
transactions of the
american mathematical society
Volume 338, Number 2, August 1993

FRAGMENTS OF BOUNDED ARITHMETIC
AND BOUNDED QUERY CLASSES

JAN KRAJÍCEK

Abstract. We characterize functions and predicates Z^+, -definable in S!¡ ■ In

particular, predicates I^+1-definable in S^ are precisely those in bounded query

Y? YP
class .Pi[0(logn)] (which equals to Log Space •   by [B-H,W]). This implies

yP
that Sj ^ T-\  unless P •[0(lo$n)] = Apj+X .  Further we construct oracle A

such that for all i > 1 : P^iA)lO(logn)] ¿ tf¡+x(A). It follows that S fa) ¿

Tfa) for all i > 1 . Techniques used come from proof theory and boolean

complexity.

Bounded arithmetic, a subtheory of Peano arithmetic with induction axioms

only for bounded formulas, was introduced in [Pa]. Later several other systems

were considered, varying in their language or underlying logic, or restricting

induction axioms even to a subclass of bounded formulas. Bounded arithmetic

is relevant to topics like nonstandard models of arithmetic, interpretability of

theories, computational complexity and complexity of propositional logic1.

Fragments of bounded arithmetic in which we are interested here are theories
S'2 and T2l, subsystems of theory S2 introduced in [Bl]. The language of these

theories consists of symbols: 0, 1 ,+,•,<,=, |_fj » \x\ (= n°g2(x+l)l) and
x#v (« 2lxl'l)'l). Both theories contain 32 universal axioms BASIC defining

most elementary properties of functions represented in the language. T2 is

axiomatized over BASIC by an induction axiom scheme IND:

^(0)&Vx(^(x) -» A(x+ 1)) — Vx^(x)

restricted to bounded T*-formulas A, while in S2 the induction axioms are

replaced by seemingly weaker scheme LIND:

^(0)&^x(^(x) -. A(x + 1)) - VxA(\x\)

restricted also to X*-formulas.

It holds that £( Ç T¡\C Si+X for i > 1 and S2 = IJ Sj = IJ T{ . All S\ and
T\ are finitely axiomatizable and thus the important open question whether S2

is finitely axiomatizable reduces to a question whether 52 = Sl2 or S2 = T[ for

Received by the editors February 21, 1991.
1980 Mathematics Subject Classification (1985 Revision). Primary 03F30; Secondary 03F05,

03F50.
'A survey text covering most parts of bounded arithmetic (and containing also bibliographical

and historical information) is in monograph [H-P].

© 1993 American Mathematical Society
0002-9947/93 $1.00+ $.25 per page

587



588 JAN KRAJÍCEK

some i > 1. This naturally leads to attempts to show that actually S2 ^ T2

and T[ ¿ S'2+1 for all i > 1.

The relationship between T2 and S'2+x is better understood than the re-

lationship between S2 and T2. In [B2] it is proved that S'2+x is VX*+1-

conservative over T2l while in [K-P-T] it was shown that T2l ̂  S'2+x provided

that I?i+2 t¿ Ylp+2 . As S'2+x can be VX*+2-axiomatized these two results seem to

furnish rather complete understanding of the relation of T2 to S'2+x (provided

that the polynomial-time hierarchy PH does not collapse).

About the relation of S2 to T2 considerably less is known. Conservativity of

T2' over S2 was in [K-P and K-T] equivalently restated as certain combinatorial

proof-theoretic problems but neither of them was solved. Problem whether S2

and T2 axe equivalent was in [P] reduced to a problem in complexity theory but

for rather unusual mode of computation: interactive computations with coun-

terexamples, see also [K] for another presentation. A hierarchy theorem for

such computations was proved in [K-P-S] but unfortunately not strong enough

to separate S2 from T2l. Also a relation of this problem about counterexam-

ple computations to standard conjectures in complexity theory is unknown at

present.

The main objective of this paper is to show that S2 = Tl2 would imply

that 7jI'[0(log«)] = A^+1. Here PlPi[0(logn)] is (a straightforward general-

ization of) a class introduced in [Kre], cf. [W]. It consists of those languages
recognizable by a polynomial-time oracle machine quering a ¿ZP -oracle at most

0(log «)-times, « the length of an input. Api+X is the familiar class of languages

recognizable by polynomial-time oracle machines quering a X?-oracle with no

restriction (other than the obvious polynomial one) on the number of queries.

