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ON MANIFOLDS WITH NONNEGATIVE CURVATURE
ON TOTALLY ISOTROPIC 2-PLANES

WALTER SEAMAN

Abstract. We prove that a compact orientable 2«-dimensional Riemannian

manifold, with second Betti number nonzero, nonnegative curvature on totally

isotropic 2-planes, and satisfying a positivity-type condition at one point, is

necessarily Kahler, with second Betti number 1. Using the methods of Siu and

Yau, we prove that if the positivity condition is satisfied at every point, then

the manifold is biholomorphic to complex projective space.

0. Introduction

Let V denote a real vector space with inner product ( , ), let Ve =

V <g> C denote the complexification of V. Extend ( , ) to a complex bi-

linear form on Ve, and let (( , >) denote the extension of ( , ) to Kc

which is complex linear in the first argument and conjugate linear in the sec-

ond, that is ((z, w)) = (z,w) for z,w e Ve. By an algebraic curvature

tensor R on V we mean a multilinear map R: V x V x V —> V satisfy-

ing (a) R(X, Y)Z = -R(Y,X)Z, (b) R(X, Y)Z = R(X, Z)Y + R(Z, Y)X
(the Bianchi identity), and (c) (R(X, Y)Z, W) = (R(Z, W)X, Y). The cur-

vature operator (of R) is defined to be the map R: f\2V —> f\2V given by

(R(xAy), uAv) = (R(x, y)v , u) where x, y, u, v e V and the inner product

f\2V is given by (x A y, u A v) = (x, u)(y, v) - (x, v)(y, u). We extend R

by C-linearity to f\2Vc. A (complex) vector z e Ve is said to be isotropic

if (z, z) = 0. A complex subspace W of Ve is said to be totally isotropic

if Vz e W, z is isotropic. If z and w axe vectors in Ve, then the number

((R(zaw), zAw))/\\zAw\\2 depends only on the complex subspace o spanned
by z and u;. We denote this number by K(a). The following definition was
introduced in [MM].

Definition. The curvature tensor R is said to have nonnegative (positive) cur-

vature on totally isotropic 2-planes if K(a) > 0 (> 0) for all totally isotropic

(complex) two-dimensional subspaces of Ve .

Every two-dimensional totally isotropic subspace o of Ve has a basis of

the form {z, w}, where z = e¡ + te¡ (the iota means (-1)'/2), w = ek + te¡,

where e,, e¡, ek , and e¡ denote orthonormal vectors in V , and conversely any
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such z and w will span a totally isotropic 2-plane in Ve . Using this choice

of z and w , one computes

(0.1 ) ((Riz /\w),zAw))=K,k + Ku + Kjk + Kji + 2Rijkl

where Rijki = (i?(e,;, e¡)ek, e¡) and Kab = iRiea, eb)eb, ea) = the sectional

curvature of the plane (in V) spanned by the orthonormal vectors ea and eb .

Now notice that the plane spanned by the complex conjugate, z = e, - tej, of

the above z and the above w = ek + ie¡, is also a totally isotropic 2-plane.

Therefore if R has nonnegative curvature on (all) totally isotropic 2-planes we

see from (0.1 ) that the following must be true for all orthonormal e¡, e¡, ek , e¡:

(0.2) Kik + Ka + Kjk + Kfl > 2\Rijkl |.

An algebraic curvature tensor will have nonnegative curvature on totally

isotropic 2-planes if it satisfies either of the following conditions: (i) T? is a

nonnegative operator on f\ V (R is symmetric on f\ V). (ii) The sectional

curvature of R is quarter-pinched (i.e., for every two-dimensional subspace

P of V, 4 > K(P) > 1). Thus nonnegative curvature on totally isotropic

2-planes is implied by conditions which are familiar to geometers. A Rieman-

nian manifold M is said to have nonnegative (positive) curvature on totally

isotropic 2-planes if its Riemannian curvature satisfies the corresponding prop-

erty on each tangent space. In particular, every Riemannian symmetric space

of compact type has nonnegative curvature on totally isotropic 2-planes owing

to (i). This apparently weak condition sees to be "exactly right" for controlling

the behavior of stable harmonic maps from the 2-sphere S2 into M. The au-

thors of [MM] demonstrate the power of this notion in proving the following

remarkable

Theorem. Let M be a compact simply connected n-dimensional Riemannian

manifold which has positive curvature on totally isotropic 2-planes, where n > 4.

Then M is homeomorphic to a sphere.

