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COMPOSITION OPERATORS BETWEEN ALGEBRAS
OF DIFFERENTIABLE FUNCTIONS

JOAQUÍN M. GUTIÉRREZ AND JOSÉ G. LLAVONA

Abstract. Let E, F be real Banach spaces, U Ç E and V Ç F non-

void open subsets and Ck(U) the algebra of real-valued A:-times continuously

Frechet differentiable functions on U , endowed with the compact open topol-

ogy of order k . It is proved that, for m > p , the nonzero continuous algebra

homomorphisms A: Cm(U) —► C(V) are exactly those induced by the map-

pings g: V —> U satisfying (pog e CP(V) for each r/> e E* , in the sense that

ri(f) = f°S for every / G Cm(U). Other homomorphisms are described too.

It is proved that a mapping g: V —► E** belongs to Ck(V, (E** , to*)) if and

only if 4>o g G Ck{V) for each <p e E* . It is also shown that if a mapping

g: V ^ E verifies <t>ogeCk(V) for each ¡p e E* ,  then g e Ck~x(V, E).

0. Introduction

Homomorphisms between function algebras on Banach spaces have been de-

scribed in recent years by various authors: for instance, [3, 13] deal with algebras

of continuous functions, and [2, 11] with algebras of differentiable functions.

Let C^U(E) denote the algebra of k-times continuously differentiable real-

valued functions on the real Banach space E such that the functions and their

derivatives are weakly uniformly continuous on bounded subsets. It is proved
in [2] that the nonzero (algebra) homomorphisms A: C™U(E) -> C£„(Tr) (m >

p) axe exactly those induced by the mappings g: F —> E** satisfying 0 o

g € Cwu(F) for each 0 £ E*, in the sense that A(f) = fog where / is

the extension of / £ C™U(E) to the bidual of E. Since C™U(E) is a real

Fréchet algebra, it can be proved that these homomorphisms are automatically

continuous.

It was then natural to try to describe the continuous homomorphisms A :

Cm(U) -* Cp(V) (m>p), where U ç E and V ç F are open, and Cm(U)

is the algebra of all w-times continuously differentiable real-valued functions on

U endowed with one of the natural topologies: the compact open topology of

order m (rjf) and the compact-compact topology of order m (x™) (definitions

below). This is the problem we solve here. Some of our results are the following:

(a) A is rjf - Xu continuous if and only if it is induced by a mapping

g: V -+ U satisfying (pogeCp(V)   (0 £ E*) ;
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(b) A is t™ - xpu continuous if and only if it is induced by a Cp mapping

g: V —> U whose derivatives are compact polynomials.

These results are proved by first showing that if g : V —> E satisfies 0 o

g e CP(V) (0 £ E*), then g e CP(V, 7±**.) where £**. is the bidual of E
endowed with the weak-star topology. As a consequence we prove that such

a function belongs to Cp~x (V, E). This is the real analogue of a well-known

result on holomorphic mappings: if E and F are complex Banach spaces, and

V ç F is a nonvoid open subset, then a mapping g : V —> E is holomorphic

if and only if, for every 0 £ E*, 0 o g is holomorphic [17, 8.12]. In the
differentiable case, this property is stated in [7, 2.6.2] but we do not know of

any published proof.

1. Notations, definitions, and preliminary results

Throughout, E, F, and G will be real Banach spaces, E* and E**, the

dual and the bidual, respectively, of E. The weak-star topology is denoted

by io* and we write Tí*. = (E*, w*). BE is the closed unit ball of E and

cf(E) the family of all nonempty open subsets of E. Given a set A c E, A°

stands for its polar. E* will denote the space E* endowed with the topology of

compact convergence. E represents the real line, N the set of natural numbers

including 0, and N* = N u {oo}.
For n £ N, L(nE, F) denotes the Banach space of all «-linear continuous

mappings from E" = E x • • • x E into F , endowed with the norm

\\A\\ = sxxo{\\A(xx ,...,x„)\\: \\x,\\ < 1,   1 < i < n).

L(E, F) stands for L(XE, F). LS("E, F) is the subspace of L("E, F) con-
sisting of all symmetric «-linear continuous mappings. ¿^("E, F) will denote

the Banach space of all «-homogeneous continuous polynomials from E to F ,

endowed with the norm ||P|| = sup{||P(x)||: ||x|| < 1} .

The map T: Ls(nE, F) — &>("£, F), given by T(A) = P with P(x) =

A(x, il\,x), is a topological isomorphism [18, §3]. We write A = P and

say that P is the symmetric «-linear continuous mapping associated to the

polynomial P. The following inequalities hold:

\\P\\<\\P\\<(nn/n\)\\P\\.

£P(nE, F)c will be the space of «-homogeneous continuous polynomials

endowed with the topology of uniform convergence on compact subsets of E .

£Pk("E, F), the space of «-homogeneous compact polynomials from E to

F, consists of all P £ £P(nE, F) such that P(Be) is relatively compact in

F . 3?wb(nE, F) is the set of all P € ^("E, F) whose restrictions to bounded

subsets of E are weakly (uniformly) continuous; it is a subspace of ^("E, F)

[16, 4.5.9 and 4.1.1].
If U £ (9(E), then Cm(U, F) (resp. Cfî(U, F)) denotes the vector space

of all w-times continuously differentiable mappings in the Fréchet (resp.

