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LOOP SPACE HOMOLOGY OF SPACES OF SMALL CATEGORY

YVES FÉLIX AND JEAN-CLAUDE THOMAS

Abstract. Only little is known concerning //» (ÇIX ; k), the loop space homol-

ogy of a finite CW complex X with coefficients in a field k. A space X is

called an r-cone if there exists a filtration * = Xq C Xx c • • • C X, = X,

such that X, has the homotopy type of the cofibre of a map from a wedge of

sphere into X,_x . Denote by Ax the sub-Hopf algebra image of Ht(£lXx).

We prove then that for a graded r-cone, r < 3 , there exists an isomorphism

Ax ® T{U) * H,(Q.X).

Introduction

The structure of H*(ÎÏX ; k), the loop space homology of a finite CW com-

plex X with coefficients in a field k, is an exciting and interesting subject. In

particular it has been conjectured that either the growth of Ht(QX ; k) is poly-

nomial or else that H* (SIX ; k) contains a free Lie algebra on two generators.

On the other hand some important results concerning the depth of H,(ÇIX; k)

have been recently obtained by Halperin, Lemaire, and the authors [8].

In this note we precise the structure of the Pontrjagin algebra, Ht(QX; k),

when X is an r-cone with r small.

Recall that an r-cone, r > 0 (resp. a finite r-cone) X is a sequence

* = X0cXxc---cXr = X,

where X¡, i > 1, is the cofiber of a map g¡, W, -%• X¡-\ -+ X,, with W¡ a

wedge of spheres (resp. a wedge of finitely many spheres) and (/•)» : H,(X¡-X ; k)

—^ H* (X¡ ; k) is trivial.

The image Ax of H*(Q.XX ; k) into H*(ilX ; k) is a graded sub-Hopf algebra
of //*(QX;k), isomorphic to the quotient Hopf algebra H*(CiXx;R)/Kex(iif2)*
when X is a 2-cone.

An r-cone is a space of Lusternik-Schnirelmann category (LS-category) less

than or equal to r.
A space X of LS-category one is a co-77-space. The Bott-Samelson theorem

shows that Ht(QX ; k) is then a tensor algebra, T(V), with

V = @V,   and    Vi = Hi+x(X;k).
;>0
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In the study of the loop space homology of spaces, the first nontrivial case is

given by the 1-connected CW-complex of finite type of category 2. In this case:

(a) the numbers ^^oChm/Z^fiX; k) grow either polynomially or else the

algebra Ht(QX ; k) contains a tensor algebra on two generators [9].

(b) When k = Q, there exists a short exact sequence of graded Lie algebras,

0 -+ L(U) -+ n*(QX) ®Q^Lx^0,

with AX = \JLX [11].

We will precise (a) (Theorem 1), and generalize (b) for some spaces of LS-

category less or equal to 4 (Theorems 2 and 3).
In order to make our results more precise, we have to introduce what we shall

call algebraic r-cones.

Recall that a free model for an augmented chain R-algebra A is a chain

algebra map cp: (T(V), d) —> A such that

(i)   V = @^V,
(ii)   cp induces an isomorphism cp% : H(T(V), d) -» H (A).

When X is a 1-connected CW-complex, Adams and Hilton [1] have already

established the existence of a model of the chain algebra, A = C*(ilX; k),

consisting of the singular cubical chains modulo degeneracies. As shown in [12,

Appendix], one can choose V such that

Vi^H,_x(X;k),        i>2.

In this case the chain algebra (T(V), d) is called minimal.

The same inductive construction as in [1], following the cone filtration instead

of the skeleton filtration gives a filtered free model for a 1-connected r-cone X .

In this case, F is a bigraded vector space satisfying

(a) V = ®o<i<r-i,o<jVj, d(Vi,J)ces<i^+t=i+J-iiF(V))s,t,
(b) Ht(ÇiX, ; k) = H(T(V<¡), d) for i > 0,
(c) Ax = T(V)/(d(V) + V+ ?„) is a sub-Hopf algebra of the graded con-

nected cocommutative Hopf algebra H(T(V), d).