Note that as a corollary to this theorem, any compact simply connected

Riemannian manifold whose sectional curvature is pointwise strictly quarter-

pinched (that is, there is a positive function f on M such that at any point

p e M, the sectional curvature of M at p, K(p), satisfies 4f(p) > K(p) >

f(p)) must be homeomorphic to a sphere. This represents an important gen-

eralization (in our opinion) of that portion of the "classical" Sphere Theorem

which states that if M is globally strictly quarter-pinched (4 > K > 1 ) then

M is homeomorphic to a sphere.

Let (*) denote the following condition for an algebraic curvature tensor:

(*)      For all orthonormal vectors e,, e¡, ek , e¡, Kik + K¡i + Kjk + Kj¡ > 0.

The sum in (*) above may be written

\(((R(z Aw), z Aw)) + ((R(z Aw), z Aw)))

where z and w were defined above (one could use zAw in place of z Aw).

We shall give different interpretations of the sum appearing in (*) later in

this section, but for now notice that if R has nonnegative curvature on totally

isotropic 2-planes the sum in (*) is automatically nonnegative. The purpose of

this paper is to prove the following results:
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Theorem A. Let (M2n, g), n > 2, be a compact orientable 2n-dimensional

manifold with Riemannian metric g. Suppose the second real Betti number of

M, b2 (M ; K), is nonzero. Suppose the Riemannian metric g has nonnegative

curvature on totally isotropic 2-planes and satisfies (*) at one point. Then (i) in

a natural way, (M, g) is a Kahler manifold, (ii) bx (M ; R) = 1, and (iii) M

is simply connected.

Theorem B. Let (M, g) satisfy the same hypotheses as in A, but now assume

in addition that (*) is satisfied at every point of M. (i) If g is Einstein then

(M, g) is biholomorphically isometric to CP" with a multiple of the canonical

metric, (ii) In general M is biholomorphic to CP" .

The ideas behind the proofs of Theorems A and B will now be discussed. Pre-

cise definitions and statements will follow in the next section. It turns out that

for an even-dimensional real vector space V, nonnegativity on totally isotropic

2-planes implies that the Weitzenbock operator, R2, on 2-forms (or 2-vectors) is

positive semidefinite. If in addition condition (*) is satisfied, then any element

co of the kernel of R2 can be written in the form co = X Y^l=i e2,-X A e2, where

ex, ... , e2n is an orthonormal basis of V and X is a number. On a manifold

satisfying the hypotheses of Theorem A, one takes a nonzero harmonic 2-form

co, which must be parallel since R2 is nonnegative at each point, and which at

the point where (*) holds is (up to a constant multiple) an orthogonal complex

structure (for that tangent space). A short argument then shows that co is in

fact a globally defined orthogonal almost complex structure, which is integrable

because it is parallel. Thus M becomes a Kahler manifold. Knowing this, one

proves that b2(M ; R) = 1 using the methods of [GK, §6]. One then computes

that cx (M) (the first Chern class of M) is positive so, by Yau's resolution of

the Calabi conjecture and a result of Kobayashi, M is simply connected. Now

that we know M is Kahler, the proof of the first part of Theorem B is almost

identical to that of Theorem 5 [GK].
The method for proving Theorem B(ii), M is biholomorphic to CP", is

that of Siu and Yau in their resolution of the Frankel conjecture [SY]. This
method is outlined in the wonderful book [W, pp. 523-527] (it was there that

we first encountered that method). Very briefly, one must prove that any sta-

ble harmonic map f:S2^M is ± holomorphic and that if /: S2 -> M is
holomorphic then in the splitting of f*TM into Lx © • • • © Ln (where TM is

the holomorphic tangent bundle of M and the L, are holomorphic line bun-

dles over S2) one has ci(L,-) > 1 V7, and cx(Lia) > 2 for some z'n • These

last conditions yield cx(f*TM)[S2] > n + 1 and guarantee that the deforma-

tion theoretic arguments of [SY] work, proving that a positive generator of the

free part of H2(M; Z) = Z can be represented by a single holomorphic map

f: S2 -> M (H2(M;Z)^ n2(M) since M is simply connected). We add that

although the ideas for the proof of our theorems come from theorems concern-

ing compact Kahler manifolds of positive holomorphic bisectional curvature,

we do not actually use those theorems in our proofs.

We now address some linear algebraic questions concerning algebraic curva-

ture tensors which arise in this paper. Suppose R is an algebraic curvature

tensor on a real inner product space V( , ) and R has nonnegative curvature

on totally isotropic 2-planes and satisfies (*). The product curvature tensor on

R" © R1 , which has constant curvature one on the R" factor satisfies all these
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conditions. In fact given any two 2-planes P and Q in R" © R1 such that

Pcß1 (cf. [Se]), one has K(P) + K(Q) > 1, so this curvature tensor satisfies

(*). Also, this curvature tensor has nonnegative curvature operator, so it has

nonnegative curvature on totally isotropic 2-planes. Of course this is just the

pointwise picture of S" x Sx , and shows that our Theorem A is false without

the hypothesis b2(M ; R) ^ 0. Notice that the corresponding pointwise product

curvature tensor for S" x S2 does not satisfy (*) but does have nonnegative

curvature on totally isotropic 2-planes.