Hadamard) sense from U to F. General results on differentiable mappings

may be seen in [14] or [22].
For U e (9(E), we define two topologies in the space Cm(U, F) that only

coincide when E is finite dimensional:

(a) the topology x™ (compact open of order m), given by the seminorms
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PKif) = sup{||^/(x)||: x € K, 0<j<m}  (where d°f = /), for
each compact subset K c U.

(b) the topology x™ (compact-compact of order m), introduced by Llavona

[15] and Prolla [19], given by the seminorms

PK,L(f) = ^o{\\f(x)\\,\\dif(x)(y)\\:xeK, yeL,   l<j<m}

for every pair of compact subsets K c U and L c E .

The space C^(U, F) is always endowed with the topology x™ .

In [ 1, 4] the following classes of differentiable functions were introduced:

(a) the space C^(U, F) of compact differentiable mappings of order m ,

consisting of all f e Cm(U, F) such that for every x e U, djf(x) e

&K(jE,F)  (l<j<m).

(b) C?{U,F) is the space of all mappings f e Cm(U, F) such that for

each x e U and j e N, (1 < j < m), dJf(x) e &wb(>E, F) ;
(c) C%uiU, F) consists of all fie Q"([7, F) such that the derivative map

djf: U -> 3°wbi¡E, F) is weakly uniformly continuous on bounded

subsets of U, for 0 < j < m .

If a mapping between Banach spaces is weakly uniformly continuous on

bounded subsets, then it takes bounded sets into precompact ones [16, 4.1.1].

Therefore, it is possible to endow the space C™uiU, F) with the topology x™

generated by the family of seminorms

pBif) = Bup{||rf'/(jc)||: x e B, 0 < j < m},

for each bounded set B c U .
If E* has the bounded approximation property, then the polynomials of

finite type from Ti to F are dense in (C™(E, F), x™) and in (C%U(E, F), t™)

[4]-
Throughout, when the range space is omitted, it is understood to be K. Thus,

Cm(U) = Cm(U,R), &>(nE) = ^("E, E), etc.

2. Composition operators

In this section, it is shown that every nonzero continuous homomorphism be-

tween algebras of differentiable functions is induced by a mapping. By standard

techniques (see for instance [10]), the following result may be proved:

2.1. Proposition. Let p e N*\{0} . If 0>: (C"(U), xpu) -> R is a nonzero con-

tinuous homomorphism, then there is a unique x e U such that 0(/) = f(x)

for every feCp(U).

This result remains valid when replacing the algebra (CP(U), xpu) by (CP(U),

xpc) or CpH(U).

2.2 Theorem. Let p, me N*\{0}, U e (9(E), V e (9(F) and let a nonzero
algebra homomorphism A: Cm(U) —► CP(V) be given. A is supposed to be

continuous when Cm(U) is endowed with one of the topologies x™ , x™ and

CP(V) is also endowed with one of the topologies xpu, xp. Then there is a

unique map g: V -> U such that A(f) = f ° g for each f e Cm(U).

Proof. Let ôy be the evaluation map at a point y e V. Then ôy o A is a

nonzero continuous homomorphism from Cm(U) to K, so there is a unique
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x e U such that A(f)(y) = Sy o A(f) = f(x) for every / £ Cm(U). If
g: V -> U is the mapping taking y into x, then A(f) = fog for each

/ £ Cm(U). It is easy to see that g must be unique.   D

Since E* C Cm(t/), we have 0 o g = A(cp) e CP(V) for each 0 £ Tí*.

The theorem still holds for algebras of Hadamard differentiable functions.

3. Weakly differentiable mappings

For V e (9(F), suppose the map g: V —* E is such that 0 o g e CP(V)
for each cf> e E*. We shall then say that g is weakly Cp , or weakly />times

continuously differentiable, and prove that g e CP(V, ££,*,). This result will

be important in the following section.

As a consequence, it is also proved that every mapping g as above belongs to

the space CP~X(V, E). This property was stated in [7, 2.6.2] but we have not

found any proof of this fact in the literature, unless F is finite dimensional:

see the appendix of [20] for F = E" .
We first need a lemma on polynomial spaces:

3.1. Lemma. For j e N\{0}, &(>F, E**) and &>(JF, Tí,*/.) coincide as vec-
tor spaces.

Proof. It is clear that &>(JF, Tí**) c â»(jF, £**.). Let now a polynomial P £

£P(jF, Tí".) be given. Then P(BF) is weak-star bounded (so norm bounded)

in Tí** and hence P £ &>(JF, Tí**) [17, 2.4].

3.2. Theorem. Let g: V —► Tí** be a mapping, where V e (9(F). Let p e N*.
Then geCp(V, £**.) if and only if 0 o g e CP(V), for every <j>eE*.

Proof. Take first p = 0. If 0 o g is continuous for each <j> e E*, then given

x e V , e>0, 0 € Tí*, there is S > 0 so that whenever \\x — y\\ < S (y e V),

we have \<j>(g(x)) - (¡>(g(y))\ < e, and thus g: V —► Tí,** is continuous. The

converse is obvious.

