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WAVELETS IN WANDERING SUBSPACES

T. N. T. GOODMAN, S. L. LEE, AND W. S. TANG

ABSTRACT. Mallat’s construction, via a multiresolution approximation, of or-
thonormal wavelets generated by a single function is extended to wavelets gen-
erated by a finite set of functions. The connection between multiresolution
approximation and the concept of wandering subspaces of unitary operators in
Hilbert space is exploited in the general setting. An example of multiresolution
approximation generated by cardinal Hermite B-splines is constructed.

1. INTRODUCTION

Wavelets are functions generated by translating and dilating a function or
a finite set of functions. They are useful in many areas of mathematics and
theoretical physics [1, 2] and also in practical applications such as image and
signal processing [13, 14]. Orthonormal bases of wavelets generated by one
function have been constructed for various function spaces [11, 15, 16]. Re-
cently, Mallat [12] has unified the construction of these bases for L?(R) via
the multiresolution approximation which is defined to be a sequence of closed
subspaces (Vi;)mez of L?(R) satisfying the following properties:

(1.1) Vin C Vintr meZ,

(1.2) |J Vi isdense in L*(R) and [ V= {0},
mezZ meZ

(1.3) fE€Vme Dyf €Vpyy, melZ,

where D, f(x) := f(ax), x € R, for any positive number a,

(1.4) fE€Vm & Tompf €Vm, (m,n)eZ?,

where T;(x):= f(x—1), x € R, forany 7 € R,

(1.5) there exists an isomorphism 7 : ¥, — [3(Z) which commutes
with the action of Z.

For a multiresolution approximation (V,,)mez, Mallat [12] has shown the
existence of ¢ € V; such that (7,¢),cz is an orthonormal basis of V. Fur-
thermore, if

bm . n(X) 1= V2mp(2"x — n), (m,n)eZ?,
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then for each m € Z, (ém n)nez 1s an orthonormal basis of V,,. Let W,
be the orthogonal complement of V,, in V,,,;. Mallat has also shown the
existence of w € W, such that (7, ),cz 1s an orthonormal basis of W, and
if
W n(X) == V2"y(2"x —n),  (m,n)eZ?,
then (Wm, n)nez is a complete orthonormal set in W, .
Properties (1.1) and (1.2) of the multiresolution approximation imply that

W LW,  j#k,

and
L*R) =) oW,.
meZ
Since (Wm,n)nez is an orthonormal basis of W, , it follows that (Wm, n)m, n)ez2
is an orthonormal basis of L*(R).

Our object is to extend Mallat’s results to wavelets generated by a finite
number of functions. In this connection we observe the relationship between
wavelets and the concept of wandering subspaces in operator theory (see Hal-
mos [6, Problem 155], and Robertson [17]). This provides a general setting
to wavelets in Hilbert space where the translation and dilation operators are
replaced by unitary operators. We prove the existence of orthonormal wavelet
bases for V,, generated by a finite number of vectors, and using a result of
Robertson [17], we also prove the existence of bases of orthonormal wavelets
for W,, and derive other results which are reminiscent of multiresolution ap-
proximation. This is done in §2. A more detailed analysis of the corresponding
results in L2(R) is given in §3. An example of multiresolution approxima-
tion generated by cardinal Hermite B-splines (see Schoenberg [18, Chapter 5])
is constructed in §4. In §5 we construct compactly supported Hermite spline
wavelets which extends the results of Chui and Wang [4].

2. EXISTENCE OF ORTHONORMAL WAVELETS AND WANDERING SUBSPACES

Let T be a unitary operator on a complex Hilbert space # . A subspace
& of # is called a wandering subspace for T if T™(%) L T"(%) for all
m # n (see [6, 17]). Further, if V =3 _, ®T"(’), then we say that &~ is a
complete wandering subspace of V' for 7. We shall denote by E the forward
shift operator on /%(Z).

We begin by stating the Fuglede-Putnam Theorem in the form which will be
needed later.

Lemma 2.1. Let #, i = 1, 2, be complex Hilbert spaces, and A;: % — #,
i=1,2, be normal operators. If B: 74 — 74 ., is a bounded operator such that
A\B = BAy, then A1B = BA3. If in addition B 1is invertible, then there exists
a unitary operator U: Hy — Hy such that A\U = UA,.