Our initial assumptions in Theorem A, from a pointwise point of view, are

that we are given an algebraic curvature tensor T? on an even-dimensional vector

space V which has nonnegative curvature on totally isotropic two planes and

satisfies (*). After we "globalize" this information via b2(M; R) ^ 0, we get

that in fact R is Kahler. That is, there is an orthogonal complex structure J on

V and R satisfies (in addition to (a), (b), and (c) above) (d) R(JX, JY)Z =
R(X, Y)Z (equivalently J(R(X, Y)Z) = R(X, Y)(JZ)). If we now let V
be given an orthonormal basis of the form e,-, Je,■, i = 1,...,« , and let

e¡* = Je,  Vz, then (*) yields, for the choices e¡ = ek. , e¡ = e,- ,

(**) Kik + Kik. > 0   for i 9¿ k.

Note that the sum in (**) is just the holomorphic bisectional curvature (cf.

[GK] with the opposite sign convention for sectional curvature from ours) of the

vectors e,, ek , sometimes written in the form H(e,, ek) = (R(e,, Je,)Jek , ek)
(perhaps (**) should be called "positive orthogonal holomorphic sectional cur-

vature"; cf, [Se]). This shows that the canonical curvature tensor of the complex

hyperquadric [KN, pp. 278-282] does not satisfy (*) (as a real Riemannian

manifold) since it does not satisfy (**). In fact, the canonical curvature tensor

on the hyperquadric is "2-positive" in the terminology of [Si]. That is, for that
curvature tensor, VX (unit vector) 37 suchthat X, JX, Y are orthonormal

and H(X, Y) = 0 (and Y and JY span the "null space" H(X, •) = 0). Of
course the hyperquadric is a compact simply connected symmetric Kahler Ein-
stein manifold, which shows the necessity of (*) in arriving at the conclusions

in Theorem B.

We now discuss ideas related to the ± holomorphicity of stable harmonic

maps f:S2-*M.

Definition. Let T? be a Kahler algebraic curvature tensor on V (with orthogonal

complex structure J). We say that R has positive curvature on nondegenerate

holomorphic isotropic 2-planes if for every isotropic z e V ® C, ((R(z A Jz),

z A Jz)) > 0 with equality if and only if z is an eigenvector for J (so that the

"plane" z A Jz degenerates to 0).

Note that in the above definition z and J z automatically span a totally

isotropic 2-plane if z is not an eigenvector of J. If Tí is a Kahler alge-

braic curvature tensor on V satisfying (*) (or actually just (**)), then R has

positive curvature on nondegenerate holomorphic isotropic 2-planes. This is

because the plane spanned by z and Jz is the same as that spanned by the

(1,0) and (0,1) parts of z, z', and z" . If z is isotropic, and not an eigen-

vector for J , we can find orthonormal e,, ek e V such that (e,, Jek) = 0 and

for which y/2z'/\\z'\\ = e¡ - te¿. , and v/2z"/||z"|| = ek + tek. .  We then get,
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using z A Jz = -2iz' A z" ,

((Riz A Jz), z A Jz)) = 4((R(z' A z" , z' A z"))> = ||z'||2||z"||2(Tï:i/t + Kik.) > 0

by (**). In the course of proving Theorem B, we prove the following result,

which may be of independent interest.

Lemma A. Let (M, g, J) be a compact Kahler manifold which has nonnegative

curvature on totally isotropic 2-planes and positive curvature on nondegenerate

holomorphic isotropic 2-planes. Then every stable harmonic map f:S2^M

is + holomorphic.

Conditions like (**) show that our (*) is related to the (algebraic) assump-

tion that a Kahler curvature tensor has positive holomorphic bisectional curva-

ture. While we do not have an example of an algebraic Kahler curvature tensor

having property (*) (and nonnegative curvature on totally isotropic 2-planes)

but not having positive holomorphic bisectional curvature (nor an example of

the opposite phenomenon) such an example should be constructable. As re-

marked previously, our arguments are logically independent of results proved

for Kahler manifolds with positive holomorphic bisectional curvature, but the

exact relation between that notion and (*) is not entirely clear.

We add a word about notation. In general, our notation is the same as [KN].

This means in particular that the Kahler form, co, for C" is -ij^dz, A d~z,

and in general the Kahler form for a Kahler manifold will be negative, where a

positive (1,1) form 6 is a form which can be written iYlaij dz, A dz~j, (a,j)

a positive definite Hermitian matrix, or equivalently we can write 6(X, Y) =

a(JX, Y), where a is a symmetric positive definite ./-invariant bilinear form.