Let now p > 1 . For the nontrivial part, suppose cf> o g e CP(V) (0 £

Tí*). Following [2, Theorem 3.3], define the map gj: V -» &>(>F, Tí*,*.) by

gjiy)(x)i<t>) = dJi<f> o g)(y)(x), for y € V , x € F , 0 £ Tí*, and 1 < j < p.
The maps gj are well defined. Indeed, for every 4> e E*, y e V , x e F ,

(1) d(4> o g)(y)(x) = lim l-((cj> o gKy + tx)-^ o g)(y)).
/->0 Í

There is ô > 0 such that the set {rx(g(y + tx) - g(y)): 0 < |/| < 0} is
bounded: otherwise we would find a sequence t„ —» 0 in M. so that the vectors

Cn = (l/tn)igiy + t„x)-giy))

verify ||£„|| > «, and then lim„ £„(</>) would not exist for some 0 £ Tí*, in

contradiction with (1). Hence, there is M > 0 such that

sup{|£,(y)(x)(0)|: 0 € 77£.} = sup{|¿(0 o g)(y)(x)\: 0 £ T7£.} < M,

so gï (y)(x) £ Tí**. It is now easily proved that gx (y) e L(F, Tí**. ).

By induction and using similar arguments, it is not difficult to see that g}(y)(x)

e Tí** and gdy) e <9>(iF, £** )   (1 < j < p).



COMPOSITION OPERATORS 773

We shall now prove that gj = dj g . For each bounded set B c F , y e V ,

and 0 £ Tí* :

limrx(g(y + tx) - g(y) - gi(y)(tx))(tp)

= limr'((0 o g)(y + tx) - (0 o g)(y) - d(<t> o g)(y)(tx)) = 0,
r-»0

uniformly for x £ T7 . Hence,

limrx(g(y + tx) - g(y) - gx(y)(tx)) = 0
(-►0

in Tí", uniformly for x e B, and gx is the derivative of g .

Assume now that gx, ... , gj-X axe the first j - 1 derivatives of g, with

j < p. For y £ V fixed, let m^: F -► ¿?(j~lF, Tí*/,) be the linear mapping

given by

uy(x)(z) = gj(y)(x, z, ü-J),z)       (x,zeF),

where gj(y) is the symmetric /linear map associated to the polynomial gj(y).

We only have to show that, for any bounded set T7 c F, one has

(2) limrx(gj.x(y + tx) - gj-x(y) - uy(tx)) = 0

in 9°(3-xF, Tí**.), uniformly for x € T7 .

Fix 0 £ Tí*. Let vy , be the linear mapping associated to dJ(cf> o g)(y), as

we did above for uyj. Since 0 o g e CJ(V), we have

limr1(^-'(0o g)(y + tx)(z) - dJ-x(4>og)(y)(z) - vyj4i(tx)(z)) = 0

uniformly for x, z e B . Now, vy. ,(tx)(z) = uy(tx)(z)(4>), so we have

limrx(gj-x(y + tx)(z) - gj-x(y)(z) - uy(tx)(z))(4>) = 0

uniformly for x, z e B, and (2) follows.

Finally, gj is continuous. Indeed, let B c F be bounded, x € V fixed,

e > 0, 0 e E*. By the continuity of dJ(<¡) o g): V -> 3°(JF), there is a ô > 0
such that whenever ||x — y|| < á   (ye V), we have

\gj(x)(zM)-gj(y)(z)i4>)\ = \dJ(<f>og)(x)(z)-dH<t>og)(y)(z)\ <e       (z e B).

Hence, gj is continuous and therefore g e C'(V, Tí*,*.).   □

3.3. Lemma. Let p e N, V e (f(F), and g e CP(V,E*W*.). For j e
{l,...,p}, K c V compact, and B c F bounded, the set dJg(K)(B) is
bounded in E**.

Proof. By the continuity of dJg , d]g(K) is compact in £P(JF, Tí**.). Since,

for every 0 £ Tí*, the set

F(0, T7, 1) = {Pe&(JF,E*w*Z): |P(y)(0)| < 1 (y e 77)}

is a zero neighborhood, we can find xx, x2,..., x„ e K such that
n

dJg(K)c\J(d^g(xi) + V((¡),B, 1)).
í=i

Since d-ig(Xj)(B) is bounded, we conclude that dJg(K)(B) is bounded.    □

The segment whose bounds are x, y e F will be denoted by [x, y].
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3.4.   Proposition. Let p e N*\{0} and V e (9(F). The space CP(V ,E*W*.) is
contained in Cp-x ( V, E**).

Proof. Without loss of generality, we can suppose V convex.

For p = 1, let K c V be a convex compact set, x £ Ty  fixed. For y e K

and g e CX(V, Tí**.), we have, by the mean value theorem [22, 1.3.3]:

Uix) - g(y)\\ = sup{|0(g(x) - g(y))\: <j> e BE.}

< ||x-y||sup{||0ofig(z)||: z e[x,y], <ß e BE.}

< \\x-y\\ -M

where M > 0 is given by Lemma 3.3. Hence g: V —► Tí** is continuous.

For p > 2, take g e CP(V, Tí**.), y £ V fixed, B c F bounded, he B,
0 £ Tí*, and 2<j<p.

Let uyj : F —> 3s(j~xF, 7Í*/.) be the continuous linear map given by

uy(x)(z) = d>g(y)(x, z, U-}),z)       (x,zeF).

Consider the differentiable map /: E —> ^Z>(-'_2T7) given by

f(t) = 4>o(dJ-2g(y + th)-uy_l(th)).

By the mean value theorem:

r)r||/(i)-/(0)||<sup{||/'(A)||:A€[0,i]}.

