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RICCI FLOW, EINSTEIN METRICS AND SPACE FORMS

RUGANG YE

Abstract. The main results in this paper are: ( 1 ) Ricci pinched stable Rie-

mannian metrics can be deformed to Einstein metrics through the Ricci flow

of R. Hamilton; (2) (suitably) negatively pinched Riemannian manifolds can

be deformed to hyperbolic space forms through Ricci flow; and (3) L2-pinched

Riemannian manifolds can be deformed to space forms through Ricci flow.

0. Introduction and main results

Einstein metrics on a compact manifold M of dimension « > 3 are char-

acterized as critical points of the normalized total scalar curvature functional

S on the space JZ of all (Riemannian) metrics on M. A natural procedure

to construct Einstein metrics is therefore to deform an initial metric along the

gradient flow of S. The explicit formula for S is this: for g eJZ,

^=vW=^\M^vg,

where dvg is the volume form of g, V(g) = JM dvg, and Rg denotes the

scalar curvature function of g . Simple computations [Sc] show that the gradient

of S at g is given by

_V{g)(2-n)/n (^RCg _ ^Rgg + ^Rgg^  ,

where Rcg denotes the Ricci tensor of g and Rg = Vig)~x JMRgdvg. As-
suming w.l.o.g. Vig) = 1 at time t = 0 we can then write the gradient flow in

the following way:

<0-" U'-T' + n-ZrSR^

Here Tg = Rcg-Rgg/n is the traceless Ricci tensor of g and SRg = Rg-Rg .

Along this flow the functional S would be increased. However, one observes

[Sc] that an Einstein metric always minimizes S in its conformai class. Conse-

quently one has to reverse the sign of the second term on the right-hand side of

(0.1), which is the conformai component of the gradient. We keep the sign of
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the orthogonal component - Tg of the gradient, because an Einstein metric in-

finitesimally maximizes S in all, except possibly a finite dimensional subspace

of, directions orthogonal to its conformai class [Sc]. Thus we are lead to the

following rectified gradient flow:

d-f = -Tg-^ÔRgg.
dt g       2«       gs

For convenience, one can change the scale of the conformai component, e.g.,

replace (« - 2)/2n by l/n . Then one arrives at the Ricci flow of Hamilton

[Hal]:

(02) ^-_2r-^*   or   ^--2Rc+^g(U.Z) Qt -   ¿lg        n    g   or    dt -    ¿Kcg+   n   g.

(The factor 2 is added to simplify computations.) Note that there is a certain

restriction to the scale factor of the conformai component in order to ensure

short time existence of the flow, see [Ni]. On the other hand, the scale factors

do not affect the structure of the equation concerning long time behavior.

The Ricci flow (0.2) has been successfully used by Hamilton to study 3-

manifolds of positive Ricci curvature [Ha 1 ] and 4-manifolds of positive cur-

vature operator [Ha2]. He showed that these manifolds can be deformed to

spherical space forms through the Ricci flow, i.e., the Ricci flow starting at such

manifolds exists for all time and converges smoothly to spherical space forms

as the time goes to infinity. Following Hamilton's approach, Huisken [Hu],

Margerin [Ma], and Nishikawa [Ni] proved that pointwise (sufficiently) pinched

manifolds of positive sectional curvature can be deformed to spherical space

forms through the Ricci flow. (The topological implication that such manifolds

are diffeomorphic to quotients of spheres had earlier been verified by Ruh [Ru]

using a completely different method. The Ricci flow method produces much
better pinching constants.)

So far a short account of the Ricci flow. Now we explain the content of this

paper. Our first purpose is constructing Einstein metrics through the Ricci flow

under an Einstein or Ricci pinching condition. Roughly speaking, for a given

stable metric g , if the L2 norm of the traceless Ricci tensor Tg is small relative

to suitable geometric quantities, then one can deform g to an Einstein metric

through the Ricci flow. The concept "stability" is defined as follows. (Hence-

forth we omit the subscript g in notations for geometric quantities associated

with g.) For a given g e JZ let Q be the quadratic form

Q(h)= f\Vh\2-2 f Rm(h)-h+ f T(h) • h

on symmetric 2-tensors h = h¡¡dx'dx]. Here Rm = Rijk¡dx'dxjdxkdxl de-

notes the Riemann curvature tensor (such that TÎ1212 > 0 for standard spheres),

Rm(h),j = RipjqW« , T(h)ij = T,khkj (as usual, W = g*'g>«hpq , h) = gikhkJ

and the summation convention is used), and the dot denotes inner product. (Of

course, the integrals are defined on M and with respect to the volume form of

g.) We shall call Q "Einstein form".

Definition 1. The Einstein eigenvalues of g axe the eigenvalues of the operator

L acting on traceless symmetric 2-tensors,

Lh = -A« - 2Rm(h) + T(h).
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Throughout this paper, A denotes the trace Laplacian. We denote the minimum

Einstein eigenvalue by Xe . Clearly Xe equals the minimum of Q(h) over all

traceless symmetric 2-tensors « with / \h\2 = 1. If Xe > 0, then we say that

g is stable.

The operator L is the Euler-Lagrange operator of Q and differs from the

Lichnerowitz Laplacian [Be, 1.143] by a zeroth order term involving the Ricci

tensor. One finds that, e.g., partially Ricci pinched metrics of negative sectional

curvatures as well as (Riemann) pinched metrics of nonzero scalar curvature

are stable (Propositions 3 and 4).

Now we state

Theorem 1. Let (M, g) be a closed Riemannian manifold of dimension « > 3

satisfying d2\\Rm\\co < A, d2Xe > a and the pinching condition either

j \T\2<ex(n,A,o)-^,

or

4\T\2<e2(n,A,cj)\\Rm\\2co,

for some positive numbers A, a, where d = diameter, j = (l/V) J, and

e,(«, A, a) = -^-É'-C(")%/Amin(l, rj8<3,!+8>),
c(n)

with a certain positive constant c(n) depending only on n. Then g can be

deformed to an Einstein metric through the Ricci flow. In particular, M supports

Einstein metrics. (Note that \\Rm ||co is equivalent to the maximal absolute value

of sectional curvatures.)

Remark 1. The bound on ||T?m||co can be replaced by a bound on J \Rm\p

with p > n/2 and a pointwise lower bound on the Ricci curvature.

Remark 2. The theorem still holds if the condition d2Xe > a is replaced by

Af./||T?z«||co > o and the first pinching condition is omitted (the number e2 in

the second pinching condition should be replaced by ex).

Remark 3. There have been works on Ricci pinching based on Gromov's com-

pactness theorem, see, e.g., [Gao]. Besides the independent interest of defor-

mation by the Ricci flow, one should note that no lower bound on injectivity

radius (or related quantity) is assumed here and hence the compactness theory

is not applicable.
A special (analytic) consequence of this theorem is the following stability

theorem for the Ricci flow: the Ricci flow starting near a stable Einstein metric

always converges to it. This reveals the strong variational structure of the Ricci

flow. Another special corollary is that Ricci pinched manifolds of negative

sectional curvatures can be deformed to Einstein manifolds.

Corollary. Let (M, g) be a closed Riemannian manifold of dimension n > 3

such that -1 > K+ > K~ > -A and \\T\\co < e~c(n)h(d+X)/c(n) for some

number A > 1 , where c(n) is a certain positive constant depending only on n ,
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and K+ , K~ denote respectively the maximal and minimal sectional curvatures.

Then g can be deformed to an Einstein metric through the Ricci flow. Along the

flow and in the limit, Ricci curvatures remain negative.