We would like to thank Olivier Debarre for many helpful discussions con-

cerning various deformation theoretic and algebrogeometric aspects of the work

of Siu and Yau.

Note added on April 15, 1991. This paper was completed in early November

1990. At the April 12-14, 1991 Seventh Annual Geometry Festival held at
Duke University, the author spoke with Professor Mario Micallef concerning

the results of the current paper. Professor Micallef knew the theorems in this

paper already in 1987, with the assumption (*) replaced by the weaker as-

sumption that M be locally irreducible. Professor Micallef announced these

results in the Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht

31/1987, Differentialgeometrie im Grossen, 19.7. bis 25.7.1987, pages 20-22.
This author had no knowledge of that work by Professor Micallef. These results

will be discussed in a forthcoming paper by M. Micallef and M. Wang.

1. Background and Theorem A

Let F be a real inner product space and R an algebraic curvature on V as in

the introduction (so R satisfies (a), (b), and (c)). The Ricci tensor, Ric, of R is

the symmetric bilinear form on V defined by Ric(X, Y) = Y,(R(e¡, X)Y, e¡)

where e,, i = I, ... , dim V, is an orthonormal basis for V and X, Y e V .

The Wietzenbock operator of R, R2  (cf.   [Se]), may be defined as the map
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from 2-vectors to 2-vectors given by

(R2(vx Av2), wx Aw2) = Ric^, wx)(v2, w2) + Kic(v2, w2)(vx, wx)

(1.1) -Ric(wi, w2)(v2, Wi)-Ric(v2, wx)(vx, w2)

-2(R(vx, v2)w2, wx)

where vx ,v2, wx, w2 e V and the inner product ( , ) on V is extended to

A2 V as in the introduction. R2 is extended to all of A2 V by linearity. R2

turns out to be a symmetric operator. Of course, we may also consider R2 as a

map from 2-forms to 2-forms via ( , ), or as a (4, 0) tensor. If X e A2 V the

dual 2-form co to X is defined by co(u, v) = (X, u A v) and we can consider

X as a skew-symmetric linear map on V by (X(u), v) = (X, v A u) so if

X = a A b, the X(u) = (b, u)a - (a, u)b . If M is a Riemannian manifold

with Riemannian metric g and connection V, then we define the Riemannian

curvature tensor T?, by

R(X, Y)Z = (VxVy - VYVx - V{X,Y])Z ,

[ ' ' X,Y,Z vector fields on M.

At a point p e M, for X, Y e TPM spanning a plane a, we define the

sectional curvature of o , K(a), by ä"(<t) = gp(RiX, Y)Y, X)/\\X A Y\\2. If
the context makes it clear we shall sometimes write ( , ) for gPi , ) or g i , ).

The operator R2 is the zeroth-order term appearing in the Weitzenbock for-

mula for the Laplacian A acting on 2-forms on a Riemannian manifold (cf.

[W]). If co is a 2-form on the Riemannian manifold (M, g) then this formula

can be written

(1.3) (Aco, co) = ±A\\co\\2 + ||Vw||2 + (R2co, co).

For the record, one can use [W, WF.I, p. 304] to compute (R2co)(vx ,v2) =

&>(Rici>i, v2) + co(vx, Rict>2) - Z^W^i, vi)eî, eù (using (1.2) for the defi-

nition of T?), and define R2 on A2 V by co(R2(vx A v2)) = R2co(vx, v2) ; then

using co = the dual 2-form to the 2-vector wx A w2 yields (1.1). On a compact

oriented M, integrating (1.3) shows that if R2 is a nonnegative operator at

each point, then every harmonic 2-form is parallel.

Proposition 1.1. Let V and R be as above and suppose V is 2n-dimensional,

n > 2. If R has nonnegative curvature on totally isotropic 2-planes then R2 is

a nonnegative operator. If in addition R satisfies (*) then any X in the kernel

of R2 may be written X = a^"=1 e2,-X A e2i where X eM. and ex, ... , e2n is

an orthonormal basis of V.

