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LOOP SPACE HOMOLOGY OF SPACES OF SMALL CATEGORY

YVES FELIX AND JEAN-CLAUDE THOMAS

ABSTRACT. Only little is known concerning H.(QX ; k), the loop space homol-
ogy of a finite CW complex X with coefficients in a field k. A space X is
called an r-cone if there exists a filtration * = Xo C X; C --- C X, = X,
such that X; has the homotopy type of the cofibre of a map from a wedge of
sphere into X;_; . Denote by Ay the sub-Hopf algebra image of H.(QX)).
We prove then that for a graded r-cone, r < 3, there exists an isomorphism

Ay ® T(U) S H.(QX).

INTRODUCTION

The structure of H.(QX ; k), the loop space homology of a finite CW com-
plex X with coefficients in a field k, is an exciting and interesting subject. In
particular it has been conjectured that either the growth of H.(QX ; k) is poly-
nomial or else that H,(QX ; k) contains a free Lie algebra on two generators.
On the other hand some important results concerning the depth of H,(QX ; k)
have been recently obtained by Halperin, Lemaire, and the authors [8].

In this note we precise the structure of the Pontrjagin algebra, H.(QJX ; k),
when X is an r-cone with r small.

Recall that an r-cone, r > 0 (resp. a finite r-cone) X is a sequence

x=XoCXiC---CX, =X,

where X;, i > 1, is the cofiber of a map g, W; & X,_, 4, X;, with W a
wedge of spheres (resp. a wedge of finitely many spheres) and (f;).: H.(X;—;; k)
— H,(X;; k) is trivial.

The image Ay of H,(QX;; k) into H.(QX ; k) is a graded sub-Hopf algebra
of H,(QX;Kk), isomorphic to the quotient Hopf algebra H.(QX;; R)/Ker(Q /)«
when X is a 2-cone.

An r-cone is a space of Lusternik-Schnirelmann category (LS-category) less
than or equal to r.

A space X of LS-category one is a co-H-space. The Bott-Samelson theorem
shows that H,(QX ; k) is then a tensor algebra, 7(V), with

V=@V and Vi=Hu(X; k).
i>0
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In the study of the loop space homology of spaces, the first nontrivial case is
given by the 1-connected CW-complex of finite type of category 2. In this case:

(a) the numbers Y ;_,dim H;(QX ; k) grow either polynomially or else the
algebra H,(Q2X; k) contains a tensor algebra on two generators [9].

(b) When k = Q, there exists a short exact sequence of graded Lie algebras,

0— L(U) — 1.(QX)®Q — Ly — 0,

with Ay = ULy [11].

We will precise (a) (Theorem 1), and generalize (b) for some spaces of LS-
category less or equal to 4 (Theorems 2 and 3).

In order to make our results more precise, we have to introduce what we shall
call algebraic r-cones.

Recall that a free model for an augmented chain R-algebra A4 is a chain
algebra map ¢: (T(V), d) — A such that

1) V=BV
(i) ¢ induces an isomorphism ¢.: H(T(V),d) — H(A).

When X is a l-connected CW-complex, Adams and Hilton [1] have already
established the existence of a model of the chain algebra, 4 = C.(QX; k),
consisting of the singular cubical chains modulo degeneracies. As shown in [12,
Appendix], one can choose V' such that

Vi Hi_(X; k), i>2

In this case the chain algebra (T(V), d) is called minimal.

The same inductive construction as in [1], following the cone filtration instead
of the skeleton filtration gives a filtered free model for a 1-connected r-cone X .
In this case, V' is a bigraded vector space satisfying

@) V =@ocicr—1,0¢; ¥Vi.j» Vi) C Bsei syrminjor (TN ))s1t

(b) H.(QX;; k)= H(T(V<), d) for i >0,

() Ax = T(V)/(d(V) + Vi .) is a sub-Hopf algebra of the graded con-
nected cocommutative Hopf algebra H(T(V), d).

By definition, a space X such that C,(QX;k) admits a free model, (T(V), d),
satisfying the conditions (a) and (c) is called an algebraic r-cone over k with
associated model (T(V),d).

If, moreover each V; is a graded vector space of finite type (resp. if dimV; <
oo for any i) we shall say that X is an algebraic r-cone of finite type (resp. a
finite algebraic r-cone).

Clearly, any r-cone is an algebraic r-cone over any field k. The converse
is false since, for instance for r = 1, there exists co- H-spaces which are not
wedges of spheres.

Among the class of algebraic r-cones we distinguish those satisfying the
strengthened condition:

@) d(Vi,;) c(T(V))i-1,;-

These algebraic r-cones will be called graded r-cones. Clearly an algebraic
2-cone is always a graded 2-cone.

For a graded r-cone, X, over k, the homology of QX is a bigraded vector
space:

H.(QX; k) =@ H: ;(QX; k).
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The integer i is called the filtered degree and i + j the total degree. Later on,
we shall simply denote H; .(QX; k) by H;. In particular Hy = Ay . We can
now state

Theorem 1. If X is a 1-connected algebraic 2-cone of finite type over a field k,
then there exists a graded subspace U of H, such that

(a) T(U) is a subalgebra of H.(QX ; k),
(b) The multiplication law induces two linear isomorphisms
T(U)® Ay > H,(QX:; k) & Ay ® T(U),
(c) If dim H,(X ; k) > 3 then either U =0 or else dimU > 2.
Notice that U = 0 if and only if there is an isomorphism of Hopf algebras
H,(QX;K) S H,(QXo; k)/Ker(Qf). = Ay.
In this case the attaching map g, is called k-inert [12] or strongly free [3].

