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ON DUBROVIN VALUATION RINGS IN
CROSSED PRODUCT ALGEBRAS

DARRELL HAILE AND PATRICK MORANDI

ABSTRACT. Let F be a field and let V' be a valuation ring in F. If A4 is
a central simple F-algebra then V' can be extended to a Dubrovin valuation
ring in A4 . In this paper we consider the structure of Dubrovin valuation rings
with center V' in crossed product algebras (K/F, G, f) where K/F is a
finite Galois extension with Galois group G unramified over V and f is
a normalized two-cocycle. In the case where V is indecomposed in K we
introduce a family of orders naturally associated to f, examine their basic
properties, and determine which of these orders is Dubrovin. In the case where
V is decomposed we determine the structure in the case of certain special
discrete, finite rank valuations.

0. INTRODUCTION

Let V' be a discrete valuation ring in a field F and let K/F be a finite
unramified Galois extension with Galois group G (say). Let W be the integral
closure of V' in K. In[H] the first author initiated a study of a certain family of
orders over V in crossed product algebras (K/F, G, f). If the two-cocycle f
takes its values in W then one can form in the obvious way a “crossed product
order” > Wx, C > Kx, = (K/F, G, f). It turns out that these orders have
many interesting properties. For example they are primary with an explicitly
described radical. Moreover they are a sufficiently large family to include, up
to a suitable notion of equivalence, all of the maximal orders over V', in the
case where the residue field of V is perfect.

In 1982 Dubrovin in [D;] defined a notion of valuation ring inside an ar-
bitrary simple Artinian ring. These Dubrovin valuation rings have many prop-
erties in common with maximal orders over discrete valuation rings. In par-
ticular the Dubrovin valuation rings with center a discrete valuation ring V
are precisely the maximal orders over V. In [MW] Morandi and Wadsworth
investigated Dubrovin valuation rings over V in (K/F, G, f) where V is
an arbitrary valuation ring unramified and indecomposed in K. Among other
things they showed that any Dubrovin valuation ring B is integral over V' and
that its residue ring B/J(B) is a crossed product algebra. This work gave sim-
pler proofs of many results on the structure of division algebras over henselian
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valuation rings. If V' is discrete of rank one this case is the same as that
considered in §2 of [H], but the viewpoint of the two papers is quite different.

In this paper we consider Dubrovin valuation rings over V' in a crossed
product algebra (K/F, G, f) where V is any valuation ring of F which is
unramified in K . In doing so we combine the viewpoints of [H and MW], and
extend the results of both papers. Although even in the case of a perfect residue
field the resulting orders do not include all of the Brauer classes as was the case
in [H), the class of algebras we consider contains many interesting examples.
In fact many constructions in the theory of simple algebras have used such
examples.

To describe our results let V' be a valuation ring of a field F and let K/F
be a Galois extension in which V' is unramified. Let W be the integral closure
of V in K andlet G = Gal(K/F). Let f € Z*(G, K*) be a normalized two-
cocycle. The first section of the paper contains some necessary preliminaries.
In §2 we consider the case where V' is indecomposed in K. As in [H] we
introduce a special family of orders. Let Y be a finite set of overrings of V',
each overring properly contained in F, and assume V € Y. We may write
Y=WN,Va,..., V,} where V =V, CV,_, C.---C VWV CVy=F. Each
V; is indecomposed and unramified in K. Let W; be the unique extension
of Vi to K. Let H; = {0 € G|f(o,07') € W>X}. Wesay f is standard
for Y if for each i, f(H; x H;) C W;,,. It turns out that every cocycle
is cohomologous to one that is standard for Y. Now assume f is standard
for Y. It turns out that in this case the sets H; are in fact subgroups of G.
For each 0 € G we select an overring W, in Y as follows: If ¢ € H, we
letW, =W, =W. If ¢ € H — H;,, where i < n then we set W, = W, .
We then set By = ) W;x,. It turns out that for every choice of Y and
every cocycle f standard for Y the set By is a ring and in fact a V-order in
(K/F, G, f). We call this the standard crossed product order for f (and Y).
This family of orders is very well behaved. For example each By is a primary
ring with an easily described radical. Part of the interest in this family lies
in the fact that in the case where V' is discrete and finite rank any Dubrovin
valuation ring over V in (K/F, G, f) is conjugate to such an order. The main
results in §2 are Theorems 2.14 and 2.17 in which we determine which standard
crossed product orders are Dubrovin valuation rings. The determination is in
terms of conditions on the values of the cocycle and the relations between the
subgroups H;. To give an idea of the sort of conditions that arise consider
the special case where Y consists of V' alone. If f is standard for Y then
there is only one nontrivial subgroup H = {¢ € G|f(c, 07 ') € W*}. Asin
[H] we introduce the partial order on the coset space G/H givenby oH < tH
if f(o,07't) € W*. In Theorem 2.14 we prove that the corresponding order
B; = Y Wx, is a Dubrovin valuation ring over V if and only if H is a
normal subgroup with cyclic quotient and there is a distinguished generator
oH of G/H satisfying two conditions: f(g,c~') € J(W) - J(W)? and the
partial order is the chain H < oH < ¢*H < --- < d"'H where k = |G/H|.
This is a generalization of Theorem 2.3 of [H]. The arguments make heavy use
of the notion of a value function as introduced by Morandi in [M].

In the third section we consider the case where V' is unramified in K but
not necessarily indecomposed. This case turns out to be considerably more




VALUATION RINGS IN CROSSED PRODUCT ALGEBRAS 725

complicated and we restrict our attention to those valuations that are discrete
of finite rank. Let W be the integral closure of V' in K. It turns out once again
that a Dubrovin valuation ring in the crossed product algebra (K/F, G, f) =
3" Kx; is conjugate to an algebra of the form B = Y W;x, where each W,
is an overring of W contained in K. The aim is to determine the W, and
to see what one can say about the group G and the values of f. Part of
the difficulty arises from the fact that unlike the indecomposed case B is not
necessarily integral and so the theory of value functions does not apply. Each
W, is a Priifer ring and thus equal to the intersection of the valuation rings
that contain it. We first prove that the determination of the rings W, can be
reduced to the determination of the single ring W3;. We say a prime ideal
P of W belongs to B if W, is contained in the valuation ring Wp. If P
is any prime ideal of W we let D(P) denote its decomposition group and
H(P) = {6 € D(P)|f(c,07 ") ¢ P}. We prove two basic facts about these
groups: If P is a prime of height i belonging to B then H(P) acts transitively
on the set of primes of height i+ 1 that belong to B and if Q D P is a height
i+1 prime belonging to B then the group H(Q) is normal in D(Q)NH(P) with
cyclic quotient generated by a coset g H(Q) satisfying two conditions similar
to those described above. Again these results generalize §3 of [H]. Along the
way we once again give an explicit description of the radical of B. One of the
ideas in the proofs is to show that one can find for each prime P a Dubrovin
valuation ring “related” to B that satisfies the conditions of §2. This allows us
to apply the results obtained there to B. We end with an example in rank 2.

1. PRELIMINARIES

We begin this section with a brief introduction to Dubrovin valuation rings.
First recall that a ring B is primary if the Jacobson radical J(B) is a maximal
ideal of B, thatis B/J(B) is simple. The ring B is said to be Bezout if every
finitely generated one-sided ideal of B is principal. A Dubrovin valuation ring
is a prime PI ring B which is primary and Bezout. For brevity we will often
refer to such a ring simply as a valuation ring. Let S be the simple Artinian ring
of quotients of B. It is shown in [D;, D,] that BZ(S) =S, BNZ(S)=V
is a valuation ring of Z(S), and two-sided ideals of B are linearly ordered
by inclusion, as are overrings of B in S. Furthermore if 4 is an overring of
B in §, then A is a valuation ring, 4 = BZ(A), J(A) C B, and B/J(A)
is a valuation ring of 4/J(A4). If S is a central simple F-algebra and V a
valuation ring of F, it is shown in [D,, §3, Theorem 2] and [BG, Theorem
3.8] that there is a valuation ring B of S with BN F = V. Also any two
valuation rings of S with center V' are conjugate [W, Theorem A]. For a fuller
introduction to valuation rings see [W].

Let V' be a valuation ring of a field F and K a finite Galois extension
of F with Galois group G. Let W be the integral closure of V' in K. In
this paper we will only consider the case where V' is unramified in K , that
is for all maximal ideals M of W, the ramification index of W), over V is
one, the residue extension W), /J (W) over V/J(V) is separable and K/F is
defectless with respect to V' (so Y, [Wy/J(Wy) : V/J(V)]=[K : F]). It
follows that W), /J(W)y) is Galois over V/J (V) [E, 19.12]. If in addition V
is indecomposed in K , that is W is a valuation ring, we say K/F is inertial
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with respect to V. The ring W will be of considerable importance in this
paper, so we mention some properties that will be used throughout. Because
V is a valuation ring, W is a Priifer ring. Hence any localization of W at
a prime ideal is a valuation ring, and the extensions of V' to K are precisely
the localizations of W at its maximal ideals. Furthermore because K/F is
finite, W is semilocal. Every overring of W in K is also Priifer and is a finite
intersection of localizations of W . Proofs of these statements can be found in
[E, 11.9, 13.4, 13.7].

Let f € Z*(G, K*) be a normalized two-cocycle and £ = (K/F, G, f) the
corresponding crossed product algebra. Thus we have £ = " _.Kx, where
multiplication is given by x,a = g(a)x, forall a € K and x,x; = f(0, T)Xs:
for all 0,17 € G. With K as above, if B is a valuation ring of X lying over
V then we want to show that a suitable conjugate of B can be written in a
form compatible with the decomposition £ =) . Kx, and that the precise
structure of B can be obtained from K/F and f. The following lemmas give
the foundations for determining B .

Lemma 1.1. If V is unramified in K then for every ¢ € G — {1} and every
maximal ideal M of W there isan x € W such that o(x)—x ¢ M .

Proof. Let D(M) = {0 € G|o(M) = M}, the decomposition group of M. If
o ¢ D(M) then o(M) # M, so there is an x € M such that o(x) ¢ M and
s0 g(x) —x ¢ M. Now suppose g € D(M). Because K/F is unramified, the
inertia group I(M) = {6 € D(M)|o(x) = X for all x € W)} is trivial, where
W)y is the localization of W at M and X = x+J(W)y). Thusif g # 1, there

isan x € W such that o(x) #X, hence g(x)—x¢ M. 0O

It follows from this lemma and [DI, Chapter III, Theorem 1.1] that W/V is
a Galois extension of rings.