Proof. Since R2 is a symmetric operator on /\ F we can let X e V be

an eigenvector of R2, say R2X = rX, r e R. There is an orthonormal

basis ex, ... ,e2n of V and numbers Xx > X2 > ■ ■ ■ > X„ > 0 such that

X = 53/L, X¡e2¡-i A e2i (this just amount to finding a "symplectic" basis for the

dual 2-form, co, of X). There is no harm in assuming that Xx = 1 . Direct
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computation using (1.1) now shows

n

(1.4) r = (rX, ex A e2) = (R2(X), ex A e2) = £X,(R2(e2i.x A e2i), ex A e2)

«

= (R2(ex A e2) ,exAe2) + Y^ Xi(R2(e2i_i A e2i), ex A e2)

¡=2

2n n

= ¿_^,iKlj + K2j) - 2 ) yA,-T?2i-l,2i,2,l

j=3 i=2
n

= 2_^{KXy2l +Tv1;2/-1 + K22i +Tv2i2/-1 + 2A/T?2;i,2/,2/-l}

1=2

n

(1.4i)     >2^{|JR1>2,2/,2/-il + AiTv1,2,2/,2/-i}    (by (0.2))

1=2

n

(1.4Ü)   >2^|T?li2;2/,2/l(l-^i)>0.
1=2

Hence T?2 is a nonnegative operator. Now if r = 0 then all of the above

inequalities must be equalities. Therefore if r = 0 we must have Kx 2l +

K2,2i + Ki,2i-\ +K2,2l-\ = 2|T?,,2,2/,2/-il V/ = 2, ... , « (equality at (1.4i))
so if assumption (*) holds then this last T? term is nonzero. Because inequality

(1.4ii) must also be an equality, we must have 1=1  V/,   D

Note that any X = £"=1 e2i-i A e2, (ek orthonormal) is itself an orthogonal

complex structure, /, on the vector space V, satisfying J(e2i-X) = -e2i. We

now investigate algebraic Kahler curvature tensors.

Let V be a 2«-dimensional (n > 2) inner product space with an orthogonal

complex structure J, and let T? be an algebraic Kahler curvature tensor on

V (so R satisfies (d) in the introduction). Assume that Tí has nonnegative
curvature on totally isotropic 2-planes. Pick an orthonormal basis of V of the

form e,, Je,, i = 1, ... , n , and let e> mean Je,. Writing out (0.2) with

I = k*, j = i*, and using the identity Ra*k-k = Kik + Kik. , we obtain

(1.5) Kik+Kik. >0.

As noted before, if R also satisfies (*), then the inequality in (1.5) is strict.

Now write out (0.2) with k = i*, I = j*, we obtain, after some simplification

(1.6) K„. + Kjj. + 2K,j. > 2\Kij\.

Writing out (0.2) with k = i*, replacing the original ;' with j* and replacing

the original / with j , we obtain

Kjj. + Kjj. + 2Kjj > 2\Rj.jjj*\

which simplifies to

(1.7) K,j.+KJJ.+2K,J>2\KjJ.\.

From (1.6) and (1.7) we deduce

(1.8) Vz=¿;       Kj,.+Kn.>0.
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It follows from identity (d) for R that Ric(JX, JY) = Ric(X, Y). From this
it follows that we may find an orthonormal basis of the above type, e¡, Je¡

"diagonalizing" Rie:

Ric(e;, e¡) = Ric(ye-;, Jef) = X¡ojj,        Ric(e,, Jef) = 0,

where Xx > X2 > ■ ■■ > Xn axe numbers. Now we compute

n

Xj = Ric(e,-, <?/) = ^2 Ra'aii' = Yl R"'aii* + Kjj..
a=\ a^i

Hence,

( 1.9) Xj + Xj = £(*.., + Kai) + £(***, + Kaf) + Mr + Kjj' )•
a¥-i a¥j

Since R has nonnegative curvature on totally isotropic 2-planes, (1.5) implies

that the first two summands on the right-hand side of (1.9) are nonnegative.

Also, for i 5= j, (1.8) implies that the third summand is nonnegative. If R also

satisfies (*), then the first two summands on the right-hand side of (1.9) are

strictly positive. This yields
(1.10) If R is Kahler, with nonnegative curvature on totally isotropic 2-

planes then the "eigenvalues" X¡ of Ric satisfy X¡ + X¡ > 0 for i =¿ j. If

R satisfies (*), then this inequality is strict. Thus the scalar curvature of T?,

5 = trace(Ric) = 2J2"=X Xj is nonnegative when R has nonnegative curvature

on totally isotropic 2-planes and strictly positive if T? also satisfies (*).

This last remark follows from Xx > ■ ■■ > X„ and Xn-X + Xn > 0 (> 0 in the

second case).