When # = #;, a proof of Fuglede-Putnam Theorem can be found in [6,
Solution 192]. The proof with obvious modifications works for the general case.

Theorem 2.1. Let V, be a closed subspace of a complex Hilbert space # , and
T a unitary operator on # such that

(2.1) TVy = V.
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Suppose that there exists a bounded invertible operator J: Vo — I*(Z) such that

(2.2) JT=E"J

for some r € Z\{0}, and a unitary operator D on # such that
(2.3) o c Dh,

and

(2.4) TD = DT*,

forsome k€ Z, |k|>1. Let

(2.5) Vi := D"V, mel.

Then the following results hold:
(1) For every meZ, V,, C Vi -
(2) There exist ¢pj € #, 1 < j <|r|, such that

{T"¢j:neZ, 1<j<|r|}

is an orthonormal basis of ;.
(3) The set

(T"DT'¢p;:neZ, 0<I<|k|-1, 1<j<|r]}

is an orthonormal basis of V; .
(4) There exist y;, 1< j<|r|(lk|—1), such that

{T"yj:neZ, 1<j<|r|(jk] - 1)}

is an orthonormal basis of the orthogonal complement Wy of Vy in V;.
(5) The collection

{D"T"y;: (m,n) e Z*, 1 < j<|r|(lk| - 1)}
is an orthonormal basis of U,,cz Vin © Nipez Vim -

Remark 1. The result (2) of Theorem 2.1 is equivalent to the existence of a
complete |r|-dimensional wandering subspace of Vy for 7. Similarly, (4) is
equivalent to the existence of a complete |r|(Jk| — 1)-dimensional wandering
subspace of W, for T.

Remark 2. For a nonzero integer r, con~dition (2.2) is equivalent to the e~xi~s-
tence of a bounded invertible operator J: V — [2(Z)\" such that JT = EJ,
where E(s1, ..., Sn) = (E®s1, ..., E®S))), (S1, ..., ) € 2@, e:=r/|r|.

Remark 3. If # = L*(R), and T = T, and D = D, are the translation
and dilation operators respectively on L?(R), then T and D satisfy condition
(2.4) with k = 2. In this case Theorem 2.1, with r = 1, reduces to the
results of Mallat [12] on the existence of orthonormal wavelet bases for V),
and its orthogonal complement W,, in V,,,; corresponding to a multiresolution
approximation (V,;)mez of L%(R).

Proof of Theorem 2.1. 1t is clear from the definition that V,, C V41, me€ Z.

Let e; € [%(Z) such that ej(n) = d;s, j, n € Z. Then, {(E")"e: n € Z,
1 < j < |r]} is an orthonormal basis of /%(Z). Since T and E’ are normal
(indeed unitary) operators on ¥, and /2(Z) respectively, and they are similar by
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(2.2), it follows from Fuglede-Putnam Theorem (Lemma 2.1), that there exists
a unitary operator U: Vy — [(Z) such that UT = E'U. If ¢; := U~le;,
1 <j<|r|,then {T"¢;:ne€Z, 1< j<|r|} is an orthonormal basis of V}.
Hence 2 :=span{¢;: 1 < j < |r|} is an |r|-dimensional complete wandering
subspace of V; for T . This proves (2).

Since D is a unitary operator on # , and V,, := D"V, {D"T"¢p;: n€ Z,
1 < j<|r|} is an orthonormal basis of V}, . In particular, since 7"D = DT"*
n € Z, the result (3) follows.

Let 2 :=span{DT'¢;: 0<I<|k|-1, 1<j<]|r|}. Thenby (3), ¥ isan
|rk|-dimensional complete wandering subspace of V; for T . By (2.3),

Y er'(Z)c) eT"(¥).
neZ neZ

By a theorem of Robertson [17, Theorem 2, p. 235], there exist vectors y;,
1 < j < |r|(Jk| — 1), such that {T"y;:n € Z, 1 < j < |r|(Jk] — 1)} is an
orthonormal basis of the orthogonal complement W, of ¥, in V.