In the proof of Theorem 1 we adopt a new approach to the study of con-

vergence of the Ricci flow. Hamilton's approach essentially consists of (inge-

niously) applying pointwise parabolic maximum principles to various curvature

quantities and thereupon establishing that along the flow the Riemann curvature

tensor becomes more and more pinched and the scalar curvature approaches a

constant. This approach is very powerful, but depends on positivity of cur-

vatures, mainly for the reason of the maximum principles. The approach of

the present paper follows the scheme proposed by Min-Oo [Mi]: via the weak

maximum principle of Moser [Mo], L2 estimates of curvature quantities can

be translated into C° estimates and hence the convergence of the Ricci flow

is reduced to establishing L2 decay of the traceless Ricci tensor T. Unfortu-

nately, the crucial L2 decay argument in [Mi] is not correct and the claimed

theorem there (stating that almost Einstein metrics of negative Ricci curvature

can be deformed to Einstein metrics) remains open. The vital fact which was

overlooked in [Mi] is that the projection Pr defined in (2.11) in [Mi] is not

orthogonal, hence the equation

Px[l-Rm),z) = {^Rm,Z

does not hold (Z is the traceless Ricci curvature tensor of type (1,3), see

[Mi]). This equation is essential for the proof of the crucial estimate of (2.21)

in [Mi]. We are unable to find a correct proof of this estimate and believe that it

does not hold in general. We remark that the difference of the two sides of the

above wrong equation contains exactly what is hard to handle. Our observation

is that the desired L2 decay of T can be derived from stability. We would like
to note that the issue of preserving stability along the flow is rather delicate.

This is true even for short time. For long time, stability and convergence are

intertwined: they depend on each other and will be proven simultaneously.

Because we only establish a certain partial stability along the flow, we do not

know whether the limit Einstein metric is stable. We point out that this is the

case, provided that one additionally imposes a Holder bound on the covariant

derivatives of the Ricci tensor of the initial metric. Such a bound is not so

natural though. We also notice that in Theorem 1 we can actually replace the

stability condition by a weaker condition, namely H-stability (i.e., replace Xe

by the number XH below).

Definition 2. Consider a metric g (on a manifold M). For H > 0 set

XH = inf I Q(h) /     \h\2: h is a traceless symmetric 2-tensor

withii«ii^<#|i«iy|i7f}.

If XH > 0, then we say that g is T7-stable. (TT-stability coincides with stability
provided that g is Einstein. Also, stability can be considered as the special case

H = oo of TT-stability.)
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Our second topic is to extend the curvature pinching and deformation theo-

rem of Huisken, Margerin, and Nishikawa mentioned before. We prove

Theorem 2. For given « > 3 and C > 0 there exists an e > 0 such that the fol-

lowing is true. If a closed n-dimensional Riemannian manifold (M, g) satisfies

the pinching condition -1 > K+ > K~ > -1 - e and one of the boundedness

conditions below, then it can be deformed to a hyperbolic space form through the

Ricci flow
(1) d<C,
(2) V <C, n¿3,
(3) \x\ < C, n is even, where x is the Euler characteristic.

Moreover, sectional curvatures remain negative along the flow.

The main point in this theorem is the Ricci deformation, because the topo-

logical implication that M is diffeomorphic to a hyperbolic space form was

known (due to Gromov [Gr]). In the following two theorems we deal with L2-

curvature pinching. There are three different ways of measuring L2-pinching
_ o

of curvature: in terms of / |T?m|2 , / \R±m\2, or / \Rm\2 , where

~ 7?
iRm)ijkl = Rijkl -       _    (gikgjt - gugjk),

(R±m)ijkl = RUki T       _ {)(gikgji - gugjk),

and

iin-iy

o o R

R,jkl = iRm)ljki = RUki - n{n _ X)(gikgji - gugjk)

(Rm is called "concircular curvature tensor" and naturally arises in the Weyl

decomposition of curvature tensors.) The first two measure global pinching in
L2 norm, while the third, the weakest of the three, measures pointwise pinching

o

in L2 norm. (Note that smallness of J \Rm\2 does not imply smallness of

/ |<5T?|2.) We first consider L2-global pinching.

Theorem 3. For given « > 3 and A > 0 there exists an e > 0 with the following

property.   If a closed Riemannian manifold (M, g)  of dimension « satisfies

d2\\Rm\\co < A, j \Rm\2 < eR , then it can be deformed to a space form

through the Ricci flow. In particular, M is diffeomorphic to a space form. The

curvature sign of the limit space fiorm coincides with that of R.

Next we treat L2-pointwise pinching.

Theorem 4. For given « > 3, A > 0 there exists an e > 0 with the following

property.  If a closed Riemannian manifold (M, g) of dimension « satisfies

d2\\Rm\\co < A, -f\Rm\2 < eR^/WRmW2^ or < ed^R* and R < 0, then it can
be deformed to a hyperbolic space form through the Ricci flow.

In case T? > 0, one more bound is required (it seems that Ricci flow prefers

negative curvature here).
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Theorem 4 '. For given « > 3, A > 0, and C > 0 there is an s > 0 with the

following property. If a closed Riemannian manifold (M, g) of dimension n

satisfies d2\\Rm\\co <A, jR2 < CR2, -f\Rm\2 < el?/\\Rm\\2c0 or < ed4lt,

and R > 0, then it can be deformed to a spherical space form through the Ricci

flow.

The above pinching results are based upon Theorem 1. We rely on the fact

that curvature pinching implies stability. The case R > 0 of Theorem 3 can also

be derived from the aforementioned works of Huisken, Magerin, and Nishikawa

and Moser's weak maximum principle, but the case T? < 0 is very different. In

this case, crucial evolution equations used in [Hu, Ma, Ni] contain terms with

the "wrong" sign and hence (also for other reasons) the approach of Huisken

et al. does not work. We would also like to mention that Min-Oo and Ruh

[Mi-Ru] have shown that L2-global pinching forces the underlying manifold to

be diffeomorphic to a space form. They deform the metric by the Ricci flow

for a short time to achieve C° pinching and then apply known results. Their

arguments do not yield information about long time behavior of the Ricci flow.

In a similar vein, Yang [Ya] proved some V -curvature pinching theorems with

p > n (without bound on ||T?zn||co). (Our arguments also apply to that situation

and produce time-global Ricci deformation there. Compare Remark 1.) In still

another development, Gao [Gao] has treated L"/2-curvature pinching which

involves lower bound on volume or injectivity radius. There, one may even not

expect uniform short time existence of the Ricci flow.

The next two theorems again deal with curvature pinching, but avoid bounds

involving diameter (the volume and Euler characteristic bounds in Theorem 2

imply diameter bounds by Gromov's work [Gr]). We define the isoperimetric

constant C¡ of an «-dimensional Riemannian manifold (M, g) tobe

f V(Q,)"-X 1 1
C/ = sup < '      : Í2 is a nonempty open set in M,  V(Q) < -V(M) > ,

where V means volume and A means area ((« - 1 )-dimensional measure).

Theorem 5. For given n > 3 and C > 0 there exists an So > 0 with the

following property. If a closed Riemannian manifold (M, g) of dimension «

satisfies -l>K+>K->-l-e min(l, l/W) with 0 < e < e0 and C¡ <C,
then it can be deformed through the Ricci flow to an Einstein manifold with

-1 + S(e) > K+ > K- > -1 - S(e), where 0 < 3(e) < \ and limE^0 S(e) = 0.
In dimension n = 3, it follows that M is diffeomorphic to a hyperbolic space

form.