As above let J be an orthogonal complex structure on V, which we write

as X = Y^ e2j-1 A e2j when we want to consider J as an element of A ^ •

Proposition 1.2. Let R be Kahler for J, have nonnegative curvature on totally

isotropic 2-planes, and satisfy (*). If X = ^2e2i-XAe2j iwhere Jie2,-X) = -e2¡)
is in the kernel of R2, then ker(T\2) = R^ •

Proof. W extend J to a linear map of /\2V by J(u Av) = JuAJv. Then

on /\2V, J2 = I , and every Y e /\2V can be written Y = Yx + Y2, where

JYX = Yx, JY2 = -Y2. It follows from the fact that R is Kahler that if

Y e l\2V is in ker(T?2), then Y¡ e kex(R2)i =1,2 (i.e., JR2 = R2J on

A2^) ■ Also note that JX = X since X = YL ̂e2t A e2i. We may assume that

ex, ... , e2n diagonalizes Ric, since one can verify that for any orthonormal

basis of the form h¡, Jh,■■, X = ¿2 Jh¡Ah,. Let Y e ker(T?2), write Y = Yx + Y2
as above. Then we can write

1    "
(1.11) Y2 = -^ a¡j(e,A ej - Je, A Je,) + c„( Je, A e, + e, AJe¡)

f,;"=i

where the a¡j , c,j are skew-symmetric in i, j . A straightforward calculation
now shows

(1.12) (R2Y2, Y2) = 2YJia2j + c2j)(Xi+Xj)

where the X,■■, Xj axe the "eigenvalues" of Ric mentioned in (1.10). We see

from (1.12) and (1.10) that if (*) is satisfied and Y2 e kex(R2), then Y2 = 0.
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We now consider Yx (cf. [GK, §6]). Define T: V -> V by (Tu,v) =
(Yx, Jv A u). Then T is symmetric and commutes with / . We may therefore

diagonalize T with respect to an orthonormal basis of V of the form f, J f,

with Tf = ßjf, ßi > ß2> ■■■ > ßn , and we may assume ßx > 0 if Yx / 0.

Thus Yx = YßjJfi A fi. In the upcoming calculation, we use the fact that

Ric(X, Y) = Y!¡=x(R(Jhi,hj)X, JY) where h,, Jh, is any " ./-adapted" basis
for V.

n

(1.13) 0= (R2YX, /,. A/i) =Y,ßiiR2ifi> A/i), /i- A/,)
(=1

«

= /ii2(Ric(/i, /i) - *„.) - 2^2ß,R,.,xx.
1=2

n «

(1.14) =/?12^Tv,,;11. -2^/?/Ä/./„..
í=2 (=2

By (**), T?,-.(11. = K,x +KiX. > 0 if i > 2, and ßx > ■■■ > ß„, imply that

(1.14) is nonnegative, so we get ßx = ßj Vz. Hence, Yx = ßx ¿~2Jf A f,■, so

ßxX = YX.   U

Proof of Theorem A. Since b2(M; R) =¿ 0, by the Hodge and DeRham theo-
rems, there is a nonzero harmonic 2-form co on M. Since T? has nonnegative

curvature on totally isotropic 2-planes, T?2 is nonnegative at every point (Propo-

sition 1.1) and (1.3) implies that co is parallel and satisfies R2co = 0 (at every

point). Let p be the point where (*) holds. By Proposition 1.1 we may assume

that at p we can write X = £"=1 e2i-X Ae2,■, ex, ... , e2n an orthonormal basis

for TPM, where X is the dual 2-vector for co, and we have multiplied co by

a constant (co has constant length since it is parallel). Then with J defined by

J(e2j-X) = -e2j, J2 = -1 (i.e., X considered as a map on TPM), we have

(1.15) co(u, v) = (u, Jv)   for u, v e TPM.

We use equation (1.15) at every point of M to define / as a skew-symmetric

endomorphism of TM. Then J is parallel (as a section of End(TM)) since

co and the metric are. Also J2 is a parallel endomorphism of TM. Since

J2 = -idjpM and since -id is a parallel endomorphism of TM, we get

J2 = - id everywhere on M. At any point q e M we can find an orthonormal

basis ex,... ,e2n of TqM such that Jq = Yly¡e2i-\ A e2,■. Then J2 = -1
implies that we can take each y,■ = 1 . Thus / is an orthogonal almost complex

structure on M which is parallel, hence [KN, Theorem 4.3, p. 148] / is

integrable and endows (M, g, J) with the structure of a Kahler manifold.

This proves part (i) of Theorem A.

We now prove part (ii) of Theorem A. We now know that M is Kahler, so

that T? is Kahler. If n is any harmonic 2-form on M then n is automatically

parallel and hence satisfies R2n = 0 everywhere. At p , Proposition 1.2 implies

n = ceo, for some c e R, and by parallelism this must in fact be true at

every point (with the same c). Thus every harmonic 2-form is a constant

multiple of co, so b2(M; R) = 1 . Now the first Chern class of M, cx(M)

is represented by the cohomology class of (i/2n)txR, where the trace is taken

over TX'°M relative to the Hermitian extension of ( ,  ), (( ,  )>. This yields
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cx(M) = [(l/2n)Ric(J-, •)]. Since b2 = 1, there is a constant a such that

(1.16) ato = (l/27i)Ric(7-, -) + dn;        n a 1-form, co the Kahler form

(actually it is known that we can write dn = ddF for a function F). Taking

the inner product of both sides of (1.16) with co and integrating over M we

obtain

(1.17) a = -i4nnV)~x f s
Jm

where V = volume of M, s = scalar curvature of M (in our notation,

ico, cx) = ~i4n)~xs). By (1.10), the integral is strictly positive so a < 0.