Finally, letting W,, be the orthogonal complement of V,, in ¥V, ,, a stan-
dard argument shows that W,, = D™(W,), m € Z, and

UWme V=) oWn.
meZ meZ meZ

Hence, for each m, {D"T"y;:ne€Z, 1 < j <lr|(Jk| - 1)} is an orthonormal
basis of W,, and the collection {D™T"y;: (m,n) € Z?, 1 < j <|r|(Jk] - 1)}
is an orthonormal basis of {J,,cz Vi © Nypez Vn- O

Remark 4. In Theorem 2.1, it was assumed that (2.4) holds with |k| # 1.
Suppose that it holds with |k| = 1, and all the other hypotheses of the theorem
are satisfied. Then as in the proof of the theorem, 2 and % are both |r|-
dimensional wandering subspaces for T, and

W=y oT"(&)cd oT"(¥)=V.

nezZ nez

By Theorem 1 of [17], this implies that ¥, = V. Hence W, = {0}, and
Vw="V, forall meZ.

3. WAVELETS GENERATED BY A FINITE SET OF FUNCTIONS IN L2(R)
Let r be a positive integer and
PZ) :={(s1,-..,8): 8, €XZ), j=1,...,r}.

For s = (s1, ..., s,) € [2(Z)", its norm is given by

, 172
sl == (z IISJII2) :
j=1

The space of 2z-periodic square integrable functions and the space of 2r-
periodic continuous functions will be denoted by L?(0, 2x) and C(0, 27) re-
spectively. The Fourier transform of f € L2(R) will be denoted by f .
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Let g; € L>(R), j=1,...,r, such that EnEZ )T.g; € L*(R), for all
s = (s(n))nez € I*(Z) . Then ZneZ |&j(u + 2mn)|? is integrable, and for almost
all u e R, (gj(u+2mn))yez € I*(Z). Let

(B.1) &) =) &(u+2rn)g(u+2rn), i, j=1,...,r,
nez
and
(3.2) G(u) = (& () j1 -
Then G is Hermitian, and therefore there is a unitary matrix U such that
(3.3) G=U*DU,

where U* denotes the conjugate transpose of U,
D(u) := diag(4,(u), ..., 4,(u)),

and A; are the eigenvalues of G.

Theorem 3.1. Let K: [>(Z)" — L*(R) be defined by

(3.4) K(s):= ZZS, T8, S:=(s1,...,8)€l(Z).

j=1nezZ

Then K is an isomorphism onto a subspace of L*(R) if and only if there exist
positive constants A and B such that

(3.9) A<Aj(u)<B, j=1,...,r, almost everywhere.

Furthermore, {T,gi:n€Z, j=1,...,r} is an orthonormal subset of L*(R)

if and only if K is an isometry, and these hold if and only if the matrix G(u) is
the identity for almost all u.

Proof. For s = (s, ...,s) €l*Z),
K(s)(w) =" hj(u)g;(u)
j=1

where
(3.6) hj € L2(0, 2m) with ||l = ||s;] -
Therefore,

IKGI? = / S o)) 21 )8 ) .

=1 j=1
Decomposing the integral over the intervals [2zn,2n(n + 1)), n € Z, and
using (3.1) leads to

2n I

1K) = / S by ) 21y ()

i=1 j=1

The integrand of the last integral is a quadratic form. Using the Parseval identity
and letting H(u) := (h(u), ..., A (u))*, it can be written as

2n N
(3.7) IK(s)[12 = % H*GH(u)du.
0
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By (3.3), H*GH = Q*DQ, where

Q=(q19~" ,Qr)* = UH)
with

r r

(3.8) Y ligil? ="M,

j=1 j=1
since U is unitary. Therefore (3.7) becomes

1 2n r
2 _ & *D . 29 .
KO = 5 [ @'Doudu= 5 [ Dl )
Now, K is an isomorphism if and only if there exist positive constants A4
and B such that
Als|> < IK6)I* < Bllsl*,  sel*(Z).

