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INDUCED CONNECTIONS ON 5'-BUNDLES
OVER RIEMANNIAN MANIFOLDS

G. D'AMBRA

Abstract. Let (V, g) and (W, h) be Riemannian manifolds and consider

two S '-bundles X —► V and Y —» W with connections T on X and V on

Y respectively. We study maps X —> Y which induce both connections and

metrics. Our study relies on Nash's implicit function theorem for infinitesimally

invertible differential operators. We show, for the case when Y —» W = CPq

is the Hopf bundle, that if 2q > n{n + 1 )/2 + 3n then there exists a nonempty

open subset in the space of C°°-pairs (g, V) on V which can be induced

from (h , V) on CPQ .

0. Introduction

Let (V, g) and (W, h) be Riemannian C°°-manifolds and consider two

C°°-smooth S '-bundles X -> V and Y -> W with C°°-connections r on X

and V on F respectively. We look for a map/: V —» W such that

(a) the induced metric /*(«) equals g;

(b) the induced bundle f*(Y) over V is isomorphic to X. Moreover,

we want an isomorphism f*(Y) —> X which carries the connection in

f*(Y) induced from V to I\

Equivalently, this can be expressed by saying that we look for a map

/: X -» 7 such that

(a)i   the map /: V —► W underlying / is isometric, f*(h) = g as earlier.

(b)i    / is an S '-bundle map. That is, each fiber of X goes to a fiber of Y

and this map of the fibers, say

fv:Sl^Sl,       veV, weW,

is S'-equivariant.

(b)2   / is a connection preserving map, /*(V) = Y.

It is clear that the map / underlying / satisfies (a) and (b). On the other

hand, if an / satisfies (a) and (b) then it can be lifted to an / satisfying

(b)i_2 ■ In fact, the isomorphism X —► f*(Y) implies by (b) composed with

the tautological map f*(Y) —> Y is our /. Notice, that the lifted map / is

uniquely determined by / up to the S1 -action on X as the automorphism

group of (X, T) over V is given by this action.
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0.1. Yang-Mills motivation. In this paper we study maps between arbitrary

Sl-bundles which induce both connections and metrics. The problem naturally

generalizes to higher dimensional bundles and in fact, our subject was motived

by Yang-Mills equations (which involve both metric and connection) where one

could hope to get some insight by inducing both from some universal object.

For example, the iSC/(2)-instantons over S4 can be induced by certain maps

f:S4^HPq (see [AT]).
Unfortunately, our general method of inducing (g ,T) does not apply in the

Yang-Mills case. In fact, our method is based on Nash's implicit function the-

orem for infinitesimally invertible differential operators (see §2) which requires

certain genericity assumptions on the partial differential equations expressing

the inducing relations f*(h) = g, /*/(V) = T. But in the Yang-Mills case

these equations become very degenerate and the corresponding differential op-

erator is not infinitesimally invertible. This degeneration phenomenon can be

already seen for S '-bundles and it is discussed further in §0.5.

0.2. Connection and metric inducing maps V —> CPq . An especially interest-

ing case of our problem for 5'-bundles is where the manifold W is the complex

projective space and Y = S2q+X —> CPq = W is the Hopf bundle. The connec-

tion V here is defined by the (horizontal hyperplane) subbundle X c T(S2q+x)

consisting of the vectors normal to the Hopf circles. The relevant metric h on

CPq is the one which corresponds to twice the usual spherical metric h on (the

unit sphere) S2q+X restricted to X. That is, the differential of the Hopf map is

an isomc * <:

(Z,2h\l)^(T(CPq),h).

Notice, that both h and V are invariant under the obvious actions of the

group U(q + 1) on CPq and S2q+X . In fact, the connection V is uniquely
characterized by this invariance and an invariant h is unique up to a scalar

multiple. Denote by co = <yy the curvature form of V and consider the C-

valued bilinear form h = h + \f^lwv on T(W = CPq). One can show that

this form h is hermitian for the standard complex structure on CPq . In fact,

one can easily identify h with the classical Fubini-Study (hermitian) metric on

CPq . Now, for an arbitrary manifold V with a metric g and connection T on

an Sx -bundle X —> V, one can take the curvature coy and then the C-valued

form g = g + V^-Twr on T(V). As V has no distinguished complex structure

one cannot say that g is hermitian. But, the form g uniquely extends to a

hermitian form on the complexified bundle CT(V) (this follows by elementary

linear algebra) and this extended form is still denoted by g.

Now, if /: X —► Y induces the connection Y from V , then / induces the

curvature form œr on V

(0.2.1) coT = f*(cow)

and, if in addition / is (g, h)-isometric then / is also isometric for the cor-
responding hermitian forms.

In the case W = CPq this isometry is seen in the complexified differential of

/, denoted dcf: CT(F(—> T(W), as it is expressed by the relation

(0.2.2) (¿c/)*(h) = g.

We see from this that our inducing problem (see (a) i and (b)2) is closely related

to the isometric immersion problem for hermitian metrics (compare with §0.6).
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O.2.A. Remarks, (i) For general W one has a similar relation with h defined

on CT(W) rather than on T(W).
(ii) The interest in  W = CPq  stems from the fact that the Hopf bundle

Y —» CPq is universal: every Sx -bundle over X with dimcX < q can be

induced from Y. Moreover, one can choose the bundle inducing morphism

f:X—>Y such that it induces the connection as well provided q > 2dimX

(see 3.4.2 in [Gro] and also see [N-R]).

