The following lemmas give

the foundations for determining B .

Lemma 1.1. If V is unramified in K then for every a G G - {1} and every

maximal ideal M of W there is an x eW such that a(x) - x 0 M.

Proof. Let D(M) = {a e G\a(M) = M}, the decomposition group of M. If

ct £ D(M) then a(M) ^ M, so there is an x G M such that a(x) 0 M and

so a(x) - x g M. Now suppose a G D(M). Because K/F is unramified, the

inertia group I(M) = [a G D(M)\a(x) = x for all x G WM} is trivial, where

WM is the localization of W at M and x = x + J(WM). Thus if a ^ 1, there

is an x G W such that a(x) ^ x , hence a(x) - x g M.   D

It follows from this lemma and [DI, Chapter III, Theorem 1.1] that W/V is
a Galois extension of rings.

Lemma 1.2. The ring W is a finitely generated V-module. There is a valuation

ring B ofl, lying over V with W ç B.

Proof. Because K/F is unramified, hence defectless, we have

Y}Wm/J(Wm) : V/J(V)] = [K : F].
M

Thus by [E, 18.6] IF is a finite F-module.
Let B be a valuation ring of X lying over V . Because BF = X and B is a

Bezout ring, the finitely generated S-module WB is principal, say WB = xB.

Because 1 G WB, we have x G Xx . Thus xB = WB = W(WB) D Wx, so

W ç xBx~x , another valuation ring lying over V.   D

This lemma was discovered independently by Westmoreland [We].

If B is a valuation ring of X containing W then B is a W- W submodule

of X. The following lemma is the first step towards describing B .

Lemma 1.3. If T is a W-W submodule of X then T = ^J€C(rn Kxa). In
particular if B is a valuation ring of X lying over V and containing W, then

B = YlaeG I°x° ' wnere eacn 7(7 is a W-submodule of K.

Proof. Let Ta = [a G K\axa G T} , a IF-submodule of K . Clearly 5Z Taxa ç
T. To show equality let Y*a a°x° e P ■ ^e need to show a„xa G T for all

rj . Suppose this is false and that r is minimal with t = ¿~Z,r¡=i a<Jixo¡ G T, but
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not all aa¡ in Ta¡. From the minimality it follows that aa¡ g Ta¡ for all i. Let

I = {w G W\waaixa¡ G T} , an ideal of W. Because I ^ W there is a maximal

ideal M of W such that I ç M. By Lemma 1.1 there is a u g W such that

<7i(m) - a2(u) $. M. Thus

a2(u)t -tu = (a2(u) - ax(u))aa,xa, + (a2(u) - a3(u))aa}x„}

+ ■■■ + (o2(u) - Or(u))aa,Xor G T.

By the minimality of r we obtain (a2(u)-ax(u))aa¡xa¡ G T, so (cr2(M)—ci(m)) £

7 ç M, a contradiction.   D

From these lemmas we see that there is a valuation ring B of X that con-

tains W and so decomposes into B = Y2a€G Iaxa ■ The task of describing B

thus reduces to describing the Ia. The following simple lemma will be used

repeatedly.

Lemma 1.4. If a G G, then IaIa(j_,fi(a, o~x) ç 7id. If all the Ia are rings, then

f(a,a~l)elid.

Proof. Because B is a ring, (Iaxa)(Ia-¡xa-i)clid. Because xaxa-\=f(a, o~x)

we see that IaI"a-\f(o, c_1) Q hd- If ah the Ia are rings, then f(a, a~x) G

IaP-J(c7,o-x)çlid.   D

Notice that this lemma implies that 7¡d is an overring of W and that for

all a G G and all bel"-, we have Iabf(a, a~x) ç 7id, so in particular Ia

is a fractional ideal over 7¡d . In the case where F is a discrete valuation ring

the valuation ring B is necessarily finitely generated as a F-module. It follows

that 7id = W and each Ia is a finitely generated IF-submodule of K and so

principal over W, because IF is a principal ideal domain. If Ia = c„xa for

all a e G, then by replacing / by the equivalent cocylce g corresponding to

replacing xa by caxa we can assume B = YlaeG Wxa . For general valuation

rings such a nice decomposition is not always possible (see Example 2.18). How-

ever in a number of situations one can considerably simplify the decomposition

of B.
Suppose F is a valuation ring of F whose associated value group is Z®- • -®Z

(n times) ordered antilexiographically. Then the Krull dimension of V is n ,

and the overrings of F in F are V = V„ ç V„-\ C ■ ■ ■ C Vx ç F where V, is

a valuation ring with value group Z' (so Vx is a discrete valuation ring) and

Vi+x/J(Vi) is a discrete valuation ring of the field Vi/J(V¡). We will call V
a discrete rank n valuation ring. For such a V not all F-submodules of F

axe principal over V , but any such module is necessarily principal over V¡ for

some i, as the following lemma shows.

Lemma 1.5. Let V be a discrete rank n valuation ring of F. If I is a V-

submodule of F, then I = cU for some overring U of V.

Proof. We use induction on n = dim(F). If n = 1 then F is a discrete

valuation ring and the result is well known. So suppose n > 1 . If I = F we

are done, so assume I ^ F . If Vx D V is the rank one overring of V , then Vx

is a discrete valuation ring, so IVX = dVx for some d e Fx . By replacing I

by r7_17 we may assume IVX = Vx. Then by the linear order of F-submodules

we see that J(VX) C I. Thus I/J(VX) is a F/7(Fi)-submodule of VX/J(VX).
By the induction hypothesis I/J(VX) = cT for some overring T of V/J(VX).
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Let U = {x e Vx \x e T} , an overring of V. If c e Vx is any preimage of c,
then c is a unit in Vx and so J(VX) Cell. Hence I = ell.   □

Lemma 1.6. Let V be a discrete rank n valuation ring of F, K/F a finite

extension and W the integral closure of V in K. If S is an overring of W in

K and I is an S-submodule of K, then I = cU for some overring U of S.

Proof. By [E, 13.7] S has only finitely many maximal ideals, say Mx, ... , Mr.

Because / is a torsion-free S-module, / = OjISm, ■ By Lemma 1.5, ISm, =

CiUi for some overring [7, of Sm, • By relabeling if necessary we may assume

Ux, ... , Ut axe the minimal rings among the U¡. Then I = f]'i=l IU¡. We want

to apply Ribenboim's approximation theorem [R, §E, Theorem 3] to obtain an

element x e K such that x = c, mod c¡J(U¡), 1 < i < t. To do so we need to

show Ci - Cj e CjJ(Ui)U¡j = CjJ(Uj)Uij for i ^ j, where U¡j = U¡Uj. Because
the Ui are pairwise incomparable, U, and U¡ are proper subrings of U¡j and

so

c,J(U,)U,j + c,U,j = IUtj = CjUij = CjJ(Uj)Uij

and c, - Cj e IU;¡. Hence such an x exists and so for each i, x = c,(l + m,-)

for some m¡ e J(U¡). Thus xU¡ = c,U¡. Therefore we obtain

t

I = Ç]lUi = f]c,U, = f]xU, = x (f| Ui) = xU,
i=i

where U is the overring P) Î7,-.   D

We now summarize what we have learned about valuation rings over discrete

rank n valuation rings in crossed product algebras.

Proposition 1.7. Let V be a discrete rank n valuation ring in a field F . Let K/F
be a finite Galois extension in which V is unramified and let G = Gal(K/F). Let

W be the integral closure of V in K and let f e Z2(G, Kx) be a normalized

two-cocycle. There is a valuation ring B in (K/F, G, f) and a cocycle f

cohomologous to f such that if (K/F, G, f) = YlKxa then B = Y^Waxa
where Wid is an overring of W and each Wa is an overring of Wid .

Proof. We have already seen that there is a valuation ring B in (K/F, G, f) =

Y2 Ky„ such that B = Y, hya where 7¡d is an overring of W and each Ia is

an 7¡d-submodule of K . By Lemma 1.6 we can write Ia = caWa where ca e K

and Wa is an overring of Wid = I,d . Hence by replacing / by the cocycle /'

corresponding to replacing ya by xa = caya we obtain the desired form.    D

2. Indecomposed case

In this section we consider the case where the valuation ring V is indecom-
posed and unramified in K. For each cocylce we will construct a natural set

of orders which in the discrete, finite rank case contains a valuation ring for

that cocycle. We will also show how to determine which of these orders is a

valuation ring.

Let F be a finite set of overrings of V , each properly contained in F , and

assume Y contains F. Because the overrings are linearly ordered we may

write Y = {Vx,V2,...,Vn_x,Vn} where V = V„ ç F„_, ç . •. ç F, ç V0 = F .

Because V is indecomposed and unramified in 7<", it follows that each  V¡ is
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also indecomposed and unramified in K. Let W¡ be the unique extension of

V¡ to K (and let Wo = K). Let f:GxG^Kx be a (normalized) two-cocycle.

For each /, 0 < i < n , let 7/, = {a e G\f(a, a'1) e Wx} (note that H0 = G).

Definition. The cocycle / is said to be standard for Y if for all i, 0 < i < n-l,

f(H¡ x Hi) C Wi+i (and so ç Wi+x\J(W¡)).

Lemma 2.1. If f is a standard cocycle for Y, then for all i, 0 < i < n, 77, is

a subgroup of G.

Proof. We proceed by induction on i. If / = 0 there is nothing to prove. Now

assume i > 0. Let a, x e H,. We have the cocycle identities:

f°(o-x,x)f(o,o-xx) = f(o,o-x),

P(x-X,a)f(x,x-Xa) = f(x,x-X),

f°(o-xx, x'xa) = f(a,a~{x)f(x, x~la).