By definition, a space X suchthat Ct^X;^.) admits a free model, (T(V),d),

satisfying the conditions (a) and (c) is called an algebraic r-cone over k with

associated model (T(V), d).
If, moreover each V-, is a graded vector space of finite type (resp. if dim V, <

oo for any i) we shall say that X is an algebraic r-cone of finite type (resp. a

finite algebraic r-cone).

Clearly, any r-cone is an algebraic r-cone over any field k. The converse

is false since, for instance for r = 1, there exists co- H -spaces which are not

wedges of spheres.

Among the class of algebraic r-cones we distinguish those satisfying the

strengthened condition:

(a')   diViJciTiV^j.
These algebraic r-cones will be called graded r-cones. Clearly an algebraic

2-cone is always a graded 2-cone.

For a graded r-cone, X, over k, the homology of QX is a bigraded vector

space:

H,(QX;k) = Ç$Hi,J(ClX;k).
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The integer i is called the filtered degree and / + j the total degree. Later on,

we shall simply denote Hiit(ÇlX; k) by H,. In particular H0 = Ax . We can

now state

Theorem 1. If X isa 1-connected algebraic 2-cone of finite type over a field k,

then there exists a graded subspace U of Hx such that

(a) T(U) is a subalgebra of H*(QX ; k),
(b) The multiplication law induces two linear isomorphisms

T(U)®AX * H.(OX; k) * Ax ® T(U),

(c) // dimHt(X ; k) > 3 then either U = 0 or else dim U > 2.

Notice that U = 0 if and only if there is an isomorphism of Hopf algebras

Ht(QX; k) * Ht(SlX0 ; k)/Ker(Q/)„ = Ax.

In this case the attaching map g2 is called k-inert [12] or strongly free [3].

Example 1. Let X be the 6-skeleton of the product S-] x S% x S¡}, i.e., the

fat wedge of the three spheres S¡ , S¡, S? . Then Ht(ÇlX; k) s Ax ® r(l/) ;
^ = k[a, è, c], with deg(a) = deg(ib) = deg(c) = 2 and U = a • k <g> Ax , with

deg(a) = 7.

Example 2. The restriction of the suspension homomorphism

o,:H*(ÇlX;k)-+H,-l(X;k)

to lo is an injective map. Denote by Ka the kernel of the linear homo-

morphism induced by a* on the vector space of indecomposable elements of

H*(ÍIX):

0^Ka^ Q(H*(QX)) Z #._,(*).

This yields the following corollary.

Corollary. The subalgebra of Ht(Ü.X ; k) generated by Ka is free: T(Ka) in-

jects into Hm(QX).

Theorem 2. If X isa l-connected finite graded 'i-cone over a field k with asso-

ciated free model (T(V), d), then there exist Ux and U2 respectively subspaces

of Hx and H2 such that T(UX © U2) is a free subalgebra of Ht(ClX ; R) and
such that the multiplication law induces two linear isomorphisms

Ax ®T(UX® U2) * H.(£IX ; k) £■ T(UX © U2) ® Ax.

Over Q, we have

H.(T(V),d)2iH.(nX;®)?*V(7i.(nX®Q))    and   AX = \5LX.

In particular, the rational homotopy Lie algebra of a graded 3-cone appears as

an extension of Lx by a free graded Lie algebra,

0 -» L((7, © U2) -» nt(QX) ® Q -» L* -► 0.

Theorem 3. //A" «a 1-connected finite graded 4-cone over <Q, then the structure

of n*(ÇlX) ® Q w give« 6y the following two short exact sequences:

0 - P - ä,(£2AT) ® Q - La- -> 0,

0^L(f7)^P^ A/^0,



714 YVES FELIX AND J.-C. THOMAS

where N is the quotient of a free Lie algebra by an ideal generated by quadratic

elements. Moreover, if X is a 4-cone the generators of N are in the image of

the canonical map Ht(Q.X2 ; Q) -» H*(QX4 ; Q) = Ht(QX ; Q).