By (3.6) and (3.8), this is equivalent to

4 n 5 r 2n R
: ()| *A;(u) d
AJ;/O lg;(w)l d“SZ/O |q; ()24 (u) du
<BZ/ |q] |2a'u

for all g; € L?(0,2n), j=1,...,r, which in turn is equivalent to (3.5).
The last assertion of the theorem is an easy consequence of the above rela-
tions. O

A function f € L2(R) is said to be regular if f is continuous and satisfies
f(w) =0 as |u| - co.
Corollary 3.1. Suppose that g;, j = 1,...,r, are regular. Then K is an

isomorphism onto a subspace of L*(R) if and only if 5(u) is positive definite
for all u.

Proof. The assumption that g;, j = 1, ..., r, are regular implies that g&;;,
i,j=1,...,r, are continuous. If G(u) is positive definite for all u, its
eigenvalues A;(u) are positive for all v and j=1,...,r. Since 4; are 2n-

periodic and continuous, there exist positive constants 4 and B such that (3.5)
hold for all ». The converse is immediate. O

Theorem 3.2. Suppose that g;, j=1,...,r, are regular. Then K is an iso-
morphism onto a subspace of L*(R) if and only if for each u, the infinite matrix
(3.9) M(u) = (&i(u+27j))i-y jez

has rank r.

Proof. By (3.2) and (3.9), G = MM* . For any H=(hy, ..., h)*eC",

’ 2
S higi(u + 2mj)

i=1

H*GH = (H*M)(H*M)* =Y
JEZ
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Therefore, for any H # 0, H*GH > 0 if and only if Y7_, h;&i(u+2mnj) for
some j, if and only if rank(M)=r. O

In the next theorem, the notation C; means the jth column of the matrix
C.’
Theorem 3.3. Suppose that K is an isomorphism. Let

D'*(u) := diag((w)'?, ..., 2(w)'/?),

and
(3.10) (B1(w), ..., de(u)T == (U*DV}) "' M),.
Then {T,¢j:neZ, j=1,...,r} isan orthonormal set.

Proof. Since U* and D'/? are 2m-periodic, by (3.10)
(@i +21)))iey jez = (UDVH) 7'M

Let

(3.11) Gij(u):=_ di(u+2mn);(u+2mn),

n€Z
and & := (qASU)f‘Fl . Then
&= (U*D')'MM*(D'?U)".

Since MM* = G = (U*D'/?)(D'/2U), it follows that ®(u) equals the identity
matrix for almost all . By Theorem 3.1, the map K,: [2(Z)" — L*(R) defined
by

r

(3.12) Ki(s):=> Y si(mTup;, sel*Zy,

j=1nez

is an isometry onto a subspace of L?(R). Therefore {T,¢;:n € Z, j =
1,...,r},is an orthonormal set. O

Remark 5. Suppose that K is an isomorphism onto a subspace V; of L%(R).
Since TV = Vy and T.K = KE", Theorem 2.1 also yields the existence of
¢j, j=1,...,r,suchthat {T,¢,:neZ, j=1,...,r} is an orthonormal
basis of 1} .

Equation (3.10) is more of theoretical interest since the eigenvalues and eigen-
vectors of G are, in general, difficult to compute. We shall now give an induc-
tive construction of the orthonormal wavelets which could be more useful in
practice. Suppose that {¢;: | < j < r — 1}, is a set of regular functions in
L%*(R) such that {T,¢;: n€Z, 1 < j<r—1} is an orthonormal set. Then by
Theorem 3.1 the mapping K,: [2(Z)"~' — L?*(R) defined by (3.12) with r — 1
instead of r, is an isometry onto a subspace of L2(R), and & := (¢; j ,’-fjlzl ,
where ¢; j are defined in (3.11), is the identity matrix.
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Theorem 3.4. Suppose g € L*(R) is regular. Then the map K : I*(Z)" — L*(R),
such that