Now,

wfww-Moiu^w-u^mw
= sup{|0o idJ-lg(y + Xh)-&-lg(y))(h,z,U-V,z)\}

zeBf

< C||^-'(0 o g)(y + kh) - di-\4> o g)(y)\\ \\h\\,

where C = (j - iy-x/(j - 1)! (see §1).
Applying again the mean value theorem, we have

\\dJ~x (^ o g)(y + kh)-d^x(cl> o g)(y)\\<Uh\\sup{\\4> o uy+exh\\: de [0,1]}.

Moreover,

110 o uy+m\\ < 110 o âigty + dXh)\\ < /V||0|| \\dJg(y + eXh)\\,

where N = fl/j\.
From Lemmas 3.1 and 3.3, the map dJg: V —> £P(JF, Tí**) is bounded on

compact sets. So, it is locally bounded [8, Theorem 14.7]. Hence,

limJ-\W-2g(y + th) - dJ~2g(y) - uy_x(th)\\
i->0 \t\ J

= lim sup l||0o(^-2^(y + i«)-^-2g(y)-^_1(i«))||

<limC7V||/l«||||«||sup{||äi^(y + ÖA«)||: Ö£[0, 1], Àe[0, t]} = 0,

uniformly for h e B, and we conclude that g: V —» Tí**  is (j - l)-times

differentiable.
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Finally, dp~xg is continuous. Indeed, let K c V be a convex compact set,

x £ K fixed, y e K, h e Be ■ By the mean value theorem

\\dp-lg(x)(h)-dp-xg(y)(h)\\

= suxy{\<po(dp-xg(x)-dp-xg(y))(h)\:<l>eBE.}

< ||y-x||sup{||0o^(«)||: ze[x,y], <f) e BE.}

<\\y-x\\sux}{Uodpg(z)\\:ze[x,y], 0 £ T7£.}

<||y-x||Lsup{||iT^(z)||:z£[x,y]},

where L = pp/p\. Now, Lemma 3.3 allows us to conclude.   D

3.5. Remark. If g e CP(V, 7Í".), we cannot in general conclude that g e

Cp(V, Tí**). In [16, 11.3.2] a function g: R -> c0 is given so that g £

CX(R, /oo) and 4>oge CX(R) for each 0 £/,, so ge C'(E, (/«,, u;*)).

3.6. Corollary. For V e(9(F), we have C°°(V, Tí**.) = C°°(V, Tí**).

Proo/ By Proposition 3.4, C°°(V, E") c C°°(K,Ti**). The converse is

clear.   D

We now show that a weakly Cp mapping is of class Cp_1 .

3.7. Corollary. Let p e N*\{0} and V e (9(F). Suppose g: V -> Tí is such
that cj)oge C"(V) for each 4> e E*. Then geCp~x(V, E).

Proof. For p = 1, the result follows from Theorem 3.2 and Proposition 3.4.

For p > 2, applying 3.2, g e CP(V, Tí**.) and, from 3.4, g e CP~X(V, E**).
Now, given y eV, h e F :

dg(y)(h) = limrx[g(y + th) - g(y)].
r—0

For every t ^ 0, t~x[g(y + th) - g(y)] e E. Hence, the limit lies in Tí, and

g e CX(V, E). In the same way we can prove that g e CJ(V, E) whenever

1<7'<P-1-   O

If Ti„, denotes the space Tí endowed with the weak topology, the following

corollary is now immediate.

3.8. Corollary. Let g: V -> E be a mapping, with V e (9(F). The following
assertions are equivalent:

(a) geC™(V,E);
(b) for every <j>eE*, <j>oge C°°(V) ;
(c) geC0O(V,Ew).

The next example shows that given p e N\{0} and a mapping g: V —> 7Í

such that 0 o g e CP(V) for each 0 £ Tí*, it is not in general true that g e

CP(V, Ew), since the pth derivative lies in Tí**.

3.9. Example. Let g: E ->• c0 be the function given by g(t) = (fMO)^li

where ipn(t) = (I/n)sinnt (t e E). It is easy to check that 0o g e CX(R) for

every 0 = ((f>„)^=x G h , with
oo

(<t>og)'(t) = J£<t>nK(t)-

n=\
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Hence, g e C'(E, (lx , w*)). Furthermore,

¿/g(0) = (^(0))~, = (l,l,l,...)e/oo\co.

We remark that this map is weakly Cx but is not differentiable.

4. Composition of differentiable mappings

The main result in this section states that if F £ (9(F), U e (9(E), g: V —>

U is a weakly Cp mapping, and /: U —> E is of class Cp , then the composi-

tion map fog is of class Cp . Some stability properties of the classes CP(E, F)

and CP]U(E, F) under composition with Cp functions are also analysed.

The proof of the following lemma is straightforward and omitted.

4.1. Lemma. If X, Yx, Y2 are locally convex spaces and f: X -> Y¡ (i =

1, 2) are differentiable mappings, then the map f: X -> Yx x Y2 defined by
fix) = ifiix), fiix))  (x € X) is differentiable and

df(x)(h) = (dfx(x)(h), df2(x)(h))      (x,heX).

4.2. Proposition. Let p, m e N*\{0}, m > p. If U e (9(E), V e (9(F),
and g: V -> U is a mapping such that 0 o g e Cp(V) for every 0 £ Tí*, then

foge Cp(V) for each f e Cm(U).

Proof. By Theorem 3.2, g e CP(V, Tí**.).
(a) Let p = 1. For y £ V, we have dg(y) e L(F, Tí*,*. ) and df(g(y)) e E*.