To prove these theorems, we use the 7-adic spectral sequence [5]. For the

convenience of the reader some of its properties are recalled in §2. In the first

section we prove that algebraic r-cones X satisfy M-cat(X) < r (see below for

the definition). The other sections are devoted to the proofs of Theorems 1 to

3.

I. M-CATEGORY OF AN  r-CONE

It is well known that the LS-category of an r-cone is less or equal to r. In

this chapter we establish an analogous result for algebraic r-cones.

In [12], Halperin and Lemaire have introduced a new and very powerful ap-

proximation of the category. They called it M-cat. We first recall the definition

of M-cat X for a simply connected space X.

Consider a free model (T(W), d) of C*(X; k) in the category of cochain al-

gebras. Any cochain algebra map (T(W), d) -^ (A, dA) factors as (T(W), d)

—► (T(W © U), d) ^> (A, dA) ■ In particular, for any m we can factor the

quotient map

pm:(T(W),d)^(T(W)/T>m(W),d)

as

(T(W), d) M (T(W © Um), d) S (T(W)/T>m(W), d).

Definition. M-cat(AT) = M-cat((T(V), d)) is the least integer m such that

there exists a morphism

r:(T(W®Um),d)^(T(W),d)

of left (T(V), d) differential modules such that rj = Id^K).

The M-category is an approximation of the category in the sense that [ 12]

M-cat(X) < cat(X). We now consider a graded algebra,

R = k@Ç$Rk.

k>\

The global dimension of R (possibly oo) is the largest integer n such that

ExtJ(k, k) ^ 0. The depth of R (possibly oo) is the least integer n such that

Ext^k.Ä^O.
Now, by [8, Theorem A'] we have

Proposition 1.1. Let X be a simply connected space, k afield, and assume that

each H,(X;k) is finite dimensional. Then

( 1 )   depth//»(Q.X ; k) < M-cat X < gldimH*(QX ; k).
(2) // depth Ht (QX ; k) = M-cat X then

depthH*(ÎÏX; k) = gldim//*(QX; k).

Here we prove
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Proposition 1.2. Let X be a simply connected space, k a field, and assume

that each H¡(X; k) is finite dimensional. If X is an algebraic n-cone then

M-cat(AT) < n.

Proof of Proposition 1.2. Let (T(V),d) -» G(QX; k) be a free model asso-
ciated to the structure of an algebraic «-cone. For every graded vector space

E, we will denote by £v the graded dual of E. The letter B will denote the
(reduced) bar construction. We then have the following quasi-isomorphisms of

differential graded coalgebras:

B(T(V), d) - ß(C(QX; k)) - C(X; k).

Write (TiW), dy) = (B(T(V), d))v the dual cochain algebra. By definition
of B, W'J =* (T+(V))i-Xj and dy is a differential of bidegree (1,0).

Let M = k®Tn+{(W), then M'-* = 0 for 0 < i < n . On the other hand, by
[8, proof of Theorem A' ], we have a differential D and a quasi-isomorphism

of (T(W), i/vdifferential modules:

(TiW) ®M,D)^ (T(W)/T>n(W),d^).

M-cat(X) < n if and only if there exists a morphism

r: (TiW) ® M, D) -> (T(W), dy)

of differential (T(W), i/v)-modules such that the composite

(T(W),dw) >-> (T(W)®M, D) -4 (T(W), dw)

equals Idj-jr/).

