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CHARACTERIZATION OF EIGENFUNCTIONS OF THE LAPLACIAN
BY BOUNDEDNESS CONDITIONS

ROBERT S. STRICHARTZ

Abstract. If {fk(x)}kez is a doubly infinite sequence of functions on M"

which are uniformly bounded and such that Afk = fk+i , then A/o = -Jo •

This generalizes a theorem of Roe (n = 1). The analogous statement is true

on the Heisenberg group, but false in hyperbolic space.

1. Introduction

A function on the line with the property that all its derivatives and antideriva-

tives are uniformly bounded must be a linear combination of sin x and cos x ,

in other words an eigenfunction of d2/dx2 with eigenvalue -1 [R]. Since

antiderivatives are not unique, the hypothesis can be stated more precisely as

follows: there exists a doubly infinite sequence {AMHez of functions on the

line such that

(M) ¿/W*+,

and

(1.2) \fk(x)\<M   forallrCGZ, xgE.

Here we look for an «-dimensional generalization. In place of derivatives and

antiderivatives we use powers of the Laplacian. Our main result is the following:

Theorem 1.1. Let {AMUez be a doubly infinite sequence of functions on R"

satisfying

(1-3) AA = A+1,

(1.4) \fk(x)\<M   forallkeZ, xeR".

Then A/0 = -f0 .

Of course there are many bounded eigenfunctions of A. If dp is any finite

measure on the unit sphere then / e'x'( dp(Q is a bounded eigenfunction, but

there are other bounded eigenfunctions not of this form. It would appear to be

difficult to give a structure theorem for all bounded eigenfunctions.

The proof of Theorem 1.1 is given in §2, using harmonic analysis. The proof

is similar in spirit to the one-dimensional result of Roe [R] (or the proof in

Received by the editors July 12, 1989 and, in revised form, May 30, 1991.

1991 Mathematics Subject Classification. Primary 42B10, 35J05; Secondary 43A80.
Research supported in part by the National Science Foundation.

©1993 American Mathematical Society

0002-9947/93  $1.00+ $.25  per page

971



972 R. S. STRICHARTZ

[Ho]), in that we show first that the Fourier transform of fio is a distribution

supported on the unit sphere. Of course Roe's theorem could be easily stated

to a calculus class; can anyone find a proof that could be explained to a calculus

class?

It might seem plausible to conjecture that Theorem 1.1 could be extended

to Laplacians in different contexts. In §3 we give a few such extensions, but

also a simple counterexample for the case of hyperbolic space. This should not

be too surprising if we recall that harmonic analysis in R" has the peculiar

property that the L2 theory is powerful enough to handle the L°° theory; in

hyperbolic space this is no longer the case. In §4 we prove the analogue of the

main theorem for the Heisenberg group. The argument uses harmonic analysis

on the Heisenberg group, but another idea is needed to clinch the proof. This

is probably a reflection of the fact that there is a family of one-dimensional

representations of the Heisenberg group that do not play a role in the usual L2

harmonic analysis.

The proof of the main theorem uses standard facts about harmonic analysis

in R" and distribution theory that can be found in [GS] or [SW].

Related results concerning distributions whose Fourier transforms vanish on

specified sets have been obtained by Gabardo [Ga 1, Ga 2]. After this paper was

completed, some of the results were generalized by Howard and Reese [HR] to

allow more general differential operators and to allow polynomial growth in the

estimates.

2. Proof of the main theorem

We break the proof up into three steps. In the first step we consider the

Fourier transform fo of fo, which exists as a tempered distribution because

fo is bounded.

Lemma 2.1. Under the hypotheses of Theorem 1.1, the distribution fi¡ is sup-
ported on the unit sphere.

Proof. First we show that fi, is supported in |x| < 1 . To do this we need to

show that (fo, cp) = 0 for any test function cp supported in |x| > 1 . Now

observed that (1.3) means

(2.1) \x\2k fo(x) = (-l)k fk(x)

as distributions, for any k > 0. Therefore

(fo, <P) = (\x\2kfo, \x\-2k<p) = i-l)k(fk , ^i\x\-2ktp)) ;

hence

(2.2) \(fo,cp)\<M\\Z?(\x\-2kcp)\\x

by (1.4). Now we use the well-known estimate

applied to g = \x\ 2kcp. Since cp is supported in |x| > 1 + e for some fixed

e > 0, it is clear that (d/dx)a(\x\~2kcp) —> 0 in L1 norm as k —> oo for any

(2.3) \\fg\U <c   J2
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fixed a. Thus the right side of (2.2) tends to zero as k -> 00, so (fo, cp) = 0
as claimed.