We shall show in this paper that one can sometimes induce the Riemannian

metric as well and thus produce an isometric map for the hermitian forms h

and g. In fact, our Theorem 0.4.A says that for 2q > n(n + l)/2 + 3« there

exists a nonempty open subset in the space of C°°-pairs (g, T) on V which can

be induced from (h, V) on CPq . For the purpose of the proof, it is convenient

to reformulate the statement in the framework of the vector bundle terminology

which we introduce in the next section.

0.3. Some definitions and notations. Let S2(V) denote the symmetric square

of the cotangent bundle of V . Thus the Riemannian metrics g on V axe C°°-

smooth sections g: V -+ S2(V). Connections on X are viewed as C°°-sections

of the fibration E —» V whose fiber Ev c E for v e V can be described as

follows:
Denote by Xx the space of 1-jets (or differentials) of (germs of) sections

V —> X at x e V . Namely, Xx consists of linear maps TV(V) -+ T(X) which

project to the identity Id: TV(V) «-^ by the differential (of the projection map)

of the fibration X —> V . The group Sx naturally acts on this Xx and the fiber

Ev, v e V, equals X¡/Sx.
Our basic object over V is the pair G = (g, T) which is also denoted by

G = g © T. In fact, one should think of G as the section of the Whitney

sum S2(V) © E, which is the fibration over V with the fibers (S2(V) © E)v =

S2(V) © Ev , v e V. Also, we denote by H = (h, V) (or H = h © V) the pair
(metric, connection) defined on the manifold W. Throughout the sequel, we

shall express the inducing relations (a)i and (b)2 by

(0.3.1) f*(H) + G

and sometimes by

(0.3.2) f*(H) = G.

Equation (0.3.1) (or (0.3.2)) is, by definition, the system of equations:

(0.3.3) fi*(h) = g,       /*(V) = r.

The "operation" H —* G = f*(H) can be thought of as a map (or operator)

relating to / the induced structure. We denote this by

f^G = 3iH(f)^r(H)

and interpret it as an operator from {/} to {(?} where {/} is the space of

C°°-bundle morphisms /: X —> Y and {G} is the space of C°° pairs (g, T)

(see the discussion in §1.1).

0.4. The statement of the main result. In the theorem below we refer to the

respective fine (also called Whitney) C°°-topologies in the function spaces {/}
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and {G} . (We recall that if the manifold V is compact the fine C°°-topology

coincides with the ordinary C°°-topology.) Now assume that W = CPq . Our

main result can be stated as

O.4.A. Theorem. If 2q > n(n + l)/2 + 3«, n = dim F then there exists a

C°°-vector bundle map fo: X —> Y and a C°°-neighborhood U of the induced

structure fQ*(H) e {G} such that every G e U is induced by some C°°-map

f:X^Y.

O.4.B. Remarks, (i) An alternative formulation of Theorem 0.4.A is as follows:

if 2q > n(n + l)/2 + 3« , then there exists a nonempty open set U c {G} such

that U c 3¡n{f} • This says essentially that there exists on F a "substantial

amount" of structures G c {G} which are induced from H = (h, V) on

W = CPq by some /: X -* Y. Equivalently, the differential system (0.3.1)
has a solution for "many" right-hand sides. (Here the words "substantial" and

"many" refer to the fact that a nonempty open subset in a Hausdorff space

contains quite a few points.) Notice in this regard that if 2q < n(n +1 )/2+n - 1

(where n = dim V, 2q = dim W) namely, if the number of equations exceeds

the number of unknown functions, then the image 2H{f} c {C7} contains no

nonempty open subset.

(ii) For the intermediate range of dim W, i.e., for n(n + l)/2 + 3« > 2q >

n(n + l)/2+n-l the situation is more complicated and not completely clear. By

taking into account Gromov's results on the infinitesimal invertibility of generic

underdetermined nonlinear differential operators (see 2.3.8 in [Gro]) it seems

reasonable to conjecture that Theorem 0.4.A is true for 2q > n(n + l)/2 + n .

(iii) Our statement 0.4.A can be strengthened by replacing the C°°-topology

with the C3-topology in the space {G} of C°°-pairs (g,T) on V.

0.5. Noninducible structures. The following question naturally arises: Is it

possible to prove that the system (0.3.1) is solvable for all G c {(?}? Indeed,

the answer is yes if we replace (0.3.1) by one of the equations in (0.3.3) because

these are separately solvable for q sufficiently large (see [Na, Gro, D'A]). How-

ever, the system (0.3.1) is not always solvable even for large q. One can see

this by looking at standard examples where not all pairs (metric, connection)

are inducible unless certain restrictions on (g, T) axe added. To give an illus-

tration, we may take W = CPq with the standard metric h and connection V

already described in §0.2. As before, we denote by w = <yv the curvature of

V . Then, by Wirtinger's inequality this 2-form satisfies

(0.5.1) \\(o\\h < 1

where ||<w||A denotes the following:

||e>«!,ii)IU = sup||ai({,ff)|U

where Ç , n axe orthogonal unit vectors in T,„( W), w e W.