Lemma 1.2. The ring W is a finitely generated V-module. There is a valuation
ring B of X lying over V with W C B.

Proof. Because K/F is unramified, hence defectless, we have

> W/ T (War) - V]I(V)] =K : F].
M
Thus by [E, 18.6] W is a finite V'-module.

Let B be a valuation ring of X lying over V. Because BF =X and B isa
Bezout ring, the finitely generated B-module W B is principal, say WB = xB.
Because 1 € WB, we have x € £*. Thus xB=WB = W(WB) D Wx, so
W C xBx~!, another valuation ring lying over V. 0O

This lemma was discovered independently by Westmoreland [We].
If B is a valuation ring of ¥ containing W then B isa W-W submodule
of X. The following lemma is the first step towards describing B .

Lemma 1.3. If T isa W-W submodule of X then T =}, (T NKxs). In
particular if B is a valuation ring of X lying over V and containing W, then
B =3 ccloxs, where each I, is a W-submodule of K .

Proof. Let T, = {a € Klax, € T}, a W-submodule of K. Clearly ) T5x, C
T. To show equality let ) a,x, € T. We need to show a;x, € T for all
o . Suppose this is false and that r is minimal with ¢ = >]_, a5,X,, € T, but
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not all a,, in T, . From the minimality it follows that a,, ¢ T,, forall i. Let
I = {w € W|wag,x, € T}, anideal of W . Because I # W there is a maximal
ideal M of W such that I C M. By Lemma 1.1 there isa u € W such that
o1(u) — a2(u) ¢ M. Thus

o2(u)t — tu = (02(u) — 01(u))ag, Xo, + (02(ut) — 03(1)) a0, X,
+ -+ (02(u) — 0,(u))ag, X, € T.

By the minimality of r we obtain (o(u)—0,(u))as Xs € T, 50 (02(u)—0(u)) €
I C M, a contradiction. O

From these lemmas we see that there is a valuation ring B of X that con-
tains W and so decomposes into B = ) . I,Xs. The task of describing B
thus reduces to describing the I,. The following simple lemma will be used
repeatedly.

Lemma 14. If 0 € G, then I,I°_,f(0,07") C Iiy. Ifall the I, are rings, then
f(O', 0'_1) € Iid~

Proof. Because B isaring, (I;x,)(I;-1x5-1)CIiq . Because x,x,-1=f(c, 07 })
we see that I,I?_, f(d,07") C Iig. If all the I, are rings, then f(o,07!) €
IGI:—lf(a’ 0——1) - Iid . a

Notice that this lemma implies that I3 is an overring of W and that for
all 0 € G and all b € I7_, we have I;bf(o, 6~!) C I4, so in particular I,
is a fractional ideal over I;4. In the case where V' is a discrete valuation ring
the valuation ring B is necessarily finitely generated as a ’-module. It follows
that I,y = W and each I, is a finitely generated W-submodule of K and so
principal over W, because W is a principal ideal domain. If I; = ¢;x, for
all ¢ € G, then by replacing f by the equivalent cocylce g corresponding to
replacing x, by c;x, we can assume B =Y .. Wx,. For general valuation
rings such a nice decomposition is not always possible (see Example 2.18). How-
ever in a number of situations one can considerably simplify the decomposition
of B.

Suppose V' is a valuation ring of F whose associated value group is Z®- - -®Z
(n times) ordered antilexiographically. Then the Krull dimension of V is n,
and the overringsof V in F are V=V, CV,_1 C---CV; CF where V; is
a valuation ring with value group Z‘ (so ¥, is a discrete valuation ring) and
Vie1/J(V;) is a discrete valuation ring of the field V;/J(V;). We will call V
a discrete rank n valuation ring. For such a V not all V-submodules of F
are principal over V', but any such module is necessarily principal over V; for
some i, as the following lemma shows.

Lemma 1.5. Let V be a discrete rank n valuation ring of F. If I isa V-
submodule of F, then I = cU for some overring U of V.

Proof. We use induction on n = dim(V). If n = 1 then V is a discrete
valuation ring and the result is well known. So suppose n > 1. If I = F we
are done, so assume I # F . If V; D V' is the rank one overring of V', then V]
is a discrete valuation ring, so IV; = dV; for some d € F*. By replacing /
by d~'I we may assume I'V; = V. Then by the linear order of V'-submodules
we see that J(V}) C I. Thus I/J(V}) is a V/J(V})-submodule of V;/J(}}).
By the induction hypothesis I/J(V;) = ¢T for some overring T of V/J(V}).
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Let U= {x € Vj|x € T}, an overring of V. If ¢ € V| is any preimage of ¢,
then ¢ isaunitin ¥} andso J(V})CcU. Hence I=cU. O

Lemma 1.6. Let V be a discrete rank n valuation ring of F, K/F a finite
extension and W the integral closure of V in K. If S is an overring of W in
K and I is an S-submodule of K , then I = cU for some overring U of S.

Proof. By [E, 13.7] S has only finitely many maximal ideals, say M, ..., M, .
Because I is a torsion-free S-module, I = ();1Sy, . By Lemma 1.5, ISy, =
c;U; for some overring U; of Sy, . By relabeling if necessary we may assume
U, ..., U, are the minimal rings among the U;. Then I = ﬂi‘=1 1U; . We want
to apply Ribenboim’s approximation theorem [R, §E, Theorem 3] to obtain an
element x € K such that x = ¢;mod ¢;J(U;), 1 <i<t. To do so we need to
show Ci—¢Cj € C,'J(Ui)U,'j = CjJ(Uj)U,‘j for l;é ] s where Uij = U,‘Uj . Because
the U; are pairwise incomparable, U; and U, are proper subrings of U;; and
SO

C,'J(Ui)Uij + C,‘U,'j = IUij = CjU,‘j = CjJ(Uj)Uij
and c¢; —c¢j € IU;;. Hence such an x exists and so for each i, x = ¢;(1 + m;)
for some m; € J(U;). Thus xU,; = ¢;U;. Therefore we obtain

t
I1=N1U=NaU =xU=x(NU) =xU,
i=1

where U is the overring U;. O

We now summarize what we have learned about valuation rings over discrete
rank n valuation rings in crossed product algebras.

Proposition 1.7. Let V be a discrete rank n valuation ring in a field F . Let K/F
be a finite Galois extension in which V' is unramified and let G=Gal(K/F). Let
W be the integral closure of V in K and let f € Z*(G, K*) be a normalized
two-cocycle. There is a valuation ring B in (K/F, G, f) and a cocycle f’
cohomologous to f such that if (K/F,G, ') = Y. Kx, then B = 5 WyXx,
where W4 is an overring of W and each W, is an overring of Wy .

Proof. We have already seen that there is a valuation ring B in (K/F, G, f) =
> Ky, such that B =3 I,y, where Iy is an overring of W and each I, is
an [jg-submodule of K. By Lemma 1.6 we can write I, = ¢, W, where ¢, € K
and W, is an overring of Wy = I;y. Hence by replacing f by the cocycle f’
corresponding to replacing y, by x, = ¢;¥, we obtain the desired form. 0O

2. INDECOMPOSED CASE

In this section we consider the case where the valuation ring V is indecom-
posed and unramified in K. For each cocylce we will construct a natural set
of orders which in the discrete, finite rank case contains a valuation ring for
that cocycle. We will also show how to determine which of these orders is a
valuation ring.

Let Y be a finite set of overrings of V', each properly contained in F , and
assume Y contains V. Because the overrings are linearly ordered we may
write Y ={V, Vo, ..., Vo, Vo} where V=V, CV,_,C---CVCV=F.
Because V is indecomposed and unramified in K, it follows that each V; is
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also indecomposed and unramified in K. Let W; be the unique extension of
V; to K (andlet Wy =K). Let f: GxG — K* be a (normalized) two-cocycle.
Foreach i, 0<i<n,let H = {0 € G|f(o,07"') € WX} (note that Hy = G).

Definition. The cocycle f is said to be standard for Y ifforall i, 0<i<n-1,
f(H; x H)) € Wiy (and so C Wi \J(W))).

Lemma 2.1. If f is a standard cocycle for Y, then forall i, 0<i<n, H; is
a subgroup of G.

Proof. We proceed by induction on i. If i =0 there is nothing to prove. Now
assume [ > 0. Let o, 7 € H;. We have the cocycle identities:

fa(o.—l s T)f(O', 0.—1.[) = f(O', 0,—1)’
{7 o) f(r, 7o) = fr, 1)),
f°(e ', 17 'e) = f(o, 07 1) f(r, 17 10).

Because H; C H;_; and H;_; is a subgroup by induction, all the values in
these identities lie in W;. Because f(g,07!), f(tr, t~!) are units in W, it
follows that f°(c~'7, t='0¢) is a unit, so ¢~'t € H;. Hence H; is a subgroup
of G. O

We want to show that every cocycle is equivalent to a standard one. We need
the following lemma.

Lemma 2.2. Let K/F be a finite Galois extension with Galois group G. Let
R, C R, be valuation rings with field of fractions F and assume R, is unram-
ified and indecomposed in K. Let S; be the extension of R; in K, i=1,2.
Let f: Gx G — S be a cocycle. Then there is a cocycle g equivalent to f
over S such that g(Gx G)C S,.

Proof. Because S, is a valuation ring the fractional ideal / generated by the
f(e,1), 0,7 € G, is principal, that is I = aS, for some a € K. Because
f(GxG)C S, wehave IS, =S, and so a € S)°. Define a one-cochain «
by a(l) =1 and a(c) =a~! for 0 € G- {1}. An easy calculation shows that
g = (8a)f has the desired property. O

Proposition 2.3. Every two-cocycle is equivalent to one that is standard for Y .

Proof. Let f = f,. We will construct a sequence of cocycles fi, f2, ..., fa
such that for each i, 1 <i < n -1, the following two properties are satisfied.

(1) The cocycle f; is equivalent to f,_; over WX , that is there is a one-
cochain a: G — WX, such that f; = (9a)fi_,.