Remark 4. One should note that the conditions in this theorem are weaker than

those in Theorem 2, because C¡ can be estimated in terms of Ricci curvature,

diameter and volume. It is unknown whether (for n > 4) Einstein manifolds

of negative and sufficiently pinched curvature must be isometrically or at least

topologically space forms. (The answer for positive curvature is positive, see

§2.) On the other hand, the difference between the assumptions of these two

theorems is somewhat subtle. In Theorem 5 the dependence of pinching on vol-

ume is explicitly on the order of l/\[V, while in Theorem 2 this dependence is

inexplicit and probably on a much higher order. Our interest in Theorem 5 (for
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« t¿ 3) is the hope to use it to produce negatively pinched but diffeomorphi-

cally nonhyperbolic Einstein manifolds. So far we have not been able to do so.

The only known examples of diffeomorphically nonhyperbolic manifolds with

almost zero pinched negative curvature due to Gromov-Thurston [Gr-Th] and

Farrell-Jones [Fa-Jo] do not satisfy the condition of Theorem 5. The pinching

there is on the order of 1 / log V .

The L2 -version of Theorem 5 involves curvature bounds normalized by vol-

ume and yields stronger information, namely deformation to space forms in all

dimensions:

Theorem 6. Forgiven « > 3, A > 0, and C > 0 there exists an e > 0 such that

the following is true. If a closed Riemannian manifold (M, g) of dimension «

satisfies V2/n\\Rm\\co < A, C, < C, R<0, and j\Rm\2 < ¿É/\\Rm\\2cü (or
_4

< ed4R ), then it can be deformed to a hyperbolic space form through the Ricci

flow. In particular, M is diffeomorphic to a hyperbolic space form.

Remark 5. In dimensions « > 4, this theorem can also be thought of as an

L2-version of Theorem 2. Finally we notice that in Theorem 1 one can also

adopt a bound on the isoperimetric constant in order to avoid diameter.

The arguments in this paper also apply to many other geometric flow problems

such as the mean curvature flow and the heat flow for harmonic mappings.

It is a pleasure to thank Professor R. Schoen for his interest in this work.

1. Ricci pinching

Contrary to the approach in [Hal], where one first considers the unnormal-

ized Ricci flow dg/dt = -2Rc, we work directly with the (normalized) Ricci

flow (0.2). We first derive evolution equations for curvatures. The dot •

denotes d/dt when it is on top or a superscript, while the dot in the mid-

dle denotes inner product. Let R,j, T¡j be the coefficients of Re, T and

Bijki = Rpjq¡Rpkqi ■ We fix a closed manifold M of dimension n > 3.

Lemma 1. Along the Ricci flow we have

Rijkl = ARijkl + 2ißijki - Bijik - Biijk + Bikji)

(1) 2R
- RpjklR1 - RipklRPj - RijplRPk - RijkpRP + ~ZZRiJkl ,

(2) R,j = ARU + 2RipjqRP" - 2R,PRP ,

(3) tij = ATij + 2R,pjqT<"> - ^tgij - 2TpiT"j,

2r) R
(4) R = AR + 2\T\2 + —R,

n

(5) |-|r|2 = A\T\2 - 2|V7f + 4Rm(T) ■ T + -SR\T\2 ,

(6) ^ y>|2 = -2 J'\VT\2 + 4 J' Rm(T).T = (l - £) J' SR\T\2.
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Proof. (1) follows from the calculations in Hamilton's paper [Hal]. The other

identities follow straightforwardly from (1) and (0.2).

For the convenience of the reader, we summarize some basic facts.

Lemma 2 (short time existence). The Ricci flow exists iand is smooth) on the

time interval [0, t(«)/A], where A denotes ||T?«z||co at t = 0 and t(«) is a

positive constant depending only on « . Moreover, the following estimates hold

at any time t e (0, t(«)/A] :

||V*T?m||co<^^A,        k = 0,l,...,

where c(k, n) depends only on k and n . We can actually choose c(0, «) = 2.

This follows from Theorem 14.1 in [Hal] and the maximum principle; see

[Ha3] or [Sh].

For a given metric g on M and A > 1, the Sobolev .4-constant Cj4' of g

(or better: of the Riemannian manifold (M, g)) is defined to be the smallest

positive number for which the following Sobolev inequality holds:

|/|2"/("-2>J < Cf J \Vf\2 + AV-2'" j f2,        fe C°°(M).

We simply call C^1' "Sobolev constant" and denote it by Q (Cs does exist;

see [Li]).

Lemma 3 (Moser's weak maximum principle). Let g = git), 0 < t < T, be

a smooth family of metrics, b a nonnegative constant, and f a nonnegative

function on M x [0, T] which satisfies the partial differential inequality

dfi/dt<Afi+bf   onMx[0,T],

where A refers to git). Then for any x e M, t e (0, T],

(1)  \f(x,t)\<c(b + l + ^     (c(sA)(b + / + })+ AV-2'"J   ecbt\\fo\\L2,

for arbitrary A > 1,

1 ,HJ , . ,y,l1s    I   , i . 1
(2)     \f(x,t)\< c^ecHdmax( 1, dn'2) [b +1 + 1 + y )

where c is a positive constant depending only on n ,

(l+i/2)/2

/ = max
0<!<r

-jt(dv)/dv Cf= max Cf(g(t)),     V = min V(g(t)),
^ 0<KT 0<t<T

d = max diamg(t),    H = max v/ll-ßcllc-o,    and   fo = f(-,0)
0<l<T 0<t<T '

(diam = diameter).

This lemma follows from (a simple modification of) the proof of Theorem

4.1 in [Ya] and the estimates for the Sobolev constant given in [Gal]. See also

the original paper [Mo] of Moser.

Next we study how stability evolves along the Ricci flow. For each presenta-

tion let us first introduce a definition.
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Definition 3. Let g be a metric. For any positive number ß we define the
ß -value Xß of g to be

with||A||2c„<i||A|2}.

Lemma 4. Assume that the initial metric go of the Ricci flow satisfies Xe > 0 a«o"

||T?«i||Co < 1. Set ßo = JM \T\2, where M, means M equipped with the metric

gt at time t.   Then there are numbers 0 < a(«) < min(l, t(«)),  c(n) > 1

depending only on « such that for 0 < t < a(n)X2/(l +X2), the ß0-value Xßo of

g = gt satisfies Xß0 > Xe/c(n)(l + Xe).  (x(n) was introduced in Lemma 2.)

Proof. Consider the Einstein form Q along the flow. Fix a symmetric 2-tensor

« . We put Q = Q(h) and compute

(1.1)

Q = 2 Í V« . v« + / (VA, VA) + /(|VA|2 - 2Rm(h) • h + T(h) ■ h)(dv)'

- 2 jiRmih) • hy + [(T(h)-hy,

where ( ) denotes the inner product relative to g(t). From the Ricci flow

equation (0.2) one easily deduces

(1.2) (dvy = -ÔRdv,

(1.3) KVA,VA)|<C,(|r| + |r5Tv|)|VA|2.

Here and in the sequel, Cx, C2, ... denote various positive constants depend-

ing only on « . From [Be, 1.174] and (0.2) we obtain |VA| < C2|VT?c| |A|. But
the contracted second Bianchi identity implies (note n > 3)

(1.4) |VTvc| < c3|vr|.

Hence we have

(1.5) |VA| < c4|vr| |A|.

Next we derive from [Be, 1.174] and (0.2)

(1.6) Rm = l(V2Rc) + q(Rm, T, g~x) + q0(Rm , OR),

where I, q, qo denote some (universal) linear forms and g~x is the tensor g'j .