Notice, that the inequality (0.5.1) is equivalent to the positive semidefinite-

ness of the hermitian form h = h + \f^\co^ (see §0.2). This can be easily

checked by using elementary linear algebra.

Now, let g and T be the metric and the connection on the manifold V

and let coj- be the curvature of V.  Clearly, if G = (g, T) is induced from
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H = (A, V) then (0.5.1) implies that

(0.5.1') ||<urll,<l

also holds true. It follows that if the condition (0.5.1') is violated, then G

cannot be induced from H.

To see an example, take CT"" for V with the connection T = V and g = kh

for the standard h on CT"" corresponding to the Fubini-Study metric and for

some 0 < X < 1 . Here, if we take the vectors ¿f, n e TV(V = CT""), such that

n = >/—!£, \\c¡\\h = 1 , then \\n\\h also equals 1 and n is A-orthogonal to £.
On the other hand, clearly,

oird, n) = i.

Thus the pair X~xl2t\, X~xl2n is g-orthonormal; yet

cû(X-xl2^,Xx'2n) = X-x > 1.

O.5.A. A particular situation of interest is when the inequality (0.5.1) is not

strict (i.e., when we have \\cü\\h = 1). In this case, the pair (g, F) is of the
same nature of (h, V). Assume, for example, that the manifolds V and W

axe both hermitian (e.g., Kahler) for the metrics g and h . Then the solutions

/: V —> W of (0.3.2) are isometries for these metrics. Moreover, it is not

difficult to show that these isometric maps V —> W axe holomorphic (see Lemma

3.1).
Now, the isometric holomorphic embeddings of Kahler manifolds are "rare"

maps: namely, by the standard jet counting argument (see §3.2) a generic Kühler

metric on a complex manifold V, dime V > 1, cannot be induced by a holomor-

phic map into a fixed Kahler manifold W of any dimension. In fact, thanks to

a paper by Calabi (see [Ca]) one has a precise description of the Kahler metrics

on V inducible from W = CPq .

0.6. Remark. We have indicated in §0.2 a close relation between the two struc-

ture inducing problems: one for the pairs (Riemannian metric, Sx-connection)

and the second for hermitian metrics. Namely, whenever (g, F) is induced

from (h, V) the hermitian form g = g + sf^ïcor on CT(V) is induced from

h = h + -/-TfoJv • Conversely, if a map V —> W induces g from h then it is,

of course, (g, A)-isometric and moreover the induced connection on f*(Y) is

isomorphic to that of X. In fact, if two S '-bundles over V with some connec-

tions say, (X, F) and (Y*, V*) have equal curvature forms a>r = %• then

there exists an isomorphism X —> Y* over V sending T to V*. Yet the two

inducing problems are not quite equivalent, because not every closed 2-form co

comes as the curvature of some connection over V. In fact, œ appears as the

curvature coy of a connection F on some vector bundle X over V, if and

only if the cohomology class [œ/2n] £ H2(V ; R) is integral. This means that

the integral of cx> over every closed oriented surface in V is an integer multiple

of 27T. (The nontrivial part of the above claim, "if, is due to Kostant: see
[Ko].)

The author would like to express her gratitude to Professor M. Gromov for

his help on all stages of this work.
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1. A CRITERION FOR THE INFINITESIMAL INVERTIBILITY OF 3H

1.1. Let us now explain why 3h is an actual differential operator between

spaces of sections of certain fibrations over V .

We already mentioned (see §0.3) that G = (g, F) is a section of some bundle,

namely it is a section of S2(V) © E -> V.
We also view the bundle^ morphisms X —> Y as sections of a bundle over

V. This bundle, called ZF -* V is the bundle associated with the principle
S '-bundle X ^ V with the fiber Y . This makes sense as Y (being a principal

circle bundle itself) comes with an Sx-action.

To see the picture, observe that the fiber ZFV over v e V consists of all maps

of the circle Sx  (that is the fiber Xv c X) into Y such that S¡, goes onto

some circle 5¿ = Yw by an S'-equivariant map. Thus ZFV can be identified

(noncanonically) with Y, since every map S\ —> Y is determined just by where

a given point s e Sx goes (noncanonicity is due to the freedom in the choice

of s). Notice, that our F naturally fibers over the product V x W with the

fiber Xv x Yw/Sx canonically isomorphic to the space of S'-equivariant maps

Xv —> Yw . Also, every /: X —» Y by definition is given by /: V —> W and

a family of S'-equivariant maps fi, : Xv —> Yf(V)  which are  C°°-smooth in

v e V . Thus / becomes a section V —> F covering the graph of /.

Now, for the above bundles ZF with S2(V)®E we denote by {/} and {G}
respectively the sets of C°°-sections with the fine C°°-topology and view our

3H as a map (operator) between these spaces of sections, 3^: {/} —> {C7}.

In fact, this 3n is a first order nonlinear differential operator which can be

described as follows.
First, since S2(V) ®E is the sum of two fibrations 3n naturally splits into

the sum of two operators

3H=3h@ 3V

where

(1.1.1) 3h(f)=3h(f) = f*(h)

and

(l.i.i') sv(/) = /*(V).

From this we see that in order to understand the differential nature of our

operator 2¡h we need to analyze 3h and 3¡^ separately.

1.1.A. Remark. The study of 3H (in particular, the solvability problem for

the equation T)//(/) = G) cannot be reduced to separate problems for 3¡y, and

^v as they depend on the same argument /.