Because 77, ç 77,_i and 77,_i is a subgroup by induction, all the values in

these identities lie in W¡. Because f(a,a~x), f(x,x~x) are units in W¡, it

follows that f°(o~xx, x~xa) is a unit, so o~xx e Hi. Hence 77, is a subgroup

of G.   U

We want to show that every cocycle is equivalent to a standard one. We need

the following lemma.

Lemma 2.2. Let K/F be a finite Galois extension with Galois group G. Let

R2 C Rx be valuation rings with field of fractions F and assume R2 is unram-

ified and indecomposed in K. Let S¡ be the extension of R, in K, i = 1, 2.

Let f: G x G —> Sxx be a cocycle. Then there is a cocycle g equivalent to f

over Sx such that g(G xG)CS2.

Proof. Because S2 is a valuation ring the fractional ideal 7 generated by the

f(o, x), a, x e G, is principal, that is 7 = aS2 for some a e K. Because

f(G x G) ç Sf , we have ISX = Sx and so a € S* . Define a one-cochain a

by a(l) = 1 and a(o) = a~x for a £ G — {1}. An easy calculation shows that

g = (da)f has the desired property.   □

Proposition 2.3. Every two-cocycle is equivalent to one that is standard for Y.

Proof. Let f = fo- We will construct a sequence of cocycles f\, f2, ... , f„
such that for each i, 1 < i < n — 1, the following two properties are satisfied.

(1) The cocycle f is equivalent to f-X over W¡x_l , that is there is a one-

cochain a: G —» Wflx  such that f = (da)f_x .

(2) We have ¿(TV,., x 77,_,) C IF,, where 77,_, = [a e G\f(a,o'x) £

It will then follow that /„ is equivalent to / and standard for Y .

To do the first step of the construction, apply Lemma 2.2 to obtain a cocycle

fx equivalent to / over Kx with fx(G x G) ç Wx . Then fx is standard for

Wx . This finishes the first step of the construction.

Now let i be chosen, 1 < i < n - 1, and assume we have constructed

f\, h, ••■ , f satisfying the two properties. We show how to construct fi+ x .

We have f, is standard for W, and so by Lemma 2.1, Hx, H2, ... , H, are

subgroups of G. Let L be the fixed field of H,_x . We apply Lemma 2.2 to the
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Galois extension K/L and the valuation rings Wi+X n L ç W¡nL. We obtain

a cocycle fi+x equivalent to f over Wx such that f¡+i(H¡ x 77,) ç Wi+X .   D

Let / be a standard cocycle for Y. Let i be an integer, i < n - 1. Let

77 = 77,. The field extension K/KH is Galois with group 77. Moreover at the

residue level the field WX/J(WX) is a Galois extension of the field WXH /J(WX )H

with Galois group 77 and WllH/J(Wx)H is a valuation ring in WlH/J(Wx)H .
The following proposition is clear.

Proposition 2.4. Let f be standard for Y.

(a) If Yi = {Vx,V2, ... , Vi-\, V}, then f is standard for Y,.
(b) If Y' D Y is a finite set of overrings of V, each properly contained in

F, then f is standard for Y'.
(c) For all i, i < n-l, letting 77 = Hi,f\HxIi is standard for {WlH/J(Wx)H,

...,W»/J(WX)H).   D

Now let / be a cocylce that is standard for Y = {Vx, V2, ... , Vn_x, Vn).

Let Xy = lZocgKXo be the central simple crossed product algebra over F

corresponding to /. For each a e G, either a e Hn or there is a unique

integer i, I < i < n, such that a e 77,_i - 77,. We will call i the height
of a (so we do not define the height for elements of 77„). If a e H„ we let

Wa = Wn and if a £ H„ we let W„ = W¡, where i is the height of a . Form

the subset Bf of X/ given by Bf = J2o€G Waxa. Note that Bf depends on
Y and not just on / but the notation should not be confusing.

Recall that a F-subalgebra 7? of X is called an order over F if RF = X
and 7? is integral over V.

Proposition 2.5. Let f be a standard cocycle for Y. The set Bf is an order
over V in Xy.

Proof. We have to show Bf is a ring and integral over F (it is then clear that
it is an order).

To show that Bf is a ring it suffices to show that if a, x e g then W„xa WrxT

ç Wazxaz. This in turn reduces to showing that Wa WTf(o, x) ç WaT. So let

a ,x e G. If a, x e Hn the a x e Hn and Wa = WT = Waz = Wn . Moreover

f(a, x) e Wn , so the desired inclusion holds. If exactly one of a, x is in 77„ ,

say a e Hn, then ctt 0 77„ and the elements x and ax have the same height.

It follows that Wa ç IFCTT and Wx = War and f(a, x) e WaT, so again the

inclusion holds.
So we now may assume neither a nor x lies in 77„ . Let i be the height of

a , and let j be the height of x. Hence W„ = W¡ and WX = W¡ . The argument

breaks up into cases.

First assume i > j. Then ctt £ Hj_x - H¡, so IFCTT = W¡. Moreover

f(a, x) e Wj because a, x e Hj-\. The inclusion WaWxf(a, x) ç WaT is

then clear.

The case j > i is handled in the same way.

Now assume i — j. If ax £ 77, then Wa = WT = WaT = W¡ and f(a, x) e
W¡, so again the inclusion is clear.

Finally assume i = j and ax e 77,. In that case (i.e., height(fTT) > i)

Wa = Wx = W¡, but WaT ç Wi+X . However we claim that f(a, x) e J(W¡). If
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so then

WaWxf(a, t) = WJ(a, x) ç J(W,) CWnç WaT,

as desired.
To see the claim we consider the following cocycle identity:

f"(x, x-xa-x)f(a,a~x) = f(a, x)f(ax, x^a'1).

We know f°(x, x~xa~x) e Wi} f(a,a~x) e J(W¡), and f(ax, x~xa~x) e

Wx . It follows that f(a, x) e J(W¡).
It remains to show that the elements of Bf axe integral over V . By [AS,

Theorem 2.3] it suffices to show that Bf is generated as a F module by integral

elements. Hence it is enough to show that for each a e G, the set Waxa

consists of integral elements. Let a eWa . Let k be the order of a in G.

Consider

(axa)k = aa(a)a2(a) ■ ■ ■ ak~x(a)f(a, a)f(a2, a) ■ ■ ■ f(ak~x, a).

If a e 77„_i then Wa = W„ and f(am, a) e W„ for all integers m, so

(axa)k e W„. But Wn is integral over V (in fact, finitely generated) and so

ax„ is integral over V .
So assume a £ 77„_i and let i be the height of a (so i < n). Then Wa = IF,

and f(am,a)eWi for all integers m . Moreover,

f(ak~x, a) = f(a~x, a) = f°~\a, a~x) e J(W,).

Hence (ax„)k £ J(W¡) ç W„, so axa is integral over V .   o

We will refer to Bf as the crossed product order for / (corresponding to

Y). We now want to derive the basic properties of these orders.

Proposition 2.6. Let f be a standard cocycle for Y.

(a) The order Bf is a primary ring with Jacobson radical

J(Bf) = Y, J(Wa)xa + Y, WoXc
a€H„ a<tHn

(b) For each i, 1 < i < n-1, let B, = BfV¡ (so Bn = Bf). Then B¡ is the
crossed product order over V¿ corresponding to the standard cocycle f for

Y, = {Vj\j < i} and we have the inclusions Bf = BnC B„-X Ç ■■ ■ C B\.

(c) For each i, l<i<n-l, J(B¡) ç Bf.

Proof, (a) We first show that

7= Y JiWa)xa+ Y Waxa
aeH„ o£H„

is an ideal in Bf . Let Ia = J(Wa) for a e H„ and let Ia = Wa for a & H„ , so

that 7 = Y2o<eg I"*" ■ K suffices to show that for all a £ G, WaxaITxT ç Iaxxax

and IxxxWaxa ç Ixaxxa . This reduces in turn to showing that WaIxf(a, x) ç

Iax and IxWaf(x, a) ç Ixa , where we are using the fact that for each a e G,

the sets Ia and Wa are C7-stable.

We will show WaIxf(a, x) ç Iax. The argument for the other inclusion is

similar and will be omitted. If err £ 77„ then Iax = Wax and the result follows

from the fact that Bf is a ring.  So we may assume ax e 77„ .  In that case
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if a, x e H„ then Wa = W„, Ix = Iax = J(W„), and f(a, x) e Wn so the

inclusion is clear. Finally assume neither a nor x lies in 77„ but ax e Hn . It

follows that a and t must have the same height i (say) and as we saw above

in the proof of Proposition 2.5 this implies f(a, x) e J(Wi). Hence

WaIxf(a, x) = Wif(a, x) ç J(W¡) Q J(W„) = Iax.

We show next that 7 is maximal. Let 77 = 77„ . Consider

BflJ = £ W*)x* = £ w„Xa,
cr€G oeH

where W„ is the residue field of the valuation ring Wn. As we have seen W„
_rr

is a Galois extension of Wn  with Galois group 77 and so it is clear that Bf/I
_ _IT

is the crossed product algebra (Wa/Wa , 77, f\HxH) ■ In particular Bf/I is
simple, so 7 is maximal.