(2) We have f;(Hi—-l X Hi—l) C W;, where H;_, = {0’ € G|f;(0', 0'—1) €
Wi}

It will then follow that f, is equivalent to f and standard for Y .

To do the first step of the construction, apply Lemma 2.2 to obtain a cocycle
f1 equivalent to f over K* with f(G x G) C W;. Then f; is standard for
W, . This finishes the first step of the construction.

Now let i be chosen, 1 < i < n -1, and assume we have constructed
fi, fa, ..., f; satisfying the two properties. We show how to construct f .
We have f; is standard for W; and so by Lemma 2.1, H,, H,, ..., H; are
subgroups of G. Let L be the fixed field of H;_,. We apply Lemma 2.2 to the
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Galois extension K/L and the valuation rings W;,, N L C W; N L. We obtain
a cocycle fi,; equivalent to f; over W such that fi.(H; x H;) CW;;,. O

Let f be a standard cocycle for Y. Let i be an integer, i < n—1. Let
H = H;. The field extension K/K* is Galois with group H . Moreover at the
residue level the field W;/J (W) is a Galois extension of the field WH /J(W;)#
with Galois group H and WX /J(W))¥ is a valuation ring in WH/J(W;)H .
The following proposition is clear.

Proposition 2.4. Let f be standard for Y .

@ IfYi={n,Va,..., Vi_1, Vi}, then f is standard for Y;.

(b) If Y D Y is a finite set of overrings of V , each properly contained in
F, then f is standard for Y'.

(c) Forall i, i < n—1,letting H = H;, fiyxn is standard for {W |J(W))H,
LS WHITW)HEY. D

Now let f be a cocylce that is standard for Y = {V}, V5, ..., Vo1, Vi}.
Let £, = > .;Kx, be the central simple crossed product algebra over F
corresponding to f. For each ¢ € G, either ¢ € H, or there is a unique
integer i, 1 < i < n, such that ¢ € H;_ — H;. We will call [ the height
of o (so we do not define the height for elements of H,). If ¢ € H, we let
W, =W, and if ¢ ¢ H, we let W, = W;, where i is the height of . Form
the subset B,y of X, given by By = 3 ., W;x,. Note that B, depends on
Y and not just on f but the notation should not be confusing.

Recall that a V-subalgebra R of X is called an order over V if RF =X
and R is integral over V.

Proposition 2.5. Let f be a standard cocycle for Y . The set By is an order
over V in Xr.

Proof. We have to show B; is a ring and integral over V' (it is then clear that
it is an order).

To show that By is a ring it suffices to show that if o, 7 € g then W,x, W x;
C WyeXs. . This in turn reduces to showing that W, W, f(c, 1) C W,,. So let
0,7€G. If 0,7€ H, the 01 € H, and W, = W; = W, = W,,. Moreover
f(o, 1) € W,, so the desired inclusion holds. If exactly one of ¢, 7 isin H,,
say o € H,, then ot ¢ H, and the elements 7 and ot have the same height.
It follows that W, C W,, and W, = W, and f(o, 1) € W,,, so again the
inclusion holds.

So we now may assume neither ¢ nor 7 lies in H,. Let i be the height of
o, and let j be the height of 7. Hence W, = W; and W; = W, . The argument
breaks up into cases.

First assume i > j. Then ot € H;_, — H;, so W, = W;. Moreover
f(o, 1) € W; because 0,7 € Hj_;. The inclusion W, W,f(a, 1) C W,, is
then clear.

The case j > i is handled in the same way.

Now assume i = j. If ot ¢ H; then W, = W, = W,, =W, and f(0,7) €
W;, so again the inclusion is clear.

Finally assume i = j and o7 € H;. In that case (i.e., height(at) > i
Wy =W, = W;, but W,, C W;,,. However we claim that f(o, 1) € J(W}).
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so then
WGW,f(O', T) = VV,'f(O', T) - J(VVI) C W, C Wy,

as desired.
To see the claim we consider the following cocycle identity:

fo(r, 7 'e Y f(a,07") = f(o, 1)f(ot, v a7 ).

We know fo(t, 1t '6™") € W;, f(o,07") € J(W;), and f(ot,t o7 !) €
W . It follows that f(ag, 1) € J(W)).

It remains to show that the elements of B, are integral over V. By [AS,
Theorem 2.3] it suffices to show that B, is generated asa ¥ module by integral
elements. Hence it is enough to show that for each ¢ € G, the set Wyx,
consists of integral elements. Let a € W, . Let k be the order of ¢ in G.
Consider

(axo)k = ag(a)a?(a)---a* "} (a)f (0, 0)f(d*, 0)--- f(a*"", o).

If 6 € H,_, then W, = W, and f(c¢™,a) € W, for all integers m, so
(ax;)k € W,. But W, is integral over V' (in fact, finitely generated) and so
ax, is integral over V.

So assume ¢ € H,_, and let i be the height of ¢ (so i < n). Then W, = W,
and f(¢™, o) € W; for all integers m . Moreover,

f@*, a)=fo7, 0)= £ (0, 07") € J(W)).
Hence (ax,,)k e J(W;) C W,, so ax, isintegral over V. O

We will refer to B, as the crossed product order for f (corresponding to
Y). We now want to derive the basic properties of these orders.

Proposition 2.6. Let [ be a standard cocycle for Y .
(a) The order By is a primary ring with Jacobson radical

J(Bp) =Y J(Wo)xo+ Y Woxs.
o€EH, L2
(b) Foreach i, 1<i<n-—1,let Bi=B/V; (so B, = By). Then B is the
crossed product order over V; corresponding to the standard cocycle f for
Y; = {V;|j < i} and we have the inclusions By = B, C B,_; C --- C By .
(c) Foreach i, 1<i<n-1, J(B;)C By.

Proof. (a) We first show that
1 = Z J(Wg)Xg'*’ Z WO'XO'

o€EH, oé€H,

isanidealin B,. Let I, = J(W,) for 0 € H, and let I, = W, for ¢ Hy, s0
that I =3 . Iox; . It suffices to show that for all o € G, WoxoIx: C IiXor

and I.x,W,x, C I.;X;s . This reduces in turn to showing that W,I.f(o, 1) C
I, and I.W, f(t, o) C I, , where we are using the fact that for each 0 € G,
the sets I, and W, are G-stable.

We will show W I.f(c, 1) C I,;. The argument for the other inclusion is
similar and will be omitted. If ot ¢ H, then I,, = W,, and the result follows

from the fact that B, is a ring. So we may assume o7 € H,. In that case
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if ,7€ H, then W, = W,, I, = I;; = J(W,), and f(g, 1) € W, so the
inclusion is clear. Finally assume neither ¢ nor 7 liesin H, but st € H,. It
follows that ¢ and 7 must have the same height i (say) and as we saw above
in the proof of Proposition 2.5 this implies f(o, 7) € J(W;). Hence

W”I"f(a’ T) = VVif(J’ T) CJ(W;) CJ(Wy) = Is..
We show next that I is maximal. Let H = H, . Consider

Bf/I = E(Wa/la)xa = Zanaa

(46 0EH

where W, is the residue field of the valuation ring W, . As we have seen W,
is a Galois extension of W,,H with Galois group H and so it is clear that B/l

is the crossed product algebra (W, /Wf, H, finxn). In particular B//I is
simple, so I is maximal.

Finally we need to show I is the unique maximal ideal of B,. Suppose T is
another ideal and suppose 7T is not contained in /. Then /+T = B,. Because
T isa W, — W, bimodule, we can apply Lemma 1.3 to write T = Y oec ToXo
where Tyx, = T N Wyx,. Hence it follows that T,y + I,y = W, . This means
Tiq + J(Wn) = W, . But then it follows that T;4 = W, andso T = By.

For (b) and (c), part (b) is clear and part (c) follows from the explicit de-
scription of J(B;) given in (a). O

We now want to investigate the connection between the valuation rings in
X, lying over V' and the orders we have introduced. Let f: G x G — K* be
a normalized cocycle. Let v be a valuation on F corresponding to ¥ and
let I be the value group of v. Let A = I'®z; Q be the divisible hull of I'.
As in [MW, p. 625], we define the function w: X, — A by w(},a,x;) =
ming{v(a,) + w(xs)}, where v is used to denote the unique extension to K
and for each g € G,

n—

1
w(xo‘) = v(f(ai’ G')) > n= |G|
1

1
h <

im
It is shown in [MW, Theorem 2.1] that because K/F is inertial with respect to v
the function w is a value function on X, and the set B, = {s € Z |w(s) > 0}
is a valuation ring with Jacobson radical J(By) = {s € Zs|lw(s) > 0}. It
follows that By, = ), .; Nox, wWhere N, = {k € K|w(kx,) > 0}. In particular
Niga = W . For more details on value functions see [M, §2].

Observe that in the case where V' is a discrete rank » valuation ring, it
follows from Lemma 1.5 that each N, is principal over an overring W, of
W . Hence by possibly changing to an equivalent cocycle g we may assume
By =) 4cg WoXxs where each W is an overring of Wy = W . This motivates
the following proposition.

Proposition 2.7. Let V be a valuation ring of the field F and let K/F be an
inertial Galois extension with Galois group G. Let W be the extension of V to
K. Let f € Z*G, K*) be a normalized two cocycle and let B be a valuation
ring in the crossed product algebra L, =3 - Kx,. If B can be expressed as
B =73 ccWsxs where each W, is an overring of W, then f is standard for
Y ={W,NnF|o € G} and B = By.
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Proof. First observe that because B is integral over V' [MW, Theorem 2.1] and
W4 is assumed to be an overring of W, it follows that W,y = W . We may
label the elements of Y sothat Y ={V;, V>2,..., V,_1, V,} where V =V, C
Voot C---CViCF.Let W=W,CW,_, C---C W, CK be the extensions
of the V; to K. Foreach i, 0<i<n,let Hi={o€G|f(s,07") e W>}.
We now proceed by inductionon »n. If n =1 then W, = W forall o. The fact
that B is a ring then implies that f(G x G) C W and B is clearly in standard
form. Hence we may assume n > 1. Let B,y = BV,_1 = Y cc WoVuo1Xs .
Then B,_; is a valuation ring and for each o, W,V,_, isan overring of W,_,.
By the induction hypothesis we infer that f is standard for Y’ =Y — {V'} and
B,_; has the standard form. We claim that forall o € H,_,, Wy, = W, . If so
then the fact that B is a ring will imply that f(H,_, x H,_;) C W, and that
will complete the proof.