(3.13) s)—ZZS, VTutpj + Y s:(n)Tng.,

j=1neZ nezZ

is an isomorphism onto a subspace Vy of L*(R) if and only if for all u € R,

(3.14) &, &)(w)| > Z|
where
(&, &)(w) =) |&(u+2nn)?,
nez
and
(&, $)(u) =" &(u+2mn)d;(u+2mn).
nezZ
Further, if (3.14) holds and
r—1
t(u) = ((&, &)(w) - Y_ &, o)w)*)~"/
j=1
t](u) =_T(u)<g7$j>(u)’ .]=l9 ’r_'l’
and
r—1
(3.15) b= 1;d; +18,
j=1
then {Tp¢;:neZ, j=1,...,r} isan orthonormal basis of Vj.
Proof. Let gj:=¢j, j=1,...,r—1,and g :=g. Then G is a matrix of
order r whose last row is (&1, ..., &) and last column is (&, ..., &»)*,

and the remaining submatrix is the identity. Clearly, G is positive definite if
and only if |G| > 0 which is equivalent to (3.14).
If (3.14) holds then

{ff ZZs, )Tudj + > 5:(n) }

j=1 nezZ nezZ
Now f € V, if and only if there are unique 4; € zz(O, 2n), j=1,...,r,
with
-~ r_l -~
f=) hjoj+hg
j=1
Therefore, we want to find 7, ¢;,..., f_; In ZZ(O, 2m) such that, with

r—1

(3.16) b= 1;; +18,
j=1
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{Th¢j:neZ, j=1,...,r} is an orthonormal set. This is equivalent to

(3.17) (brrdy=0rj, J=1,

Since (43,~, q@,-) =dij, i, j=1,...,r—1, it follows from (3.16) that (3.17) is
equivalent to

(3.18) ti+tg, ¢)=0, j=1,...,r—1,
and

r—1 r—1
(3.19) Z" P+ 12, &) +TY_ 1i(d;, &)+ T 118, d)) =1.
j=1 Jj=1

Substituting for ty,...,t_, from (3.18) into (3.19) leads to

r—1
[P = (&, &) - &, D)
j=1
By (3.14), the function
r—1
(3.20) T(u) = (&, 8)(w) = D_ (&, o))~
j=1

is 2n-periodic and continuous, and therefore belongs to ZZ(O, 2rn). We then
define

(3.21) tiu) = —t(u)g, dj)w), j=1,...,r—1,

which belong to Z2(0, 27) and satisfy (3.18) and (3.19). So with ¢, defined
by (3.16), (3.20) and (3.21), {Th¢;:n€ Z, j=1,...,r} is an orthonormal
setin Vp.

We denote the Fourier transform operator by ¥ and define U: ¥V, —» F 1
such that

r—1 r—1
Uf=Y hdj=ho,, [=> hdj+hgeh,
Jj=1 j=1
where h; € L*0,2r), j=1,...,r. By (3.16) we see that U is an isomor-
phism of F V¥, onto itself. Since {T,¢;:ne€Z, j=1,...,r} isorthonormal,

it follows that the map K: [%(Z)" — ¥, such that

=YY simTud;,  s=(s1,...,8) € X(Z),

j=1nezZ

=
“

is an isometry. But then K = % "'UF K, so that K maps 12(Z)" onto V.
Thus {T,¢j:neZ, j=1,...,r} iscompletein V5. O

Now suppose that ¢; € L2(R), j = 1,...,r, such that {T,¢;:n € Z,
Jj=1,...,r} is an orthonormal set, and let ¥, be its closed linear span in
L?(R). Then

= {feL%R):f:Zr:q‘sjhj, h; e L*(0, 27:)} .

J=1
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Let Vi := D,V . Then

={feL2(R):j(2u) Zé( Yhj(u), h; € L*(0, 2n)}.

j=1
Clearly, T,,V; = Vi, n € Z, and the following results are easy consequences.

Propeosition 3.1. The following conditions are equivalent:

() hch,

) {1, ..., b} C 1A,

(3) There exist a;; € L*(0,2n), i,j=1,...,r, such that
(3.22) $i(2u) = Y‘qs, w)a;;(u i=1,...,r.

j=1
We shall henceforth assume that the conditions in Proposition 3.1 hold.

Proposition 3.2. Suppose that fie Vi, i=1,...,r, and
(2u Z¢j u hijEiz(O,Zﬂ), I,j=1,...,r.

Let H := (hij)i)j=l. Then {T,fi:n€eZ, i=1,...,r} is orthonormal if and

only if
HwHu)* + Hu+n)Hu+n)" =1,

where I, denotes the identity matrix of order r.