By [10] we know that the composite q :

B(T(V),dY = (T(W), dv) -» (T(W)/T>2(W),dv)

= (k®W ,d')^(k®sV ,sdvy

is a quasi-isomorphism of bigraded differential vector spaces. Thus

Hi'*(T(W),dv) = 0

for i > n and any cocycle in Tn+x(W) is a coboundary. This makes possible

the construction of a retraction r.   D

II. The 7-adic spectral sequence

The 7-adic spectral sequence is defined in [5]. For the convenience of the

reader, we recall here its construction and main properties.

Let (T(V), d) be a chain algebra over a field k such that V = ©1>0 V-, is

a graded vector space satisfying d(V,) c Tiy),-X . We denote by / the kernel

of the composite T(V) -> T(V0) -> H0. This gives a short exact sequence of

graded algebras: / —► T(V) —* Ho. It appears that / is a free left (and right)

r(F)-module: / = T(V) ® M for some subspace M of I.
The powers of the ideal / define an increasing filtration

Fo = T(V),        F.„ = I»,     p>0,

which generates a second quadrant spectral sequence of 7/o-algebras satisfying:

(1)   ElPt9 = (P/P+xU+q - (H0 ® «8)p M)).p+q.
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(2) The multiplication law induces an isomorphism of //o-niodules

&H0(I/ñ - iP/Ip+i) = £p% and (I/I2)n ^H0®Vn®H0 for any

n>0.
(3) Ex_p q = 0 if q <2p , therefore the 7-adic spectral sequence converges.

(4) If V = V<n , then E0_pq = 0 for q > p ■ (n + 1).

(5) If HriTiV), d) = 0 for 0 < r < m , then El_pq = 0 for q<n(m+l).

Remark that property (3) gives for n <2p the short exact sequences

E°_p,n nkexdo ~ E°_P3„ ̂ £%,„_, nkerrfo-

As In/In+X is a free H0-module, E°_n 0 = E°^n 0 nkerú?0 is a projective H0-

module. An induction on n shows then that, for each n <2p , E°_pn n kexdo

is a projective üo-module.

Lemma 2.1. Let (T(V), d) be a chain algebra over afield k such that V = V0®
Vx is a vector space, d(V¡) c r(K),_i. Then there exists a natural isomorphism

of algebras THo(Hi(T(V))) - E\^.

Proof of Lemma 2.1. By properties (3) and (4) Ep q = 0 if q ^ 2p. Therefore

the 7-adic spectral sequence collapses at the Ex level and

Hp(T(V),d) = Elpap.

Now, Ex_x 2 = E°_j 2 n kexdo is a projective //o-module.

On the other hand, the natural inclusion Ex_1 2 —> £°, 2 extends to a homo-

morphism of differential i?-algebras

(7i¡,(£ili2), 0) - (7//0(£°li2), rfo) = «•, 4>).

Thus, an induction on the tensor powers and the Künneth spectral sequence

show that this homomorphism induces an isomorphism Th0(EI{ 2) -^ is,1 „

and thus an isomorphism of algebras

TH,(Hi(T(V)))^El,.    D

III. Proof of Theorem 1

Consider a minimal free model associated to an algebraic 2-cone X.  We

thus have

(i) V = V0®VU d(VQ) = 0,

(ii) Vo = e,<,<g V0j, Vi = ©,<;<r Vi,,_, ,
(iii) rf(K0) = Ô, rf(Fli7)c(r(F))o,7,
(iv) HoiTiV), d) <= Ax .

The first two parts of Theorem 2 are now easy consequences of Lemma 2.1.

Indeed,

H4QX;k)^THo(Hx(TiV))),

and since HX(T(V)) is a free left and right 7/o-module [14, Lemma 5], we put

HX(T(V)) = U®AX or Ax ® U.
The last part of Theorem 1 requires some preliminaries:
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Lemma 3.1. If Ax is an algebra of global dimension 2 then Ax = H(T(V), d).

Proof of Lemma 3.1. Any graded connected chain algebra with trivial differen-

tial, (B, 0) admits a free bigraded model [12], /: (T(Z), d) 4 (B, 0) which
is a bigraded differential chain algebra satisfying:

(1) Z = ©p>o,?>o^p.9 •
(2) ¿(ZM)c^(Z)Hij.