The problem whether P^[0(logn)] = Ap2 seems to be quite extensively stud-

ied, cf. [Kre, B-H, and W]; the case i > 1 was considered in [W]. In particular,

the class P^[0{logn)] was in [B-H and W] equivalently characterized in many

different ways, most notably as the class of predicates log-space Turing reducible

or truth-table reducible (via formulas or circuits) to SAT, or as predicates com-

putable by polynomial-time 1FX -oracle machines which are allowed only one

round of parallel queries, or as the class of predicates definable by ¿Z\ n n^-

formulas (i.e. formulas whose syntactic form puts them simultaneously to X*

and Ylb2).

The arguments from [B-H and W] readily generalize to any oracle of the

form 1PX(A) in place of X^ , and in particular to ~LP(A). This gives completely

analogical characterizations of the classes Pz^A\0(logn)].

Although the conjecture that PE?[0(log«)] ^ Ap2 appears to be closer to

standard conjectures about PH than is the conjecture about counterexample
computations needed for separation of S2 from T2 (see [P and K-P-S]), no

such reduction is in fact known. In particular, it is an open problem whether

any Pzli[0(logn)] = Api+X would imply the collapse of PH. (In [Kre] it is

observed—for i = 1—that such an equality for classes of function instead of

predicates would imply P = NP, and A^ = X^ for general i > 1. Unfortu-

nately, this does not seem to be relevant at all to the case with predicates.)

However, we construct oracle A separating P^^O^og«)] from AP+X(A)
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for all i > 1. The existence of such an oracle implies that theories S2(a) and

T2l(a) are different for all / > 1. Such oracle for i = 1 was constructed in

[B-H]. That S2'(a) ^ Tj(a) and Sj(a) ^ T¡(a) was already proved by other

means in [P and K], and by Buss (unpublished).

1. Modified computations with oracles

We first give the definitions for the case of X^-oracles which generalizes easily

to X^-oracles.

(1.1) Let M be a polynomial-time oracle machine and A(u) = 3vB(u, v) a
X^-oracle, where B is a polynomial-time predicate. We shall always assume that

a polynomial time bound is a part of the specification of M and a polynomial

bound to v , \v\ < \u\k , is a part of B.
An a(M, A, t(n))-computation is a computation obtained by the following

modification of Ap2 -computations. On input x of length « M computes quer-

ing oracle A with the restriction that there are at most t(n) oracle queries in the

computation, but with the addition that if the oracle returns affirmative answer

to a query [A(u)1] it also provides M with a witness to it, i.e. with some v

such that B(u, v). The witness is provided in the same computational step.

Clearly there might be more a(M, A, i(«))-computations on a given input

as the oracle might have several options to choose witnesses from.

(1.2) A function f:co^co is a(M, A, t(n))-computable iff for any x all

a(M,A, i(«))-computations on x output f(x). A predicate is a function

assuming only values 0,1.

(1.3) Proposition. Given machine M and oracle A as in (I.I), and a constant

c, the following is provable in S2 :
"For arbitrary x there exists an a(M, A, c- log(n))-computation on x."

Proof. We may assume that both M and B are defined by A^-formulas. Let

nk be the time bound of M. Consider formula y/ :

y/(a, h, w) :=

(a) "w = (wx, ... , w,) is a computation of length t < \a\k on input a", and

(b) "« is a sequence ((ix, jx), ... , (ir, jr)) for some r < c• \\a\\ such that

ix < i2 < ■■ ■ < ir < t and jx, ... , jr = 0, 1 (we think of « as coding oracle

answers in steps ix, ... , ir)", and

(c) "tí; correctly follows oracle answers coded in « and all oracle queries are

answered in ft", and

(d) "whenever [A(us)1] is the query in step is (s < r) and js = 1 then w¡s

codes a witness vs such that B(us,vs) is true".

Clearly formula y/ is A^ in S\.

Claim. S\ proves formula

"3 maximal m = (jx, ... , jr)3h , w ; " ft is of the form

((ii, ji), ... , (ir,jr))&.y/(a, ft, w)".

(Observe that maximal m means the same as lexicagraphically maximal 0-1

sequence (j\, ... , jr).)
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Proof of the claim. Denote by y¥(a,m) formula

3h,w; "ft is of the form ((ix, j\), ... , (ir, jr))
where m = (ji, ... , jr) and y/(a, ft, w)n.