Finally we need to show 7 is the unique maximal ideal of Bf. Suppose T is

another ideal and suppose T is not contained in 7. Then I + T = Bf. Because

T is a Wn-W„ bimodule, we can apply Lemma 1.3 to write T = Y2aeG Taxa ,

where Taxa = T (~) Waxa . Hence it follows that Tid + 7id = W„ . This means

Fid + J(W„) = Wn . But then it follows that Fid = W„ and so T = Bf.
For (b) and (c), part (b) is clear and part (c) follows from the explicit de-

scription of J(Bi) given in (a).   D

We now want to investigate the connection between the valuation rings in

Xy lying over F and the orders we have introduced. Let /: G x G —> Kx be

a normalized cocycle. Let v be a valuation on F corresponding to V and

let T be the value group of v . Let A = F ®z Q be the divisible hull of F.
As in [MW, p. 625], we define the function w: Xy -> A by w(Y2aaaxa) =
mina{v(aa) + w(xa)}, where v is used to denote the unique extension to K

and for each a e G,

1 ""'
«(**) = -J>(/V,<7)), n = \°\-

i=l

It is shown in [MW, Theorem 2.1] that because K/F is inertial with respect to v

the function u; is a value function on Xy and the set Bw = {s e Tf\w(s) > 0}

is a valuation ring with Jacobson radical J(BW) = {s e X/|tt;(j) > 0}. It

follows that Bw = Y2aeG Naxa where N„ = {k e K\w(kxa) > 0} . In particular

Nid = W. For more details on value functions see [M, §2].

Observe that in the case where F is a discrete rank n valuation ring, it

follows from Lemma 1.5 that each Na is principal over an overring W„ of

W. Hence by possibly changing to an equivalent cocycle g we may assume

Bw = Ylo€G Waxa where each Wa is an overring of IF^ = IF . This motivates

the following proposition.

Proposition 2.7. Let V be a valuation ring of the field F and let K/F be an

inertial Galois extension with Galois group G. Let W be the extension of V to

K. Let f e Z2(G, Kx) be a normalized two cocycle and let B be a valuation

ring in the crossed product algebra X/ = Yla<zG Kxa . If B can be expressed as

B = Y2a€G Waxa where each Wa is an overring of W, then f is standard for

Y = {W0 n F\a e G) and B = Bf.
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Proof. First observe that because B is integral over F [MW, Theorem 2.1] and

Wid is assumed to be an overring of IF, it follows that Wid = W. We may
label the elements of Y so that Y = {VX,V2, ... ,Vn_x ,Vn] where V = Vn c

F„_i ç • • • Ç Vi Ç F. Let W =Wnç Wn_x Ç • • • Ç Wx Ç K be the extensions
of the Vi to K. For each i, 0 < / < n, let 77, = {a e G\f(a, a~x) e Wx} .
We now proceed by induction on n . If n = 1 then Wa = W for all a . The fact

that B is a ring then implies that f(GxG)C W and B is clearly in standard

form. Hence we may assume n > 1 . Let Bn-X = BV„-X = Y2aeG WaVn-Xxa .

Then 7?„_i is a valuation ring and for each a , WaV„_x is an overring of Wn_x .

By the induction hypothesis we infer that f is standard for Y' = Y - {V} and

7?„_i has the standard form. We claim that for all a e Hn-X, Wa = Wn . If so

then the fact that B is a ring will imply that f(Hn-X x H„_x) ç Wn and that
will complete the proof.

So let a g 77„_i . Because 7?„_i is in standard form, we know WaVn_x =

W„_x. Hence Wa = Wn or W„_x . But Waxaxa^ c IFid = Wn , so W„ D

Waf(a,a~l). If Wa = W„_x then W„ D Wn_xf(a, a~x) = Wn_x because

f(a, a~x) e Wx_x . This is a contradiction so Wa = W„ as desired.   D

Using the observations made before this proposition we obtain the following

consequence.

Corollary 2.8. Let V, F, K and f be as in the proposition with V a discrete

rank n valuation ring. Let 7 = {i7|FÇc7cF and U is a ring). If B is a

valuation ring in Ey, then there is a cocycle g equivalent to f such that g is

in standard form for Y and B is conjugate to Bg .

Proof. By Proposition 2.7 and the remarks preceding it there is a cocycle g

equivalent to / such that g is in standard form for some set of overrings Y'

and B is conjugate to Bg . However it then follows from part (b) of Proposition

2.4 that we may take Y' = Y.   a

Having seen that at least in the discrete rank n case every valuation ring is
equivalent to one in standard form it is natural to try to characterize the valua-

tion rings among the standard orders. As before let / be a standard cocycle for

Y = [VX,V2, ... , F„_!, Vn) and let Bf be the corresponding crossed product

order. For each i, 1 < i < n -1, we can (as in [H]) introduce a partial ordering

on the set of cosets H¿-X/Hj as follows. If a, x e H¡-X we define ex77, < t77,
if f(a,a~xx)eWx.

Lemma 2.9. Let i be an integer,  1 < / < n — 1.

(a) The relation described above is well defined and gives a partial ordering

on the set Hj-X/Hj.
(b) If a, x, y e 77,-1 and aH¡ < yH¡, then aH¡ < xH, < y Hi if and only

ifa-lxHi<a~xyHi.

Proof, (a) Let a, x e 77,-!. To show the relation is well defined it suffices to

show that if fia, a~xx) e Wx and h, k e 77, then f(ah , h-[a~lxk) e Wx .

We first observe that if h e 77, and g e 77,-, , then f(h,g),f(g,h)eWx:
this follows from the identities

fh'\h,g)f(h-x,hg) = f(h-x,h)   and   P(h,h-X) = f(g,h)f(gh,h~x).
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The statement f(ah, h xa xxk) e Wx is then a consequence of the following

identities:

f°(h,h-xa-xxk)f(a, a-lxk) = f(a,h)f(ah,h-xa-xxk),

f°(a~xx,k)f(a, a~xxk) = f(a, a'xx)f(x,k).

The fact that the relation is a partial ordering and satisfies part (b) is now a

consequence of the following:

If a, x, y G 77,_i then

fa(a~xx, x~xy)f(a, a~xy) = f(a, a~lx)f(x, x~xy).   D

We begin our characterization of those standard orders which are valuation

rings in the case where |F| = 1 , that is f(G x G) ç W and Bf = ¿ZaeG Wx° ■

The first result shows that this condition is quite restrictive.

Proposition 2.10. Let V be a valuation ring in F and let K be an inertial

Galois extension with Galois group G. Let W be the unique extension of V to

K. Let f e Z2(G, Kx) be a normalized two cocycle and assume f is standard

for Y = {V} . If Bf = YloeG Wx„ is a valuation ring then every proper overring

of Bf is Azumaya.

Proof. If C is a proper overring of Bf then V = Z(C) is a proper overring

of V and W' = IFF' is a proper overring of W. Moreover C = BfV

and C n K = W'. In particular C is the standard order corresponding to /
viewed as standard for Y' = {V}. Let 77' = {a e G\f(a, a~x) e W'x). By

Proposition 2.6 we know

J(C) = £ J(W')xa+ J2 W'xo-
oeH1 o£H'

But J(C) ç Bf. Because IF' is a proper overring of IF we infer that 77' = G
and so C is Azumaya.    □

To continue the characterization we first prove a more general result. Let f

be standard for Y = {Vx, V2, ... , Vn_x, Vn} . Let w denote the value function

determined by / and let Bw = J2aeG Naxa denote the corresponding valuation

ring. Recall that Na = {k e K\w(kxa) > 0}. It is shown in the proof of [MW,

Theorem 2.1] that w(xas) = w(x„)+w(s) for all a G G and s e Xy. Moreover

letting r„, = w(Lf), the map a: G -» r„,/r given by a(a) = w(xa) + F is
a surjective homomorphism. We let 7 denote the kernel of a, so I = {a e

G\w(xa)eF}.

Lemma 2.11. Let Bw = Y2aeGNaxa be the valuation ring of w and assume

each Na is a ring. Then:

(a) For all oeG, f(a, a~x) e W.
(b) We have 1 = {a e G\f(a, a~x) e Wx}.

Proof. Let B = Bw . First observe that for each a , if Na is a ring then 1 g N„

and so IF = Nid Ç Na .

(a) Because 1 e Na for all a , we have xa e B for all a , and so W contains

XoXa-> = f(a, a~x).

(b) Because xx e B for all x e G, w(xx) > 0. Let 77 = {a e G\f(a,a~x)e
Wx). If a G 77, then

0 = t>(/(cr, a-1)) = w(xaxa-l) = w(xa) + w(xa^).
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It follows that w(x„) = 0, so a e I. Conversely if a G 7, then w(xa) £ F,

say w(xa) = v(a), a e K . Note that v(a) > 0. Because

Wa = [k e K\w(kxa) >0} = {ke K\w(k) > -w(xa)}

it follows that Wa = a~lW. But Wa and IF are both rings. Hence a is a

unit in IF, so w(xa) = v(a) = 0.   D

Now assume / is standard for {V}, so Bf = Y2aeG ̂ xa .

Lemma 2.12. (a) We have Bf ç Bw . In particular if Bf is a valuation ring,

then Bf = Bw .
(b) There is a cocycle g equivalent to f such that Bw = Bg if and only if

Bw is finitely generated as a V-module.

Proof, (a) The ring Bf is finitely generated as a F-module, because IF is a

finitely generated F-module. In particular each x„ is integral over V . If k is

the order of a , then xk = f(a, a)f(a2, a)--- f(ak~x, a) is integral over V

and lies in K. Thus xk eW and so 0 < w(xk) = kw(xa). Hence xa e Bw .