(3) HQt.(T(Z),d)*B, Hit.iTiZ),d) = 0, i>0.
(4) iTiZ), d) is unique up to an isomorphism of bigraded differential alge-

bras.
Following Adams and Hilton [1], we can associate to (T(Z), d) an acyclic

(T(Z), (i)-module C = T(Z) ® (k©sZ) with a differential D extending d
and defined by

(1) D(sz) = z-s(dz),  zeZ,
(2) s(sz) = 0, zeZ, s(xy) = (-l)de^xs(y), x, y e T(Z).

The chain complex
B®(k®sZ) = B®T{Z) C

is then a resolution of the field k by free ß-modules:

■ • ■ B ® 5(Z2) ^ 5 ® s(Zx )^B® s(Zo) ^B^k.

Denote by z an element of Zp . We have

D(sz) = z - s(dz).

Write diz) = £,- »>//?/ + Y,; Yj ■ z; > with /?¡ a hasis of Zo , and z; a basis of

0(>1 Z,. This implies

dpsiz) = YtfiyJ)-sizj),       fi(y,)€B+.
j

Thus, Tor^(k, k) = sZp-X.

Since the global dimension of B is less or equal to 2 and since úí(Z) c
T-2iZ), this last relation implies that Zp = 0 for p > 2.

Now, for B = Ax, the two minimal models (T(Z<i), rf) and (T(V), d)
axe isomorphic [12, Appendix], and therefore Hp = 0 for any p > 0.   D

Lemma 3.2. Let G be a graded connected cocommutative Hopf algebra of finite

type over afield k. Then the depth of G is zero if and only if dim G < oo.

Proof of Lemma 3.2. As

Ext£(k;k) = HomG(k, G),

one see that depth((7) = 0 if and only if the annihilator of G+ , Ann G, is

nonzero.

Ann G = {xe G\gx = 0 for all g e G+}.

Clearly, if dim G < co then depth(G) = 0.
We now prove the converse, and we suppose depth(G) = 0.
(a) If k = Q. The Milnor-Moore theorem implies that G = UL for some

Lie algebra L = ®(>0L,. In this case depth(G) = dimk Leven [7]. Thus, L is

concentrated in odd degrees and the Poincaré-Birkoff-Witt theorem [14] implies

that dimk UL < oo.
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(b) If k = Zp for a fixed prime p. Let À : G+ —* G+ ® G+ be the reduced

diagonal. Define A„ : G+ —> G+ ® G+ ® • • • ® G+  (n+ I times) by

A0 = A,        A„+i = (A® 1---1 ® l)oA„

and
F°G = R,        Fn+XG = KerA„,     n > 0.

iFPG) is an increasing filtration of G: F?G c Fp+1G, ljp>0FPG = G.

Set AP = FPG/FP~XG, A = ®pAp . Then by [6, 1.3] the~Hopf algebra A is

both commutative and cocommutative and Ç(A+) = 0 where £(x) = xp .

The Borel theorem implies that the algebra A is isomorphic to ®/l(i) where

the x¡ are generators of A and ^(/) = Zp[x/] or Zp[x/]/xf if x, has even

degree and /\ x, if x, has odd degree or p = 2.

Now, by our assumption, the annihilator of A is nonzero which implies that

dimk A = dimk G is finite.   D

End of the proof of Theorem 1. We denote by (T(F), i/) a free model that gives

to X its algebraic 2-cone structure. We put A = H*(Q.X; k) = H(T(V), d)

and recall that Ax is a sub-Hopf algebra of A which is not necessarily a normal

subalgebra.

By Propositions 1.1 and 1.2, we reduce the proof to three cases.

First case. The global dimension of A is 2 and dim Ax = 00 .