Following the argument of [22, 1.2.9], it is easy to see that d(f o g)(y) =

dfig(y))odg(y).
Moreover, d(f o g): V —> F* is continuous. Indeed, let (y„) c V be a

sequence converging to y e V . Since dg: V —> &(XF, Tí*,*.) is continuous,

for e > 0, there is «, £ N so that (dg(yn) - dg(y))(z) e (e/2){df(g(y))}°
(z e BF) for « > «i . Let M = sup{||r7^(y„)||: « e N} < oc (Lemma 3.3).

There is n > 0 such that whenever \\g(y) - x\\ < n, for x £ U, we have

\\dfigiy)) - iT/(x)|| < e/2M. Since g is continuous (Corollary 3.7), there is
«2 £ N so that ||g(y„) - g(y)|| < n for « > «2.

Therefore, for « > max{«i ,n2} we have

\W(g(yn)) o dg(yn) - df(g(y)) o dg(y)\\

< \\df(g(y„)) o dg(yn) - df(g(y)) o dg(y„)\\

+ \\df(g(y)) o dg(yn) - df(g(y)) o dg(y)\\

< e.

(b) For arbitrary p , the proof needs too complicated notations. Therefore,

we only prove the result for the case p = 2, which contains all the ideas needed

in the general case. By (a), d(f o g) is the composition of the following two

maps:

S: y e V ~ (dg(y), df(g(y))) e L(F,E*W\) x Tí*,

T: (A, 0) £ L(F, Tí*,*.) x E' ^<f)oAeF*.

T is differentiable [22, 3.1.1], and so is S by the preceding lemma. Thus,
applying the chain rule [22, 1.2.9]:

d(T o S)(y)(h) = dT(S(y))(dS(y)(h))

= df(g(y)) o d(dg)(y)(h) + d(df)(g(y))(dg(y)(hj) o dg(y),
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where we have applied the formula giving the derivative of the composition

map [22, 3.1.1]. Hence,

d\f o g)(y)(hx ,h2) = df(g(y))(d2g(y)(hx, h2))

+ d2f(g(y))(dg(y)(hx),dg(y)(h2)).

(c) Finally, d2(f o g): V -> £PiZ2F) is continuous. Indeed, let (yn) c V be
a sequence converging to y £ V. By Lemmas 3.1 and 3.3, we can take

M = max{l,sux>{\\d2f(g(yn))\\,  ¥giyn)\\2,  \\d2g(yn)\\: n eN}} < œ.

Given e > 0, there is «o £ N so that for « > «0 we have

\\dg(yn)-dg(y)\\<e/M2,

\\d2f(g(yn))-d2f(g(y))\\<e/4M,
\\df(g(yn))-df(g(y))\\<e/4M,
\dfigiy))id2giyn)ih) - d2giy)ih))\ < e/4 (h e BF),

since  (d2g(yn) - d2g(y))™=x   converges to zero in ZP^F, Tí".).   A routine

calculation now shows that, for « > «o ,

\d2(fog)(yn)(h)-d2(fiog)(y)(h)\<e        (he BF).    d

4.3. Proposition. Let p e N*\{0},  W e (9(G), V e (9(F), g e CP(W, V),
and feCp(V,E). Then fogeCP(W,E).

Proof. The derivatives djg(x) (x e W, 1 < j < p) are weakly continuous on

bounded subsets of G. Taking the chain rule into account [22, 1.8.3], it is easy

to check that the polynomial dj(f o g)(x) is weakly continuous on bounded

subsets, and so / o g e CP( W, E).   u

In the next proposition we use the fact that for A e L(kF, E), we have

U^M, ,u2, ... ,uk)- A(vx ,v2, ... ,vk)\\

< \\A(ux, u2, ... , uk)-A(ux, u2, ... , uk_x, vk)\\

+ \\A(ux ,u2, ... , uk_x , vk) - A(ux ,u2, ... ,vk_x, vk)\\

+ ■■■ + \\A(ux ,v2, ... ,vk)- A(vx ,v2, ... ,vk)\\

k

<IMIlX>iH--- ||Mr_i|| ||Mr-t;,|||k;r+i|| ■••||«fcl|.
r=\

4.4. Proposition. Let p e N*\{0}, W e (9(G), V e (9(F), g e CP,U(W, V),

and feCp(V,E). Then /o g e CPWU(W, E).

Proof. It is enough to show that, for 0 < j < p, the map d'(f o g): W -»

^wb^G, E) is weakly uniformly continuous on bounded sets. This is clear for

j = 0. For 1 < j < p (p finite), let B ç W be bounded, x £ W, and y £ G.
By the chain rule [22, 1.8.3], dJ(f o g)(x)(y) is a finite sum of terms of the

form

dkf(g(x))(d"g(x)(y),...,d^g(x)(y))

where 1 < k < j and ix + ■ ■ ■ + ik = ;'. Since d''g(B) c &(irG, F) and

dkf(g(B)) c L(kF, E) are precompact (see §1), we can take

M = max{ 1, supíHíT*/(£(*))IU   \\d''g(x)\\:  xeB,   1 < r < k}} < œ .



778 J. M. GUTIÉRREZ AND J. G. LLAV0NA

Given e > 0, there is n > 0 such that whenever ||g(xi ) - g(x2)|| < n  (xx, x2e

B), we have

\\dkf(g(xx))-dkf(g(x2))\\<e/2Mi.