1.2. The operators 3h and 3^ . Now, we fix local coordinates ux, ... , un ,

n = dim V, around v e V and observe that every section /: V —* F is locally

given by maps f: V ^> W and cp: V —> Sx .

Our first operator 3^ only depends on / and in a neighborhood of v e V

it can be expressed by

(1.2.1)       3h(f(ux,...,u„)) = {g,J = (d,f,dJf)},        i,j=l,...,n,
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where d¡f = Df(d/du¡), i = I, ... , n, denote the images of the vector fields

d/dui on V under the differential of /, ( , ) denotes the scalar product with

respect to the metric h on W and where g¡j axe the components of a quadratic

differential form on F  G = Y," j=x gi¡du,duj in our local coordinates.

To describe our second operator 5V , we also act locally and fix some sections

a and ß of the fibrations X —> V and Y —> W. Then connections on X and

Y become (ordinary) 1-forms on V and W respectively.

Furthermore, those sections allow our interpretation of / as pairs (/', cp)

where cp : V —> Sx is thought of as the "rotation" of X —» V which moves the

given section a of X to the / pull-back of the section ß : W —> Y.

Now, once the section ß is given, the connection V on Y can be represented

by a 1-form on Y, say V», for V» = V - Vß . That is, V» is the difference of

two connections where V^ denotes the trivial connection for which the section

ß is parallel. It follows (see below) that the inducing connection relation may

be written as

(1.2.2) T = 3v(f) =f /*(V) = f*(V'ß) +dcp + Va

where /'(V.) is the induced 1-form on V, dcp = cp*(dd) for the cyclic pa-

rameter Ö on S1 and where V(l is the trivial connection on X associated to

the section a: V —> X. To prove (1.2.2) we first assume that / sends a to ß .

Then cp = id and dcp = 0. In this case, we have

f*(Vß) = Va   (as a goes to ß)

and

n%) = /*(V) - f*(Vß)   since V^ = V - V, .

Hence,

/*(V) = /*(V^) + V(l

which is exactly (1.2.2) for cp = id.

Now, a general / is obtained from the special one (where cp = id) by com-

posing it with cp thought of as a rotation (or better as a gauge transformation)

of X . The effect of this on connections F on X is F >-^F + dcp , and thus the

general (1.2.2) follows from the special one.

From formula (1.2.2) we see that the connection inducing operator .SM/) =

/*(V) amounts to inducing 1-forms

(1-2.3) f»f*(Vß)

and taking differentials of maps cp: V —> Sx . The former is a differential

operator of the same nature as 3¡¡ (since 3¡¡, induces symmetric 2-forms) and

dtp is (obviously) a first order differential operator as well. In a fixed system of

local coordinates ux, ... , u„ at v e V , (1.2.2) is expressed by

3„((f, cp)(ux, ... , u„)) = {r, = Vß(d,f) + dcp/du,},=x.„

where F, denote the components of the 1-form on V corresponding (via a)

to the connection F.
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1.3. Linearization of the operators 3¡h and 3^¡. Our next objective is the

construction of an infinitesimal inverse for both the operators 3¡, and 3^ .

To do this, we have first need to define their linearization. We shall fol-

low here the same approach and shall use the same terminology as in [Gro,

§2.3.1], to where the reader is referred for the pertinent definitions and for a

general discussion on infinitesimally invertible differential operators and their

basic properties. The reader may also consult [Na, Gre, G-J, Ja, Ha] where

similar techniques to those presented in [Gro] have been used for the isometric

immersion problem.

I.3.A. The operator 3y, sends the space of maps V —> W to the space of

quadratic differential forms on V and for a fixed /: V —► W its linearization

say, Lf,(d), is a linear operator assigning to each tangent vector field d on

f(V) c W tangent to W a quadratic form g on V. Recall, that a vector

field on /( V) tangent to W is, by definition, a section of the induced vector

bundle f*(T(W)) —> V. Now, we take a smooth 1-parametric family of maps

/: V -> W, t e [0, 1], such that fi> = f and dfi/dt\,=o = d for a given
d: V —> f*(T(W)). Then, by definition, the linearization of 3h acts on ¿7 by

Lh(d) = Í-(3h(f))\t=ü

or, for brevity,

iM = y,
for the family gt of the induced metrics. We introduce local coordinates

ux, ... ,un, t on F x [0, 1] and denote by d¡f,, dtf, the derivatives of /

with respect to the fields d, = d/du, and dt = d/dt.
In other words, d¡ft = Dft(d¡) and dtf, = Df,(dt) for the differential D

of the map V x [0, 1] —► W defined by (v, t) >-> fi(v). We think of these

derivatives as vector fields in W along the mapped manifold V x [0, 1 ] —♦ W.

Next, we abbreviate the previous notation by setting ¿7, = Dft(d¡), dt =

Dfi(d/dt) and as before we denote by ( , ) the h -scalar product in TW(W),

w = f(v). Then we have

^¡igij) = (v|rô,, dj) + (dt, v^dj) = (vf.ö,, dj) + (a,, v|5,)

as the fields d¡ commute with d,. (Here Va is the Levi-Civita connection in

iW, h).) To simplify our notation, we denote by V* the covariant derivatives

in the induced bundle f*(T(W)) -> V with respect to the d¡ and rewrite the

above equality as

(1.3.1) jt(g,}) = <V?Ô,, dj) + (d,, Vhjdt).