The global dimension of Ax is then 2 and Lemma 3.1 implies that Hx =

HX(T(V) ,d) = 0 and thus part (b) of Theorem 1 implies If = 0.   □

Second case. Depth of A = 1 and dim Ax = 00.
We suppose that U is generated by only one element u and we will construct

a contradiction. As T(u) is a normal subalgebra, we have isomorphisms

ax ® r(w) ^ ^ £■ r(w) ® ax.

This defines a linear automorphism of Ax , b —> b" satisfying u-b-bu-u e (u2)

where (u2) denotes the two-sided ideal of A generated by u2 .

On the other hand,

Ext^(k, A) = HomA(A+ , A)/YlomA(A ,A)¿0.

We denote by ß : A+ —> A a morphism of left ^-modules representing a non-

trivial element of Ext^(k, A), i.e., ß does not extend into an /1-linear endo-

morphism of A.

By linearity, u • ß(b) - bu • ß(u) is an element of the right ^x-submodule

(u2) + T+(u) <8> Ax for any b e (Ax)+ . We decompose the element ß(u) as

ß(u) = bo + ua,       b0 e Ax, a e A.

Necessarily,

b"-bo = 0   for any b e (Ax)+.

As dim Ax = 00, Lemma 3.2 implies bo = 0. Now the relation ub = b'u

associates to any b e Ax some element b' g A . This leads to the relations

uß(b) = b'ß(u) = b'ua = uba.

As A is a free left r(«)-module, this gives ß(b) = ba for any b e Ax . This

yields a contradiction with the assumption of nontriviality of the cocycle ß .
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Thus, bo t¿ 0. By the above relation, the element bo belongs to the annihi-

lator of (Ax)+ and by Lemma 2, dim^x < oo .   D

Third case. Dim Ax < oo .

The Poincaré series of a graded vector space M = 0, M, will be denoted

by P(M) = ^¿dimM/i'. in the same way, the Koszul-Poincaré series of a

bigraded vector space yV will be denoted by

KP(N) = ^i-iy dim Ni jti-i.
i,j

From the obvious relation, KPiTiV)) = KP(H(T(V), d)), we deduce

Y^i-tyiPiTiv)i) = j2i-tripm.
i i

On the other hand, as V = V0® Vx, with lo = @i<i<g v,k, degree of v, = mt

and V\ = 01<;<rfyk, degree of v'j = n}■ + 1, we have

Y,i-typ(Tiv)r) = (Q(t)rx, withQ(t) = i -£/«■■+$>>.
r iei jeJ

We have also (since u e HXs and ^x is finite dimensional):

Y,i-t)lP(H,) = P(Ax)/(l+f),
i

where P(AX) is a polynomial. Thus,

P(Ax)Q(t) = (l + ts).

So, as P(^x) has nonnegative coefficients, the relation

P(AX)(1)Q(1) = 2,        Q(l) = l-g + r,

implies

dim^ = P(^)(l)= 1 or 2.

If Ax = k then X is an algebraic 1-cone thus the only case to consider is

Ax = A x. In this case g = 1 , r = 1 , and A is the homology of the chain

algebra (T(x, y), dy = x2), i.e., dimH+(X, k) = 2.   a

IV. Proof of Theorem 2

Let (T(V0 © Vx ® V2), d) -» C,(QX; k) be a free model which defines the
structure of graded 3-cone on X. The associated 7-adic spectral sequence

satisfies then

Ex_pq = 0   if 2/7 > q or q > 3/7.

This implies

(i) //!=£!, 2, /72 = £l, ,®E2_24,

(Ü)   0 = ¿2 = ¿3 = • • ■ .
On the other hand, H0 is a sub-Hopf algebra of H(T(V), d) = 0/>o//,.

By [5, Lemma 5], the 7/o-modules E}_] 2 and E]_i 3 are free.