Moreover, there is a weak zero neighborhood W in G, such that, whenever

xx- x2eW  (xx, x2 e B), we have

\\g(xx) - g(x2)\\ < n       and       \\d'<g(xx) - d^g(x2)\\ < e/2jAfJ    (1 < r < k).

To simplify notation, we write

Q(u, v) = dkf(g(u))(d^g(v)(y), ... , d^g(v)(y)).

For y £ Bg , and xx, x2 e B with Xi - x2 e W, we have

||ß(Xi,X.)-ß(x2,X2)||

< \\Q(xx ,xx)- Q(xx, x2)\\ + \\Qixi, x2) - Q(x2, x2)||

k

< ||¿*/(s(*i))ll £ \\d»g(xx)(y)\\ ■ ■ ■ ||^-'g(x,)(y)||
r=l

'\\d"g(xx)(y) - di'g(x2)(y)\\ \\d^g(x2)(y)\\ ■ ■ ■ \\d"g(x2)(y)\\
k

+ \\dkf(g(xx)) - dkfi(g(x2))\\ 1] ||ú?1^(x2)(y)||
r=\

<kMt2m+2MiMkie-

Hence, /o g e CPU(W, E). Slight modifications are needed for p = oo .   D

5.  CHARACTERIZATIONS OF HOMOMORPHISMS BETWEEN ALGEBRAS

OF DIFFERENTIABLE FUNCTIONS

We prove that the continuous homomorphisms between algebras of Hada-

mard differentiable functions are exactly those induced by Hadamard differen-

tiable mappings. Later on, we give one of the main results: namely, for m> p,

the continuous homomorphisms from Cm(U) into CP(V) when both algebras

are endowed with the compact open topology, are exactly those induced by the

weakly Cp mappings from V to U. The continuous homomorphisms for the

compact-compact topology are also described. Finally, we analyse the relation-

ship among continuities for different topologies and we conclude with a brief

note on automatic continuity.
Let us recall that, for a Hausdorff locally convex space X, the e-product

XeE = Le(E*, X) is the space of all continuous linear operators from Tí*

to X endowed with the topology of uniform convergence on equicontinuous

subsets of Tí*. The following result will be needed:

5.1.   Proposition. For V e (9(F) and m e N*\{0}, the following topological

isomorphisms hold:

(a) Cfi(V, E) ~ C¡¡(V)tE [6, Theorem 10];
(b) (C%U(V, E), x") ~ (CZ„(V), T?)eE [16, Theorem 8.1.1];
(c) (CZ(V,E),xZ)~(Cm(V),xZ)eE [1, p. 220];
(d) (Q"(F, Tí), t«) s (Ccm(V), x™)eE [16, Theorem 8.1.4].
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All these isomorphisms are defined in the following way: to each f in the first

space, we associate the operator 0 >-+ 0 o / in the e-product.

In order to characterize the homomorphisms between algebras of Hadamard
differentiable functions, we need a preliminary lemma:

5.2. Lemma. Let p e N*\{0}, V e (9(F), and g e CPH(V, E). If K c V is
a compact set, then d^g(K)(K) is compact in E, for 1 < j < p .

Proof. It is enough to prove that the map 4>: K x K —► Tí given by í>(x, y) =

dJg(x)(y) is continuous. Let ((x„ , y„))^=l be a sequence in KxK converging

to (x, y) and let e > 0. Using the continuity of dJg: V -> ¿P(JF, E)c, we
can find no eN so that for n> n0 we have

\\(dJg(x„)-dJg(x))(h)\\<e/2      (heK)

and

\\dig(x)(yn)-dig(x)(y)\\<el2.
Therefore,

\\dJg(xn)(yn)-dJg(x)(y)\\<e.   D

5.3. Theorem. Let p, m e N*\{0}, m > p, U e (9(E), V e (9(F). The
nonzero continuous homomorphisms A: C¡¡(U) -* CPH(V) are exactly those

induced by the mappings g e CPH(V, U) by means of the formula A(f) = fog

(feC™(U)).
Proof. Let A be a nonzero continuous homomorphism. By the comment after

Theorem 2.2, there is a mapping g: V -* U such that A(f) = f o g (fe

CfiiU)). Moreover, A\E.:E*C -» CPH(V) belongs to CpH(V)eE. By Proposition

5.1(a), there is a mapping gx eCpH(V, U) suchthat A\E.((p) = (j>ogx (0 £ Tí*).
Thus, 0 o g = A(cp) = 0 o g, (0 £ Tí* ), so for each y £ V , <p(g(y)) = <f>(gx (y))
(0 £ Tí*), and hence g = gx . Conversely, given g e CPH(V, U), we define the

homomorphism A(f) = /o g (fe C^(U)). Let (fa) be a net converging

to zero in C%(U). If K c V is compact then, applying Lemma 5.2 and the

chain rule [22, 1.8.3], we see that (fa o g) converges to zero in CPH(V), so A
is continuous.    D

Another lemma, analogous to 3.3 and 5.2, is needed:

5.4. Lemma. Let p e N*\{0},  V e (9(F), and j e {I, ... , p}. Then:

(a) for g e C&U(V, E) and B Q V bounded, d¡g(B)(BF) c 7Í is precom-
pact;

(b) for g eC"K(V, E) and K cV compact, dJg(K)(BF) C Tí is precom-
pact.