This means 1 £ Na and thus W ç Na because Na is a IF-module. Therefore

Bf Q Bw ■ If Bf is a valuation ring, then Bf = Bw because Bff]F = BwnF.
(b) If Bw = Bg then in particular Bw is finitely generated over F. Con-

versely, assume Bw is finitely generated. It follows that for each a the V-

submodule Na is finitely generated. Because NaN°_,f(a, a~x) C Nid = W,

each Na is also a fractional ideal, and so we conclude that Na is principal over

IF. It follows that there is a cocycle g equivalent to / such that B = Bg .   D

It is shown in [M, Proposition 3.2] that if w is any value function then Bw is

a finitely generated F-module if and only if [Xy : F] = ef, where / = [Bw : V]

and e is the number of elements in the set A = {y e Fw\0 < y < ó for all

ô £ r+}. Moreover in this case £ = [ru, : F] and Tw/r is a cyclic group

generated by yo + F, where yn is the least positive element of Fw . We want

to give another characterization of when Bf is a valuation ring.

Lemma 2.13. Set A = {y e Fw\0 < y < ô for all S e F+}. Then Br is a
valuation ring if and only if w(xa) £ A for all a e G.

Proof. Suppose Bf is a valuation ring. We have seen that it follows that Bf =

Bw . Let a be an element of K such that 0 < v(a) < w(xa) for some a in

G. Then w(a~xxa) > 0 so a~xxa G Bw = Bf. Thus a~x G IF, so v(a) < 0.

This is a contradiction, so w(xa) e A.

Conversely, suppose w(xa) £ A for all a e G. If Y2aeG a°x° e Bw

then v(aa) + w(xa) > 0 for all a. If v(a„) < 0 for some rr then 0 <

-v(a„) < w(xa), contradicting w(xa) £ A. Thus aa e W for all a, so

Bw Q EaeG Wx° = Bf. But Bfr\F = V, so Bw = Bf.    D

Let 77 = {a £ G\f(a, a~x) e Wx}. We can now characterize those cocy-

cles / for which 7?y = Y2,aeG Wxa is a valuation ring. The characterization

generalizes Theorem 2.3 of [H].

Theorem 2.14. Suppose K/F is Galois and inertial with respect to the valuation

rings W¡V. Let f e Z2(G, Kx) be a normalized cocycle with f(G x G) ç

IF. The ring Bf = Y2aeG Wxa is a valuation ring if and only if the following

conditions are satisfied:

(a)   77 is normal in G and the quotient G/H is cyclic.
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(b) Either H = G, in which case Bf is Azumaya, or there is an element a

in G such that a H generates G/H and such that the partial ordering

on G/H is the simple chain H < aH < a2H < a3H < ■■■ < ak~xH

where k is the order of a. Moreover f(a, a~x) e J(W) — J(W)2.

Proof. Assume Bf is a valuation ring. Then we know Bf = Bw , the valuation

ring of the value function w determined by /. By Lemma 2.13, w(xa) G A

for all a e G. Also |A| = ir^/T] and T^/r is cyclic. By Lemma 2.11,
77 = 7 = ker(a). Hence 77 is a normal subgroup of G, and because the

map a: G —> rw/r is surjective, C7/77 = r^/r is cyclic. If 77 = G then
f(G x G) ç Wx and so 7?y is Azumaya. Assume therefore that 77 ^ G. Let

y be the least positive element of Fw and let a be an element of G such that

w(xa) = y . Then a(a) = y + F and (y + F) = ru,/r, so (er77) = C7/77. Hence
the order of cr77 is e = |A|. Because

<-' = [n/(^tf))-v->,

we have

(e-l)y = v (n^V'*)) +w(xae-,).

Hence (e - l)y > v(F[£~x f(a', a)). But it is easy to see that (e - l)y G A.

Hence v(F[er2 fi(al,a)) = 0,so f(a', a) e Wx for 0 < i < e - 1. It follows

that fj'77 < ct,+177 for 0 < /' < e - 1. Moreover x£a = (F[,Z¡ f(al, a)), so

ey = w(xl) = v(f(ae~x, a)). Because y is the least positive element of Fw it

follows that ey is the least positive element of F. Hence f(ae~x, a) e J(W)-

J(W)2 . We will have finished this direction once we show that v(fiaE~x, a)) =

vifia, a~1)). But ae~x = ha~x for some h e 77 and /(77xG)c IFX . From

the cocycle identity fh(a~x, a) = f(h, a~x)f(ha~x, a) we infer

v(f(ae~x , a)) = v(f(ha'x , a)) = v(fh(a~x, a))

= v(f(a-x,a)) = v(fi(a,a-x))

where the last equality follows from fa(o~x, a) = f(o, a~x).

For the converse suppose 77 is normal in G. If 77 = G then Bf is Azumaya.

Otherwise we have G/H=(aH) with f(a, a~x) e J(W)-J(W)2 and a1 H <

a'+lH for 0 < i < \G/H\. We will be done by Lemma 2.13 if we show

w(xa) G A for all a e G. Let t = \G/H\. The relation ^'77 < cr'+I77

gives f(a', a) e Wx for 0 < / < t - 1 so w(xa,) = iw(xa) for i < t and

w(x'a) = v(f(a'~x, a)). Let y = w(xa). If x G G, say x = a'h , then

w(xx) = w(xa,) + w(x„) - v(f(a', h)) = w(xa¡) = iy

because h e H = I and f(a', h) e Wx . As in the first half of the proof we

have v(f(a'-x,a)) = v(f(a, a~1)). Because f(a, a~x) e J(W)- J(W)2, we

obtain v(f(a'~x, a)) = w(x'a) = ty is the least positive element of F. Thus

w(xx) = iy < ty for all x, so w(xx) G A. Thus Bf = Bw .   D

Recall that from Lemma 2.11 we know 77 = 7 = kera. In particular 77

can be described using the value function w . It is worth noting that under the
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hypotheses of Theorem 2.14 the partial ordering on G/H (which is then a total

ordering) can also be described in terms of w . In fact a 77 < t77 if and only if
w(a) < w(x) : If rj77 < t77 then f(a, a~xx) e Wx , so w(f(a, a~xx)) = 0.

Hence from x„xa-ix = f(a, a~xx)xx, we infer that w(xa) + w(xa-\x) = w(xx)

and so that w(xa) < w(xx). (This direction is true in general, that is even if

the ordering on C7/77 is not total.) For the converse suppose w(a) < w(x). If

t77 < <t77 then by the first part w(x) < w(a) and so w(x) = w(a). But then

cr_lT G kera = 77, a contradiction. Because C7/77 is totally ordered it follows

that aH <xH.
Here is a nice application of the theorem. The result can also be obtained

using the exact sequence (5.4) of [JW] along with [W, Theorems B, F].

Corollary 2.15. Assume the hypotheses of the proposition and assume that the

value group of V is equal to its own divisible hull. If f e Z2(G, Kx) is a

normalized two cocycle and B is a valuation ring over V in Xy then B is

Azumaya.

Proof. Let B be a valuation ring over F in Xy. The condition on the value

group implies that the ramification index of B/V is one. Moreover by [MW,

Theorem 2.1] B/V is defectless. It then follows from [M, Proposition 3.2]

that B is finitely generated as a F-module. By Lemma 2.12 it follows we may

assume / is standard for {V} and B = Bf = Y2a&G Wx° • Let 77 = {a G

G\f(a,a~l) e Wx}. If 77 is a proper subgroup of G then by the theorem

there is an element a e G - H such that f(a, a~x) e J(W) - J(W)2. But

because the valuation is not discrete J(W) = J(W)2, so this is impossible.

Hence 77 = G, so B is Azumaya.   D

We now proceed to the general case. We begin with a generalization of

Lemma 2.12.

Lemma 2.16. Let Y = {Vx ,V2, ... ,Vn_x,V„} where V = V„ ç Vn-X ç ■ ■ ■ ç
Vx CV0 = F. There is a cocycle g equivalent to f such that g is standard for

Y and Bw = Bg if and only if for all i, 1 < i < n - 1, BwVi/J(BwVj_x) is
finitely generated over V¡/J(V¡^x ).

Proof. If Bw = Bg then we can apply Proposition 2.6 to see that for all i,

1 < / < n - 1,

BwVi/J(BwV,.x)= Y W,/J(W,)x0
o€H,

which is finitely generated over V¡/J(V¡-\).

For the converse we proceed by induction on n. Let Bw = Yla€G Naxa

as usual. If n = 1 then this is the second part of Lemma 2.12. Assume

n > 1 . The induction hypothesis applied to Y' = Y - {V} shows that there is

a cocycle g' equivalent to / such that the valuation ring BwVn-X equals Bg>.

Let Bgi = JZ,a€G Waya . By Proposition 2.6 we know

J(Bg,)=   £   J(Wn.x)ya+   £   Waya.

Because JiBg<) ç Bw we can write

Bw =   £   Naya +   £   Waya
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where 7Vid = IF and Na ç Wn_x with NaWn_x = W„_x for all a e 77„_i . By
hypothesis

Bw/J(Bg,)=   £   Na/J(Wn_x)ya
oeH„-,

is a finitely generated V/J(Vn_^-module and clearly contains W/J(Wn_x).