So let ¢ € H,_;. Because B,_; is in standard form, we know W,V,_, =
W,_1. Hence W, = W, or W,_,. But Wyxex,-1 C Wy = W,,so W, D
W,f(e,o~). If W, = W,_, then W, D W,_,f(a,07') = W,_, because
flo,67 Y e W, , . This is a contradiction so W, = W, as desired. 0O

Using the observations made before this proposition we obtain the following
consequence.

Corollary 2.8. Let V , F, K and f be as in the proposition with V a discrete
rank n valuation ring. Let Y = {U|V C U CF and U isaring}. If B isa
valuation ring in Ly, then there is a cocycle g equivalent to f such that g is
in standard form for Y and B is conjugate to By .

Proof. By Proposition 2.7 and the remarks preceding it there is a cocycle g
equivalent to f such that g is in standard form for some set of overrings Y’
and B is conjugate to B, . However it then follows from part (b) of Proposition
2.4 that we may take Y/ =Y. O

Having seen that at least in the discrete rank n case every valuation ring is
equivalent to one in standard form it is natural to try to characterize the valua-
tion rings among the standard orders. As before let f* be a standard cocycle for
Y={Vi,Va,..., Vaz1, Va} and let B, be the corresponding crossed product
order. Foreach i, 1 <i<n-1, wecan (as in [H]) introduce a partial ordering
on the set of cosets H;_/H, as follows. If o, 1€ H;_; we define oH; < tH;
if f(o,07 1) e W>X.

Lemma 2.9. Let i be an integer, 1 <i<n-—1.

(a) The relation described above is well defined and gives a partial ordering
on the set H,‘_l/H,' .

(b) If 6,1,y € Hi_, and oH; < yH;, then dH; < tH; < yH; if and only
if 67'tH; <o~ 'yH;.

Proof. (a) Let o, t € H;_;. To show the relation is well defined it suffices to
show that if f(d,0~'t)€ W,* and h, k € H; then f(oh, h~'o~'1k) e W .
We first observe that if A€ H; and g € H,_;, then f(h, g), f(g,h) e W :
this follows from the identities

SNk, @) f(hY, hg) = f(h~', k) and f8(h,h™')=f(g, h)f(gh, h™").
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The statement f(ch, h='o~'tk) € W is then a consequence of the following
identities:
fo(h, h~to k) f(o, 07 'tk) = f(a, h)f(oh, "o~ 1k),
fo(e™ ', k)f(a, 07 "1k) = f(o, 07 '1)f(z, k).
The fact that the relation is a partial ordering and satisfies part (b) is now a

consequence of the following:
If 6,7,y € H,_; then

foo e, v f(e, 07 y) = flo, 67 D) f(r,x7"y). O
We begin our characterization of those standard orders which are valuation
rings in the case where |Y| =1, thatis f(GxG)C W and By =3 .cWx,.
The first result shows that this condition is quite restrictive.

Proposition 2.10. Let V' be a valuation ring in F and let K be an inertial
Galois extension with Galois group G. Let W be the unique extension of V to
K. Let f € Z*(G, K*) be a normalized two cocycle and assume f is standard
Jor Y ={V}. If By =3 .c Wx, is avaluation ring then every proper overring
of By is Azumaya.

Proof. If C is a proper overring of B, then V' = Z(C) is a proper overring
of V and W' = WV’ is a proper overring of W . Moreover C = BV’
and CNK = W’. In particular C is the standard order corresponding to f
viewed as standard for Y’ = {V'}. Let H' = {6 € G|f(6,0"') € W'*}. By
Proposition 2.6 we know

JC)= > JWx,+ Y Wix,.
cEH' og@H'
But J(C) C By. Because W' is a proper overring of W we infer that H' = G
and so C is Azumaya. O

To continue the characterization we first prove a more general result. Let [
be standard for Y = {V}, V5, ..., V,_1, V,,}. Let w denote the value function
determined by f andlet B, =) .; NoX, denote the corresponding valuation
ring. Recall that N, = {k € K|w(kx;) > 0}. It is shown in the proof of [MW,
Theorem 2.1] that w(x,s) = w(xs)+w(s) forall ¢ € G and s € Z,. Moreover
letting T', = w(Z/), the map a: G — I',,/T" given by a(o) = w(x,) + T is
a surjective homomorphism. We let I denote the kernel of a, so I = {¢ €
Glw(x,) eT}.

Lemma 2.11. Let By, = ), NoXs be the valuation ring of w and assume
each N, is a ring. Then:

(a) Forall 6 € G, f(o,07)YeW.
(b) We have I ={0 € G|f(c,07!)e Wx}.

Proof. Let B = By, . First observe that for each o, if N, isaringthen 1 € N,
andso W =N43CN,.

(a) Because 1 € N, forall o, we have x, € B forall ¢,andso W contains
XeXg-1 = f(a,071).

(b) Because x; € B forall 1€ G, w(x;)>0.Let H={0€G|f(o,07 ") e
Ww>} . If ¢ € H, then

0=v(f(0,07") = w(xexs-1) = W(Xg) + W(Xy-1).
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It follows that w(x,) =0, so o € I. Conversely if ¢ € I, then w(x,) € T,
say w(x,;) =v(a), a € K. Note that v(a) > 0. Because

Ws = {k € K|lw(kx,) 2 0} = {k € K|w(k) > —w(x5)}

it follows that W, = a~!W . But W, and W are both rings. Hence a is a
unitin W ,so w(x,)=v(a)=0. O

Now assume f is standard for {V},s0 By =3 . Wx,.

Lemma 2.12. (a) We have By C B,, . In particular if By is a valuation ring,
then By = By, .

(b) There is a cocycle g equivalent to [ such that B, = B, if and only if
By, is finitely generated as a V-module.

Proof. (a) The ring By is finitely generated as a V'-module, because W is a
finitely generated V-module. In particular each x, is integral over V. If k is
the order of g, then x¥ = f(a, 0)f(0%, 0)--- f(d*~!, 6) is integral over V
and lies in K. Thus xX € W and so 0 < w(x¥) = kw(x,). Hence x, € B, .
This means 1 € N, and thus W C N, because N, is a W-module. Therefore
By C By, . If By is a valuation ring, then B, = B, because B,NF = B, N F .

(b) If B, = B, then in particular B, is finitely generated over V. Con-
versely, assume B, is finitely generated. It follows that for each ¢ the V-
submodule N is finitely generated. Because N,N7_, f(a, o) C Ng =W,
each N, is also a fractional ideal, and so we conclude that N, is principal over
W . It follows that there is a cocycle g equivalent to f such that B=B,. O

It is shown in [M, Proposition 3.2] that if w is any value function then B, is
a finitely generated ¥-module if and only if [X, : F]=¢f, where f =[B, : V]
and ¢ is the number of elements in the set A = {y € [',|0 < y < ¢ for all
6 € I'*}. Moreover in this case ¢ = [, : I'] and I',/T is a cyclic group
generated by yo + I', where py is the least positive element of I',,. We want
to give another characterization of when B/ is a valuation ring.

Lemma 2.13. Set A = {y e I',|0 <y < forall 6 € T*}. Then B, is a
valuation ring if and only if w(xs) € A forall o € G.

Proof. Suppose By is a valuation ring. We have seen that it follows that B, =
B, . Let a be an element of K such that 0 < v(a) < w(x,) for some ¢ in
G. Then w(a='x,) >0 so a~'x, € B, = B;. Thus a=! € W, so v(a) <0.
This is a contradiction, so w(x,) € A.

Conversely, suppose w(x,) € A forall ¢ € G. If Y sa:x; € By
then v(ay;) + w(x,) > 0 for all . If v(a;) < 0 for some ¢ then 0 <
-v(as) < w(xy), contradicting w(x;) € A. Thus a, € W for all g, so
ngzaeGW)Q,:Bf. But BfﬂF= V', so Bu,———Bf. 0

Let H = {0 € G|f(o,07') € W*}. We can now characterize those cocy-
cles f for which By = 3 _,Wx, is a valuation ring. The characterization
generalizes Theorem 2.3 of [H].

Theorem 2.14. Suppose K/F is Galois and inertial with respect to the valuation
rings W[V . Let f € Z*(G, K*) be a normalized cocycle with f(G x G) C
W. Thering By =3 .;Wxs is a valuation ring if and only if the following
conditions are satisfied:

(@) H is normal in G and the quotient G/H is cyclic.
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(b) Either H =G, in which case By is Azumaya, or there is an element o
in G such that oH generates G/H and such that the partial ordering
on G/H is the simple chain H < 6H < ¢’H < ¢3H < --- < gk~'H
where k is the order of o. Moreover f(a,a™ ') e J(W) - J(W)?.

Proof. Assume B is a valuation ring. Then we know B, = B,,, the valuation
ring of the value function w determined by f. By Lemma 2.13, w(x,) € A
forall 0 € G. Also |A| = |I'y/I'| and T, /T is cyclic. By Lemma 2.11,
H =1 = ker(a). Hence H is a normal subgroup of G, and because the
map a: G — I'y/T is surjective, G/H = I',,/T is cyclic. If H = G then
f(Gx G)C W* and so B, is Azumaya. Assume therefore that H # G. Let
y be the least positive element of I", and let ¢ be an element of G such that
w(xs)=y. Then a(o)=y+T and (y+TI')=TIy/I',so (¢H) = G/H . Hence
the order of oH is ¢ = |A|. Because

e—2
= (H f(o-i, O')) Xge—1 ,
i=1

we have

Hence (¢ — 1) y > v([15; fa’ )). But it is easy to see that (¢ — 1)y € A.
Hence v([[Z] f(a', 6)) =0, 50 f(o', 0) € W* for 0<i<e-— 1. It follows
that ¢'H < a’“H for 0 < i <e—1. Moreover x¢ = ([[5 ' f(a', a)), so
ey =w(x¢) =v(f(a®", g)). Because y is the least positive element of Ty it
follows that ¢y is the least positive element of I'. Hence f(a®~!, 0) € J(W)—
J(W)?. We will have finished this direction once we show that v(f(g¢~!, 0)) =
v(f(6,07")). But 6! = ho~! forsome h € H and f(H xG) C W*. From
the cocycle identity f*(c~', a) = f(h, 0= ") f(ho~!, o) we infer

v(f(e*", 0)) =v(f(ha™", 0)) =v(f*(7", o))
= v(f(a_l P O') = 'U(f(O', a—l))

where the last equality follows from f?(¢~!, 0) = f(g,07").