Proof. For i,j=1,...,r,
> filu+2mn) fi(u + 27n)
nez

LEmEROL
)k

r r
+ZZh,~k(g+ ( +n)z¢k( +7t+27tn)q3( +7z+27m)
k=1 I=1 nez
r —
u
=3 hu (3) e (3) + thk( w) b (5 +7).
by Theorem 3.1 since {T,¢;:n€Z, j=1,...,r} in an orthonormal set.
Therefore, {T,fi:n€Z, i=1,...,r} isorthonormal if and only if
Zﬁ(u+2n)ﬂ(u+2n)=§ij, i,j=1,...,r,
nez

if and only if

e () () + S5+ (Frr) =3,
=1

k=1

i,j=1,....,r,ucR. O
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Let a;; be defined as in (3.22), and 4 := (a;;)] ;, - By Proposition 3.2,
(3.23) A Au)* + Alu+m)A(u+n)* =1,.

Let W, be the orthogonal complement of V; in V;, and let y; € V}, i =
1,...,r,such that

r
(3.24) Wi2u) =Y 6;(u)bij(u)
j=1

where b;; € L2(0,2n), i,j =1,...,r. Let B := (bij)j j=; - A similar
argument as in the proof of Proposition 3.2 gives
Proposition 3.3. The functions y;, i=1,...,r,arein Wy if and only if
(3.25) A(u)B(u)* + A(u+n)B(u+mn)* =0.
Furthermore, {T,w;:n€Z, i=1,...,r} isan orthonormal set if and only if
(3.26) B(u)B(u)* + Bu+n)B(u+n)" =1,.

Given 4 = (a;;); ;_, satisfying (3.23), the functions y;, i =1,...,r,

can be obtained by constructing B = (b;;); ;_, so that (3.25) and (3.26) are
satisfied. Indeed (3.23) is equivalent to the orthonormality of the vectors
(an(w), ..., ar(u),an(u+mn),...,a,(u+mn)), i=1,...,r,
for u € [0, n). By Gram-Schmidt process they can be extended to an orthonor-
mal basis of C¥ . Let the new vectors in the basis be denoted by
(b,-l(u), vy bi,(u), b,~1(u+7t), vy b,',-(u-i-ﬂ)), i=1,...,r,

and extend b;;, i,j =1,...,r, periodically with period 2n. Then B :=
(bij); j=; satisfies (3.25) and (3.26). Let y; be defined as in (3.24).

Thoerem 3.5. Theset {T,y;:n€Z, 1 <i<r} isanorthonormal basis of W;.
Furthermore,

(3.27) W, = {fe L*R): /= wjh;, hjezz(O,Zn)}.
j=1
Proof. By Proposition 3.3, {T,y;: n € Z, 1 <i<r} isan orthonormal subset
of W,. We have only to show that it is complete.
Take y € Wy and~orthogona1 to {Tywi:n € Z, 1 <i<r}. Then there
exist g;,..., & ,in L2(0, 2x) such that

() =) ;(uwg;u),
j=1

and by a similar argument as in the proof of Proposition 3.2,

r

> (ai(u)ge(u) + aix(u+ m)g(u+m)) =0
k=1

and

r

S (bt (W) 2i (@) + b (u + W) g (w + 7)) = 0
k=1
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for i =1, ..., r. This means that the vector
(&1(u), ..., &), &i(u+mn), ..., gu+mn))
is orthogonal to the orthonormal basis of C? . Therefore, all g,Jj=1,...,r,

and hence y are zero. This implies that {T,y;: n € Z, 1 < i < r} is an
orthonormal basis of Wj.
Functions in W, can be written uniquely in the form

f=zzcjnTn'//ja (cjn)nEZ € lz(Z)
=1 nez

Taking Fourier transform leads to (3.27). O

4. MULTIRESOLUTION APPROXIMATION GENERATED BY
CARDINAL HERMITE B-SPLINES

Let n and r be positive integers, n even, such that 2r < n, and

(4.1) SFr={feC" " 'R): fliy,vs1) EMuey, v € Z},
where IT,_; is the class of polynomials of degree < n — 1. Functions in &/
are called cardinal Hermite splines of degree n — 1. For j=0,...,r—1,let

42 Fi={feF:fPw)=0, veZ, k=0,....,r—1, k#j}.

The space #; ; has a basis consisting of integer translates of a function N, ; =

Ny 65”,{’1, j=0,...,r—1, with minimal support [-5 —1+4r, §+1-r],
in the sense that every f € <7j,” ; has a unique representation of the form
(4.3) fx)=> e N jx-v), xeR

veZL

(see [18, 8]). The functions N, ; are called cardinal Hermite B-splines.