As in the proof of part (b) of Lemma 2.12 it follows that for each er £ H„_x

there is an element aa e Wn_x such that Na/J(Wn^x) is the principal ideal

W/J(W„_x)(aa + J(Wn_x)). Hence Waa + J(W„^x) = Na . But then WaaWn_x

+ J(W„_X) = NaWn_x = Wn_x so aa is a unit in W„_x. It follows that

J(Wn_x) ç Waa and so Waa = Na. It is now easy to see that one can al-

ter g' to obtain a cocycle g equivalent to / such that g is standard for Y

and Bw = Bg .   D

Theorem 2.17. Let f be a standard cocycle for Y = {Vx, V2, ... , V„_x ,Vn).
The crossed product order Bf is a valuation ring if and only if for each i,

I < i < n, the following conditions are satisfied:

(a) The subgroup H¿ is normal in H¡_x, and the quotient Hi-X/H¡ is cyclic.

(b) Either 77,_i =77, or there is an element cr,_i in 77,_i suchthat o,-XHj

generates H^x/Hi and such that the partial ordering on H¡-X is the

simple chain

<7;_,77; < a2_xH¡ <af_xH,<-< akZxH,

where k is the order ofa¡-X . Moreover f(a¡_x, a~_\) € J(Wj)-J(W¿)2 .

Proof. Let B = Bf and assume B is a valuation ring. We proceed by induction

on n . We need to show that for each i, f satisfies properties (a) and (b). If

n = 1 then this is Theorem 2.14. Hence we may assume n > 1. The ring
7?„_i = 7il^_i is also a valuation ring. Moreover we have seen that 7?„_i is the

crossed product over Vn-X corresponding to the cocycle /, which is standard

for Y' = Y - {V}. Hence by induction properties (a) and (b) hold for all i,

1 < i < n — 1, and we are left with verifying the properties for i = n. Let

77 = 77„_! . We have J(B„_X) c B by Proposition 2.6 and B/J(B„_X) is a
valuation ring in the simple algebra B„_x/J(Bn^x). Also

B„.l/J(Bn.l)=Ywn-\/J(Wn.l)xa,
o<eh

a crossed product algebra for the cocycle fin*h ■ Moreover /¡//x/y is standard

for the valuation ring W„/J(Wn_x) and

B/J(Bn_x)=YJWn/J(W^x)xa

is the crossed product order for T]//*//- Hence the result for i = n follows

from the n = 1 case.

Conversely assume B = Bf and / has properties (a) and (b). We need to

show B is a valuation ring. Again we argue by induction on n , the n = 1 case

being Theorem 2.14. Thus assume n > 1 and let 7?„_i = BV„-X . Then 7?„_i
is the crossed product order for the standard cocycle / (for Y'). Because

/ satisfies (a) and (b) for i < n - 1 we infer by induction that 7i„_, is a

valuation ring. Moreover J(Bn_x) ç B and as we have seen B/J(B„^\) is the
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crossed product order for the cocycle f\HxH inside the crossed product algebra

B„-\IJ(B„-\) (where 77 = 77„_i). Because f\HxH satisfies (a) and (b) for
77„ C 77 we obtain B/J(B„-X) is a valuation ring by the n = 1 case. But by

[ D2 , § 1, Proposition 2] it then follows that B is a valuation ring, as desired.   D

Example 2.18. Here is an example of a valuation ring which is not equal to Bf

for any / and Y :
Let F be a field with valuation v whose value group is F = Z + nZ with

the archimedian ordering induced from the inclusion F ç R. Let V be the

valuation ring of v and suppose char(F) / 2 and that there is an a e V with

a not a square in F . (For example we could take F = Q(r) and a = 2.) Let

b e V with v(b) = it. Set K = F(sfa), an inertial Galois extension of F with

respect to F and X the cyclic algebra (K/F, a, b). Then X is the quaternion

algebra (a, b)F with generators i, j satisfying i2 = a , j2 = b, ij = -ji. Also

K = F(i) and X = K®Kj . By [JW, Example 4.3] v extends to a valuation on

X, which we will also denote by v , such that v(a+ßj) = min{íj(a), v(ß)+n/2}

for a, ß e K. Let B be the valuation ring of this valuation. Then B = W®Tj

where W = B n K and T = {a e K\v(a) > -n/2). If B = Bf for some /
then B = W ® Wxa is a finitely generated F-module. Thus T is a finitely

generated IF-module, hence principal. But if T = Wx then v(x) is the least

element of v(T) = {y e F\v(y) > -n/2}. But v(T) has no least element

because -n/2 £ F and F is dense in R. Hence B is not a crossed product

order Bf for any /.

We end this section with a proposition that will be useful in the next section.

Proposition 2.19. Suppose f is standard for W„. Let w be the value function

associated to f and assume that Bw = Y2aeG Waxa is in standard form (that is

Bw = Bf). If H is any subgroup of G, then YJaeH Waxa is a valuation ring in

¿Jae/í Kxa.

Proof. Let E = Y2aeH^xc and let w> = w\e ■ Then C = Bw n E = {z e

E\w'(z) > 0}. Let J = {z € E\w'(z) > 0}. By [M, Theorem 2.4] we will
be done if we can show w' is a value function and C/J is simple. Moreover

to show w' is a value function, it suffices to show that if y e im(w'), then
there exists z e Ex such that w'(z) = y and w'(z~x) = -w'(z). But the

definition of w shows that im(u;') = {w(a) + w(xa)\a £ F, a e 77} . Because

w(a) + w(xa) = w(axa) and w((axa)~x) = -w(axa), we have shown w' is a

value function.

We now proceed to show C/J is simple. Let g = f\HxH and let 77,' =

HnHt = {a e H\f(a,a~x) e Wx} for 0 < / < n. Then for i < n,

(H! x H¡) C f(H¡ x H) C Wi+X , so g is standard for Wn and C = Bg . By

Proposition 2.6 C is primary and

J(C) = J2 JiWo)xa+ Y, Waxa.
o£H'n a<tH'n

But then / = J(B) nC = J(C) so C/J is simple.   G

3. Discrete rank N valuation rings

In this section we consider the case where V is unramified but not necessarily

indecomposed in K.  We restrict our attention to discrete rank n valuation
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rings F. Let V = V„ C F„_, C • • • C V2 C Vx C F be the overrings of V and

let IF, be the integral closure of V¡ in K.

Let / G Z2(G, Kx) be a normalized two-cocycle and let (K/F, G, f) =
YlaeGKxa . By Proposition 1.7 we may assume there is a valuation ring B =

S(t€G WoXa over V in (K/F, G, f), where each Wa is an overring of Wid .

In order to reduce the confusion caused by the too frequent use of the letter

IF in our notation, we will let S = Wx . That is S will denote the integral

closure of V in K.

We want to determine the rings Wa. Recall from § 1 that each Wa is a

semilocal Prüfer ring and hence an intersection of valuation rings. More specif-

ically Wa = f]Sp where the intersection is over those prime ideals P of S

such that WaCSp. Also note that V = B DF = Widr\F .

Definition. A prime Q of S is said to belong to B if WXd ç Sq .

Observe that for every i < n there is a prime ideal of height i belonging to

B : It suffices to show there is a maximal ideal M of S belonging to B because

then any prime ideal contained in M also belongs to B . But if no maximal

ideal belongs to B then IFid D W2 and so IFid n F = V2, a contradiction.
The following is the basic result of this section.

Theorem 3.1. Let B = YIo^g Waxa be a valuation ring over V . Then

(a) We have J(B) = Y1<j£gJ°x°  where for each  a e G,   Ja = {k e

Wa\kf(a,a-x)eJ(Wa)).
(b) If Q\, Q2 are prime ideals of S of the same height belonging to B,

then there exists a e G such that Q\ = Q2 and f(a~x, a) & Qx Wid.

Proof. The proof is by induction on the rank. If the rank is one then the
theorem is a consequence of [H, Proposition 3.1, Theorem 3.2]. Hence we may

assume the rank n is greater than one. Because B„_x = BV„_X is a valuation

ring of rank n - 1 the results may be assumed true for it. We will assume the

theorem for valuation rings of rank less than n in the following lemmas.

If P is a prime ideal of S of height i < n we will let Sp denote f] Sq
where the intersection is over those primes Q of S that contain P. Note that

if U is any overring of S then USP = [)Sq where this intersection is over

those primes Q such that P ç Q and U ç Sq .

Lemma 3.2. Let P be a prime of height i belonging to B . Let a e G.

(a) If f(o, a~x) ? PW,d then WaSp = W,dSp.
(b) If Q D P is a prime of height i + 1  belonging to B and f(a, a~x) &

PW,d, then W,d ç SQa-t  and W°_t ç SQ.

(c) If f(a,a-x)ePWld, then WaSp = WaSP.

Proof, (a) Let Q be a height i + 1 prime of S containing P. We need to

show that W,d ç SQ if and only if Wa ç SQ. We know Wid ç Wa . Hence

certainly Wa ç Sq implies Wid ç Sq .

Now suppose Wid ç Sq , but Wa is not contained in Sq . Then W„Sq is

a ring properly containing Sq . Hence WgSq is valuation ring. But P is the

unique prime of height n contained in Q. It follows that W„Sq d Sp . On

the other hand we know Waf(a, a~x) ç W,d , so we have  Waf(a, o~x)Sq ç
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WidSQ = Sq . Thus

Sq 2 Waf(a, a~x)SQ = fi(a, a-x)WaSQ 2 f(°, tf"1)^ = SP,

because f(a, o~x) 0 PWid . Thus SP ç Sq , a contradiction.