Thus cxiM) is positive, that is we can represent cx(M) as a(J, ) where a

is a positive definite symmetric bilinear form (in our case, a = -ag). By

Yau's resolution of the Calabi conjecture [Y] we can find a Kahler metric on M

whose Ricci tensor is -ag, and being positive definite a result of Kobayashi

[K] implies that M is simply connected.   D

2. Theorem B

Proof of Theorem B(i). The proof of Theorem 5 of [GK], which assumes M is

a compact Kähler-Einstein manifold of positive holomorphic bisectional curva-

ture, does not invoke that positivity assumption until page 232, line 12, where

positive holomorphic bisectional curvature is invoked to guarantee that, at the

point x, where the holomorphic sectional curvature assumes its maximum, one

has (in our notation) R\-ui- > 0 for z > 2 where e¡, e¡. is an orthonormal

basis of TXM. This last R term equals KXi + KXi. which, since z > 2 , is pos-

itive in our case due to (**) (this is why we need to assume (*) holds at every

point of M). Also, (**) guarantees that, in the notation of [GK], Hx = max-

imum value of the holomorphic sectional curvature, is positive, so the Einstein

constant, k, is positive. The remainder of the proof of Theorem 5 of [GK]

also does not use the assumption of positive holomorphic bisectional curvature,

and thus completes the proof of our Theorem B(i).   D

Before the proof of Theorem B(ii), we do some preparatory work. We assume

from now on that M satisfies the hypotheses for Theorem B(ii), so that M is

a simply connected Kahler manifold with b2 = 1, with nonnegative curvature

on totally isotropic 2-planes, and satisfies (*) (hence (**)) at every point.

Proof of Lemma A (cf. [MM]). Let /: S2 —> M be harmonic. Now E =
f*(TM ® C), given the induced Hermitian structure and connection from M,

can be made into a holomorphic vector bundle over S2 for which a section W

is holomorphic iff Vo'XW = 0. Consider S2 as C U {oc}, and let Z denote

the holomorphic vector field which is d/dz on C and 0 at {oo} (the 0 is

of order 2). Then fiZ is a holomorphic, isotropic section of E. If / is
nontrivial, then this section can vanish for at most a finite number of points

in S2. In [MM, §5], the authors prove (cf. the proof of Theorem 3(i)) that

for any compact manifold M having nonnegative curvature on totally isotropic

2-planes, if / is stable, then

(2.1) ((R(WA(fiZ)),WA(fiZ))) = 0
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at every point if W is any holomorphic isotropic section of E for which

fiZ and W span a totally isotropic 2-plane. In our setting, then we can take

W = J fiZ (where / is the parallel orthogonal almost complex structure on E

induced from the J on TM) which is holomorphic because Vd/dj(JfiZ) =

7(Va/ôz(/*Z)) = 0, isotropic because fiZ is, and fiZ and J fiZ span a to-

tally isotropic 2-plane since ifiZ, JfiZ) = 0. Since our M has nonnegative

curvature on totally isotropic 2-planes and positive curvature on nondegenerate

holomorphic isotropic 2-planes, (2.1) implies that JfiZ = ±ifiZ on an open

set, i.e., / is ± holomorphic on an open set. But a harmonic map which is

± holomorphic on an open set is ± holomorphic [EL, Theorem (9.4), p. 53],

Hence / is ± holomorphic.   D

Suppose now f:S2^>M is a nonconstant holomorphic map. Let TM

be the holomorphic tangent bundle of M. A theorem of Grothendieck [G,

Theorem 2.1, p. 126] guarantees that the holomorphic vector bundle /* TM

splits holomorphically into a direct sum Lx © • • • © Ln of holomorphic line

bundles.
We now claim

(2.2) cx(Lj) > lVz and Ci(L,0) > 2   for some z0.

In (2.2) we have written c\iL¡) for cx(L,)[S2] = js2 cx(L¡). Actually, the proof

of the second part of (2.2) is immediate [F, p. 115]: the holomorphic section

of f*TM, fiZ, projects to a holomorphic section on each L¡, which must

be nontrivial for some z0 ; fiZ has a zero of order two at oo and no poles,

thus, as a section of L,0, fiZ has a zero of order two and no poles whence

cx(Lj0)= sum of zeros minus poles (with multiplicities) of any meromorphic
section, must be at least two.