Finally, we restrict (1.3.1) to V = V x 0 and obtain with our old d = d\t=o the

following expression for Lh(d) in the local coordinates ux, ... , un on V:

(1.3.1') Ö^(vf9,9y) + (o7i, Vhjd).

I.3.B. Now we linearize the operator 3^ at some morphism /: X —> Y . This

linearization, denoted Ly , acts on fields d which are sections of the induced

tangent bundle f*(T(Y)) —► X. These are rather special fields as they represent
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tangent vectors to the space of our morphisms X —► Y rather than of all maps

X —> Y . These vectors are characterized by the S '-invariance property for the

action of 5' on f*(T(Y)) -> X induced by the action of Sx on X and (the

differential of) the action of Sx on Y . This is better seen with our description

of 3V by

3v(f) = f*(V'ß) + dcp + Va

forgiven frames a in X and ß in Y (see (1.2.2)). Now, the relevant fields d

are given by pairs d = (d, cp') where d: V -» f*(T(W)) is the field along V

underlying d and cp' is the function on V which corresponds to the vertical

Sx-invariant component of d .

Recall, that the range of Lv consists of the space of 1-forms on V as the

difference between two Sx-connections is such a form. Now, by applying ( 1.2.2)

to a family of maps fi: X —► Y, t e [0, 1], and differentiating at t = 0 (or

specializing the linearization formula (2) on page 71 in [D'A]) we have

(1.3.2) Lv(d = (3 , cp'))(x) = cov(d ,xf) + dcp'(x)

where the following notations are used:

x is the tangent vector on V where we evaluate the 1-form Ly(d);

T/=fZ)/(T);

d is the vector field in W along f(V) given by ¿7 = dt=o . (We recall from

§1.3.Athat dt = Dft(d/dt)).)
The formula for the linearization L\¡ is expressed in local coordinates ux,

... ,un on F by substituting the n fields d, = d/du, in place of x in (1.2.3).

Thus we get

(1.3.2') è ^{cov(d,di) + di<p'}i=i.„

where d¡ = d¡f and d-,cp' = d<p'(d¡).

1.4. Inversion of the operator L# = (Lf,, Ly). Now we want to infinitesimally

invert our "mixed" operator 3h , i.e. we want to invert the linear operator
Lh = (Li,, Lv) . This means that we want to solve the equation

(1.4.1) .    LH(B) = H'

where the right-hand side H' = (g', F') is arbitrary, where g' is a quadratic

formón V and F' isa 1-form. In local coordinates u, on V, (1.4.1) becomes

the following system of P.D.E. in the unknowns d and cp' :

(142) (v1d,dJH(dl,vhJd) = g'lj,

wv(d,di) + d(p'/du, = F'l.

The number of equations in the system (1.4.2) is n(n + l)/2 + n.  To solve

(1.4.2) we follow Nash [Na] and add the auxiliary equations

(1.4.3) (d,d,) = 0.

As in [D'A], we also let cp' = 0 in (1.3.2') (notice that this corresponds to seek a

solution of (1.3.2') among horizontal fields d). By differentiating (covariantly)

(1.4.3) we get

(v*d,d,) + (d,vl]d,) = o.
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Next, we alternate i and j and then (1.3.1') and (1.4.3) become equivalent

to the system

(1.4.4) (v)d,,d) = -\g'u,      (d,di) = o.

In particular, every solution of the system of linear algebraic equations ( 1.4.4)

also solves the linearized system (1.3.1'). Thus the construction of an infinites-

imal inverse for the operator 3h is reduced to the solution for d , cp' of the

system

(1.4.5) (ä,,ö> = 0,    (VhJdi,d) = g'lJ,    9>' = 0,    œv(di,d) = ri,

where g{j and F'¡, i, j = 1, ... , n ,axe arbitrarily given right-hand sides which

are functions on V representing in the local coordinates u, the components

of a metric tensor and of a connection form respectively. The system (1.4.5) is

algebraic in the unknown field d . On the other hand, every solution of (1.4.5)

also gives a solution of the original linearized system (1.4.2) (with the extra

equations (d,, d) = 0, cp' = 0). This discussion prepares the reader for the

proof of the following

I.4.A.   Proposition. If the covectors

(1.4.6) (di,-),(Vh],-),wv(di,-),        i,j=l,...,n,

are linearly independent at all points of V then the linear operator LH is in-

vertible over all of V by some differential operator M = Mj-, i.e., LH o M = id.

Proof. First, we observe that the independence of the covectors (1.4.6) is in-

dependent of the coordinate system we use. Secondly, we note that in the

independent case the solution d of the corresponding system (1.4.5) form an

affine bundle over V of rank 2q - n(n + l)/2-2n . Now, every affine bundle
admits a section over V. To choose it in a canonical way one may use any

fixed auxiliary Riemannian metric on W (e.g., we can use h) and then take as

canonical solution say, dcan , the solution ¿7 of (1.4.5) which has the minimal

length (norm) with respect to this metric at every point w = f(v) e W (see,

e.g., [Na, G-R, Gro]). Finally, we define the infinitesimal inversion M = Mj

of 3H by

M/(g',r') = (öcan,o)

where 0 corresponds to the choice cp' = 0.