To complete the proof we need to show that fi is also supported in |x| > 1,

which means (fo, cp) = 0 if cp is supported in |x| < 1. Here we use (1.3) to

obtain

(fo,<p) = (-l)k(fyk,\x\2kcp)

and the argument proceeds as before.   D

The next step in the proof is a structure theorem for distributions supported

on the unit sphere. Since the sphere is a smooth compact manifold, this result

is well known and we omit the proof.

Lemma 2.2. A distribution T on R" supported on the unit sphere S"~x has the

form

P.4) £(»•£)   T„
fc=0 v J

for some finite N, where Tk are distributions on S"~x. In other words

N   (   d \k
(2-5) (T, <P) = Y,(rö-r)   iTkiu)><P(ru))s»-<,

k=o ^      '

where u denotes a variable on Sn~x and ( , )s„-\ denotes the pairing between

distributions and test functions on Sn~x.

The combination of the two lemmas shows that fo has the form (2.4). To

complete the proof of the theorem we have to show that N = 0 in (2.4). To

do this we use the identity

(2.6) Wti'-Kp'-ti'-h-Vp*
k=0  x ' k=0  x '

The proof of (2.6) is an easy exercise based on the computation

and the fact that \x^Tk = Tk since Tk is a distribution on S"~x .

Now we take the inverse Fourier transform of (2.6) and obtain

fj = J2i2j)kFk
fc=0

where Fk axe fixed functions (independent of j) and Fn = ±T^. It is easy

to see that the functions Fk must be bounded, and since || (27")jVJF-Arlloo =

(2j)N\\FN\\oc while \\2Zk=oi2J)kFk\\°c = 0(jN-{) as j -> oo, we conclude
that FN = 0 if A^ > 0. This proves that we can take N = 0 in (2.4), hence

Afo = -fo, which completes the proof of the theorem.

3. Extensions and examples

Suppose we replace the Laplacian by a d'Alembertian,

,_,      d2 d2 d2 d2     .     , ^    ^

n'ë^+-+â^-^zr"-«^ »»i<,s«-i.
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Then there exist bounded solutions to the eigenfunctions equations D/ = ±f.

We have the following generalization of the main theorem.

Theorem 3.1. Let {fk(x)}xez be a doubly infinite sequence of junctions on R"

satisfying

(3.1) nfk = fik+x,

(3.2) \fk(x)\<M   for all x el, xeR".

Then fo = f+ + f- where fi± are bounded solutions of Of± = ±f± .

Proof. The proof follows the same outline as before, with one additional twist.

Let [x, y] = xxyx-\-\-xpyp-Xp+xyp+x-x„ v„ . Then the proof of Lemma

2.1 extends to show that fo is supported on the pair of hyperboloids [x, x] =

±1. However, because these hyperboloids are not compact, the analogue of

Lemma 2.2 only holds locally. Thus we need to perform a localization on the

Fourier transform side, which conveniently does not alter the hypotheses of

the theorem. Let y/ be any compactly supported test function, and let gj =

ZF~x(\pff). Then {gj}jez satisfies (3.1) and (3.2); in fact the constant in (3.2)

is only multiplied by \\Z?~~ Vlli , which we can easily arrange to be equal to one.

Now g0 is compactly supported on the union of hyperboloids which are

smooth manifolds, and x • d/dx is a transverse directional derivative. There-

fore, by the analogue of Lemma 2.2, we have

(3.3) a> = E (*•!?) (n + Tk)
k=0 v '

where Tk   are distributions on [x, x] = ± 1 . We can then show that N = 0 as

before because we have

(")      l"lJÊ(-|0V = <±i>'£(-;|-y)V
fc=0  x ' k=0  v '

as the analogue of (2.6).
Now from (3.3) with N = 0 we have go = g+ + g- where Og± = ±g± .

Note that then gx = Ogo = g+ - g- so that g± axe both bounded functions

with the same bound M as appeared in (3.2). Then a routine limiting argument

with \p —► 1 yields the same conclusion fox fo.   □

Another straightforward extension of the main theorem is to replace L°°

norms by LP norms; in other words, to replace ( 1.4) by the condition

(3.5) \\fik\\p<M   for all A: eZ.

Of course for the result to be nonvacuous we need to take p > 2n/(n - 1) ; in

particular there is nothing new when n = 1 .

The harmonic oscillator operator -A + |x|2 provides another generalization

of the main theorem in which we need only consider positive powers of the

operator.

Theorem 3.2. Let f be a function on R" satisfying

(3.6) ||(-A+|jc|2)*/lloo<Afn*   fbrallk>0.

Then f(x) = ce'^l2.
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Proof. Let T7a(x) denote the Hermite functions of order a = (ax, ... , a„),

which form a basis of eigenfunctions for the harmonic oscillator with

(3.7) (-A + \x\2)Ha(x) = (n + 2\a\)Ha(x).