To prove the first part of (2.2), let B = the dual bundle to f*TM, given
the dual Hermitian metric and connection. Let S = the dual bundle to one of

the L,. We prove that cx(L¡) > 0 by proving cx(S) < 0, and we prove that by

contradiction (cf. [Si, p. 648, last paragraph] and [B, p. 287]). If cx(S) > 0,
then by the Riemann-Roch Theorem, there is a nontrivial holomorphic section

i of 5. We can consider s as a holomorphic section of B, and let Y be

the metric dual to 5 given by ((X, Y)) = s(X) VX e f*TM. A computation

using the second fundamental form, A , of S in B (cf. [GH, pp. 78, 79]) yields

(2.3) ((RB(X, X)s, s)) = ((RS(X, X)s, s)) + \\A(X, s)\\2

for any holomorphic vector field X on S2.

Using the dual, Y, (2.3) can be written

(2.4) -((Y, R(X, X)Y)) = ((RS(X, X)s, s)) + \\A(X, s)\\2,

where R = the curvature tensor on E.

Since fiZ has a zero at oo and is holomorphic, we get s(fiZ) = 0 at each

point, so ((fiZ, Y)) = 0 at each point. Since Y is a section of f*TM where

TM is the holomorphic tangent bundle, we may write Y — A- tJA , for some

secton of f*TM where now TM refers to the real tangent bundle to M (i.e.,

we can write Yp = Af(p) - tJAf(p) where A e Tf^M Vp £ S2), and writing fx

for fi(d/dx), we get ((fx , A)) = ((fix , JA)) = 0. On the other hand, one com-

putes that -((Y,R(X, X)Y)), with  X = Z, equals -4(R(fx , J fx)J A , A).
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This last term is strictly negative by (**), except at the finite number of points

where Y or fiZ vanishes. Thus the left-hand side of (2.4) is negative almost

everywhere so

0 > ((RS(Z , Z)s,s)) = RS(Z , Z)\\s\\2 = 4ncx(S)(X, JX)\\s\\2

(where X = ReZ) almost everywhere, and this yields cx(S) < 0, which is a

contradiction. Hence cx(L¡) > 0 Vz'.

Proof of Theorem B(i) (cf. [SY, Si, F, W]). By Theorem A, H2(M;Z)^1,
H2(M; Z) = Z® torsion, and n2(M) = H2(M; Z). Choose a generator a of

H2(M ; Z) which is a negative multiple of the (class of the) Kahler form co (so

a is positive), and let g be a generator of the free part of n2(M) such that

a(g) = 1. By a result of Kobayashi and Ochiai [KO, Corollary to Theorem

1.1, p. 46], we will be done if cx(M)(g) > n + 1. We may represent the

free homotopy class of g by ¿~Z,i=i fi where each f is harmonic and energy

minimizing in its free homotopy class [SU, Theorem 5.5, p. 22]. By Lemma

A, each fi is ± holomorphic. By (2.2), if k = 1 and fx is holomorphic,
we have cx(M)(g) = cx(M)[fx(S2)] = cx(fx*(TM))[S2] > n+l. Note that if
k = 1, then since Ci (M) is a positive multiple of (the class of) -co, fix must

be holomorphic. Thus we are reduced to showing that k = 1 . This means we

want to show that Proposition 3, p. 201 of [SY] holds under our hypotheses, for

if that proposition does hold, then the proof that k = 1 is identical to that of

Claim 2 of [SY, pp. 202-203]. As was already observed by Futaki [F, Claim 1,
p. 119] the cited Proposition of [SY] remains true as long as f*TM splits into

a direct sum of positive line bundles, where /: S2 —> M is holomorphic (such

an / is called "type I" in [F]). Briefly, in the notation of [SY, p. 197], each
Lj positive (actually nonnegative is sufficient) guarantees that the deformation
map F: D x V —> S2 x M is a submersion at (d, p), where d = the point of

D corresponding to F (F is the graph of f in S2 x M) and p is a point

of S2 where / is an immersion (cx(Lj) > 0 Vz implies that HX(V, Nv) = 0,

where Nv is the normal bundle to V, and guarantees that Nv is generated

by global holomorphic sections at each point). Thus F is onto, which shows

that one can find a deformation of V passing through any point of S2 x M

(although this deformed V might not be the graph of a function S2 —> M).

Now blowing up at a given point of V and repeating the previous argument

(which goes through because blowing up at one point decreases the cx 's by one,

so they are still nonnegative) shows that any tangent direction can be chosen for

a deformation through that point. Thus our (2.2) is enough to guarantee that

Proposition 3 of [SY] does hold, so we are done.   D
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