Now, using the terminology of §2.3.1 in [Gro] we say that the operator 3n is

infinitesimally invertible at those / where the independency condition required

by Proposition 1.4.A is satisfied. This allows us to apply Nash's implicit function

theorem to our 3h so that we arrive at the following

I.4.B. Corollary. If the morphism f: X —► Y satisfies the conditions of Propo-

sition 1.4.A then the operator 3n is an open operator from {/} to {G} at f

and therefore all the structures G in a small neighborhood U of the induced

structure 3n(f) = f*(H) are inducible from H. (Recall that our function

spaces {G} and {/} are endowed with the fine C°°-topology.)

In view of Corollary 1.4.B, to prove our Theorem 0.4.A we now have to

show the existence of some morphism /: X —> Y satisfying the independency
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condition required by Proposition I.4.A. This is done in §2 on the basis of an

analysis of this independence from a purely algebraic point of view.

2.   (h , (y)-REGULAR MAPS AND THE PROOF OF THEOREM 0.4.A

2.1. Assume that we are given a quadratic form h and an exterior 2-form œ

on a linear space S and let Tx, T2 be two linear subspaces Tx c T2 c S of

dimension n' = dim Tx and n' + s' = dim T2.

2.I.A. Definition. The pair (Tx, T2) is called (h, ca)-regular if one of the

following equivalent conditions (i)-(ii) is satisfied:

(i) for some (and hence for every) basis xx, ... , t„< , xn>+x, ... , x„>+S' in

T2 such that xx, ... , xn< form a basis in Tx, the equations

h(Xj, d) = a,■,        i = 1, ... , n' + s',

co(x,,d) = bi,        i=l,...,n',

axe solvable in d e ZF for arbitrarily given a,, b,.

(ii) The homogeneous system

h(Xi,d) = Q,        i= 1,... ,n' + s',

co(x¿, d) = 0,        i = 1, ... , n',

is nonsingular. Namely, the dimension of the space of solutions equals

dimS-(2n' + s')>Q.

2.I.B. Remarks, (i) We shall use Definition 2. LA in the case when S = TWo(W)

and when Tx c T2 c TWQ(W) axe the first and the second osculating space re-

spectively of a map f:V—> W at a given point vq e V. That is, we take

7Ï = Tx(v0) = Df(TV0(V)) and T2 = Tj(v0) c TWo(W), w0 = f(v0) where

Tj(vo) denotes the subspace spanned by Tx and by the second covariant deriva-

tives V¡dj, I < i, j < n, at Wo = f(vo) with respect to some (fixed) local

coordinates ux, ... , u„ at vq £ V. (We remind to the reader that we use as

before the notation d, = 9,-/ and V? = V^ .)

(ii) Note that the subspaces T\, Tj, are independent of the choice of co-

ordinates. Also, notice that the dimension of Tj can vary between zero and

min(dim W, n+s), for 5 = \n(n + l), which is the dimension of the symmetric

square S2(TV(V)) of TV(V), v e V.

2.l.C. Definition. A map /: V —> W is called (h , co)-regular if dim T\ = n ,

dim7j? = ¿n(n + 3) = n + s , and if the pair TÍ, Tj c TW(W) is (h, <y)-regular

at all points w = f(v) e W.

Accordingly in our case we call the map /: V —> W (h, <y)-regular at a point

v e V if the full differential D © D2 mapping T(V) © S2(T(V)) into T(W)

is (/z, o))-regular at v , where S2(T(V)) is the symmetric square of T(V) and

where D2 acts by the second covariant derivatives D2(x¡ ®x¡) = VaXj , where

x,,XjeTv(V), Xi = Df(Xi).

2.I.D. Remark. The condition dim T2 = \n(n + 3) implies that dim Tx = n ,

and the equality dim T2 = ¿n(n + 3) is called freedom of / at vq e V . This
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is equivalent to the linear independence of the vectors dj and V*d;, 1 < /,

;' < n, at f(v0).
With the above terminology, the following lemma is immediate.

2.I.E.   Lemma. If the map f: V —> W is (h, co)-regular at all points v e

V then the corresponding linearized system (1.4.5) satisfies the assumptions of

Proposition 1.4.A and hence the operator 3u is infinitesimally invertible at f.

2.I.F. Proposition. Let (h, a>) be a pair of forms on a complex manifold W

such that h = h + \f^ïco is a hermitian form on W. Then for dimR W >

n(n + l)/2 + 3« = s + 3«, generic maps V —> W are (h, co)-regular.

Proof. The basic (and standard) idea in the proof of this proposition is to

interpret non-(«, <y)-regularity as a singularity in the space J2(V, W) of 2-jets
of our maps V —> W, so that one can use Thorn's transversality theorem. Recall

that J2 = J2(V, W) forms a bundle over V x W whose fibers are denoted by

J2 jW . If we fix local coordinates ux, ... , un around v e V , then J2W can be

identified with the vector space of linear maps TV(V) © S2(TV(V)) —> TW(W)

such that the jet of a given map /: V —> W is given by the first and second

covariant derivatives

J*f(v) = (ßi,Vidj),        l<i<j<n.