For computational purposes, the Fourier transforms ]Vn, j of the cardinal
Hermite B-splines are very useful. They can be expressed in closed forms with
the help of the Hankel determinant |H,(a,)| where H,(a,) is the matrix of

order r whose jth column is (dn—j415 ..., An—j—r42)7 (see [9]). Indeed if
(4.4) ap(u) = (u+2mv)™*,  k=2,...,n,
veZ
and H, j(an(u)) denotes the matrix obtained from H,(a,(u)) by replacing the
(j + Dth column by (u”, "', ..., u"*)T j=0,...,r—1,then
~ . u n

(4.5) No,jw) = (2sin 5) " |H,.j(an(w)].

For j=0,...,r—1, N, ; are regular. Indeed, ]V,,, j are continuous and

~

N, j(u) = O(u="+~') as n — co. Therefore the map K: [*(Z)" — L*(R) such
that

r—1
(4.6) K(s):=Y_ 3 s;()T"Ny ;,

j=0vezZ

is well defined.
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Theorem 4.1. The map K defined by (4.6) is an isomorphism of I*(Z)" onto a
subspace of L*(R).

Proof. Let N(u) := (ﬁn,i(u + 2mj) ?;(;,jGZ' Suppose that 0 < u < 2m. By a
result of [10], |H,(a,(u))| # 0. Therefore, equation (4.5) can be expressed in
the form

(N, ()72 = (2 sin 14/ 2)" |y (cvn ()| H con ()~ (™, =m0 =T

Since H,(an(u)) is 2m-periodic, it follows that

A

(N, i(u+21J))i20° 12,
= (2sinu/2)" | Hy(on ()| Hy(oon () ™" ((u + 27j) )20 1

Since the last matrix on the right of (4.7) is a Vandermondian, we see that both
sides are nonsingular. In particular N(u) is of rank r,if 0 <u < 2m.
For u =0, a straightforward computation shows that

(4.8)  (Na,i(21j))2g 1y = |Heoy (B[ Hrmy (Bum2) ™ (2m)) "))
where

(4.7)

B =) (2nv)7*.

v#0

A similar argument as above shows that N (0) is of rank r. The result now
follows from Theorem 3.2. O

Let 5’:’ denote the range of K. This is a closed subspace of L%(R). Fur-
thermore, . = .’ N L*(R). Therefore, if Df(x):= f(2x),

U g2 | pn5t = LA(R).

meZ meZ

Also ez D'”{SA’”;' = {0}, since it comprises polynomials in L?(R).

Let V,, := D"/, m € Z. Then (V,;)mez is a multiresolution approx-
imation of L2(R) generated by the cardinal Hermite B-splines N, j, j =
0,...,r—1. Weshall call (V,,)mez, a Hermite spline multiresolution approx-
imation of L?(R).

5. COMPACTLY SUPPORTED HERMITE SPLINE WAVELETS FOR
THE ORTHOGONAL COMPLEMENT

Let W, be the orthogonal complement of V4 in V;, so that W, := D"W,
is the orthogonal complement of V,, in V,,,,, m € Z. For convenience, we
shall assume that the B-spline N, ; is supported on [0, n — 2r + 2]. This can
be easily achieved by translation.

Take j=0,...,r— 1, and consider functions of the form

fi(x) =3 ¢iNom j2x —v), with f(k)=0, keZ,
v=0

where m is a positive integer. Then f}”) € V] and integrating by parts, in the

sense of distributions, shows that fj(") is orthogonal to V4, and hence belongs
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to W, . Such a function f; with minimal support is given by
2n-2r

(5.1) fix) =Y (=1)"N) (v + 1)Nay ;(2x = v).
v=0
For j=0,...,r—1,let

57;;,j:={fe§f;f<k>(u)=o, veZ, k=0,...,r—1,k#j}.