Clearly *F is X* in S2 . As m is implicitly sharply bounded:

OT<2r<2c-||a|| < |fl|Cj

the existence of maximal m s.t. *F(a, m) follows by X^-LIND.

To conclude the proof of the proposition observe that in ft , w witnessing

^(a, m) for the maximal m all negative oracle-answers (and therefore all an-

swers as the affirmative ones are witnessed) must be correct. Otherwise a 0 in m

could be changed to 1 leaving the earlier bits unchanged and setting the later bits

to 0, and thus increasing m. Therefore w is a wanted a(M, A, c- log(«))-

computation on a.   D

(1.4) Remark. Analogically, a(M, A, /(«))-computations exist for every in-

put provably in S\ + "Vx3y; ||v|| > i(|x|)" (such y's axe needed to code «'s).

For t(n) = log(n)c this is S¡.

(1.5) ß(M, A, t(n))-computations are defined as a(M, A, /(«^-computa-

tions with the change that a witness to a positive oracle-answer is provided only

in the last query of the computation and not otherwise.

(1.6) Proposition. For any M, A, and t(n) as in (1.1) there are machine M'

and Vx-oracle A' such that for every input x it holds:  the set of outputs of
ß(M', A', t(n) + l)-computations on input x is nonempty and is included in

the set of outputs of a(M, A, t(n))-computations on x.

Proof. Machine M' by binary search constructs maximal 0-1 sequence m =

(j\, ■■■ , jr) such that 4*(x, m). This requires \m\ = r < t(n) queries to oracle
Ax (u) := 3v*¥(x, u"v).

Having such maximal m , M' asks [*P(x, m)l\. The answer must be affir-

mative and a witness to it contains a correct a(M, A, I(«))-computation w on

x , therefore also the output of w .

Oracle A' is composed of A x and *F.   D

(1.7) Corollary. If a function f:co-+co is a(M, A, t(n))-computable for

some M, A, t(n) as in (1.1), it is also ß(M', A', t(n) + l)-computable for

some M', A'.   D

(1.8) Proposition. The class of predicates which are a(M, A, c- log(n))-com-

putable for some M, A as in (1.1) and c < co equals the class Pz?[0(log«)].

Proof.  a(M, A, c- log(«))-computability of P1'[0(log«)]-predicates is trivial.

Assume now that predicate  P(x)  is a(M, A, c- log(«))-computable and

so—by (1.7)—also ß(M', A', c- log(«) + Incomputable. In the computation
of M' change the last query—see the proof of (1.6)—to:

[(^(x, m)&"w witnessing »P(x, m) outputs 1")?]

and do not require a witness to it. Clearly affirmative answer to this query is

equivalent to the validity of P(x).   D

(1.9) Generalization to i > 1 . Clearly all preceding definitions and propo-

sitions generalize to i > 1 :  consider a'- and ß'-computations which differ
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from a- and /f-computations in that we allow A to be a X^-oracle. Then B

is required to be A^-predicate.

In particular, (1.3) generalizes to "52 proves that al(M, A, c- log(«))-com-

putations exist on all inputs" and (1.8) gives equivalence between P^[0(logn)]

and the class of a'(M, A, c• log(«))-computable predicates, c < co.

2. Witnessing 5"2-proofs

This section aims at proving the following proposition.

(2.1)   Theorem. For i > 1, a predicate is lfi+x-definable in S2 iff it belongs to

class P?[0(logn)].

Proof. The if-part follows from (1.3), (1.8) and (1.9).  Therefore it remains

only to prove the only if-part of the theorem. This is done by a witnessing type

argument.

Let y/(x, y) be a X*+1-formula such that for all x < co either y/(x, 0) or

y/(x, 1) holds but not both, and assume that S2 proves Vx3y ; y/(x, y)/\y < 1 .

We want to show that the predicate y/(x ,1) is in P^[0(logn)].

Adding possibly to the language some polynomial-time functions (coding and

decoding sequences) we may assume, by cut elimination, that we have an S2-

proof d of the sequent —> 3y^(a,y) in which every sequent has the form

T], A[ -+ Y2, A2 where

(i) Tx, T2 axe cedents of X*- and n*-formulas,

(ii) Ai is a cèdent:

3y, öi (b, y i ),..., 3yr9r(b, yr) and A2 is a cèdent:

3zxnx(b, zx), ... , 3-zsns(b, ~zs), where 0/s and w/s axe n*-formulas and

bounds to y/s and z/s are part of 0/s and m/s respectively.