Here S2(TV(V)) denotes the symmetric square of TV(V) and one should notice

that the identification J2W = Hom(TviV))®S2iTviV)) -» TW(W) depends on

the local coordinates where the "second differential" {Vfdj} is not invariantly

defined. Also notice that (h, co)-regularity at v e V only depends on J2f as

it is expressed (see Definition 2.1.C) in terms of d¡ and V*ö7-. Thus we can

define the subspace X„,u, c J2 w consisting of the jets of non-(h, <y)-regular

maps. Now, we need the following

2.I.G. Algebraic Lemma. The set X„iU, c J2^w is a stratified subset ofcodi-

mension c = dim W - s -2n + 1.

We shall prove this lemma later (see Proof 2.1.H). Now, we note that X =

Uv,wevxtv^v,w C J2(V, W) fibers over V x W and so, by the Algebraic

Lemma 2.1.G, X also is a stratified subset in J2(V, W) of codimension c =

dim W-s-2n+ I. Finally, we observe that a map /: V —► W is non-(h, co)-

singular if and only if Jj(V) c J2(V, W) does not meet X. (This follows by

the very definition of X.) Hence, by (the special case of) Thorn's transversality

theorem (see, e.g., [Gro, Corollary (D'), p. 33]) generic maps /: V —► W do

have the property Jj(V)ÏÏL = 0 as our c = dim W-s-2n +1 and dim V = n .

This concludes the proof of Proposition 2.I.F.

2.I.H. Proof of the Algebraic Lemma 2.1.G We first identify the space J2W
with Hom.R(R"+i —► Cq), where we assume dime W = q . Next, we denote by

xx, ... ,xn, t„+i , ... , x„+s e Cq the images of the standard basis of R"+s in

Cq . Now, the form h = h + V^lco (see the statement of Proposition 2.1.F)

is the standard hermitian form Y%=\ z^t on C9 where h = £f_, xf + yf and

We observe that the (h, (y)-regularity for this h is equivalent to the regularity
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of the following system of linear equations

h(T,-, d) = (•)/,        i=l,...,n,

h(Xj,d) = (-)j,        j = n+l,... ,n+s,

as the first equations are equivalent to

Hence, it is easy to see (the verification only requires elementary linear algebra)

that the (h, &>)-regularity of maps V —> W is characterized by the following

equivalent properties of the vectors xx, ... , x„, xn+x, ... , xn+s.

(1) The dimension of SpanR(ii, ... ,x„, ... , xn+s, v^Ti, ... , \/-îx„)

is maximal, i.e., equals 2n+ s.

(2) The vectors xx, ... ,xn axe linearly independent over C, while all

together the vectors xx, ... ,xn, ... , xn+s, v'-Lti... , \f^ïx„ are lin-

early independent over R, which means that xn+x, ... , xn+s are R-

independent modulo Spanc(ri... ,xn).

The next step will be to prove the following statement which measures what

happens when the above independence fails to be true.

2.1.G'. Sublemma. Let X0 C C?"©Cíí denote the subset of those (n+s)-tuples

xx, ... , xn, ... , xn+s £ Cq such that either xx, ... , x„ are C-dependent or

t„+i , ... , xn+s are R-dependent modulo Spanc(ri, ... , xn). Then codimX0 =

2q - 2n - s + 1.

Proof. Denote by X' c Cq" the set of C-linearly dependent «-tuples xx, ... ,

x„ and let p be the natural projection C«" ©C9i -+ Cqn . Then X0 C p~'(X') U

(/7-'(fi')nXo) for Q.' = Cqn-1'. The singularity subset X' c Cqn has codimR =

2codimc = 2(q - n) + 2 (see, e.g., [A-V-Z]) and hence /7~'(X') also has codi-

mension 2(q-n) + 2. Now, if we write Xo = (X0n/;_'(X'))U(/?~'(Q')nXo) and

take into account that codim(/lU.S) = min(codim^l, codimT?), then it remains

to show that X" = p~x (Q') n X0 has codimension 2q - 2n - s + 1 . To see this,

we consider the natural map n : X" —> Gr„ Cq (where Gr„ Cq is the set of all

«-dimensional complex subspaces in Cq) which sends xx, ... , x„, ... , xn+s

into Spanc(ri, ... , x„). This map is obviously a smooth fibration. Next,

we enlarge X" to the set Q" consisting of those xx, ... , x„, ... , xn+s where

tj, ... , t„ are C-independent (and we do not make any restriction on the x, 's).

Then Q" (which is a smooth manifold, in fact an open subset in Cq" © Cqs)

smoothly fibers over Gr„ Cq . Let us now evaluate the codimension of the fibers

of X" -> Gr„ Cq in the fibers of the fibration Q" -» Gr„ Cq . Take a fiber of
Q" , say iï'â , which corresponds to a fixed «-dimensional subspace a eCq and

observe that Y!'a = X" n Q'l consists of those xx, ... , xn+s e Cq whose projec-

tions to the factor space Cq/a axe R-linearly dependent. Now, Cq/a = Cq~n

and the codimension of the (singularity) subset X* c Csi-q~n) of those s-tuples

of vectors in Cq~" = R2(«~") which are R-dependent equals 2(q - n) - s + 1

(see [A-V-Z]) and hence X" n Q,a has codimension 2(q - n) - s + 1 in Q!^ .