Lemma 5.1. Let f € D&, . such that f(x) decays exponentially as |x| — oo
and fO(w)=0, veZ. Then
(5.2) fx)==>"a,fi(x-v),
veZ
where (a,),ez decays exponentially as |v| — oo.

Proof. Since f e DS, .,
(53) X)=ZC,,N2,,,]‘(2X—V),
veZ

where (c,),cz decays exponentially as |v| — oo, and the condition fU)(v) =0,
v € Z, leads to

(5:4) Y oNJ (2k-v)=0, keZ.
veZ
Let
p(z):=Y MY )z, q(z)=) a2
veL veZ

Equation (5.4) is equivalent to

p(2)q(z) + p(—2)q(—z)=0, forall z.
Since N, ;j has compact support, p is a polynomial. If p has zeros {z;},
then it does not have zeros {—z;}, and so {-z;} are zeros of g. We can
therefore write

(5.5) q(z) = p(=2)r(z).
Then p(z)p(-z)r(z) + p(-z)p(z)r(—z) = 0, which gives r(z) = —r(-2z).
Therefore, we can write

— Z auzlu—-l ,

VEZL
where (a,),cz has exponential decay as |v| — oo, by (5.5). Also by (5.5),
(5.6) e =Y aNy) (v —20+1)(-1)"+".

lez
Substituting (5.6) into (5.3) and using (5.1) leads to (5.2). O

Proposition 5.1. Let g € D :’n such that g(x) decays exponentially as |x| —
o, and gV(v)=0, veZ, j=0,...,r—1. Then

r—1

(5.7) gx)=Y "> apfilx-v),

j=0veZ
where (aj,),cz decays exponentially as |v| — oc.
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Proof. Since geDf’;'n, g=8+8& +--+g—1, where g; GD%’,,J, j=

0,...,r—1, with gj(.j)(u) =0, v € Z. The result follows from the previous
lemma. 0O

For j=0,...,r—1,let y; := fj(”), where f; is given by (5.1). Then
yj € Wy and is supported on [0, 2n —2r + 1].

Theorem 5.1. The set {T,yj:veZ, j=0,...,r—1} is complete in Wy.

Proof. 1t is sufficient to show that for k=0,...,r—1,
(58) n k 2x +ZZaJVW] s
j=0veZ

where f €V, = 3’;’ has exponential decay as |x| — oo and (aj,),ez decays
exponentially as |v| — co.

Choose M € D5, with
(5.9) M"(x) = N, (2x).
Since N, x(2x) issupported on [0, §—r+1], M may be taken as a polynomial
of degree n—1 out51de [0, £ —r+1]. It can therefore be written as M = F+G,

where G € D54 has compact support, and F € 5’2’,, equals a polynomlal of

degree n—1 out31de a compact set. Now let H be the unique function in 5”2’,,
such that

HY () = GY(v), j=0,...,r=1, veZ.

Since G has compact support, the theory of cardinal Hermite interpolation
shows that H(x) decays exponentially as |[x| - co. Let R:=G—H . Then R €
D%’,,, Dw)=0, j=0,...,r—1, veZ,and R(x) decays exponentially
as |x| — oo, and we can write M = F + H + R. By Proposition 5.1, R can be
expressed as

r—1
R(x)=) ) apfilx—J),
Jj=0veEZL
where (aj,),cz decays exponentially as |v| — oco. Also by (4.3)

r—1

H(x)= ZzbjuNZn,j(x -v),

Jj=0veZ
where (b;,),cz decays exponentially as |v| — co. By (5.9)
o 0(2) = FOIC0) + HOx) + RO

r—1
)+ ZZb,,,NZ(Z jx =)+ Z Zaj,,a//j(x

Jj=0veZ j=0veZ

Since F(™ € V¥, has compact support, and H € V; has exponential decay, it
follows that F 4+ H" ¢ V, has exponential decay. O
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