We say that u is a witness to Tx, Ax for_parameters b_ if u has the form

u = (b,yx, ... ,yr) and conjunction  /y\ Tx (b)& Af\ j<r0j(b, y¡) is true.

We_say that v is a witness to T2, A2 forparameters b if v has the form

v = (b, ~z\, ... , ~zs) and disjunction  \/J T2(b)v \ff j<sr¡j(b, ~zf) is true.

Claim. For every sequent in d of the above form there is a polynomial-time or-

acle machine M, a X^-oracle A , and a constant c <ca such that: if w is a wit-

ness of r1; Ai forparameters b and v is an output of any a'(M,A,c- log(n))-

computation on u then v is a witness of T2, A2 for parameters b .

Proof of the claim. The proof of the claim goes by induction on the number of

sequents in d above the sequent, distinguishing several cases according to the

type of the inference giving the sequent. We treat only two nontrivial cases:

3 <: left and X^-LIND (see [Bl, K], or [P] or other witnessing arguments).

3 <: left case. We consider two subcases according to the complexity of the

principal formula of the inference. If the principal formula is X*+1 but not X*

then the machine remains (essentially) the same: only a parameter becomes a

bounded variable and hence a part of the_witness u .

Assume now that a X*-formula 3t£,(b, t) was inferred from Ç(b, bo), bo

not among b. Assume M witnesses the upper sequent in the sense of the

claim. Construct new machine M': on input u' = (b, ...) it first asks a query
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[3tc¡(b, í)?]. If the answer is negative, M' outputs 0 and stops (u' is not a

witness of Tx, At). If the answer is affirmative then M' is also provided with

a witness t to it, i.e. ¿;(ft, t) is true. Then M' forms u:= (b t, ...) and runs

as M on input u.

X*- LIND case. Assume the inference is of the form

tibo)^iibo + l)

{(0)->{(|i(A)|)

omitting the side formulas. We may also assume that bo is not among b. Let

M be a machine witnessing the upper sequent.

Machine M' on input u' = (b, ...) first computes value w = \t(b)\ and

asks K(tü)?]. If the answer is affirmative it outputs 0 and stops (any v' is a

witness to the succèdent). If the answer is negative it asks [£(0)?]. If the answer

to this query is negative, it outputs 0 and stops.

In the case that the answers to [Ç(w)?] and [£(0)?] were negative resp. af-

firmative, M' finds by binary search t < w such that: Ç(t) holds but Ç(t + 1)

does not; this takes log(iu) = 0(log(log(|w'|))) = 0(log«) queries. Having such

t, M' forms u = (b t,...) and runs as M on input u. Any output v is a

witness to the succèdent of the upper sequent but as Ç(t + 1) fails it is also a

witness to the succèdent of the lower sequent.

This proves the claim.

Clearly, the claim together with (1.8) and (1.9) completes the proof of the

theorem.   D

Remark. Similar witnessing theorem remains true even if S2 is extended by a

certain version of induction for X^+1-formulas arising in a connection with sec-

ond order bounded arithmetic, offering thus (with (1.4)) a conservation result.

This will be considered elsewhere.

(2.2) Corollary. Let i > 1 and assume S2 = T2l. Then

pV[0(logn)] = Ap+x.

Proof. By [B2] every Api+X-predicate is X*+,-definable in T2. This with (2.1)
implies the corollary.   D

(2.3) Corollary. Assume there is an oracle A such that

pVM)[0(logn)]¿Ap+x(A)

for all i > 1. Then S2(a) ¿ T¡(a) for all I > 1.

Proof. The proof of Theorem (2.1) relativizes as does also a proof in [B2] char-

acterizing Ifi+X-definable functions of T2. Therefore (2.2) relativizes too.   D

3. A construction of an oracle

In this section we construct oracle A separating Pz?(/f)[0(log«)] from AP+X(A)

for all i > 1. For i = 1 such oracle was constructed in [B-H] and we shall

later, in (3.12), make use of that construction.
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(3.1)   Theorem. There exists oracle A such that for every i > 1 it holds that

pWA>[0(logn)]¿ApM(A).

(3.2) The proof of the theorem occupies the rest of the paper and is summa-

rized in (3.13). Methodologically we follow a construction of an oracle separat-

ing the levels of the polynomial hierarchy as presented in [HI], following [S].