For the converse suppose H isnormalin G. If H = G then B, is Azumaya.
Otherwise we have G/H = (cH) with f(g,a7 ') € J(W)—J(W)? and ¢'H <
o*'H for 0 < i < |G/H|. We will be done by Lemma 2.13 if we show
w(xs) € A forall ¢ € G. Let t = |G/H|. The relation ¢'H < ¢'*'H
gives f(o',0) € W* for 0 <i<t—1 so w(x,) = iw(x,) for i <t and
w(xt) =v(f(c"", a)). Let y =w(x,). If 1€ G, say T =0'h, then

w(Xe) = wW(Xp) + W(xa) —v(f(0', h) = w(xp) = iy

because € H =1 and f(o', h) € W* . As in the first half of the proof we
have v(f(¢'~!, 6)) =v(f(o,07")). Because f(o,0~') e J(W)-J(W)?%, we
obtain v(f(g'~!, 6)) = w(x.) = ty is the least positive element of I". Thus
w(x,) =iy <ty forall 7,s0 w(x;) € A. Thus B=B,. O

Recall that from Lemma 2.11 we know H = I = kera. In particular H
can be described using the value function w . It is worth noting that under the




VALUATION RINGS IN CROSSED PRODUCT ALGEBRAS 737

hypotheses of Theorem 2.14 the partial ordering on G/H (which is then a total
ordering) can also be described in terms of w . In fact ¢ H < 7H if and only if
w(o) <w(t): If H < tH then f(o,07'1) e W>*,s0 w(f(g,07 1)) =0.
Hence from x,x,-1; = f(0, 67 '7)x,, we infer that w(x,) +w(xs-1;) = w(X;)
and so that w(x,) < w(x;). (This direction is true in general, that is even if
the ordering on G/H is not total.) For the converse suppose w(o) < w(r). If
TH < o H then by the first part w(t) < w(o) and so w(r) = w(o). But then
o~ !t € kera = H, a contradiction. Because G/H is totally ordered it follows
that oH < tH.

Here is a nice application of the theorem. The result can also be obtained
using the exact sequence (5.4) of [JW] along with [W, Theorems B, F].

Corollary 2.15. Assume the hypotheses of the proposition and assume that the
value group of V is equal to its own divisible hull. If f € Z*(G,K*) is a
normalized two cocycle and B is a valuation ring over V in X; then B is
Azumaya.

Proof. Let B be a valuation ring over V' in X,. The condition on the value
group implies that the ramification index of B/V is one. Moreover by [MW,
Theorem 2.1] B/V is defectless. It then follows from [M, Proposition 3.2]
that B is finitely generated as a V'-module. By Lemma 2.12 it follows we may
assume f is standard for {V} and B = By = ) ;Wx,. Let H = {0 €
G|f(o,0~") € Wx}. If H is a proper subgroup of G then by the theorem
there is an element ¢ € G — H such that f(o,07!) € J(W) - J(W)?. But
because the valuation is not discrete J(W) = J(W)?, so this is impossible.
Hence H =G, so B is Azumaya. O

We now proceed to the general case. We begin with a generalization of
Lemma 2.12.

Lemma 2.16. Let Y ={V;, V5, ..., Vu_1, Vo} wWhere V =V, CV,_, C--- C
Vi C Vo= F. Thereis a cocycle g equivalent to f such that g is standard for
Y and By, = Bg ifand only if forall i, 1 <i<n-1, B,Vi/J(ByVi—1) is
finitely generated over Vi/J(Vi_,).
Proof. If B,, = By then we can apply Proposition 2.6 to see that for all 7,
1<i<n-1,
BuVi/J(BuVioy) = Y Wi/J(W))x,

o€H;
which is finitely generated over V;/J(Vi_;).

For the converse we proceed by induction on n. Let By = Y .5 NoXs
as usual. If n = 1 then this is the second part of Lemma 2.12. Assume
n > 1. The induction hypothesis applied to Y/ =Y — {}V'} shows that there is
a cocycle g’ equivalent to f such that the valuation ring B, V,_; equals B .
Let By =Y cc Woys . By Proposition 2.6 we know

J(Bg)= Y. JWutlvot Y, Woo

o€H,_, o¢H,

Because J(Bg') C By, we can write

Bw= z Naya+ Z Waya
o€H,_, o@H,_,
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where Ng=W and N, C W,_, with N,W,_, = W,_, forall ¢ € H,_,. By
hypothesis
Bu/J(Bg)= > No/J(Wa_1)ys
o€EH,_,

is a finitely generated V/J(V,_,)-module and clearly contains W/J(W,_,).
As in the proof of part (b) of Lemma 2.12 it follows that for each ¢ € H,_,
there is an element a, € W,_, such that N,;/J(W,_;) is the principal ideal
W/[J(Wy-1)(as+J(Wy_1)). Hence Wa,+J(W,_,) = N, . But then Wa,W,_,
+ J(Wy—) = NoW,_y = Wy_; so a, is a unit in W,_;. It follows that
J(Wy—y) € Wa, and so Wa, = N,. It is now easy to see that one can al-
ter g’ to obtain a cocycle g equivalent to f such that g is standard for Y
and By, =B;. O

Theorem 2.17. Let f be a standard cocycle for Y = {Vi, Vo, ..., Va_y, Vu}.
The crossed product order B; is a valuation ring if and only if for each i,
1 < i< n, the following conditions are satisfied:
(a) The subgroup H; is normalin H,_,, and the quotient H;_,/H; is cyclic.
(b) Either H;_, = H; or there is an element o;_, in H;,_, such that o;_H;
generates H;_\/H; and such that the partial ordering on H;_, is the
simple chain

oi\H; <62 Hi<o} \H < < U,'I(__llHi
where k is the order of a;_, . Moreover f(a;_1, a7 \) € J(W;)—J(W;)?.

Proof. Let B = By and assume B is a valuation ring. We proceed by induction
on n. We need to show that for each i, f satisfies properties (a) and (b). If
n = 1 then this is Theorem 2.14. Hence we may assume » > 1. The ring
B,_, = BV,_, is also a valuation ring. Moreover we have seen that B,_, is the
crossed product over V,_; corresponding to the cocycle f, which is standard
for Y’ =Y — {V}. Hence by induction properties (a) and (b) hold for all i,
1 <i<n-1, and we are left with verifying the properties for i = n. Let
H = H,_,. We have J(B,_;) C B by Proposition 2.6 and B/J(B,_,) is a
valuation ring in the simple algebra B,_,;/J(B,_). Also

Bn—l/J(Bn—l) = Z Wn—I/J(Wn—l)xa,
o€EH

a crossed product algebra for the cocycle fiy.y . Moreover fiy.y is standard
for the valuation ring W, /J(W,_,) and

B/J(Buo1) =Y Wa/J(Wy_1)x,

oceH

is the crossed product order for fy.y . Hence the result for i = n follows
from the n =1 case.

Conversely assume B = B, and f has properties (a) and (b). We need to
show B is a valuation ring. Again we argue by induction on n, the n =1 case
being Theorem 2.14. Thus assume n > 1 and let B,_; = BV,_,. Then B,_;
is the crossed product order for the standard cocycle f (for Y’). Because
S satisfies (a) and (b) for i < n — 1 we infer by induction that B,_, is a
valuation ring. Moreover J(B,_;) C B and as we have seen B/J(B,_;) is the
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crossed product order for the cocycle fiyxp inside the crossed product algebra
B,_1/J(B,_1) (where H = H,_;). Because fuxp satisfies (a) and (b) for
H, C H we obtain B/J(B,_;) is a valuation ring by the n = 1 case. But by
[D,, §1, Proposition 2] it then follows that B is a valuation ring, as desired. O

Example 2.18. Here is an example of a valuation ring which is not equal to B,
forany f and Y:

Let F be a field with valuation v whose value group is I' = Z + nZ with
the archimedian ordering induced from the inclusion I' C R. Let V' be the
valuation ring of v and suppose char(V) # 2 and that there is an a € V' with
@ not a square in V. (For example we could take F = Q(I') and a = 2.) Let
b eV with v(b) =n. Set K = F(y/a), an inertial Galois extension of F with
respect to V' and X the cyclic algebra (K/F, ¢, b). Then X is the quaternion
algebra (a, b)r with generators i, j satisfying i2=a, j2=b, ij=—ji. Also
K =F(i) and £=K®Kj. By [JW, Example 4.3] v extends to a valuation on
X, which we will also denote by v, such that v(a+fj) = min{v(a), v(B)+n/2}
for a, f € K. Let B be the valuation ring of this valuation. Then B = W& T
where W = BNK and T = {a € K|v(a) > —n/2}. If B = B; for some f
then B = W @ Wx, is a finitely generated V-module. Thus T is a finitely
generated W -module, hence principal. But if 7 = Wx then v(x) is the least
element of v(T) = {y € I'lv(y) > —xn/2}. But v(T) has no least element
because —n/2 ¢ I' and T" is dense in R. Hence B is not a crossed product
order By for any f.

We end this section with a proposition that will be useful in the next section.

Proposition 2.19. Suppose f is standard for W, . Let w be the value function
associated to f and assume that By, = Y . WoXs is in standard form (that is
By = By). If H is any subgroup of G, then Y ., Wsxs is a valuation ring in
Yoern KXo .

Proof. Let E = ) ., Kx, and let w' = w|g. Then C = B, NE = {z €
E\lw'(z) > 0}. Let J = {z € E|lw'(z) > 0}. By [M, Theorem 2.4] we will
be done if we can show w’ is a value function and C/J is simple. Moreover
to show w'’ is a value function, it suffices to show that if y € im(w’), then
there exists z € EX such that w'(z) = y and w'(z”!) = —w'(z). But the
definition of w shows that im(w’) = {w(a) + w(x,)|la € F, o € H}. Because
w(a) + w(x,) = w(ax,) and w((ax,)~!) = —w(ax,), we have shown w’ is a
value function.