This combined with integration by parts and (1.4) (as well as simple computa-

tion of ( ,  ) and dg~x/dt) yields

•7) ¡(Rm(h) ■ hy  < C5 ¡(\VT\ |VA| |A| + \Rm\\T\ \h\2 + \Rm\ \SR\ \h\2).

Finally, we apply equation (3) in Lemma 1 and integration by parts to deduce

(1.8) \J(T(h)-hy  < C6 J(\T\2 + \T\\ÔR\ + \Rm\\T\)\h\2 + C61 \VT\\Vh\\h\.
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These estimates together with Lemma 2 and the condition ||T?m||co = 1 at

t = 0 imply for 0 < t < x(n)

\Q\ < C7 Í(\VT\\Vh\\h\ + \Vh\2 + \h\2)

(1.9) < C7 (l + i) j |VA|2 + C7e j \VT\2\h\2 + C7 j \h\2

< C7 (l + 1) Q + Qe j \VT\2\h\2 + C8 (l + i) | |A|2,

where e > 0 is to be chosen. Integration yields

(1.10) Q>Qoe-CÁl+i/E)t-C,j' (ej  \VT\2\h\2 + (l + jj J   |A|2) ds,

where Q, means Q at time t. Now we integrate equation (6) in Lemma 1 to

obtain

(1.11) f ds I   \VT\2<\[   \T\2-U   \T\2 + C9fds[   \T\2.
Jo      Jms ¿ JMq l Jm, Jo      Jms

Writing cp(t) = fçds JM \T\2 we see from (1.11) that

<P< f
Jm,

\T\2 + 2C9tp,
>M0

whence

<p(t)<^-e2C>< [   \T\2.
2(-9 JMq

We conclude

(1.12) í ds [   \VT\2<CX0[   \T\2       (t<x(n)).
Jo      Jms Jm0

To proceed we observe that by Lemma 2 and the flow equation (0.2), we have

the following comparison between the metrics g = gt, 0 < t < x(n),

(1.13) -=-go < g< Cxxg0,        \\g - go\\co(M0) < Cx2t.
*-"ll

Now we fix a time x < x(n) and assume that h is traceless relative to gT and

satisfies

(1-14) m2c°^-JoLml-

We set

h° = h-X-^go
n

and replace Q(h) by Q(h°) in the previous estimates.  From (1.10), (1.12),

(1.14), and (1.13) we derive

1-15)    Qr(h°)>Qo(h0)e-c^x+x'^-eCx3 [   \h\2 - Q ( 1 + -) x [   \h
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But |tri0A| = \txgoh -txgth\ < CX4\h\g0x by (1.13). Hence

(1.16) \h-h°\g0<Cx5x\h\g0   and     f   \h\2 < 4 (   |A°|2,
J Mq J Mo

provided that x < Tn(«) := I/2C15  (f°r the second inequality).  Choosing a

suitable e in (1.15) we then get

ör(A0)>^ßo(A°)>i(l-a)/   |VA°|2
(1.17) 2 2 Jm°

-\(l-a)CX6 [   \h°\2+l-aXe [   |A°|2
1 JMq ¿      Jm0

for a e (0, 1), provided that x <xx(n, Xe) := minJA^, X2}/CX1 for some Cxl.

Choosing a = Cx^/(CXß + Xe/2) we conclude (we may assume Cx¿ > 1)

(1.18) ßT(A°) > I       X<        I (|VA°|2 + |A°|2).
4 C16 +Ae/¿ Jm0

Our purpose is however to estimate QT(h). We have

(1.19) Ißt(A) - ßT(A°)| < 2 /   |V(A-A0)||VA| + 2C18/   |A-A°||A|.
Jm, Jm,

We estimate (at time t)

(1 20) |V(A - A°)| < ^iVsol + ^|VtrftA|

<C19(|Ví0||A°| + t|VA|),

because of (1.16), (1.13), and since

(1.21) |Vtr,0A| = |V((^' - OA¡7)| < C20(\Vg0\ |A| + t|VA|),

which follows from (1.13). But we have from (1.5) and (1.13)

(1.22) \Vgo\<C2X f \VT\dt, |VA°|<|VA0|í=o + C22|A°| f \VT\dt.
Jo Jo

Hence

(1.23) |VA|<|VA°|í=o + C23|A0| f \VT\dt,
Jo

provided that x < x2(n) := l/2CX9 .

Now we deduce from (1.19), (1.20), (1.23), (1.16), and (1.13)

Ißr(A) - ßt(A°)| < C24 (x ¡   |VA°|2 + /   |A°| |VA°| f \VT\ dt
V Jm0 Jm0 Jo

+ í   |A°|2( í\VT\dt)   +x í   |A
JMo \Jo J Jmo

Here everything is measured in go except in the integral /0 \VT\ dt, in which

|VT| is measured in gt, 0 < t < x. But we observe by (1.13) that

/    f\VT\2dt<C25 f dt (   |V7f
Jmk Jo Jo       Jm,
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Hence by the Holder inequality

(1.24)
|ßr(A) - ßT(A°)|

< C2(í(x + ^/x) (f   \Vh°\2 + \\h°\\2c°{M0)íXdt [   \VT\2+¡   |A°|2)
\Jmq Jo      Jm, Jm0        /

We can apply (1.14), (1.12), and (1.13) to (1.24). Then we derive (recall ß0

Jm0\t\2)

(1.25) |ßT(A) - ßT(A°)| < C27(t + Ji)l (|A°|2 + |VA
Jm0

On account of (1.18), (1.25), and (1.13) we finally arrive at

(1.26) ßT(A)>       J\XJL28(.(-28 + Ae) JA
\h\2

Mr

for some C28, provided that x < min{r(«), to(«), xx(n , Xe), x2(n), t3(« , Xe)},

where t3(« , Xe) satisfies the equation C21(t + \ft) = |c ^ ,2.   D

We expect that the /?o-value or /i-value for suitable ß of g, continues to be

bounded away from zero for long time. Our argument is to prove this along with

the convergence of the Ricci flow. The idea is that L2-decay of the traceless

Ricci tensor T and hence the convergence of the flow will follow from a positive

lower bound for Xß . On the other hand, the decay of T helps us to establish

such a bound. This sounds like a circle, but we have enough gap to play with.

We continue under the assumption of Lemma 4. Set

1    ,   .    X2e 2.
xo = ^a(n)—LTJ,        7o2   vv1+a2' /u     c(n)(l+Xe)'

We say that a (finite) time x > xo satisfies Condition B, for B = (bo, bx, y)

satisfying /30 > I ,bx > 0, and 0 < y < yol4, if the following is true:

(i) Xß > y0/2 on [0, t] , with ß = 4 JMq \T\2,

(ii) \\Rm\\co < 10 on [0, t] ,

(iii) fMi\T\2<boe-?'fMo\T\2 for íG[0,t],
(iv) diam(M() < bxdo for t e [0, x], where do = diam M0 .

Assuming x satisfies Condition B for some B , we are going to check whether

the estimates assumed in this condition can be used to produce better ones. The

ultimate purpose is to employ suitable estimates to show that Condition B is an

open as well as closed condition. First note, on account of Lemma 2 (we are

tired of the Q 's, so we change to ak = ak(n))

(1.27)    \\VRm\\co<ax/JxZ),     \\V2Rm\\co < a2/x0,     ||V3Tx«z||co < a^/Vx2

on [to/4, t] . We put

e = fM0\T\2,        V0=V(go).