Proof, (a) Since d-ig(B) c £Pwh(iF, E) is precompact (see §1), given e > 0,

we can find xx, ... , xneB such that for every x £ T7 there is k e{l, ...,«}

for which \\dig(x) - djg(xk)\\ < e/2. By the precompactness of dJg(xk)(BF),

we can find a finite subset Sk c T7^ such that, for any y e BF , there is z £ Sk

with \\djg(xk)(y) - djg(xk)(z)\\ < e/2. Then, for x £ T7 and y £ BF , there
exist A:£{1,...,«},a finite subset Sk c BF and z e Sk such that

\\d'g(x)(y) - dig(xk)(z)\\ < \\dJg(x)(y) - d>g(xk)(y)\\

+ \\dJg(xk)(y)-dJg(xk)(z)\\

< E.     D
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(b) Since dJg(K) is compact in &>K(JF,E) and, for x € V, d>g(x)(BF)

is precompact in Tí, the proof is like in (a).

One of the main purposes of this study was the description of the continuous

homomorphisms for the compact open topology, which is contained in (a) of

the next theorem. The other assertions show that when the domain algebra

is endowed with the compact-compact topology, then the inducing mapping is

continuously differentiable up to the order of the range algebra.

5.5. Theorem. Let p, m e N*\{0}, m > p, U e (9(E), V e (9(F). The
nonzero continuous homomorphisms A in the table are exactly those induced by

the corresponding mappings g: V —> U, by means of the formula A(f) = /o g

for every feCm(U):

Homomorphism A Inducing map g: V —» U

(a)(Cm(U),xZ)^(Cp(V),xp) 4>ogeCp(V) for each 0 £ Tí*

(b)(C»(C/),T?)^(C'(K),T?) g e CPH(V, U) and

oge C»(V) for each <peE*

(c)(C»(U),x?)^(CUV),xl geCpwu(V,U)

(d)(Cm(U),x?)^(Cp(V),xpu) geCpK(V,U)

(e)(Cm(U),x?)^(Cp(V),xp) geCP(V,U)

Proof. The proof is similar to that of Theorem 5.3. We only quote the previous

results needed in each case:

(a) uses Proposition 4.2, Lemma 3.3, and Theorem 2.2.

(b) uses Proposition 5.1(a) and Theorem 5.3, since (Cm(U), xf) is a sub-
space of Cff(U), and Proposition 4.2.

(c) uses Propositions 5.1(b) and 4.4 and Lemma 5.4(a).
(d) uses Proposition 5.1(c) and Lemma 5.4(b).

(e) needs Propositions 5.1(d) and 4.3 and Lemma 5.4(b), since CP(V, U) ç

CpK(V,U).   □

5.6. Remarks, (a) The nondifferentiable map g: E —> Co of Example 3.9 in-

duces a continuous homomorphism from (Cx(co), xxu) to C'(E).

(b) Not every mapping g e CPH(V, U) satisfies 0 o g e CP(V) (0 € E*).

Indeed, if Tí = E and F = L'[0, 1], in [21, 2.2] an example is given of a
mapping g e C¿(T7, Tí) which is not (weakly) differentiable.

(b) Neither can we drop condition g e CPH(V, U) in Theorem 5.5(b). In-

deed, the function g: E —► en of 3.5 satisfies 0o g e Cx(co) (0 £ h), but does

not belong to C¿(E, c0) = C'(E, c0).

In the following corollary, for U e (9(E) and V e (9(F), we say that a

homomorphism A: Cm(U) -> CP(V) is xx-x2 continuous if it is continuous
when Cm(U) and CP(V) are endowed with the topologies Ti and t2 respec-

tively.

5.7. Corollary. Let A: Cm(U) —* CP(V) be an algebra homomorphism, with
p, m e N*\{0}, m > p . We consider the following assertions:

(a) A is xnu continuous ;
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(b) A is x™ - xP continuous ;

(c) A is x"1 - xp continuous.

Then (a) o- (b) <= (c). For p = oo, all three are equivalent.

Proof, (c) =>■ (b) and (a) =>• (b). Obvious.
(b) => (a). Apply Theorems 2.2 and 5.5(a).
In general, (a) does not imply (c): the mapping g: E —> Co of Remark 5.6(c)

induces a xxu-xxu continuous homomorphism from C'(co) into C'(E) which

is not x\ - x\ continuous. The equivalence of the three assertions for p = oo

follows from the fact that Cfj(V, U) and C°°(V, U) coincide as linear spaces

[9, Proposition 2.6 and Remark].   D

Up to now, we have excluded the possibility m < p . The reason is that, for

m < p , any continuous homomorphism A: Cm(U) -» CP(V), when Cm(U) is

endowed with one of the topologies tJ? or t™ and CP(V) is endowed with xpu

or xpc, is induced by a constant mapping g : V —► U. This can be proved by a

slight modification of [16, 11.2.7].
We end with a short analysis on automatic continuity. We first state a result

on real-valued homomorphisms, due to Jaramillo.

5.8. Theorem [12]. Let m e N*\{0} and U e (9(E), where E satisfies one of

the following conditions:

(a) Tí* is w*-separable;
(b) Tí has nonmeasurable cardinal and admits Cm -partitions of unity;

(c) Tí is a closed subspace of C(K) where K is a separable compact space;

(d) E  is a closed subspace of a superreflexive space with nonmeasurable

cardinal.