We now proceed to show C/J is simple. Let ¢ = fiyxy and let H] =
HNH; = {o € H|f(c,07") € W} for 0 < i < n. Then for i < n,
(H] x H]) C f(H; x H;) C Wiy, so g is standard for W, and C = B;. By
Proposition 2.6 C is primary and

J(CO) =Y TWo)xe + Y Woxs.

o€H, o¢H,
But then J =J(B)NC =J(C) so C/J issimple. O

3. DISCRETE RANK N VALUATION RINGS

In this section we consider the case where V' is unramified but not necessarily
indecomposed in K. We restrict our attention to discrete rank » valuation
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rings V.Let V=V, CV,_,C---CV,CV CF be the overrings of V and
let W; be the integral closure of V; in K.

Let f € Z*G, K*) be a normalized two-cocycle and let (K/F, G, f) =
Y sc Kxs . By Proposition 1.7 we may assume there is a valuation ring B =
Y ocg WoXxs over V in (K/F, G, f), where each W, is an overring of Wj.

In order to reduce the confusion caused by the too frequent use of the letter
W in our notation, we will let $ = W,. That is S will denote the integral
closure of V in K.

We want to determine the rings W, . Recall from §1 that each W, is a
semilocal Priifer ring and hence an intersection of valuation rings. More specif-
ically W, = [\ Sp where the intersection is over those prime ideals P of S
such that W, C Sp. Alsonote that V=BNF =WynF.

Definition. A prime Q of § is said to belong to B if W4 CSp.

Observe that for every i < n there is a prime ideal of height i belonging to
B : It suffices to show there is a maximal ideal M of S belonging to B because
then any prime ideal contained in M also belongs to B. But if no maximal
ideal belongs to B then W,y O W, and so WynN F = V;, a contradiction.
The following is the basic result of this section.

Theorem 3.1. Let B =) _; W;x; be a valuation ring over V . Then

(a) We have J(B) = ) ,ccJoXs where for each 0 € G, J, = {k €
Wolkf(a,a7") e J(Wy)}.

(b) If Qy, Q2 are prime ideals of S of the same height belonging to B,
then there exists ¢ € G such that Q7 = Q, and f(o™', 0) & Q\Wi4.

Proof. The proof is by induction on the rank. If the rank is one then the
theorem is a consequence of [H, Proposition 3.1, Theorem 3.2]. Hence we may
assume the rank » is greater than one. Because B,_; = BV,_, is a valuation
ring of rank n — 1 the results may be assumed true for it. We will assume the
theorem for valuation rings of rank less than » in the following lemmas.

If P is a prime ideal of S of height i < n we will let S* denote Sy
where the intersection is over those primes Q of S that contain P . Note that
if U is any overring of S then US? = S, where this intersection is over
those primes Q such that PC Q and U C Sp.

Lemma 3.2. Let P be a prime of height i belongingto B. Let 0 € G.

(@) If f(o,07") & PWq then W,S* = W4SP.

(b) If Q D P is a prime of height i + 1 belonging to B and f(o,07 ") ¢
PWq, then Wy C SQ,,_I and W7, CSp.

(c) If f(o,a7")e PWy, then W,S¥ = W,Sp.

Proof. (a) Let Q be a height { + 1 prime of S containing P. We need to
show that W4 C Sp if and only if W, C Sp. We know W43 C W, . Hence
certainly W; C Sy implies W4 C Sy .

Now suppose Wjg C Sp, but W, is not contained in Sp. Then WSy is
a ring properly containing Sp. Hence WS, is valuation ring. But P is the
unique prime of height n contained in Q. It follows that W;Sp O Sp. On
the other hand we know W, f(g,07!) C W4, so we have W, f(g,07")S, C
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I’VidSQ = SQ . Thus
So2W,f(e,071)So = flo,07YW,;Sp 2 f(a,07")Sp=Sp,

because f(o,07') ¢ PW,q. Thus Sp C Sp, a contradiction.
(b) By part (a) W,S? = W4S?. Hence W, C Sp. But because the product

xsWq is in B we see that W, C W,. Hence W4 C SQ,_. . In particular
1

Wi C Sp,-1, 80 P°"' belongs to B. Moreover f(a=!,0) = f° (6,07!) ¢
P Wy, so by part (a) W, C Sgo-1 - Hence W7, CSp.

(c) Assume f(o,07') € PW,y. Let Q be a prime of height i + 1 that
contains P. We claim W, is not contained in Sp: There are two cases: If
PW; = W, , then from W, C Sy we obtain W, = PW, C PSp C OSp, a
contradiction. If PW, # W, , then PW,V; is a maximal ideal in W,V;. Let
J={keW,Vikf(a,a7 ') e J(W,V;)}. We know by the induction hypothesis
that J C J(B;). Because B C B; and both are valuation rings we infer that
J(B;) C B. Hence J C W,. Let T = [[ N where the product is over those
primes of S of height at most i/ not contained in P. Note that 7' C J because
flo,07 ") e PWy. Hence W,V,T CW,V,J CJCW,.

Now assume W, C Sp. Then W,V,T C Sp, so W;V,TSp C Sp. But
TSo =Sp: If not TSy C QSp,so T C Q. Hence there is a prime N of
height at most i such that N C Q but N isnotcontainedin P. But P C Q, so
this is not possible. Thus TSy = Sp and so if W, V;TSp C Sp, then V; C Sy,
a contradiction. This proves the claim.

Because W,S* is a Priifer ring it is the intersection of the valuation rings
that contain it and each such valuation ring is a localization of W,S* at some
prime ideal. We have just seen that any valuation ring that contains W,S*
must have rank at most i. However every prime ideal of S* of height at most
i is contained in P and so every valuation ring of rank at most / that contains
S? must contain Sp. Hence W,S* O Sp and so W,S* = W,Sp. O

Proposition 3.3. Let P be a prime of height i < n belonging to B. Let P =
P,DP_,D-.-2 P D Py=0 betheunique chain of prime ideals of S contained
in P. If 0 € G then W;Sp = Sp, where j < n is the unique integer such that
flo,07") e PiWy— P Wy.

Proof. This is an easy consequence of parts (a) and (c) of Lemma 3.2. O

Proposition 3.4. We have W,y = Sy where the intersection is over those max-
imal ideals M of S that belong to B.

Proof. 1t suffices to show that every prime of height i < n that belongs to B
is contained in a height / + 1 prime ideal belonging to B. By the remark
immediately preceding Theorem 3.1, we know there is some height i+ 1 prime
ideal Q of S belonging to B. Let P be the unique height i prime of S
contained in Q. Then P belongs to B. By the induction hypothesis applied
to part (b) of the theorem, if T is another height i prime of S belonging to
B, then there is an element ¢ € G such that f(6~!,6) ¢ P and P’ = T.
By part (b) of Lemma 3.2, W4 C Sp.. But Q7 is a height i + 1 prime ideal
containing 7', so we have proved the proposition. 0O

It should be observed that these propositions give, for each ¢ € G, a prescrip-
tion for finding W, in terms of Wyy: If M,, M,, ..., M, are the maximal
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ideals that belong to B, that is for which W3 C Sy, and if M; = P, , D
Piy1 22 P 2P o=0 is the chain of prime ideals contained in M;,
then W, = ﬂf;] Sp,.‘j‘_ where for each i, 1 < i <k, j; is the unique integer
such that f(o, 07") € P;,Wq — P;,_1Wiq. The description of the rings W, is
thus reduced to describing W4, or in other words to finding the primes that
belong to B.

3.1. Proof of part (a) of the theorem. Let 0 € G. We begin by giving an
alternate description of J,. We have that J(W;) = [\ QW, where the inter-
section is over those prime ideals Q of S such that QW, is a maximal ideal
of W,. If f(o,07!) € QWy4 for all such Q, then J, = W, . Otherwise,
that is if f(o,07!) ¢ J(W,), then J, = (JQW, where the intersection is
over those prime ideals Q of S such that QW, is a maximal ideal of W,
and f(o, 07 !) € QW,y. We claim that it follows that any such Q must be
a maximal ideal of S : Because f(o, 0" !) ¢ QW,y we know from Lemma
3.2 that W,S2 = W;4S2. Applying Proposition 3.4 we see there is a maximal
ideal M of S such that M O Q and MW, is a maximal ideal of W, . But
MW, contains QW,, so MW, = QW, by the maximality of QW,. Hence
Q = M is maximal. We infer that either J, = W, or J, = | QW, where the
intersection is over those maximal ideals Q of S such that QW is a maximal
ideal of W, and f(o,07!) ¢ QWyq.

Now let I = Y .;JoX;. We begin by showing that I is an ideal of
B. To see that it is a right ideal it suffices to show that for all 6,7 € G,
JoXeWiX: C JyiXgr. This is equivalent to J, W7 f(o, 1) C Jsr. First ob-
serve that J,W? f(a, 1) C W,,. Hence if J,; = W,, the inclusion is clear.
We may thus assume J,; = [|QW,, where the intersection is over those
maximal ideals Q of S such that QW,, is a maximal ideal of W,, and
flot, 716~ ") ¢ QW4 . Hence to show J,W? f(o, 1) C J;; we need to show
that if Q is a maximal ideal of S such that QW,, is maximal in W, and
flot, 767 !) ¢ QW,q, then J,W7f(o, 1) C QW,,. This last inclusion is
equivalent to J,W? f(g, 1)So C QSp .

So assume Q is chosen as above. Let P be the unique height »—1 prime of
S such that PC Q. If f(o7, 1 '6~!) € PWy, then by Lemma 3.2, W,.SP =
Sp, contradicting the fact that W,, C Sp. Hence we have f(o1,17!07!) ¢
PWy.

Now if f(o, 07 !) € QWyq, then in particular f(o, 6~!) € PW,y and so by
Lemma 3.2 we have W,;Sp = Wj3Sp = Sp. Moreover J;Sp C QSp. Hence
JWZf(o,1)Sg C W2f(o,1)QSe. But Wef(o, 1) C Wy C Sp, so we get
the desired inclusion.