To estimate \\T\\co, we derive from equation (5) in Lemma 1 and (ii) above

d\T\/dt<A\T\ + a4\T\
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on [0, t] (in the weak sense). Applying Lemma 3 to this differential inequality,

we derive

(1.28) I|71I2co(m,)<^û5Mo /        \T\2<^ea>b'd°+xboee-*Vo
T0 •/^-r0/4 T0

on [to/4,t]. To estimate ||Vr||co we first apply the interpolation inequality

12.7 in [Hal] together with (iii) and (1.27) to get

(1.29) /  \vT\2<^y/bole-"/2Vo,       ie[t0/4,T].
Jm, to

Next we observe the following evolution equation:

— |V3"|2 = A|vr|2 - 2|V2r|2 +Rm*VT*VT

+ VRm *T*VT + SR(VT * VT),

where * means various linear combinations (involving contraction). This equa-

tion can be derived from equation (3) in Lemma 1 with the help of Lemma 13.1

in [Hal]. Combining (1.30) with (1.27), (1.28), and (ii) yields for t e [t0/4, t]

d
(1.31) |-|vr| < A|vr| + a7|vr| + -^^'^v/^r"/2^.

To

Hence, by virtue of Lemma 3 and (1.29),

(1.32)

V y0 \ V     ° rTo i

IJm

< -~-xea^dt>bo<ße-yl"VVo,        t e [x0/2, x].

On account of (1.4) we immediately conclude

(1.33)

l|VT?C||coW) + \\SR\\co{Mi) < -^re^^bo^e-^y/Vo,        t e [x0/2, x].

The second order derivative V2T can be treated in a similar way. Thus, the

interpolation inequality quoted before produces for t e [xq/4 , x]

|V27f < ^t/bo~ee-?"3Vo.
IM, VT0

From an evolution equation for |V2T|2 similar to (1.30) one then derives for

t e [T0/2 , T]

(1.34) ||V2r||Co(Ai;) < (axx/y2x2n)ea"b^bo^e-y'/6y/Vo.

Next we estimate V2T?. First we derive from equation (4) in Lemma 1 the

following evolution equation:

J-|V2T?|2 = A|V2T?|2 - 2|V3T?|2 + Rm * V2R * V2T?

+ VT?m * VT? * V2TÎ + VT * VT * V2R

+ V2T* T * V2T? + SR(V2R * V2R) + R(V2T * V2R).
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Using this equation, the above proven estimates as well as an interpolation

estimate for / |V2T?|2 we then deduce for / e [to, t]

(1.35) ||V2*||co(M) < (ax2/yhln)ea^HoVle-ytl%Vvô.

Estimate of Rm.    By Lemma 2, equation (1.6), and estimates (1.33), (1.34),

and (1.35), we have on [t0, t]

|t|T?«z|2 < ax3(\Rm\ + \T\ + \SR\) < -^e^^bo^e^^/Vo,
at Y Tq

hence

(1.36) \\Rm\\2c0{Mr) <4 + (8ax4/yS¡")ea"b>d°bofcy/v0.

Estimate of diam.   For a fixed tangent vector v we compute

— \v\2 = g(v,v) = -2T(v,v)-—\v\2,

whence, by the previous estimates,

8 I    |2
\v\ < -^ea"b^bo</ëe-?'/4,/VÔ\v\2

Ytno

on [t0 , t] . We derive for t e[x0, x]

(1.37) e-AgTo<gt<eAgT0   with A = i4aX5/y2x"0+x)eaMbo<fty/VÔ.

Together with (1.13) this shows

(1.38) diamMx < y/cT\eA/2d0.

Estimate of / \T\2.   We make the following

Assumption I.   ||<5T?||Co < yo/2 holds on [x0 , x].

We say that t e[xo, x] is an e-time, provided that

U        \T\2>e (   \T\2.
1 Jm,_To/4 Jm,

We consider the two possible cases.

Case 1. There is no e-time.

In this case we notice that from (1.28),

imic.(M) < ^b^eVo^ !  \T\2

(recall ß0 = jMo \T\2) for t e[x0,x]. We make

Assumption II.   (a5/x0l)easblda+xeV0 < 1/8.

By (i) we then derive

Q(T)>^j\T\2   on[T0,r].

This estimate, Assumption I, and equation (6) in Lemma 1 imply

i    |T-|2<e-yo(r-ro)/2   /      | j\2 < e~ W> I * t0e~ *'x   [    \T\2.

Jm, Jm,. Jm0
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Here condition (iii) and the assumption y < y0/4 have been used.

Case 2. There are e-times.

Let Ti be the maximum e-time. We apply the above argument to the interval

[ti , t] and deduce

/   \T\2 < e-yo(x-z^2 f    \T\2 < ±-e-y^-*uß /        \T\2 < -\b0e~yt f   \T\2.
Jm, Jm,, 2e Jm,,-,0 2 Jm0

We conclude in both cases

(1.39) /   \T\2 < Axboe-yx [   \T\2
Jm, Jm0

with Ax = max(i , e-^"^) _

Estimate of Xß . We compare the Einstein form of gT with that of gTo and

follow the arguments in the proof of Lemma 4. But here we have to appeal to

the decay estimates assumed in and derived from Condition B, because x can

be large. We choose ß = 2 ¡M \T\2 = 2ß0 .

From (1.1), (1.2), (1.3), (1.5), (1.7), (1.8) and the above estimates for Rm,
VT, SR we deduce on[io, t] for Q = Q(h), h being a fixed symmetric

2-tensor,

Ißl < «16 |(|V71 |VA| |A| + (|r| + |r5Tv|)|VA|2 + (|r| + \SR\)(\h\2)

(1.40) < ■^-xea"b^b0<Tee-^yj% j(\Vh\2 + \h\2)

^ -^^""^bo^e-^^Vo (axlQ + a18 / |A|2) .
y>o

We restrict to those h which satisfy

(1-41) 6r„(A)>^  /      \h\2
->   Jm,„

Claim. Then we have on [tq , r]

(1.42) Q>2JT Í   l^l2'
■*   Jm,

provided that the following is satisfied.

Assumption III.  A2e~A} > |, where A2, At, will be defined below.

In fact, if we put r = {/ e [x0x] : (1.42) holds}, then T is closed. We show

that it is also open in [t0, t] . For t0 e T we have from (1.40), (1.41)

(1.43) Q,0>A2QXa>YoA2(    \h\2,
Jm,„

with

^ = ̂p(7^''"<»»^ + tf
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We can compare JM  \h\2 with JM  \h\2 by means of (1.37), but a more con-

venient way is to compute

9 "|2 _ a (-rik  ,   SR „ik\ u.h(1.44) _|ä|2 = 4(j-«* + _£«*jAj./A/Wj

thus (using (1.2))

§-[ \h\2 = 4¡ (rk + ô-^gAh/hkl-U \h\2ôR.
ai Jm, Jm, \ n       J L Jm,

An application of the estimates of T, 5R then yields for t,t'e[xo, x]

|A|ft<^|A|R(>     /  \h\2<eA> [   \h\2,

(1.45) ' ''
with A-, = -^l-ea^Ho<ß\iVo.

Y2?o

We conclude from (1.43), (1.45), and Assumption III

fir. > VoA2e-A> [    \h\2 > ^ /    |A|2.
Jm,0 4  jM¡o

It follows that a neighborhood of to is contained in T. Hence T is open in

[to , t] . But To € T, therefore Y = [r0, t] and the claim is proven.

In order to estimate X2ßQ at time t, it remains to check whether (1.41) is

implied by the following condition:

(1.46) trftA = 0,        Wh\\co{M,)<2J-JMW7

Given an h with (1.46), we put h° = h - (tr^ h/n)gXo. We compute

Using this, (1.45) and the condition txgrh = 0 one easily shows

(1.47) Itr^AI^ < A4\h\gT   with A4 = e^-^e'^^bo^Ey/K-
Y To

Hence, by a simple computation,

(1-48) P°|.,mIo)<¿(   \hQ\2   and   \h*\^>fi\h\gXo,

provided the following is satisfied.