The strategy is the following.
We define predicates *F?(x) contained always in Api+X(a), a straightfor-

ward generalization of ODDMAXSAT problem. From a characterization of

Pz»[0(log«)] as «-reducible to X?(a) in [B-H, W] we deduce that con-

tainment of *F? in Pzi^[0(logn)] would imply that corresponding boolean

functions (deciding truth-value of *F?(m) for m fixed and a variable) are

computable by boolean circuits of certain type. Utilizing a switching lemma we

then show that this is impossible. (Predicates *F" are defined in a way allowing

a direct use of a switching lemma as formulated and proved in [HI, 2].) This

will imply that all tt-reducibilities to !F¡(a) can be diagonalized and alternating

this diagonalization for all i > 1 will give the required oracle.

(3.3) For i > 1 define formulas

(a) y/x(x,yx) :=yx = 0 Vq((i, x ,yx)),

(b) y/2ix, yi) := yi =0Wy2< y/x- log(x); a((i, x, yx, y2)),

(c) y/i(x,yx) :=yx =0Wy2 < x3y3 < x-Q^y^i <x

_ li-x- log(x)       ...
Q¡y¡ < y-2-' a^1 ,x,yi>---,y¡))■

Thus y/i isa n*_j(a)-formula. Consider predicate

*F"(x) := "maximal yi < x satisfying y/¡(x, yi) is odd".

(3.4)   Lemma. Predicate *¥f(x) is in Api+X(A) for all i > 1 and A ceo.   D

(3.5) Now we define depth i—1 boolean circuites yi,(m,u) with input vari-

ables xu>yi.yi_t>t for every choice of y2, ... , y,_i < m and t < y''m'2log(m)

computing the truth value of y/,(m, u) for every A c co under evaluation of

variables

xu,y2,...,y,-x,t = I    iff (i, m, u,y2, ... , y,_i ,t) £ A.

Precise definition of circuits y/,(m,u) is by induction

(i) circuit Go(u) is just variable xu ,

(ii) circuit Gk+i(u) is conjunction fl\v<mG*k(v) with variables x„,„,,...,„,,

replaced by xu>v>Vx,.„iVk, where G*k(v) is Gk(v) with AND's replaced

by OR's and vice versa,

(iii) y/i(m,u) is G,-2(u) with variables xu,w,...,>>,-_, replaced by conjunc-

tion for i even respectively by disjunction for i odd of variables

ji-m- log(m)
xu,yi.y¡~\,t,        f<y 2 '
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Circuit C¡" is a disjunction of ^f- conjunctions:

y/i(m, u)&  /y\ ->y/¡(m,v),
u<v<m

one for each odd u < m . Clearly C¡" computes *¥f(m) for every A c co.

(3.6) (Bj)j is a partition of variables of C¡" consisting of m'~x classes

! i-m- log(«i'
\ xyi,...,y¡-¡ ,t

for every choice of y\,... , y,_i < m. So these are classes entering a gate at

level 1 of Cf .
i?+, for 0 < q < 1, is a probability space of restrictions p (i.e. maps of

variables into {0, 1, *}) defined by

(i) with probability q : Sj = * , and Sj = 0 with probability 1 - q ,
(ii) for every variable x e B¡, with probability q: p(x) = Sj, and with

probability 1 - q : p(x) = 1.

Space R~ is defined analogically, interchanging the roles of 0 and 1 in the

definition of i?+ (see [HI, 2] for more details).

For restriction p from R+, g(p) is a restriction and renaming of variables

defined as follows: For all Bj with Sj = * , g(p) gives value 1 to all x,,, ...^ 6

Bj given value * by p except one, say the one with minimal last index y,, to

which g(p) assigns new name xyi,...,>,,._, . If p is from R~ , g(p) is defined

identically using 0 instead of 1.
Finally, if G is a circuit with variables among those of C(m then (G \ p)

\ g(p) denotes a boolean function with variables xy,.y¡_,  computed by G
after applying to it successively p and g(p).

(3.7)   Lemma (Hastad). Fix q := yj2-'-^m) , Then it holds.

(a) Let G be a depth 2 subcircuit of C™ , so G is either an OR of AND 's

of size < A/'',m,2'oe(m) or an AND of OR's of size < /i,m,2logW . Then for

a random restriction p from R+ in the former case or from R~ in the latter

one the probability that (G \ p) \ g(p) is an OR (resp. an AND) of at least

^(i-i)-m-iog(fjü different variables is at ¡east \ _ J,m-'+i.