Now assume f(6,07!) ¢ QW,qy. Let P = P,_, D P,_, D --- D P D
Py = 0 be the chain of prime ideals contained in P. Assume j is the unique
integer such that f(og,07!) € PW,g — P, {W4. If J, = W, when J,Sg =
WS = Sp; by Proposition 3.3. If J, # W, then we know J, = NW;
where the intersection is over those maximal ideals N of S such that NW, is
a maximal ideal of W, and f(o,0™') ¢ NW4. Because f(o,07!) € PiWy
we know that if N is such a maximal ideal then N does not contain P;. In
particular J, 2 [][ N where the product is over those maximal ideals and so
JoSg = JsW5Sg = JsSp, 2 (I N)Sp, = Sp, because otherwise some N would
be contained in P;. Hence in either case we have J;So = Sp, and so
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W f(o,1)Sg =W f(a, 1)Sp, = W f(a, 7)f(at, 17 a7 ")Sp,,
because f(ag7, 77'07!) ¢ P;W,q. Now we apply the following cocycle identity:

ff(r,t'e Hf(a,07 ") = f(o, 1) f(ot, T7'a7}).
It follows that
Wef(o,1)f(ot, 7o )Sp = W7 f7(x, v a7 ) f(a,07")Sh,.

But f(o,07!) € P;Sp, and W7 f’(z, 17 '67!) C W7, . Moreover W7, C Sp,
by part (b) of Lemma 3.2. Thus

Wef(r, v a7 ) f(o, 07")Sp, C P;Sp, C 0Sp

as desired.

The computations to show I is a left ideal are similar and will be omitted.

Having shown I is an ideal we proceed to show I = J(B). Because B is a
valuation ring we know J(B) is the unique maximal ideal of B,so I C J(B).
Moreover J(B) is an S-S bimodule, so we can write J(B) =) ., Tsx, for
some ideals T, in W, . We have T, D J, for all ¢ € G, and we want to show
equality.

First observe that

Jia = {k € Wialk f(id, id) € J(Wig)} = J (Wiq).-

Because Ty consists of quasiregular elements in W,y it follows that T;y C
J(Wi4) . Hence Tig = Jig .

Now let ¢ € G. If J, = W, then certainly T, = J,. Hence we may
assume J, # W, and so J, = [|QW, where the intersection is over those
maximal ideals Q of S such that QW, is maximal in W, and f(o,07!) ¢
QW,4 . Let Q be such a maximal ideal. Now because J(B) is an ideal we have
TyxsXx5-1 C Tia C J(Wyq) and so T, f(a,0~!) C J(Wyq). Moreover if Q isa
maximal ideal in S such that QW, is maximalin W, , then QW is a maximal
ideal of W,y. Hence J(W,q) C J, andso T,f(c,0~")2 C J(W,) C QW,. But
fle,671)2 ¢ QW, so T, C QW,. Because Q was arbitrary, we see that
T, C J,;, as desired. O

3.2. Proof of part (b) of the theorem. If the height of Q; is less than n then
the result follows by induction. Hence we may assume that Q; and Q, are
maximal ideals of S. Let Q,, @2, ..., Or, Q415 ..., Qm be all the maximal
ideals of S and assume Q;, Q», ..., Q, are the ones that belong to B. By
Proposition 3.4 we know Wy = (i_; So,. We also know from part (a) of the
theorem that

J(B)ig = J(Wyq) = [ QWi
i=1

Let T =[], Q:i. Then TW4 = []i_, QiWiq because if i > r then Q;Wq =
W.q. It follows that T is not contained in J(Wjq). Because B is primary we
infer that BTB = B. Computing the identity component of BT B we see that
we must have ) - WoxoTW;-1x,-1 = Wi4.
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Foreach i, i=1,2,..., m, there is an element 4; € G such that Q{"’ =
Q;. Let D = D(Q;). The elements A, h,, ..., h, form a set of left coset
representatives of D in G . Hence we can write

Wia=Y WoxeTW,iXg1 = 3 WoT'WZ f(0,07")
geG 0€EG

=3 W THOWG, f(hid, (hid)™")).

i=1 deD

Note that for all d € D, T"9 = Th because T = T. Also observe that if
i#2 then T" C Q, and so

S Wi T Wd,  f(hid, (d)™)) € Q2Wig
deD
because for every g € G, W, W7, f(g,07") C Wq.

Now assume that for all d € D, f(hyd, (hyd)™') € Q{'z (= @2). We claim
that it follows that

> Wina THI(Wied  f(had , (had)™)) € QaWig.

deD
If so then BTB C Q,W,, a contradiction. It will then follow that for some
deD, f(hd, (hd)™") ¢ Q" = 0" and so that

f((had)™", had) = fRD™ (hyd, (hyd)™") € Q1.

Because Q{'Z‘I = @, that will finish the proof.
To prove the claim it suffices to show that for each d € D

Wina T4 (W24 f(had , (had)™) € Q2 Wia,
or equivalently that
Wia T (W34 f(had , (had)™"))Sg, C Q2S0,-

To simplify the notationlet Q=Q>. Let =P, 2P, 2---2P 2P =0
be the chain of prime ideals contained in Q. Let d € D and let j be the
unique integer such that f(hyd, (hd)™') € PiW,q — Pj_ 1 Wiq. Let 7 = hyd.
We need to show W.T*W", f(t, 17')So C QSp. We have f(t, t7') C PiWq
and by Proposition 3.3 W;Sp = Sp,. Moreover W°, C Sp, by Lemma 3.2.
Hence W,T'W:_,f(t, r")SQ C P;Sp,. But P;Sp C 0Sp, so we are done. O

Corollary 3.5. Let P be a prime of height i < n belonging to B and let T =
{Q|Q is a prime of height i + 1 belonging to B and containing P} .
(a) The group H(P) acts transitively on T . In particular the order of T is
the index (H(P): D(Q)N H(P)), where Q is any element of T .
(b) If P’ is another height i prime belonging to B and T' = {Q|Q is a
prime of height i + 1 belonging to B and containing P'} then there is
an element o € G such that f(6=',0) g PW,q and T' = T° .

Proof. (a) If Q € T and o € H(P) then f(o,07 ') ¢ PWy4 so by Lemma

3.2 we know Wy C SQ,,_I .

Hence the group H(P) acts on 7. Moreover if
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Q: and @, are in T then by the theorem there is an element ¢ in G such
that f(o~!,0) € Q1Wq4 and Q, = Q7. Because P is the unique prime of
height i contained in Q; and the unique prime of height i contained in Q,
it follows that P° = P, thatis ¢ € D(P). But f(o,07') = f°(67!,0) ¢
Q¢ W,y = Q,Wq, so in particular f(g, 07 ') ¢ PW,q. Hence 0 € H(P). The
last statement is immediate.

(b) By Theorem 3.1 there is an element ¢ € G such that f(c7!, o) & PWy4
and P’ = P°. By Lemma 3.2 it follows immediately that every element of
T° belongsto B,so T° C T'. The opposite inclusion follows by considering

flo,07Y) = f("1,0). O

Corollary 3.6. (a) If P is a prime of height i < n that belongs to B, and Q
is a prime of height i + 1 that belongs to B and contains P, then there is a
set of right coset representatives of D(Q) N H(P) in H(P) such that for each
representative g, f(g, g ) €Q.

(b) Let P be a prime ideal of height i < n that belongsto B. Let H = H(P).
The ring WiuST N K" is a valuation ring of rank i. Moreover if p is the prime
ideal in S" of height i such that W,4S* n KH = (SH),, then the prime ideals
in S of height i + 1 that belong to B and contain P are precisely those that
lie over p.

Proof. (a) This is an easy consequence of part (a) of Corollary 3.5.

(b) This is also a consequence of part (a) of Corollary 3.5: In the notation of
that corollary, because H acts transitively on T, it follows that all the prime
ideals in T lie over the same prime ideal in S . If we let p denote that prime
ideal in S¥ | then T consists of precisely the primes of S lying over p. But
WoSP = Nger So and so W,STNnKH = (8#),. O

The result of Corollary 3.6 and [H, Corollary 3.11] lead one to suspect that
there should be a Dubrovin valuation ring “involved” with B whose center
is WiySP n K" . We are now headed for such a result. Let P be a prime
of height i < n belonging to B. Let D = D(P) and let H = H(P). Let
B =Y, .p(WsSP)x, and let B” = Y ., (W,SF)x,. Similarly if M is a
maximal ideal of S belongingto B and E = D(M),let C =3 . (WsSy)xXs .

Proposition 3.7. The rings B', B, and C are Dubrovin.

Proof. We proceed by induction on #n, the rank of B. If the rank of B is
one, then the rank of P must be zero, so B’ = B” = B. The fact that C is
Dubrovin is the content of [H, Corollary 3.11]. Hence we may assume the rank
of B is greater than one.

We begin with B’. If P is a prime of rank /i < n — 1 then forall 0 € G
wW,SP = W,V,_,SP and so the result follows by induction applied to B,_; .
Hence we may assume P is a prime of rank n — 1. It follows that

C'=BVio1=> (WeVuaiS )X =) (WoSp)Xs
o€D geD

is Dubrovin by induction. Moreover we claim J(C') C B’ : We know by
Theorem 3.1 that

J(C) =Y (PSp)xg+ Y (WoSp)Xo.

og€EH g€ED
odH
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But if ¢ ¢ H then W,S? = W,Sp by Lemma 3.2 and if ¢ € H then PSp C
MSy for every maximal ideal of S that contains P. Hence if ¢ € H, then
PSp C SP C W,S? . This proves the claim. ~

Hence by [ D, §1, Proposition 2] it suffices to show B’ = B’'/J(C’) is a val-
uation ring. To do this we first consider the valuation rings B = B /J(Bn-1) C
B,_; = B,_,/J(Bn_;). Note that by Theorem 3.1, J(B,_1)ia = J(WigVu_1).
Hence

By_1 = WigVu_i = WigVao1/J (WigVn-1)

k
= @Z(Wian—l)/(PiW;dn—l) ,
i1

where P =P, P,, ..., P, are the primes of height n — 1 that belong to B.
Let e be the minimal idempotent in W4V,_, corresponding to

(WiaVa-1)/(PWigVp—1).

Next observe that

k k
J(WigVuot) = (Y PiWiaVao1 S (| PiSp, € [\ M Sk

i=1 i=1

where this last intersection is over all the maximal ideals that belong to B.
Hence J(W4qVy-1) C J(W4). Moreover

Waa/J(W; =P Z W/ PiWq

and for each i, Wy/P,W,4 is a Dedekind domain with field of fractions
(WiaVn-1)/(PiWiqVn-1)-

In particular note that e € Wy/P;W;q C B. Because B is a valuation ring in
the simple algebra B,_;, it follows from [D,, §1, Theorem 7] that eBe is a
valuation ring in the simple algebra eB,_,e.