(b) By part (a) WaSp = WidSp . Hence W„ ç SQ . But because the product

xaWid is in B we see that IFid ç Wa.  Hence  IFid ç SQa-\ .  In particular

Wid ç Spa-, , so P"'  belongs to B. Moreover f(a~x, a) = fa~'(a, a~x) #

Pa~' W,d , so by part (a) Wa-, ç SQa-¡ . Hence W«_x ç SQ .

(c) Assume f(a,a~x) e PWid. Let Q be a prime of height i + 1 that

contains P. We claim Wa is not contained in Sq : There are two cases: If

PWa = Wa, then from Wa ç SQ we obtain Wa = PWa ç PSQ ç QSQ, a

contradiction. If PWa ^ Wa , then PWaV¡ is a maximal ideal in WaV,. Let

J = {k e WaVj\kf(a, a~x) G J(WaV¡)} . We know by the induction hypothesis
that J c J(B¡). Because B ç B, and both are valuation rings we infer that

J(Bj) ç B. Hence J ç Wa . Let T = F[N where the product is over those

primes of S of height at most i not contained in P. Note that T ç J because

f(a, a~x) e PWid . Hence WaV¡T ç WaV¡J ç J ç Wa .

Now assume Wa ç Sq. Then WaV¡T ç Sq, so WaVjTSQ ç SQ. But
TSq = Sq : If not TSq ç QSq , so T ç Q. Hence there is a prime /V of
height at most i such that N çQ but N is not contained in P. But P ç Q, so

this is not possible. Thus TSq = Sq and so if W„VíTSq ç Sq , then V¡ cSq,
a contradiction. This proves the claim.

Because IF^^^ is a Prüfer ring it is the intersection of the valuation rings

that contain it and each such valuation ring is a localization of WaSp at some

prime ideal. We have just seen that any valuation ring that contains WaSp

must have rank at most i. However every prime ideal of Sp of height at most

i is contained in P and so every valuation ring of rank at most i that contains

Sp must contain SP . Hence WaSp D SP and so WaSp = WaSP .   U

Proposition 3.3. Let P be a prime of height i < n belonging to B. Let P =
Pi 2 P,_i 3 • ■ • D P\ 2 Po = 0 be the unique chain of prime ideals of S contained

in P. If a e G then WaSp = SPj  where j < n is the unique integer such that

f(a,a-x)ePjWid-Pj.xW,d.

Proof. This is an easy consequence of parts (a) and (c) of Lemma 3.2.   D

Proposition 3.4. We have Wid = f] Sm where the intersection is over those max-

imal ideals M of S that belong to B.

Proof. It suffices to show that every prime of height i < n that belongs to B

is contained in a height i + 1 prime ideal belonging to ß. By the remark

immediately preceding Theorem 3.1, we know there is some height i+ 1 prime

ideal Q of S belonging to B. Let P be the unique height i prime of S
contained in Q. Then P belongs to B. By the induction hypothesis applied

to part (b) of the theorem, if T is another height i prime of S belonging to

B, then there is an element a e G such that f(a~x, a) £ P and Pa = T.

By part (b) of Lemma 3.2, IFid ç Sq* . But Qa is a height i + 1 prime ideal

containing T, so we have proved the proposition.   G

It should be observed that these propositions give, for each a e G, a prescrip-

tion for finding  Wa in terms of Wid :   If Mx , M2 , ... , Mk  axe the maximal
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ideals that belong to B, that is for which WXd ç S m, , and if M¡ = Pin D

Pi,n-\ 2 • ■ • 2 Pi, i 2 P;,o = 0 is the chain of prime ideals contained in M¡,

then Wa = f]i=xSPi j where for each i, I < i < k, j¡ is the unique integer

such that f(a, a~x) e PfW-,d - Pj^xWid . The description of the rings Wa is

thus reduced to describing Wid, or in other words to finding the primes that

belong to B.

3.1. Proof of part (a) of the theorem. Let a e G. We begin by giving an

alternate description of Ja ■ We have that J(Wa) = f]QWa where the inter-

section is over those prime ideals Q of S such that QWa is a maximal ideal

of Wa. If f(a,a~x) e QWid for all such Q, then Ja = Wa. Otherwise,

that is if f(a,a~x) & J(Wa), then Ja = f]QWa where the intersection is

over those prime ideals Q of S such that QW„ is a maximal ideal of W„

and f(a, a~x) & QWid. We claim that it follows that any such Q must be

a maximal ideal of S : Because f(a,a~x) g QWid we know from Lemma

3.2 that WaSQ = WidSQ . Applying Proposition 3.4 we see there is a maximal

ideal M of S such that M 2 Q and MWa is a maximal ideal of Wa. But
MWa contains QWa, so MWa = QWa by the maximality of QWa. Hence

Q = M is maximal. We infer that either Ja = Wa or Ja = f]QWa where the

intersection is over those maximal ideals Q of S such that QWa is a maximal

ideal of W„ and f(a, a~x) <¿ QWid.
Now let 7 = Y2o<eg ^x" ■ ^e DeSm °y showing that 7 is an ideal of

B. To see that it is a right ideal it suffices to show that for all a, x e G,

J0xaWxxx ç Jaxx„x ■ This is equivalent to J„WX f(a, x) ç Jox. First ob-

serve that J„ Wff(a, x) C Wax. Hence if Jax = JF^ the inclusion is clear.

We may thus assume Jax = f)QWaT where the intersection is over those

maximal ideals Q of S such that QWax is a maximal ideal of Wax and

f(ax, x~xa~x) <£ QWXd . Hence to show JaW°f(o, x) ç Jax we need to show

that if Q is a maximal ideal of S such that QWax is maximal in IFCTT and

/(ctt, t-'ct-1) 0 ßIFid, then JaWx° f(a, x) ç QWax. This last inclusion is
equivalent to JaWxaf(a, x)SQ ç QSQ .

So assume Q is chosen as above. Let P be the unique height n - 1 prime of

S such that P ç Q. If f(ax, x-xa~l) e PWid , then by Lemma 3.2, WaxSp =

SP, contradicting the fact that Wax ç Sq. Hence we have /(ctt, t-1ct~') £

PWid.
Now if f(a, a l) £ QWid , then in particular f(a, a x) & PWXd and so by

Lemma 3.2 we have W„Sq = WxíSq = Sq . Moreover J0Sq ç QSq . Hence

JaWx°f(a, x)SQ ç Wx°f(a, x)QSQ. But WT"f(a,x) ç Wax QSQ,so we get
the desired inclusion.

Now assume f(a,a~x) # QWid. Let P = Pn-X 2 Pn-i 2 ■■■ 2 P\ 2
Pn = 0 be the chain of prime ideals contained in P. Assume j is the unique

integer such that f(a, a~x) e PjWid - Pj^xWid. If Ja = Wa when JaSQ =

WaSQ = SPj by Proposition 3.3. If Ja ± Wa then we know Ja = Ç\NWa
where the intersection is over those maximal ideals N of S such that NWa is

a maximal ideal of H^ and f(a, a~x) £ NWid. Because f(a, a~x) e PjW,d

we know that if N is such a maximal ideal then tY does not contain P¡. In

particular Ja 2 Yl N where the product is over those maximal ideals and so

JoSq = J„WaSQ = JaSPj 2 (Y\N)SPj = SPj because otherwise some N would
be contained in P¡. Hence in either case we have JgSq = SPj and so
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JaWx°f(a,x)SQ = Wx°f(a, x)SPj = Wx°f(a, x)f(ax, x-xa~x)SPj,

because /(ctt, t_1ct_1) £ P¡W,d . Now we apply the following cocycle identity:

f°(x, x~xa-x)f(a,a~x) = f(a, x)f(ax, t-'ct"1).

It follows that

W?f(o, x)f(ax, x-xa~x)SPj = Wx°f(x, x-xa~x)f(o, a~x)SPr

But f(a, a~x) e PjSP¡ and Wxafia(x, t-'ct"1) ç W°_, . Moreover W/_, ç SP]

by part (b) of Lemma 3.2. Thus

Wx°f°(x, x-xa~x)f(a,a-x)SPj ç PjSPj C QSQ

as desired.

The computations to show 7 is a left ideal are similar and will be omitted.

Having shown 7 is an ideal we proceed to show 7 = J(B). Because B is a

valuation ring we know J(B) is the unique maximal ideal of B, so 7 c J(B).

Moreover J(B) is an S-S bimodule, so we can write J(B) = Y2aeG Taxa for

some ideals Ta in Wa . We have T„ 2 Ja for all a e G, and we want to show

equality.
First observe that

/id = {ke W^kf(id, id) £ J(Wid)} = J(Wid).

Because 7id consists of quasiregular elements in IFid it follows that T,d ç

J(Wid). Hence Tid = Jid.
Now let er £ G. If Ja = Wa then certainly Ta = Ja . Hence we may

assume Ja ^ Wa and so Ja = f)QWa where the intersection is over those

maximal ideals Q of S such that QWa is maximal in Wa and f(a, a~x) $.