Then

((-A + \x\2)kf, Ha) = (f, (-A+\x\2)kHa) = (n + 2\a\)k(f, Ha)

while (3.6) implies

\((-A+\x\2)kf,Ha)\<Mnk\\Ha\\x.

Thus (f, Ha) = 0 for all a ^ 0, and so by choosing the constant c appro-

priately we obtain (/ - ce~\x\ I2, Ha) = 0 for all a. To complete the proof

we need to invoke the uniqueness of Hermite expansions for L°° functions. In

fact, if T is any tempered distribution then (T, Ha) = 0 for all a implies

T = 0 (see [RS] for the essential ideas of a proof).   D

Next we consider a negative example. Let A denote the Laplace-Beltrami

operator on hyperbolic 3-space TT3. The computations in this case are espe-

cially transparent, but the same phenomenon occurs for hyperbolic space of any

dimension, or more generally for noncompact symmetric spaces (see [He]).

Choose an origin in hyperbolic space, and let r denote the hyperbolic distance

to the origin. Then (see [He]) the functions (sinÂr)/(sinhr) for X real are the

spherical functions on T/3 and satisfy the eigenfunction equation

(3.8) a(^-) = -(1+X2)(^).
\sinhry \sinhry

However, it is not necessary to restrict X to be real; indeed (3.8) is an analytic

identity in X so it is valid for all X e C. It is obvious by inspection that the

function (sinAr)/(sinhr) is bounded if and only if |ImA| < 1 . On the other

hand we can make the eigenvalue -1 - X2 have absolute value equal to one by

taking

(3.9) X = i(l+ew)l/2,

and it is clear that for Ö close to n we will have | ImA| < 1 . It is clear that

fk — elkd(sinXr)/(sinh r) with X given by (3.9) gives a sequence satisfying the

analogues of (1.3) and (1.4), so the theorem does not extend to this context.

4. The Heisenberg group

The Heisenberg group Heis„ is the space C" x R equipped with the group

law

(4.1) (z, t) ° (w , s) = (z + w , t + s + {-Im z • w).

The vector fields

T=^
dt'
did

(4.2) Lj = ----yJm,        j = l,...,n,

9        !      d
Mj■ = — + -Xj— , 7 = 1,...,«,

1     dyj     2    dt
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form a basis for the Lie algebra of left-invariant vector fields, and the operator

(4.3) S? = £(L2 + Mj)

7 = 1

is called the Heisenberg Laplacian.   It is not difficult to see that there are

many bounded eigenfunctions satisfying ZZZZf = -f, for example f(z,t) =

e±it/ne-\z\2/4n   (rStr 1; §6]; or [Ge .])

Theorem 4.1. Let {fk}kez be a doubly infinite sequence of junctions on Heis„

satisfying

(4.4)

(4.5) 11/*
3?fk = fk+i,

,<M  for all k el.

Then Sffio = -fio ■
Proof. The proof is based on the harmonic analysis of Heis„ . We recall from

[Str 1] that there exist functions <pa,ß,eiz) on C where a, ß axe «-multi-

indices and e = ±1 which are polynomials in z times e~^ I2 (in [Str 1] the

polynomials are given by certain special Hermite polynomials, but [Fo] shows

that they may also be expressed in terms of Laguerre polynomials, which is the

form given in [Ge 1]. See also [Str 2].) For each fixed e = ±1 , the functions

<pa,ß,E form an orthonormal basis for L2(C"), and what is significant for the

harmonic analysis on Heis„ is that the function

M*.0=*""/("+2|a|V«.f, yfpZ

y/4\a\ + 2n

Sfhp(z,t) = -php(z,t).

(4.6)

satisfies

(4.7)

Note that the functions hp do not decay in the /-direction, but if we take a

smooth average with respect to p we can obtain any desired decay. Suppose

y/(p) is a test function with compact support in (0, oo). Then an integra-

tion by parts argument shows that J0°° hp(z, t)ip(p) dp is integrable on Heis„

(with respect to Lebesgue measure, which is the Haar measure for this group).

Therefore we can form

(4.8) fo, f
Jo

hp(z, t)y/(p)dp

as a kind of Fourier transform of fo , with the mapping that assigns (4.8) to ip

as a distribution on (0, oo). Here we keep a, ß, s fixed.

The first step of the proof, analogous to the proof of Lemma 2.1, is to show

that these distributions have support at p = 1.   Now if \p is supported in
(1, oo ) then

a, j hpV(p)dp = i fio, se
/•

v(p)
'(-p)k

dp =wh, ViP)
(-P)k dp

and so

(4.9) fio, jhpip(p)dp\  <M  jhp^-*^dp'(-P)k   P
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We need to show that the right side of (4.9) tends to zero as k —> oo, but this fol-

lows from the same integration by parts argument that shows that / hpy/(p) dp

is integrable. Thus (fo, Jhpy/(p)dp) = 0. Similarly, if \p is supported in
(0,1) then

fio, I hp\p(p)dp\ = (sfkf_k, j hpip(p)dp) = lf_k, j hp(-p)k\p(p)dp

and || /hp(-p)kip(p)dp\\x -> 0 as k —> oo .
From the structure theorem for distributions with point support we conclude

fo, fhpy/(p)dp) = J2cJWU)(l)
J '       j=0

for some set of constants c¡. But then

(4.10)

fik, I hp\pip)dp\ = (fo, I hp(-p)k\p(p)dp

= £o(¿)V/>)V(/>)i,=i.