Clearly, this applies to all Í2",, a e Cq and thus we see that

codim(X" c Cqn © Cqs) = codim(X" c Í2") = 2(q - n) - s + I.   a

2.1.1. Remark. Our conventions concerning the dimension and the codimen-

sion of stratified sets are those usually accepted (see, e.g., 1.3.2 in [Gro]).
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2.2. Conclusion of the proof of Theorem O.4.A. We return to the structure

inducing problem by morphisms /: X —> Y for the Hopf bundle Y —» W =
CPq, where 2q > n(n + l)/2 + 3« and observe that the corresponding form

h = « + v^Tcd is hermitian in this case. (Compare with Proposition 2.1 .F.) We

are going to show the existence of a nonempty open subset U of {G} which is

contained in the image 3n{f} C {t7} . To do this, we only have to prove the

existence of a single morphism /: X -> Y. Indeed, if the (underlying) maps

f:V—>W satisfying the («, (y)-regularity condition form an open dense set in

the space of all / 's, the same is true for the / 's, as the natural map between the

function spaces {/} —» {/} (where {/} is the space of C°°-bundle morphisms

X —> Y and {/} is the space of C°°-maps V -> W) is a Serre fibration. (In

fact, if some map /: V —> W is "covered" by /: X —> Y, then this is true for

all the maps which are close (and hence homotopic) to /.)

Now, the existence of a single morphism /: X —> Y is a purely topological

question which has a positive solution if Y is an «-universal S '-bundle. In

particular, the standard Sx -bundle over CPq is ^-universal (see [St]) and then

Theorem 0.4.A is completely proved.

2.2.A. Final Remark. Theorem 0.4.A remains true for a general (inducing)

S '-bundle Y -► W  (W ¿ CPq) under the following conditions:

(i) («, to) constitute a hermitian form,

(ii) dimR W >n(n + l)/2 + 3« ,
(iii) The Sx-principal fibration  Y —* W is «-universal.   (Of course, one

only needs a single morphism X -> Y.)

3. Appendix: Isometric immersions between Kahler manifolds

We begin this Appendix with the following

3.1. Lemma. Let V and W be two hermitian (e.g., Kahler) manifolds. If the

map f: V —> W is an isometry, then f is necessarily holomorphic.

Proof. The proof consists in showing that every R-linear map /: Cn —> Cq

which is isometric is C-linear. Then the lemma will follow by applying this to

the differential Df. Let us show that our / satisfies /(v7—Tz) = V^ïfi(z) for

all z € C" .

(f(V-iz) - V-if(z), f(sTlz) - V^lf(z))

= (f(V=îz), /(v^Tz)) - (f(yTÄz), v/^ï/vz))

- (V^lf(z), /(v^îz)) + (^ïf(z), sTÂfiz))

= (V-îz, vZ-íz) + v/-r(v/-Tz, z) - V^ï(z, V-ïz) + (z, z) = 0

where ( ,  ) is the hermitian scalar product in Cq .

3.2. Jet counting. Let us compare the dimension of the jets space of holo-

morphic maps f:C^>Cq with that for Kahler metrics « on C. The first

of our spaces, i.e., the space of jets of order r of holomorphic maps C -> Cq

at the origin, call it %?r, is given by q(r + 1) complex numbers which are the

(complex) derivatives d'f(0)/dzl e Cq , i = 0, 1,... , r. (There is no other

derivatives as / is holomorphic.) Next, there is a 1-1 correspondence between



INDUCED CONNECTIONS ON S' -BUNDLES OVER RIEMANNIAN MANIFOLDS 797

Kahler metrics « on C and exact positive 2-forms co given by

h(a, b) = œ(V^îa, b) + \TÂw(a, b)

where the (1,1) condition on the 2-form a> is automatic as dimc C = 1.

(Recall that every 2-form cd on C equals ipdxAdy where \p is some function

and co is positive if and only if ip is positive.)

Now, we have the exterior differential acting from 1-forms to exact 2-forms

on C. On the level of r-jets we have d) : Q' -» E2_l where Q' denotes the

space of r-jets at the origin of real 1-forms on C and E2_{ denotes the space

of (r - l)-jets of exact 2-forms.

The kernel of dr consists of the jets of exact 1-forms which are differentials

of functions:

Ker dr = Im rfr°   for d? : fl°+1 -> flj.

Thus dim7i2_, > dimfi' - dim£2'+1 . Now, each 1-form is given by two func-

tions having together 2((r+l)(r + 2)/2) partial derivatives of order <r. Sim-

ilarly, 0-forms (functions) have (r + 2)(r + 3)/2 derivatives of order < r + 1 .

Thus dimTs2^ > (r-f- l)(r + 2)-(r-f 2)(r + 3)/2 which, for large r, is clearly

greater than the dimension of MZr which is equal to 2q(r + 1).

3.3. Noninducing conclusion. Now we can see that a generic exact form co on

C cannot be induced by a holomorphic map /: C —> Cq . In fact, the inducing

operator gives rise to a smooth map between the jet spaces 3r: %?r —► E2_x

which has a nowhere dense image for large r by the above dimension inequality.

This easily implies (see, e.g., [G-R, Sp]) that 3 itself has nowhere dense image.

Then this conclusion extends to the general manifolds V and W in place of

C and Cq since our considerations are purely local and because (germs at the

origin 0 £ C of) perturbations of Kahler metrics extend from complex curves

(= C) in V (which is locally C) to all of V .
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