Assumption IV.

Va- f, eA:\A:A < i.   i - ̂  > A
2        \l - A4eA*/y/n) - yß      ~ V 7

By Lemma 4 we then have

Q,0(h°)>Yoi    \h°\2-
JM,n
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Hence, by an argument similar to that for the estimate (1.18) (plus the second

inequality in (1.48)),

0|2
| v ft

'0

(1.49) Qr0(h°)>lyoí    \h\2 + ^¡    IVA
6    Jm,0 a2x JM^

On the other hand,

\Vtxg,Qh\<a22(\Vgt\\h\ + \gz-gXQ\\Vh\),

where the derivative and the norm refer to gXo.   From (1.45) and the flow

equation (0.2) we obtain

Ift - &ol < zÊkïeA3e"M * bo^VVo,

while from (1.5) we derive

Y2Tn0+x

IVftl < -p¡L-e2A>ea»bid° ■ bo<ßVVo-
Y To

Hence

|Vtr<toA|<^5(|A| + |VA|),

(L50) With A, = a22maX^3^24) . ^rnaxfe.^Mo^^

Y2*o

Now we can estimate QrQ(h) (under Assumption IV)

ßx,(A) > ßTo(A°) - a25 (l + 1) ¡m i\txgXQh\2 + \VtxgJ\2)

-a25a [   (|A°|2 + |VA°|2)
Jm,0

>a.(*o)-^((1+i)(^.+^+7H3-)

where a > 0 is to be chosen. Now we choose a = (yo/2a25)min(l/a21, 1/60)

and make one more assumption.

Assumption V.

i + ̂ '<V2,    ^(,+i)(V*+24+7¿á_)sa.

a) (1 -A5/y/ñ)2     2a2x'

Then we derive from the above estimate and the inequality ( 1.49) the desired

condition (1.41), i.e.,

Qr0(h)>4-ff      \h\2.

We summarize:
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Lemma 5. Assume the same as in Lemma 4. Let x > 2to satisfy Condition B

for some B = ibo, bx, y). Suppose that Assumptions I-V are all satisified. Then

theestimates (1.28), (1.33), (1.34), (1.35), (1.36), (1.38), and (1.39) hold.
Moreover, X2ß0 >\yo holds at time x.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Consider a Riemannian manifold (M, g) of dimension

n > 3 satisfying the condition (diam)2||T?m||co < A, (diam)2^. > a . Dilating

the metric we can achieve ||T?/w||co = 1, diam < VX, Xe > a/A (we omit the

trivial case ||T?m||co = 0). It suffices to show that the dilated metric (which

will be denoted by go) can be deformed to an Einstein metric through the

Ricci flow. Consider the Ricci flow starting at go • On account of Lemma 2,

Lemma 4, and estimate (1.13) we have on [0, To] : ||T?m||co < 2, Xß > y0,

and diamM, < ,/cîido (ß = 4/i0). From Lemma 2 and equation (6) in

Lemma 1 we also derive for t e[0, x] the estimate JM \T\2 < a2(¡ JM \T\2 for

some a26 = a2¿(n), which implies JM \T\2 < a26ee~7o'/4 JM \T\2. We conclude

that To satisfies Condition Bo with B0 = (2a2^e, 2v/cTT, yo/4). Define T =
{t > To: t satisfies Condition B}. Now we choose a sufficiently large number

026 — didn) such that the condition

(1.51) (a26/y4oTl")ea*d»fä< 1

implies Assumptions I-V with /30 = 2a2(,e, bx = 2v/cy¡\ and y = \yo. This

is possible because of estimate (1.33), standard volume comparisons and the

algebraic forms of these assumptions. Next we choose a suitable number c =

c(n) such that (1.51) is implied by the condition Oo < vA, Xe > o/A, and

(1.52) £ < (l/c)e~c'/Kmin(l , (o/A)mn+^).

Now if the metric g satisfies the condition

/lrp<if-^mm(1,(^—> )l|Äm|l^,

then (1.52) is true for the dilated metric go. From Lemma 5 we then derive

that T is closed. We also infer that condition (i) in Condition Bo is an open

condition. Since the remaining conditions are obviously open, we conclude that

T is open in [to , oo). Thus Y = [xq , oc). It follows that the Ricci flow exists

for all time and converges exponentially as / goes to oc . (Convergence in C2

is immediate from estimates (1.28), (1.33), (1.34), and (1.35). Higher order
convergence follows readily.) Taking limit in the flow equation (0.2) we see

that the limit metric is Einstein. This finishes the proof of the second pinching

case of the theorem. To treat the first pinching condition, we dilate the metric to

achieve diam = 1, ||T\z«||co < A and Xe > o. Arguing essentially in the same

way as before we then reach the conclusion. (Some modifications are in order.

For example, one first derives from Lemma 4: if the initial metric satisfies

||T\m||co < A and Xe > 0, then on the time interval [0, a(n)Xj/A(l + X2.)} of

the Ricci flow, the estimate 1^/A¡ > Aae/c(«)(1 +Xe) holds.)    D

Comments on Remarks 1 and 2. Remark 2 can be proven in the same way

as above. To justify Remark 1, we apply a more general version of Lemma

3, in which the constant b is replaced by an Lp/2 function.  This version is
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formulated as Theorem 4.1 in [Ya]. As mentioned before, one has to correct its

statement suitably.

Proof of Corollary to Theorem 1. Deformation to Einstein metrics is immediate

from Remark 2 and Proposition 4. A negative upper bound for R can be de-

duced from the pointwise maximum principle applied to equation (4) in Lemma

1 (together with decay estimates for \T\ and r5T?). This combined with the de-

cay estimate for | T\ implies the claimed negativity of Ricci curvatures,   o

2. Stability and Riemann pinching

Stability of Einstein metrics is usually defined in terms of the second variation

of the normalized total scalar curvature functional S in directions which are

transversal (i.e., divergence free) traceless symmetric 2-tensors, see [Ko3]. Our

concept of stability (in the special case of Einstein metrics) is actually equivalent

to this.

Proposition 1. An Einstein metric g is stable (in the sense of Definition 1) if and

only if (d2/dt2)S(g + th)\l=o < 0 for all nonzero transversal traceless symmetric

2-tensors h.

Proof. Following the computations in [ ] we derive for an arbitrary traceless

symmetric 2-tensor A

tLs(g + th)\t=0 = -Jh.Lh,

where

(Lh),j = -iAA + \gkl(hik,n + hjk-,,) - -\Rhij

(assuming w.l.o.g. V(g) = 1). An application of the Ricci identity then yields

(2.1) ^S(g + th)\t=0 = -jQ(h) + J \âh\2,

where ôh is the divergence of A, (ôh), = g,kh,¡.k . For convenience let us

denote the second variation (d2/dt2)S(g + th)\t=o by 0(A). From (2.1) the

"only if part of the proposition follows immediately. Now assume Q(h) < 0

for all nonzero transversal traceless symmetric 2-tensors A . If g is a round

sphere metric, then Xe > 0 according to Proposition 3 below. Otherwise, for

any traceless symmetric 2-tensor A we have the orthogonal decomposition A =

A0 + A1 , where A1 is transversal traceless and h° is a Lie derivative of g (see

[Be, 4.57]). Then ß(A) = ß(A') and hence ß(A) = -2Q(hx) + 2 J \ôh\2 by
(2.1). It follows ß(A) > 0, provided that h is not identically zero.   D

Now we present some geometric conditions which imply stability (of a metric

which is not necessarily Einstein). Stability of Einstein metrics has been studied

by Koiso [Kol, Ko2, Ko3]. We largely follow his arguments. We denote respec-

tively by a0, <x'o the maximum eigenvalues of the operators A >-> Rm(h) + Rh/n

and A »-» Rm(h) acting on traceless symmetric 2-tensors A .