Then, any nonzero homomorphism O: Cm(U) —> E is a point evaluation

in the sense that there is a unique x e U such that 4>(/) = f(x) for each
feCm(U).

Condition (a) is fulfilled by separable spaces and their duals. Condition (b)

is satisfied, for instance, by cn(7) where 7 is any index set and L2n(p) for

« € N and any measure p. The definition of measurable cardinal may be seen

in [5, 1.7]. Anyway, the condition imposed in (b) and (d) to the cardinal of Tí

is very mild because it is not known whether any measurable cardinal exists.

5.9. Corollary. Let p, m e N*\{0}, U e (9(E), and V e (9(F), where E
satisfies any of the conditions of the previous theorem. Then every homomor-

phism A: Cm(E) -» CP(F) is automatically continuous when both algebras are

endowed with the compact open topology of order m and p respectively.

Proof. The argument of Theorem 2.2 provides a mapping g : V —► U such that

A(f) = fog (feCm(U)). Since 4>ogeC»(V) for any 0 £ 7Í*, we conclude
from Theorem 5.5(a) that A is rjf - xp continuous.   D

It is interesting to remark that however there are discontinuous homomor-

phisms from (Cl(c0),xxc) to CX(R) (see Corollary 5.7).

The authors are grateful to the referee for his very valuable suggestions.

Added in proof. In a paper to appear in Monatsh. Math., Biström and Lind-

ström have proved that Theorem 5.8 is valid for a larger class of Banach spaces,

including the W c G spaces and their duals.



782 J. M. GUTIÉRREZ AND J. G. LLAVONA

References

1. R. M. Aron, Compact polynomials and compact differentiable mappings between Banach

spaces, Séminaire P. Lelong (Analyse), Lecture Notes in Math., vol. 524, Springer-Verlag,

Berlin, 1976, pp. 213-222.

2. R. M. Aron, J. Gómez, and J. G. Llavona, Homomorphisms between algebras of differen-

tiable functions in infinite dimensions, Michigan Math. J. 35 (1988), 163-178.

3. R. M. Aron and J. G. Llavona, Composition of weakly uniformly continuous functions, Proc.

Roy. Irish Acad. Sect. A 88(1) (1988), 29-33.

4. R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach

spaces, J. Reine Angew. Math. 313 (1980), 195-216.

5. E. Beckenstein, L. Narici, and C Suffel, Topological algebras, Math. Stud., vol. 24, North-
Holland, Amsterdam, 1977.

6. F. Bombai and J. G. Llavona, La propiedad de aproximación en espacios de funciones

diferenciables, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid 70(4) (1976), 727-741.

7. N. Bourbaki, Éléments de mathématique. Fase. XXXIII. Variétés différentielles et analy-

tiques. Fascicule de résultats, Actualités Sei. Indust., no. 1333, Hermann, Paris, 1971.

8. S. B. Chae, Holomorphy and calculus in normed spaces, Monographs Textbooks Pure Appl.

Math., vol. 92, Dekker, New York, 1985.

9. J. F. Colombeau and R. Meise, Cx'-functions on locally convex and on bornological vector

spaces, Functional Analysis, Holomorphy and Approximation Theory, Lecture Notes in

Math., vol. 843, Springer-Verlag, Berlin, 1981, pp. 195-216.

10. J. Gómez, Espectro e ideales primarios del álgebra C^b{E) de funciones débilmente dife-

renciables sobre un espacio de Banach, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid

75(2) (1981), pp. 514-519.

11. J. A. Jaramillo, An example on composite differentiable functions in infinite dimensions,

Bull. Austral. Math. Soc. 40(1) (1989), 91-95.

12. -, Multiplicative functionals on algebras of differentiable functions, Arch. Math. 58 ( 1992),

384-387.

13. J. A. Jaramillo and J. G. Llavona, Homomorphisms between algebras of continuous functions,
Canad. J. Math. 41(1) (1989), 132-162.

14. H.H. Keller, Differential calculus in locally convex spaces, Lecture Notes in Math., vol. 417,

Springer-Verlag, Berlin, 1974.

15. J. G. Llavona, Approximations of differentiable functions, Adv. Math. Suppl. Stud. 4 (1979),
197-221.

16. -, Approximation of continuously differentiable functions, Math. Stud., vol. 130, North-

Holland, Amsterdam, 1986.

17. J. Mujica, Complex analysis in Banach spaces. Math. Stud., vol. 120, North-Holland, Am-

sterdam, 1986.

18. L. Nachbin, Topology on spaces of holomorphic mappings, Ergeb. Math. Grenzgeb., vol. 47,

Springer-Verlag, Berlin, 1969.

19. J. B. Prolla, On polynomial algebras of continuously differentiable functions, Atti Accad.

Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur. (8) 57 (1974), 481-486.

20. L. Schwartz, Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4

(1954), 88-148.

21. M. Sova, Conditions of differentiability in linear topological spaces, Czechoslovak Math. J.

16(91) (1966), 339-362. (Russian)

22. S. Yamamuro, Differential calculus in topological linear spaces, Lecture Notes in Math., vol.

374, Springer-Verlag, Berlin, 1974.

Departamento de Matemática Aplicada, ETS de Ingenieros Industriales, Universidad

Politécnica de Madrid, C José Gutiérrez Abascal 2, 28006 Madrid, Spain

Departamento   de   Análisis   Matemático,    Facultad   de   Ciencias   Matemáticas,

Universidad Complutense de Madrid, 28040 Madrid, Spain