Since (4.10) is clearly a polynomial of degree N in k from the last expression

and bounded in k by (4.5) and the first expression, we conclude that N = 0,

hence

(4.11) (fo, jhpxp(p)dp^=cip(l).

In (4.11) we have completed the analogue of the proof of Theorem 1.1, but

it does not complete the proof of the present theorem. What is shown is

(4.12) (fo + fi, jhpw(p)dp^=0

since fi = Se fio and -p<p(p)\p=i = ~W(l) ■ We need to show fo + fx =0. The
problem is that we have required tp(p) to vanish near p = 0. This causes a dif-

ficulty which can be seen if we observe that ip(0) = 0 implies that / hp\p(p) dp

has total integral zero on Heis„ , so that constants are automatically orthogonal

to ¡hp\p(p) dp. Thus at the very best (4.12) could only prove that fo + fi is

constant. In fact what we show in the next step of the proof is that fo + fi is

a function of z alone, independent of /. For simplicity of notation we write

fi = fio + fii and g = ¡hp\p(p)dp.
We now exploit the group invariance of the hypotheses to conclude that (4.12)

holds also for group translates of /, or in other words

(4.13) /*¿? = 0

for the group convolution on Heis„ . In order to show that / is independent

of /, or Tf = 0, we take a partial Fourier transform in the /-variable alone to

transform the Heis„ convolution to a twisted convolution on C" . If we denote

this partial Fourier transform by f(z, x) and £(z, t) then (4.13) becomes

(4.14) if f(z-w,x)g(w, x)eilTei{T/2)lmz'wdwdx = 0,
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and in view of (4.6) and the form of g this becomes

(415) JJ      V n + 2\a\)y'a'ß'°\y/4\a\+2n)

x exp (--r— Im z • w ) ip ( —+T-— ) i/o dw = 0.
p V2« + 4|q| y y \n + 2\a\J

Of course / is only a tempered distribution, so the integrals in (4.15) must be

understood in the distribution sense (of course

is a Schwartz class test function of w and p, because ip vanishes in a neigh-

borhood of zero). We can interpret (4.15) as saying

(4.16) Jf(z-W, X)tpajtt fe) e(«/2)lmz-wdw = 0

in the distribution sense for x / 0 and e = sgn x.

Now since ^a,ß,e(z) forms an orthonormal basis of L2(£) for e fixed, we

conclude that

(4.17) f f(z - w , x)g(w)ei{r/2)imz'™ dw = 0

for x ^ 0 and any L2 function g . This is a twisted convolution, and since g

is arbitrary it is easy to derive

(4.18) f(z,x) = 0   forr^O

by letting g vary through an approximate identity.

Inverting the Fourier transform in (4.18) we obtain that f(z,t) is a poly-

nomial in /, and since / is bounded we conclude that / is independent of /.

Recall that f = fio + fii = fio + Sf fio , but the same argument could be applied

to fk + Se fk . Thus we have

(4.19) fk+sefk = gk

where gkiz, t) = gkiz) is independent of /.

Now if we apply Se to both sides of (4.19) and use (4.4) we obtain

(4.20) segk = gk+x

and from (4.5) we obtain

(4.21) Halloo <2M.

But since gkiz) is independent of /, we have Z¿Zgk = A:gk where Ak denotes

the Laplacian on C" identified with R2" . We can thus apply Theorem 1.1 to

the sequence {gk} to conclude go + áíi =0. Combined with (4.19) this implies

(4.22) fk + 2fik+x+fk+2 = 0.

But the recursion relation (4.22) is easily solved to yield

(4.23) /* = (-1)^0-^-1)^/0 + /.).
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The uniform boundedness of fk then implies fo + fi = 0, completing the
proof.   D

Remark. The last step of the proof, combined with an induction argument,

shows the following: if ||.Lfc/|| < M for all k > 0 and (L+ l)Jf = 0 for some
j > 1, then (L + l)fi = 0, where L is any unbounded linear operator on a

Banach space.

The same method of proof can be used to prove a version of Liouville's

Theorem on the Heisenberg group, to the effect that if / is a function on Heis„

of polynomial growth such that Sff is a polynomial, then / is a polynomial.

This result is a special case of more general results of Geller [Ge 2], so we will

not present the proof here.
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