(b) For 1 > 3 and m sufficiently large and p random from R+ if i is even or

from R~ if i is odd it holds: with probability at least | circuit (C(m \ p) \ g(p)

contains C™_x, i.e. for some renaming k of variables

(er \ p) \ g(p) \ k = c?_x.

(c) For i — 2 and p from R+ random, circuit (C2   \ p) \ g(p) contains

with probability at least \ circuit Cf , for « = ^jm' xf(m^.

Proof. This is Hastad's lemma broken into parts which we will later need sep-

arately. For completeness we outline the proof, for details see [H1, 2].

(a) Assume G is an OR of AND's and p is from R+ . An AND gate

corresponds to a class Bj of variables and takes value Sj with probability at
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least

l-(l-,)W = l-[l--/2''-l0g(m)

yfi'm'    IO¿JT

m

1    -,
> 1 - -¿e~x'"log(m) = l-Tm

6 6

So with probability at least 1 - |m~'+1 this is true for all «z AND's in C7.
Expected number of AND's assigned s¡ and not 0 (in the definition of p) is

m-q = sj2-i-m- log(m) and we can get with probability > 1 - g«7~' at least

^(,-l)-m-log(m)    s/sassigned_

Thus with probability at least 1 - \m~i+x (G \ p) \ g(p) is an OR of at

least ^('-»•^•iog(m) variables

(b) There is m'~2 different subcircuits G of depth 2 in C¡". Thus with

probability at least 1 - ^m_1 > \ all of them are restricted as required in (a).

Hence additional renaming k produces C™_x .

(c) If z = 2, y/¡(m, u) axe just AND's of size at most \Jm- log(m) corre-

sponding to classes Bj, and there is m different of them. Thus, by (a), with

probability at least § they all take value Sj which is, again with probability at

least |, equal to * for at least y/m''°gW 0f them.   D

(3.8) A boolean circuit is Zf '%m if it has depth z + 1 with top gate OR, with
at most S gates in levels 2,3, ... ,i +1, bottom gates have arity at most t

and variables are those of C¡" .

A tt-reducibility D = (f;E\,..., Er) of type (i, m, k) is a boolean func-

tion f(wi, ... , wr) in r < log(m)k variables together with a list of r  Xf'tm-

circuits Ei,..., Er, where S = 2Xo*^k, t = log(m)k .

D naturally computes a boolean function on variables of C¡" : first evaluates

Wj := Ej and then / on wfs.
(3.9) The following switching lemma is crucial. For the proof we refer to

[HI, 2].

Lemma (Hastad). Let G be an AND of OR's of size < t of variables of C{"

and p a random restriction from R~\JR+ . Then probability that (G \ p) \ g(p)

cannot be written as an OR of AND's of size < s is bounded by (6 • q • t)s.

The same probability is for converting an OR of AND's into an AND of

OR's.   D

(3.10)   Lemma. Let D be a tt-reducibility of type (i, m, k) and p a random

restriction from RgUR+ with q := a/2m'',^w).

Then with probability at least j ,

(D\p)\ g(p) = (f; (Ex \ p) \ g(p) ,...,(Er\p)\ g(p))

is a tt-reducibility of type (i - 1, m, k).
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Proof. Lemma (3.9) with s = t = log(m)k gives probability of a failure to

convert one depth 2 subcircuit of any E¡ at most

(/- \ log(m)'

6.^»log(m)<) ,

which can be made smaller than any 2~h 'log(w)   increasing m sufficiently.

There is at most 2log(m) such subcircuits so taking « — 2 makes probability

of a failure to convert any of them at most 2~ Xo^m) < I. When all such

subcircuits are converted, they can be merged with gates at level 3.   G

(3.11)   Lemma. Assume that there is a tt-reducibility D,  of type (i,m, k)

computing ^(m) for every A c co.   Then there is a tt-reducibility Dx   of

type (1, m, k) computing *¥f (y/(m • log(m))/2) for every B c a>.