Proposition 2. We have Xe > - min(ao, a'0). Hence stability is implied by the

condition ao < 0 or a'Q < 0.
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Proof. As in the proof of Theorem 2.5 in [Ko2], one gets, by computing

Í2Zij,k(hU;k-hjku)2,

l\Vh\2- í Rm(h)-h> Í \ôh\2 - - I R\h\2 - Í T(h)-h,

hence Xe > -ao. The estimate Xe > -a0 is trivial.   D

Proposition 3. Sufficiently (Riemann) pinched metrics of nonzero scalar curva-

ture are stable. More precisely, we have

(1)

Xe > max (—^-2i^+ l)pm||c, --^LX-2||Äm||c)

>7iij^\R\-2iVn + l)\\Rm\\co,

(2)

Xe > max ( min [ —-— - 2|i?m| -\T\) , min (-—R - \Rm\ ) ) .
\m   \n(n-l) J     M   \   n(n-l) 'JJ

(The first relates to global pinching, the second to pointwise pinching.)

Proof. These are simple algebraic computations, applying Proposition 2. The

first entry in max( ) (of either estimate) comes from an estimate of a'0 , while

the second from that of ao .

Proposition 4. Partially Ricci pinched metrics of negative sectional curvatures are

stable. More precisely, we have

Xe > -(« - 2)K+ - max(r - R/n),
M

where r denotes Ricci curvatures.

Proof. Consider the operator A *-► Rm(h) (acting on traceless symmetric 2-

tensor A) at a fixed point. Choose an orthonormal frame in which A is diago-

nalized. Then Rm(h)-h = a¡jh'hj, where A' = h" and <r(J = R¡j¡j (no summa-

tion in this equation). Let x be an eigenvector of the matrix (ct,7) belonging to

an eigenvalue X such that Y!¡=\ x¡ = 0. W.l.o.g. we assume x„ = max!</<„ |x,|.

Then

n n n

XX„ =  ^2 OnjXj = - ^2 OnjXn + ^ (T„j(Xj + X„)
j=\ j=\ 7=1

< - rnxn + K+ Y^iXj + x") '

where r„ = $2/=i anj ■ But 52j¿nixj + x"> ~ in ~ 2)x« • Consequently X <

—r„ + (n - 2)K+, which implies an < (w - 2)K+ + R/n - rn and hence the

desired estimate by Proposition 2.    □

To deal with Riemann pinching, we need a few more evolution equations.
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Lemma 6. Along the Ricci flow we have

F*=*/|7f+(f-l)/((1) ^R = 14-\T\2+[--l)4(ÔR)2
dt

(2)

(3)

d_
dt (ÔR)=AiôR) + 2\T\2 + 2^R-2J\T\2+(l-^j(ÔR)2,

\ ¡(OR)2 = -2J\VR\2 + 4JôR\T\2-(l - ±) j(ôRf + *fj(ÔR)2,

ft   ° ° ° AR °
(4) tHä/hI2 = A|T?m|2 - 2|VT?m|2-\Rm\2 + P,

dt n

where
16 , °        ° °. .i.      °        °        ° .., ■

P = -^—[-)R\T\ - mP¡J9RpkiqR'jkl + RPikqRpj,qR,]kl).

Proof. Equations (1), (2), and (3) are easy computations. The last one follows

from Lemma 3 in [Ni] and Lemma 17.1 in [Hal].   D

Proof of Theorem 2. According to [Gr], conditions (2) and (3) can be reduced

to (1). So let us fix n, C and assume d < C, — 1 > K+ > K~ > -1 -e , where

e > 0 is to be determined. It is immediate from Theorem 1 and Proposition 3

that choosing e sufficiently small we can obtain Ricci deformation to Einstein

manifolds. We show that pinching is preserved in the limit. Applying the

pointwise maximum principle to equation (4) in Lemma 6 we infer

(2.2) \\°Rm\\CO{Mi) < Cx(n)\\Rm\\CO{Mo),        0 < t < C2(n).

(CX,C2, ... axe all positive constants.) Setting Gijki = gikgji - g,igsk we

compute

(2.3) — |T?m|2 = (Rm,Rm) + 2(Rm,Rm- —--G --rrG) .
'      dt1       '       v '        \ n(n - 1) «(« - 1)    /

Rm can be handled with (1.6), while the other terms are easy to compute. Em-

ploying the estimates (1.33), (1.34), (1.35), and (1.36) with suitable constants
(these estimates hold by the proof of Theorem 1 ) we then deduce for t > C2(n)

1/8

e-C*W.(2.4) ^-t\Rm\2<Ciin,C)(JM \T\2}

Integrating this inequality and appealing to (2.2) yield for 0 < / < -foo

s/     o

V\\R'(2.5) \\Rm\\co(Mi) < C4(«, C)(||T?«z||co(Mo) + Vll^||co(Mo)),

hence pinching is preserved along the flow and in the limit. We claim that M^

is a space form, provided that e has been chosen small enough. Otherwise, we

would have a sequence of limit Einstein manifolds M¿>, none of which is a

space form, such that their volumes are uniformly bounded away form zero (by

Margulis-Heintze theorem [Gr] and the fact that Ricci flow preserves volume),

their diameters are uniformly bounded from above (by estimate (1.38)), their

sectional curvatures are uniformly bounded in absolute value (by (1.36)), and
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that \\Rm\\co(Mk ) —> 0 as k —► oo. By Gromov's compactness theorem [Pe],

a subsequence of Af¿ converges to a Cla-Riemannian manifold Mg¡ in the

C1'"-topology. But A/* are Einstein, hence in harmonic coordinates we have

higher order estimates (this is a simple PDE, see, e.g., [De-Ka]). It follows that

this subsequence actually converges smoothly and M¡£ is a space form. But

space forms are isolated Einstein metrics (under constant volume condition)

because they are stable (Proposition 3), hence we arrive at a contradiction.

It remains to show that negative curvature is preserved along the flow and in

the limit. From equation (2) in Lemma 6 we derive

P(ÔR)2 = A(ÔR)2 - 2\AR\2 + 2ÖR\T\2 + ^^-R(2.6) dt n

-2ÔR4\T\2+il--)ôR-f (OR)2.

By the estimate (1.36) this implies

(2.7) íidR? < A(¿T?)2 + Cs(n) max(ÔR)2 + C5(n)max \T\2.
ut M, M,

The pointwise maximum principle applied to this equation yields for t >0

(2.8) max(ÔR)2 < eCi{n)t (max(ÔR)2 + [ max IT\2 dt] .
m, Wo Jo   M /

This together with (2.5) provides an estimate of 6R on the time interval [0, 1].

For t > 1 we can estimate OR in terms of (1.33). We conclude that OR

remains small (in dependence of e) along the flow. On the other hand, equation

(1) in Lemma 6 together with the estimate (2.5) implies R < -¿ (assuming

again that e has been chosen small enough). This, the smallness of SR and

the curvature pinching together clearly imply that sectional curvatures remain

negative along the flow and in the limit.   D

Proof of Theorem 4. First rescale the metric to achieve ||T?m||co = 1. Then the

Ricci flow exists at least on the interval [0, t(«)] according to Lemma 2. From
o

equation (4) in Lemma 6 we obtain a parabolic inequality for |T?m|, to which

we apply Lemma 3. We arrive at

(2.9) \\Rm\\2CO{M¡)<Cxin,A)eR4o,        x(n)/2 < t < x(n),

where T?0 denotes R at t = 0. But equation ( 1 ) in Lemma 6 implies T? <

Ro + 2f0' dtj\T\2<R0-C2(n)eRo < ^R0 , provided that e < 1/2C2(«) (j\T\2
is estimated by using equation (6) in Lemma 1). Hence

(2.10) \\Rm\\co <-2Cx(n , A)eR   on [t(«)/2, t(«)].