QWld . Let Q be such a maximal ideal. Now because J(B) is an ideal we have

TgX„xa-\ ç 7¡d C 7(IFjd) and so Taf(a, a~l) ç J(W-,d). Moreover if Q is a
maximal ideal in S such that QWa is maximal in Wa , then QWid is a maximal

ideal of IFid . Hence /(IFid) ç Ja and so Taf(a, a~1)2 c J(Wa) ç QWa . But

fia, a~1)2 0 ßIFCT so Ta ç QWa . Because Q was arbitrary, we see that

T„ Q Ja , as desired.   G

3.2. Proof of part (b) of the theorem. If the height of Qx is less than n then

the result follows by induction. Hence we may assume that Qx and Q2 axe

maximal ideals of S. Let Qx, Q2, ... , Qr, Qr+\, ■■■ , Qm be all the maximal
ideals of S and assume Qx, Q2, ... , Qr are the ones that belong to B. By

Proposition 3.4 we know IFid = f]ri=x Sq, . We also know from part (a) of the

theorem that
r

/(5)id = 7(lFid) = flÔ,IFid.
;=1

Let T = UtiQ' ■ Then r**id = lYi=2QiWid because if z > r then Q¡W,d =
Wid . It follows that T is not contained in 7(IFid). Because B is primary we
infer that BTB = B. Computing the identity component of BTB we see that

we must have £CT(EG WoXoTWa-iXa-, = Wid .
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For each i, i = 1,2, ... , m , there is an element /z, e G such that Q\' =

Qi. Let D = D(QX). The elements h\,h2, ... ,hm form a set of left coset

representatives of D in G. Hence we can write

Wid = E WaXoTWa-,xa-< = ]T WaT°W°_,f(o,o-x)
oeG oeG

m

= E E wh¡dTh'diw^d)_jih,d, (hid)-1)).
;=1 deD

Note that for all deD, Th'd = Th> because Td = T. Also observe that if

i ± 2 then Th' ç Q2 and so

E Wh¡dTh-d(W¡¿%_J(h,d, (hid)'1)) Ç Q2Wid

deD

because for every a e G, Wa W°_, f(a, a~l) ç IFid .

Now assume that for all deD, f(h2d, (h2d)~x) e Q*2 (= Q2). We claim
that it follows that

E WhldTh2d(W¡>¿dd)_J(h2d, (h2dyx)) Ç Q2W,d.

deD

If so then BTB ç Q2W,d, a contradiction. It will then follow that for some

deD, f(h2d, (h2d)~x) £ (27 = Qfcd and so that

fiih2d)-x, h2d) = fW\h2d, (h2d)~x) * Qx.

Because Qyld = Q2 that will finish the proof.

To prove the claim it suffices to show that for each deD

WhldT^diW^d)_J(h2d, (h2d)-1)) ç Q2Wid,

or equivalently that

Wn2dTh*d(W(hhfd)_J(h2d, (h2d)-x))SQl Ç Q2SQ2.

To simplify the notation let Q = Q2. Let Q = Pn 2 Pn-\ 2 ■ ■ ■ 2 P\ 2 Po = 0
be the chain of prime ideals contained in Q. Let deD and let j be the

unique integer such that f(h2d, (h2d)~x) e PjWld - Pj_xWid. Let x = h2d.

We need to show WxTTWxT_J(x, x~x)SQ ç QSQ. We have f(x, x~x) ç P,W,d

and by Proposition 3.3 WxSq = SPj . Moreover Wtt_, ç SP/ by Lemma 3.2.

Hence WxTrWrZ,f(x, x~x)SQ ç PjSPj . But PjSPj ç QSQ , so we are done.    G

Corollary 3.5. Let P be a prime of height i < n belonging to B and let T =
{Q\Q is a prime of height i+1 belonging to B and containing P).

(a) The group H(P) acts transitively on T. In particular the order of T is

the index (H(P): D(Q) n H(P)), where Q is any element of T.
(b) If P' is another height i prime belonging to B and V = {Q\Q is a

prime of height i+l belonging to B and containing P'} then there is

an element a e G such that f(a~] , a) g PWid and T = Ta .

Proof, (a) If Q e T and a e H(P) then f(a, ct"') 0 PWld so by Lemma
3.2 we know Wld C SQ„-i .  Hence the group 77(P) acts on  T.  Moreover if
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Qi and Q2 axe in T then by the theorem there is an element a in G such

that f(a~x, a) g QxWid and Q2 = Qa. Because P is the unique prime of

height i contained in Qx and the unique prime of height i contained in Q2

it follows that Pa = P, that is a e D(P). But f(a, a~x) = fa(a~x, a) £

QxW\á = QiWid, so in particular f(a,a~x)<¿ PWid. Hence a e H(P). The
last statement is immediate.

(b) By Theorem 3.1 there is an element a e G such that f(a~x, a) 0 PIFid

and P' = P°. By Lemma 3.2 it follows immediately that every element of

Ta belongs to B, so T" ç T . The opposite inclusion follows by considering

/(ct,ct"1) = /ct(ct-1,ct).   G

Corollary 3.6. (a) If P is a prime of height i < n that belongs to B, and Q
is a prime of height i + 1 that belongs to B and contains P, then there is a

set of right coset representatives of D(Q) n 77(P) in H(P) such that for each
representative g, f(g, g~x) €" Q.

(b) Let P be a prime ideal of height i < n that belongs to B . Let 77 = 77(P).
The ring WidSp n KH is a valuation ring of rank i. Moreover if p is the prime

ideal in SH of height i such that WidSp n KH = (SH)P, then the prime ideals
in S of height i + 1 that belong to B and contain P are precisely those that

lie over p.

Proof, (a) This is an easy consequence of part (a) of Corollary 3.5.
(b) This is also a consequence of part (a) of Corollary 3.5: In the notation of

that corollary, because 77 acts transitively on T, it follows that all the prime

ideals in T lie over the same prime ideal in SH . If we let p denote that prime

ideal in SH , then T consists of precisely the primes of S lying over p. But

WaSp = f]Q€TSQ and so WaSp n KH = (SH)P .   G

The result of Corollary 3.6 and [H, Corollary 3.11] lead one to suspect that

there should be a Dubrovin valuation ring "involved" with B whose center

is WldSp n KH. We are now headed for such a result. Let P be a prime

of height i < n belonging to B. Let D = D(P) and let 77 = 77(P). Let
B' = 2ZaeDiw<rSr)Xe and let B" = Y.aeH(WaSp)xa . Similarly if ¥ is a

maximal ideal of 5" belonging to B and E = D(M), let C = *2la(zE(WaSM)Xo ■

Proposition 3.7. The rings B', B", and C are Dubrovin.

Proof. We proceed by induction on n, the rank of B. If the rank of B is

one, then the rank of P must be zero, so B' = B" = B. The fact that C is

Dubrovin is the content of [H, Corollary 3.11]. Hence we may assume the rank

of B is greater than one.

We begin with B'. If P is a prime of rank i < n - 1 then for all a e G

WaSp = WaVn-XSp and so the result follows by induction applied to 7?„_i .

Hence we may assume P is a prime of rank n - 1 . It follows that

C = B'Vn_x = Y,iW«Vn-\SP)xa = Y,ÍW°SP)X°
oeD oeD

is Dubrovin by induction. Moreover we claim J(C') ç B' : We know by

Theorem 3.1 that

J(C) = Y,iPSp)xa + Y, (WaSP)xa.
oeH oeD

o£H
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But if CT g 77 then WaSp = WaSP by Lemma 3.2 and if ct £ 77 then PSP ç
M S m for every maximal ideal of S that contains P. Hence if ct £ 77, then

PS> QSP c WaSp . This proves the claim.

Hence by [D2 , §1, Proposition 2] it suffices to show B' = B'/J(C) is a val-

uation ring. To do this we first consider the valuation rings B = B/J(B„-X) ç

7J„_! = Bn-X/J(Bn-X). Note that by Theorem 3.1, 7(5„_,)id = J(WidVn_x).
Hence

Bn-i = WldVn_x = WidV„_x/J(WidVn_x)

k

= 0EWdI/K-l)/(/J/^d^-l),
;=1

where P = PX,P2, ... , P¿ are the primes of height n - 1 that belong to B .

Let e be the minimal idempotent in WidVn_x corresponding to

(W,dVn_x)/(PW;dVn_x).

Next observe that

k k

J(WidVn_x) = f)PiWidVn_x cf)P¡Sp¡ ç f]MSM
¡=i ¡=i

where this last intersection is over all the maximal ideals that belong to B.

Hence J(WidVn_x) C 7(IFid). Moreover

k

wid/j(widvn_x) = 05] Wid/P,Wid
¡=1

and for each i, Wid/PiWid is a Dedekind domain with field of fractions

iWidVn„x)HPiWidVn-X).

In particular note that e e Wid/P¡Wíd C B . Because B is a valuation ring in

the simple algebra 7?„_i, it follows from [Di, §1, Theorem 7] that eBe is a

valuation ring in the simple algebra eB„-Xe.

We want to compute eBe and eBn_xe. To simplify notation let Ta =

WaVn-X and let Ia = JiBn-X)a , the a-component of the radical of B„_x . We

have

eBn_xe = Ye(To/Io)oie)xa.

oeG

If ct £ D then aie) ^ e and so aie)e = 0. Hence

eBn_xe = Y e(To/Io)o(e)xa.

oeD

Moreover we claim if a g 77 then e(Ta/Ia) = 0: If lc = Ta then the claim

is certainly true. If Ia / Ta then by the description of Ia given in the proof

of part (a) of Theorem 3.1 we know that Ia = Ç]QTa where the intersection

is over those prime ideals Q of height n - 1 that belong to B and for which

/(ct , ct-1) 0 QTa . But /(ct , ct-1) £ PTa and so P is not among those primes.