We want to compute eBe and eB,_ie. To simplify notation let T, =
WyVy—1 and let I, = J(B,_)s , the o-component of the radical of B,_;. We

have _
eB,_1e = Ze(Ta/Ia)a(e)xa
o€G
If 0 ¢ D then o(e) # e and so g(e)e = 0. Hence

an—le = Z e(Ta/Ia)a(e)xa

g€D

Moreover we claim if ¢ ¢ H then e(T,/I,) = 0: If I, = T, then the claim
is certainly true. If I, # T, then by the description of I, given in the proof
of part (a) of Theorem 3.1 we know that I, = () Q7, where the intersection
is over those prime ideals Q of height n — 1 that belong to B and for which
flo,07") ¢ QT,. But f(o,0"") € PT, andso P is not among those primes.
The claim follows. Hence eB,_ e = Y oen €(T5/15)x, . It follows that eBe =

Yoen €Wollp)Xs .
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We want to show that B' = eBe. If so then B’ is a valuation ring, as
desired. We have B’ = Y, (W,SP/PSp)x,. If 0 € H then we know by
Proposition 3.3 that W, C Sp and so PW; is a proper ideal of W, . Moreover
I, C PW,. Hence there is a canonical homomorphism ¢ from W,/I, to
Sp/PSp. It is easy to see that e(W,/I,) is precisely the image of ¢. On the
other hand, W, C W,S? C Sp and PSp C W,S?. We have then the following
commutative diagram of ring homomorphisms, where p is the canonical ring
homomorphism from W,S?/PSp to Sp/PSp.

W,/l, —— W,S?/PSp

\y

Sp/PSp

To show that B’ is isomorphic to eBe, it suffices to show that in this diagram
¢ and p have the same image. Hence it is enough to show that the map from
W,/1, to W,SP/PSp is surjective. Thus we are reduced to showing that W, +
PSp = W,SF. We have W, C W, + PSp C W,SP. Because W, C Sp we
see that PSp is a Wj-submodule of Sp and so W, + PSp is a ring. By
the properties of Priifer rings, we know that W, + PSp = (|Sp where the
intersection is over those prime ideals Q of S such that W, + PSp C Sp.
Moreover W,S? = Sy where the intersection is over those maximal ideals
M of S such that M D P and W, C Sy . Hence it suffices to show that if Q
is a prime ideal of S such that PSp C Sy, then Q D P. To see this statement
we may assume Q # P. If PSp C Sp, then QPSp C OSp. But QSp = Sp
because Q is not contained in P. Hence PSp C Q0Sp,s0 P =PSpNS C
QSoNS = Q. Hence we have shown that B’ is isomorphic to eBe and so B’
is a valuation ring. As we have seen it follows that B’ is a valuation ring.

It is now easy to see that B” is also a valuation ring: We have

B"CC"= (WoeSTVo)Xo =Y (WaSp)Xo = ) SpXs.

o€H o€H o€EH

The algebra C” is Azumaya, hence a valuation ring. Moreover J(C") =
Zde y PSpxs . To show B” is a valuation ring it therefore suffices to show that
the quotient ring B”/J(C") is a valuation ring. But clearly B"”/J(C") = B',
which we just proved is a valuation ring.

Finally we need to show C =) -(W;Sum)X, is a valuation ring. Let P be
the unique prime of height n — 1 contained in M . Again we consider

C'=CVai =Y (WaSuVa1)Xo = D _(WaSp)Xs C ) (WoSp)Xo
o€E g€EE geD

By the induction hypothesis, Y .,(WsSp)X; is a valuation ring and so by
Proposition 2.19 the ring C’' = Y . W;Spx, is a valuation ring. Hence we
know

J(C) =" PSpxs+ Y WySpxs.

o€EE oc€FE
o€H o¢H
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The quotient ring C/J(C’) is

> (WaSm/PSp)xs = Y, (Sm/PSp)x,.
o€EE o€EE
g€EH oEH
It suffices to show C/J(C’) is a valuation ring.
Recall that

B' =Y (W,S"/PSp)xs = Y (WiaS"|PSp)xs,
ocEH oEH

by Lemma 3.2. Let M = M,, M,, ..., M,, be the maximal ideals of S that
contain P and belong to B. Then WySP = N;Su, , and so W.4SP/PSp =
@Y Sm,/PSy; . If we let f be the minimal idempotent in W;3S?/PSp cor-
responding to Sys/PSys, then an argument similar to that given above shows
that fB'f is isomorphic to C/J(C’). It follows that C/J(C’) and hence C
are valuation rings. O

Corollary 3.8. For every i < n if P is a prime of height i that belongs to B,
then H(P) is a normal subgroup of D(P)NH(Q) where Q is the unique prime of
height i — 1 contained in P . Moreover, the quotient group D(P)N H(Q)/H(P)
is cyclic and there is an element ¢ € D(P) N H(Q) such that the following
conditions hold:
(i) The coset cH(P) generates D(P)NH(Q)/H(P) and f(a,0a~') € PWy4
- (PWq)*.
(ii) The partial ordering on D(P)NH(Q)/H(P) is the chain H(P) < o H(P)
<062H(P)<---<a™ 'H(P), where m = |D(P)n H(Q)/H(P)|.

Proof. Let D = D(P) and H = H(P). The ideal PW,4V; is a maximal ideal
of WgyV;. By Proposition 3.7, C =3 ., Spx, is a valuation ring. The result
now follows from Theorem 2.14. O

We end this section with an example designed to display some of the various
phenomena we have discussed. Let k& be a field of characteristic not two and
let s,t,x,y be indeterminates over k. Set F = k(s,t)(x,y) and K =
F(WT+x,+/1+y,V1I+2x). Let £, be the F-algebra given by

1+x,s 1+y,t 1+ 2x,
2= (B er (B er (K.

the tensor product of three quaternion algebras. Then X, = (K/F, G, f) where
G= (7,1, p) with

c(V1i+x)=-V1+x, o(/1+y)=V1+y, o(V1+2x)=V1+2x,
t(Vi+x)=VIi+x, t(/1+y)=-vV1+y, 1(V1+2x)=V1+2x,

p(VT+x)=Vitx, p(/1+y)=V1, p(V1+2x)=—-V1+2x+y

and the cocycle is given by Table 1.
Let Vi be the y-adic valuation ring of F and V> C V| the (x, y)-adic
valuation ring of F. Let W, be the integral closure of V; in K, for i =

1, 2. An easy calculation shows W, = V;[V1+x, /1+y, V1+2x]. Write
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T_ABLE |

f lotpaotap potp
1 11111 1 1 1

o ls1l s s 1 s
T 11el ¢t 1 ¢t ¢
p |11 Lly 1 y y vy
ot lstl st s t st
op lsly s sy y sy
Tp L1ty t y ty ty
otp | 1 sty st sy ty sty

= ZVGG Kx, be the crossed product algebra determined by f. We want to
construct for i =1, 2 valuation rings B; in X, with B;NF =V;. Let

1+x,s 1+y,t 1+2x,
ZF( F ); ZF( 7 >; ZF( F y)'

Foreach j let K;=%;,NK andlet S=W,.
Because 1+x, s, 1+y,teV™,

l+x,s L+y,t
(152) o () e

is Azumaya over ¥;. Now V| = k(s, t)(x). Because 1+2x € V| —(V)? and
v(y) ¢ 2I'y, , where v is the y-adic valuation of F , it follows by [JW, Example
4.3] that there is an invariant valuation ring 4 in Xj extending V;. It can be
seen that 4 = (W, N K3) + (W, N K3)x, . Therefore by [W, Proposition 3.3] we
may take B; to be

l+x,s l+y,t
= — A.
B ( " )®V' ( " )®V‘

It follows that By =) Wix, . Also by [W, Proposition 3.3]

yEG
l+x,s l+y,t
a8y = (112w (L2 o s,

where
J(A) = (W) NK3)+ (W NK3)x,.

Hence

JB)= > JW)x,+ Y, Wix,.

7€(0, 1) y€(o,1)

For B, again we see ((1+ x,s)/V2) ®p, ((1 +y,1)/V2) is Azumaya. For
Y3 we see that because A/J(A4) = V (V1 + 2x) and V>2/J(V)) extends in two
ways to A/J(A), it follows that if C is the preimage in 4 of one of these two
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extensions, then C is a (noninvariant) total valuation ring in X3. Hence by
[W, Proposition 3.3]

_(1+x,s 1+y,t
e (552) on (H52)on
is a valuation ring of £, with BN F =}, and B, C B;. One can check that
C = (SynNKs3)+ (SpN K3)x, for some maximal ideal M 2O P of §.

Because V) extends uniquelyto F(v/1+ x, V1 +2x) butnotto F(y/1+y)
we have D(P) = (g, p) and H(P) = (g). Because JV, is completely split in
K, D(M) = (1) and so H(M) = (1). From the description of B; we see that

= > W+ Y W,
y€(o, 1) y€{o,1)

To determine W4 we see that because D(M) = (1) and G(K/K3) = (g, 1),
Sy NK3; C Sy N Sue N Spe N Sper and so Wiy = Sy N Sage N Sage N Sagor .
Moreover because J(B;) C B;, the description of J(B,) forces W; C W, and
so W, =W;. Thus

= ) (SMNSue NSy NSye)xy + Y. Wix,.
7€(0, 1) 7€(0, 1)

If J(By) =3¢ JyXy, we see that J, = W, for y ¢ (g, 1) because J(B)) C
J(By). If y € (0, 7) then because J, = {a € K|af(y,y™') € J(W,)} and
f(y,y71) e V), we have

Jy = J(I/Vld) = MSM ﬂMUSMa nMTSMr ﬂMarSMﬂr

and so
J(By)= Y J(Wax,+ Y. Wix,.
7€(0, 1) v¢€(0.,1)
If BY=%,cupyW1X, and By =3y p) SPxL, where as usual S”=(5p Su ,
then B! is a valuation ring over V; and B, is Brauer equivalent to B] =

SH® — Vi(VT+2x) while B; is Brauer equivalent to By = S,Z(M) =T.
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