On the other hand, by the arguments which lead to the estimates (1.33) we can

deduce

(2.11) \\SR\\c° < ~C2(n, A)<feR   on [t(«)/2, t(«)].

Now consider the time to = t(«)/2 . By Lemma 2 and the estimate (1.13) we

have at to: (diam)2||T\m||co < C3(«)A.   We dilate the metric gto  to achieve
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||T?m||co = 1 . It suffices to show that the Ricci flow starting at the dilated

metric gto will converge to a hyperbolic space form, because Ricci flow is scale

invariant in the following sense: if |f = -2Rcg + 2^f-g and we set g = eg,

t = ct, then

dg _    2Rr      2T?!

The estimates (2.10) and (2.11) are retained after the dilation. They imply

||T?m||Co < C3(«)T? (e being chosen small enough) and hence T? < -C3(«)_1.

Dilating the metric once again and choosing e sufficiently small, we can achieve

the condition for deformation in Theorem 2 and therewith we are done.   D

Proof of Theorem 4'. This is basically the same as above. Again rescale to get

||T?«z||co = 1. But instead of (2.9) we use

(2.12) \\Rm\\lo < Cx(n, A,/c)eT?J,     on [x(n)/k, x(n)], k = 1, 2, ... .

Furthermore, from equation (3) in Lemma 6 and the assumption we see ¡(OR)2
_2

< C2(«, C)T?o on [0, t(«)] (choosing e small). From this and equation (4) in

Lemma 6 we then derive \R - T?o| < C3(«, C)Rot, t e [0, x(n)]. Combining

this inequality with (2.12) yields

(2.13) \\Rm\\co<C4(n,C,A)eR,    at t0 = {C}(n , C)~x.

In analogy to (2.11) we obtain at to'. ||<5T\||co < Cs(« , C, A)tfsR . Now we can

rescale to achieve 1 + C6(«, C, A)^ > K+ > K~ > 1 and diam < C7(n)\fX.
Applying Theorem 1 and Proposition 3 we then achieve Ricci deformation to

an Einstein manifold. The arguments in the proof of Theorem 2 can be adapted

to show that the limit is actually a spherical space form.   D

Proof of Theorem 3. This is similar to and easier than the proof of Theorems 4

and 4'. One notes that the pinching j \Rm\2 < eR   implies j \5R\2 < C(n)eR
for some C(n).   u

Proof of Theorem 5. The proofs of Lemma 5 and Theorem 1 (combined with

the stability estimate Proposition 3) basically apply here but two changes are

necessary. The first is that instead of the second inequality in Lemma 3 we

should now use the first one everywhere. For the application of this inequality

we notice that the Margulis-Heintze theorem [Gr] yields an upper bound for

V~2n , while the relation Cs < a(n)C2/" (for some a(n) > 1, see [Li]) provides

an estimate for the Sobolev constant Cs of the initial metric (we consider C¡ as

a more basic concept than C$) ■ We shall see below how to control the Sobolev

constant along the flow. The second change is that we have to estimate OR

in a new way. The previous estimation of OR (contained in (1.33) and used

elsewhere) was done with the help of the inequality |r5T?| < (diam) max |VT?|,

but we have no control over diam now.

To appeal to the previous arguments, we again dilate the initial metric to

achieve ||T?z«||co = 1. Then the pinching is changed to -c(n) > K+ > K >

-c(n) - c(n)e for some c(n) > 0, c(n) > 0, whereas the Sobolev constant
remains the same. Now we define a new type of Condition B. We say that a

finite time x > xq satisfies Condition B for B = (bo,y, K, C, a) obeying
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bo>l, O < y < y0/4, -n(n - l)c(n)/2 >K> -2n(n - l)c(n), C > 0, and
O < a < (n - l)c(n), if the following is true:

(i)   Xß > y0/2 on [0, t] , with ß = 4¡Mq \T\2,

(ii)   \\Rm\\c> < 10on[0, t],
(iii)   JM/ \T\2 < boe-y JMo \T\2 for te[0,x],

(iv)   T?<TC on [0, t],

(v)   C{2) <C on [0,t],

(vi)   \\OR\\co<aon[0,x].

Again we derive suitable estimates from Condition B in order to show that

it is an open and closed condition, whenever the pinching number e is small

enough and B is suitably chosen. We indicate how to estimate Cs and SR.

Applying (iii), (iv), and (vi) to equation (3) in Lemma 6 we derive

at ¡(OR)2 < 4a V" /   \T\2 + in- \)c(n)K [iSR)2
J Jmc J

for t e [0, t] (with t satisfying Condition B for some B). Setting y =

min(iy, (« - l)c(n)\K\) we then have for t e [0, t]

(2.14) Í (ÔR)2<e-y'(l (SR)2 + ^[   \T\2) .
Jm, \Jm0 Y    Jmq       /

Now we can apply Lemma 3 to (2.6) to deduce an exponential decay estimate

for ||f5T?||Co (noting an estimate similar to (1.28) in dependence of C instead

of bx and o"o).
Next we compute for an arbitrary smooth function / and p > 0

d_
dt

j\fY  <max\SR\J\fi\»,

hence

(2.15) e-J¡™*M,\SR\dt   f    \f\P <   {   \f\P <etima*u,\SR\dt   Í    \f\P_
Jm0 Jm, Jm0

On the other hand,

(2.16) |^/|V/|2|<((l + l)m4x|^| + 4max|r|)/|V/|2,

which yields an estimate for /|V/|2 similar to (2.15). Combining these two

estimates we conclude

( I   \fi\2",{"-2)) "      " < A(x) (cs(Mo) !   \Vfi\2 + V-2'" f   f2) ,
\Jm, / \ Jm, Jm,    j

are A(x) = exp(/0T(||rjT?||co-r-||r||co)a'i). This implies an estimate for C{s\mt),

provided that the pinching number e has been chosen small enough.

Other quantities can be estimated along the lines of arguments in the proof

of Lemma 5. We let the reader complete the proof. Note that the arguments in

the proof of Theorem 2 can be applied to show negativity of curvature along

the flow and the desired pinching in the limit.    D
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Proof of Theorem 6. Rescale the metric to get V = 1. Arguing in a fashion

similar to the proof of Theorem 4, we can reduce to Theorem 5. Since an upper

bound for volume is available this time, we can actually achieve deformation

to space forms also in dimensions > 4 ; cf. the proof of Theorem 2.   D

A remark on pinched Einstein manifolds. Applying equation (4) in Lemma 6 to

an Einstein metric g we obtain

A|Tvm|2 - 2|VT?«z|2 - (4Tv/«)|T?m|2 + P = 0.

o o

Since T = 0, P is cubic in Rm . Hence, if T? > 0 and \Rm\ < eR for e = e(«)
o

sufficiently small, then by the maximum principle we conclude Rm = 0, and

consequently g has constant sectional curvatures. A good calculation of e can

be found in [Hu] or [Ma]. From [Ha2] we can also conclude: 4-dimensional

Einstein manifolds of positive curvature operator must be space forms.
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