Proof. *¥f(m) is computed by C¡". By Lemmas (3.7) and (3.10) (and q as

there) a random restriction p from i?+ if i is even or from R~ if i is odd

converts simultaneously C™ into Cfl_x and D, into Z),_i of type (i-l ,m,k)

with probability at least \ . Therefore there exists such a restriction p . Clearly

(Cf \ p) \ g(p) and (Dj \ p) \ g(p) compute the same predicate.
Applying this (i - l)-times, clause (c) of (3.7) in the last application, gives

the statement.   D

(3.12) Now we complete the chain of reductions by a lemma which is essen-

tially an oracle construction from [B-H].

Lemma. Let k be arbitrary. Then for m sufficiently large there is no tt-

reducibility D of type (l,m,k) computing ^YA(^/(m- log(m))/2) for every
A C co.

Proof. Let D = (fi; Ex, ... , Er) be type (1, m, k) tt-reducibility and de-

note circuit C" for « = y/(m- log(m))/2 by C. In successive steps we shall

construct sets A+, A~ and Is satisfying

(a) A+ n A~ = 0 and both contain only numbers < y/(m • log(m))/2,

(b) \A+\ <s, \A+ U A-\ < s • log(m)k ,
(c) at least half of numbers < max(^+) belong to A~ U Af ,

(d) Isc{l,...,r}, \Is\=s,
(e) for every B c co such that Af c B and As C\B = 0, and every j £ Is

it holds: Ef =1.

Initiate Aq := Aq := I0:= 0 .

Step s + I. Assume we have sets A+ , A~ , Is satisfying the above conditions.

Put B := Aj ; therefore E-f = 1 for all j £ Is ■ Consider three cases

(1) DB = 1 but maxß is even or DB = 0 but maxß is odd. Then STOP.
(2) DB = 1 and max B = max A+ is odd. Take set

S={x < 2log(m)'| maxA¡ < x, x is even, x i Aj}.

S is nonempty by conditions (a), (b), and (c). There are two possible

subcases:
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(2a) We can add some x £ S to B to form B' := B U {x} , such that

DB' = DB = 1 . Then put A++l := A+ U {x}, A~+l := A~ and
STOP.

(2b) Not (2a). Take x := minS and form ^++1 := A+ U {x}. As D

changes value some Ej0 for jo £ Is had to become true. Take an

AND of Ej0 (containing x) which becomes true and add indices

of all variables negatively occurring in it to A~ to form A~+x (note

that none of them is in A+). Put Is+X := Is U {jo} and GO TO

STEP (5 + 2).
Note that A++l, A~+x, Is+X  satisfy the conditions (a)-(e); in

particular, (c) holds as we have chosen for x the minimal ele-

ment of S.
(3) DB = 0 and max A+ is even. Take set

S = {x< 2log(w>* | max 4+ < x, x odd, x i Aj),

and proceed analogically with case (2).

If we do not stop at step s, necessarily Is is a proper subset of Is+X . Therefore

we stop in at most r < log(m)k steps. Take A := A+ for final s. Clearly DA

does not agree with CA .   G

(3.13) Proof of Theorem (3.1). We construct oracle A such that for all i >

1, ^(x) is not in <Pl(2Zp(A)). Let (Mj)j enumerate all polynomial-time

machines. Considering successively all pairs (i, j) we shall build A in stages

assuring that A/) does not provide a tt-reducibility of ^(x) to TJ¡(A).

Let As be an approximation to A constructed in first 5 stages and let (i, j)

be the first pair not yet considered. Choose m = ms+x so large that all numbers

considered up to now are small w.r.t. «2. M¡ outputs on input m a boolean

function f(wx, ... , wr) and queries zx, ... , zr to a (canonical complete one)

X^(^)-oracle (we do not have to worry how / is presented). A query z to the

Xf (a)-oracle naturally correspond to an evaluation of a X; ']°&^-circuit on vari-

ables corresponding to atomic statements "« e a," where S = 2log(m)t, k a con-

stant. We first evaluate variables corresponding to "« £ a" according to As and

then set equal to 0 all those for which « is not of the form (i, m,yx, ... , y¡),

as these are the only variables on which truth-value of *P"(m) depends.

This leaves us with a tt-reducibility of type (i, m, k) and by Lemmas (3.11)

and (3.12) no such reducibility computes ¥"(«?) correctly for all a. Define

As+X D As in such a way that the tt-reducibility fails, i.e. Mj fails too. Then

proceed to the next pair (i, j).

This completes the proof of the theorem.   G

(3.14) Combining Lemma (2.3) and Theorem (3.1) gives

Corollary.  S^(a) ¿ T¡(a) for all i > 1 .    G
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