The claim follows. Hence eB„-Xe = '^2aeHe(To/Io)xa . It follows that eBe =

lZoeHeiw<ylIo)Xo-
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We want to show that B' = eBe.   If so then B' is a valuation ring, as

desired. We have 77' = Y,aeH(w°sP Ipsp)x». If ct £ 77 then we know by
Proposition 3.3 that Wa ç SP and so PWa is a proper ideal of W„ . Moreover

I o ç PWa. Hence there is a canonical homomorphism cf> from W„/Ia to

SP/PSP . It is easy to see that e(Wa/Ia) is precisely the image of cj>. On the

other hand, Wa ç WaSp ç SP and PSP ç WaSp . We have then the following
commutative diagram of ring homomorphisms, where p is the canonical ring

homomorphism from WaSp/PSP to SP/PSP .

Wo/Io -► WaSp/PSP

Sp/PSp

To show that 77' is isomorphic to eBe, it suffices to show that in this diagram

cf> and p have the same image. Hence it is enough to show that the map from

Wo/la to WaSp/PSp is surjective. Thus we are reduced to showing that Wa +

PSP = WaSp. We have W„ ç Wa + PSP ç WaSp. Because W„ ç SP we

see that PSP is a Wa -submodule of SP and so W„ + PSP is a ring. By

the properties of Prüfer rings, we know that W„ + PSP = fl^e wnere the

intersection is over those prime ideals Q of S such that Wa + PSP c Sq .

Moreover WaSp = f] Sm where the intersection is over those maximal ideals

M of S such that M 2 P o.nd Wa ç Sm ■ Hence it suffices to show that if Q
is a prime ideal of S such that PSP c Sq , then Q 2 P ■ To see this statement

we may assume Q¿ P. If PSP ç SQ, then QPSP c QSQ. But QSP = SP
because Q is not contained in P. Hence PSP ç QSq , so P = PSP nS ç

QSq n S = Q. Hence we have shown that B' is isomorphic to eBe and so 77'

is a valuation ring. As we have seen it follows that 77' is a valuation ring.

It is now easy to see that 77" is also a valuation ring: We have

77" ç C" = EW^-i)*» = T,iw«s^x« = E Sr*«-
oeH oeH oeH

The algebra C" is Azumaya, hence a valuation ring. Moreover J(C") =

YsoeH PSpxo ■ To show 77" is a valuation ring it therefore suffices to show that

the quotient ring B"/J(C") is a valuation ring. But clearly B"/J(C") = B',

which we just proved is a valuation ring.

Finally we need to show C = Yda&E(WaSM)xa is a valuation ring. Let P be

the unique prime of height n - 1 contained in M. Again we consider

C = CVn_x = Y(w°sMVn-i)Xo = E^5')** Ç E^5')*«-
oeE oeE oeD

By the induction hypothesis, Y.aeD^oSP)xa is a valuation ring and so by

Proposition 2.19 the ring C = ¿CT(E£ WaSPx„ is a valuation ring. Hence we

know

J(C') = Y PSpXo + E wcSpxa.
oeE oeE
oeH o£H
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The quotient ring C/J(C) is

E (WoSM/PSP)Xo = E ÍSm/PSp)Xo.
oeE oeE
oeH oeH

It suffices to show C/J(C) is a valuation ring.

Recall that

77' = Y,iw°SP/pSp)xa = YiW^SPIPSP)xa,
oeH oeH

by Lemma 3.2. Let M = MX,M2, ... , Mm be the maximal ideals of S that

contain P and belong to 77. Then WidSp = fl, SMi, and so WidSp/PSP =

C&J2íSm,/PSm, ■ If we let / be the minimal idempotent in WidSp/PSP cor-
responding to Sm/PSm , then an argument similar to that given above shows

that /77'/ is isomorphic to C/J(C). It follows that C/J(C) and hence C
axe valuation rings.   G

Corollary 3.8. For every i < n if P is a prime of height i that belongs to 77,

then H(P) is a normal subgroup of D(P)D 77(Q) where Q is the unique prime of

height i - 1 contained in P. Moreover, the quotient group D(P) n H(Q)/H(P)

is cyclic and there is an element a e D(P) n 77(g) such that the following

conditions hold:

(i)  Thecoset aH(P) generates D(P)nH(Q)/H(P) and f(a,a~x) e PWid

~(PWld)2.

(ii)  The partial ordering on D(P)nH(Q)/H(P) is the chain H(P) <aH(P)
< a2H(P) <      < am~xH(P), where m = \D(P) n H(Q)/H(P)\.

Proof. Let D = D(P) and 77 = 77(P). The ideal PWidV¿ is a maximal ideal
of WXdV¡ • By Proposition 3.7, C = ^2a<EDSPxa is a valuation ring. The result

now follows from Theorem 2.14.    G

We end this section with an example designed to display some of the various

phenomena we have discussed. Let k be a field of characteristic not two and

let s,t,x,y be indeterminates over k. Set F = k(s, t)(x, y) and K =

F(\fï+~x, y/1 + y, -y/l + 2x). Let Xy be the F-algebra given by

fl+x,s\^   fl+y,t\^    (l+2x,y\
*f = {-^^) 0f {—F-) ®F I-^-J '

the tensor product of three quaternion algebras. Then Xy = (K/F, G, f) where

G = (a, x, p) with

a ( vTTx) = -vTTx, a(yjl+y) = y/T+y, a(Vl + 2x) = \/l + 2x,

x(s/l+x) = y/l+x, x(y/l+y) = -y/l+y, t(vT + 2x) = Vl +2x,

p(Vl+x) = Vl+x,       p(ijl+y) = y/l,     p(Vl+2x) = -^/l+2x + y

and the cocycle is given by Table 1.

Let Vx be the y-adic valuation ring of F and V2 ç Vx the (x, y)-adic

valuation ring of F. Let W¿ be the integral closure of V, in K, for i =

1,2. An easy calculation shows W, = V¡[y/1 + x, a/1 +y, vTT2x].  Write
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/

1

a

T

P

ax

ap

xp

axp

1 a x p ax ap xp axp

11111 1 1     1

1 S 1   1 S S 1 5

1 1 tl t 1 t        t

1 1 1 y 1 y y y

1 5 t   1 St S t St

1 s 1 y s sy y sy

1 1 t y t y ty ty

1 s t y st sy ty sty

Xy = YsyeG Kxy be the crossed product algebra determined by /. We want to

construct for / = 1, 2 valuation rings 77, in Xy with 77, n F = V,■. Let

X, =
1 + x, s i+y, t l+2x,y

For each j let Kj = 'LjT\K and let S
Because 1 + x , s,   1 + y, t e Vx ,

l + x, s

W2.

i+y, t

F,
CX,

is Azumaya over Vx . Now Vx = k(s , t)(x). Because 1 + 2x e Vx - (Vx)2 and

v(y) & 2rW| , where v is the y-adic valuation of F , it follows by [JW, Example

4.3] that there is an invariant valuation ring A in X3 extending Vx . It can be

seen that A = (Wx n K3) + (Wx n K3)xp . Therefore by [W, Proposition 3.3] we

may take 771 to be

B,
1 + x, s i+y, t

vx    ) ~" V    Pi

It follows that Bx = Yuyeo w\xi ■ Also °y iw> Proposition 3.3]

7(77,) =
1 + x, s

~~Vx

i+y,¿

F,
®k, J(A),

where

Hence

J(A) = (J(wx)n K3) + (wxr\K3)xp.

J(BX)=    J2   JiWy)xy+   Y.    W^xy
ye{o,x) y£(o ,x)

For 772 again we see ((1 + x, s)/V2) ®Vl ((1 +y, t)/V2) is Azumaya. For

X3 we see that because A/J(A) = Vx(Vl +2x) and V2/JiVx) extends in two

ways to A/J(Ä), it follows that if C is the preimage in A of one of these two
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extensions, then C is a (noninvariant) total valuation ring in X3. Hence by

[W, Proposition 3.3]

is a valuation ring of Xy with 772 n F = V2 and B2 ç Bx . One can check that

C = (Sm n K3) + (Sp n K})xp for some maximal ideal M 2 P of S.

Because Vx extends uniquely to F(v/1 +x, vTT2x) but not to F(y/1 +y)
we have D(P) = (a, p) and 77(P) = (ct) . Because V2 is completely split in

K , D(M) = (1) and so H(M) = (1). From the description of 77 j  we see that

Bi=   E   w^Xy+   E    WPxy
ye(o ,t) yi(o,x)

To determine Wid we see that because D(M) = (1) and G(K/K3) = (a, x),

Sm G K3 ç SV n 5a/<7 n 5Vt n Sa/<" and so IF¡d = Sm n »Saí» n S^r D Sm" ■
Moreover because 7(77]) ç 772 , the description of J(BX) forces Wx C Wp and

so Wp = Wx. Thus

772 =    Y   (sm n sm° n SV n Sa/<7t)x7 +   Y    w\xy
ye{o ,t> yi{o ,x)

If 7(772) = 2Üyec ̂ -"V » we see that /7 = IF, for y £ (a, x) because J(BX) ç

J(B2). If y £ (ct, t) then because 7,, = {a £ 7f|a/(}7, y"1) € 7(IFid)} and

/(?> Y~l) e V2X , we have

jy = J(Wid) = MSM n MaSM° n MT,SV n MaxsM^

and so

7(772)=    2   Wd)*,+   E    wi*i-
ye(o,r) yg.{o ,t>

If B'{ = Y,yeH{P) w\xy and B'{ = Y,y<iH{P)Spxy, where as usual 5,/> = nWD/>5,M ,

then 77" is a valuation ring over V, and 77] is Brauer equivalent to 77" =

S*!lr) = VX(V1 +2x) while B~2 is Brauer equivalent to Bj = SM(M) = V2.
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