The differential module (///2, i/o) = (E°_x 2®E°_¡ 3, <io) is quasi-isomorphic

to the free module (Ex, 0) = (isl, 2 © Ex_x 3, 0) and then, using the Kunneth
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spectral sequence and the isomorphisms of 7/o-modules ®nHI/I2 -^ I"/I"+x,

we obtain an isomorphism of //0-m°dules: Ex ^> Thü(Ex_{ J . From (ii) and

(i), we obtain an isomorphism of 7/o-module,

Ht(QX;k)^THo(Hx®M)

where M is a direct summand of the //o-module H2 .
Then we obtain

Hi = H0 ® Ui = Ui ® H0   and   Ex_x3 = H0<8> U2 = U2® H0

and thus the inclusion C/i © U2 —> //„(flLY; k) uniquely extends to an algebra

homomorphism T(UX ® U2) -» //»(£W ; k), and to two linear isomorphisms

5 ® T(Ui ® U2) * H*(QX ; k) £ TOi © U2) ® 75.    D

V. Proof of Theorem 3

Let

(TO © f7! e F2 © K4), </) - C,(QX ; Q)

be a free model which defines a structure of graded 4-cone on X . The associated

7-adic spectral sequence satisfies then

ElPtg = 0   if2p>qoxq>4p.

Over the rationals, the 7-adic spectral sequence is a spectral sequence of Hopf

algebras, thus each term E} s is a free 7/0-module. This gives an isomorphism

of 7/o-modules: Ex = Th0(Ex_1 J. Now, the differential di is completely

defined by its restriction on E}_, 4 :

¿?i: 7s_, 4 —» 7?_2,4 — ^-1,2 ®h0 E_i2-

By [13, Appendix A], (T(V), d) is the enveloping algebra of a differential
free bigraded Lie algebra. Hence El = 7/0 ® UL^*,,), with

«/ = H<_li2e w_i,3e W-1,4,

flo = UL^,        Elu2 = H0®W-1>2,

£ilj3 = //0®^-l,3, £il,4 = ^0®»'-l,4.

As, dx: W_x<t^L-2yt(W). It is clear that

Eltt*Ho®H>(T(W_u*),d{).

To compute Ht(T(W_x ¡t), dx), we decompose W_x _« in the form

IF_1)t =TF0©TFi,    W0 = W_X>2,    Wi = W-lj3®W-it4.

The first part of Theorem 1 gives an isomorphism

H.ÍTÍW-!,.), di) s [r(fr_i,2)/£/,(»L,,4)] ® TO).

The preceding discussion yields thus the two following exact sequences of

Hopf algebras [14]:

Q - H.iTiW-1,.), di) -^E2^H0^Q,

®^ T(U) ^ H.(T(W_X ,*), dx) -> T(L-X,2)/dx(L_x ,4) ^ ®.
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Moreover, as U is concentrated in bidegrees (-« - 1, 2« + 4), the differentials

d2,d3, ... are all trivial on U by property (4) in §11. The spectral sequence

collapses thus at the 7s2-term.

Denote by P the Lie algebra of primitive elements of 77» ( T( W_ x _ * ), dx )

one get a short exact sequences of Lie algebras:

0 -* P -» it, (OX) ®Q^Lx^0,

0 -» L(U) -> P - L(^_! ,*)/</! (L(H/_, ,4)) - 0,

Thus, TV s= L^W-i i»)/<71(L(IT_1 j4)) is the quotient of a free Lie algebra by an

ideal generated by quadratic elements.

Moreover, if X is a 4-cone, it is clear that the generators of N axe in the

image of the canonical map H*(C1X2 ; Q) -> 77*(QX4 ; Q) = H*(QX ; Q).
Remark finally that

H.iTiW-lt.),dl)ZTiW-lt3)*iH.iTiW-lt2<BW-l,t),dl)),

and applying again Theorem 1 shows that

H.iTiW-l,.),di)e¡TiW-lt3)*iTiW-l,2ydiW-lt4)®TiU')),

for some graded Q-vector spaces U'.   D
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