Example 1. Let X be the 6-skeleton of the product S3 x S} x 82, i.e., the
fat wedge of the three spheres S2,S3,S?. Then H,(QX;k) = Ax ® T(U);
Ax =K[a, b, c], with deg(a) = deg(b) = deg(c) =2 and U = a-k® Ay, with
deg(a)=17.
Example 2. The restriction of the suspension homomorphism

o.: H(QX; k) — H._1(X; k)

to Vp is an injective map. Denote by K, the kernel of the linear homo-
morphism induced by o, on the vector space of indecomposable elements of
H,(QX):

0—K; — Q(H*(QX)) % H*—I(X)‘

This yields the following corollary.

Corollary. The subalgebra of H.(QX ; k) generated by K, is free: T(K;) in-
Jjects into H,(QX).

Theorem 2. If X is a 1-connected finite graded 3-cone over a field k with asso-
ciated free model (T(V'), d), then there exist Uy, and U, respectively subspaces
of Hy and H, such that T(U, ® U,) is a free subalgebra of H.(QX ; R) and
such that the multiplication law induces two linear isomorphisms
Ay @ T(Uy & Up) S H (QX ; k) & T(U; @ Uy) ® Ay.
Over Q, we have
H(T(V),d)= H.(QX; Q) =2 U(n.(QX ®Q)) and Ay =ULy.

In particular, the rational homotopy Lie algebra of a graded 3-cone appears as
an extension of Ly by a free graded Lie algebra,

0= LU & Uy) - 1. (QX)®Q — Ly — 0.

Theorem 3. If X isa 1-connected finite graded 4-cone over Q, then the structure
of m.(QX)® Q is given by the following two short exact sequences:

0-P->m(QX)®Q— Ly —0,
0-LU)—-P—-N-0,
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where N is the quotient of a free Lie algebra by an ideal generated by quadratic
elements. Moreover, if X is a 4-cone the generators of N are in the image of
the canonical map H,(QX;; Q) —» H.(QXs; Q) = H.(QX; Q).

To prove these theorems, we use the I-adic spectral sequence [5]. For the
convenience of the reader some of its properties are recalled in §2. In the first
section we prove that algebraic r-cones X satisfy M-cat(X) < r (see below for
the definition). The other sections are devoted to the proofs of Theorems 1 to
3.

I. M-CATEGORY OF AN r-CONE

It is well known that the LS-category of an r-cone is less or equal to r. In
this chapter we establish an analogous result for algebraic r-cones.

In [12], Halperin and Lemaire have introduced a new and very powerful ap-
proximation of the category. They called it M-cat. We first recall the definition
of M-cat X for a simply connected space X .

Consider a free model (T'(W), d) of C*(X ; k) in the category of cochain al-
gebras. Any cochain algebra map (T(W), d) — (4, d4) factors as (T(W), d)
- (T(W e U),d) S (4,d,). In particular, for any m we can factor the
quotient map

pm: (T(W), d) - (T(W)[T>™(W), d)
as ‘
(T(W), d) L (T(W & Un), d) = (T(W)/T>™(W), d).

Definition. M-cat(X) = M-cat((7T(V), d)) is the least integer m such that
there exists a morphism

ri(T(WeUn),d) - (T(W), d)
of left (T'(V'), d) differential modules such that rj = Idry, .

The M-category is an approximation of the category in the sense that [12]
M-cat(X) < cat(X). We now consider a graded algebra,

R=ko PR~
k>1
The global dimension of R (possibly oo) is the largest integer n such that
Extx(k, k) # 0. The depth of R (possibly oo) is the least integer n such that
Extix(k, R) #0.
Now, by [8, Theorem A’] we have

Proposition 1.1. Let X be a simply connected space, k a field, and assume that
each H;(X ; k) is finite dimensional. Then

(1) depth H,(QX ; k) < M-cat X < gldim H,(QX ; k).

(2) If depth H.(QX ; k) = M-cat X then

depth H.(QX ; k) = gldim H.(QX ; k).

Here we prove
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Proposition 1.2. Let X be a simply connected space, k a field, and assume
that each H;(X ; k) is finite dimensional. If X is an algebraic n-cone then
M-cat(X) < n.

Proof of Proposition 1.2. Let (T(V),d) — C.(QX; k) be a free model asso-
ciated to the structure of an algebraic n-cone. For every graded vector space
E , we will denote by EV the graded dual of E. The letter B will denote the
(reduced) bar construction. We then have the following quasi-isomorphisms of
differential graded coalgebras:

B(T(V), d) - B(C.(QX; k) — C.(X; k).

Write (T(W), dV) = (B(T(V), d))" the dual cochain algebra. By definition
of B, WiJ = (T+(V));_y,; and d" is a differential of bidegree (1, 0).

Let M =keT" (W), then M'-* =0 for 0 < i < n. On the other hand, by
[8, proof of Theorem A’], we have a differential D and a quasi-isomorphism
of (T(W), dV)-differential modules:

(T(W)® M, D)% (T(W)/T>"(W), dv).

M-cat(X) < n if and only if there exists a morphism
r:(TW)®M,D)— (T(W),d")
of differential (T (W), dV)-modules such that the composite
(T(W),d¥)— (T(W)® M, D) - (T(W), d")
equals Idzy).
By [10] we know that the composite g :
B(T(V),d)Y =(T(W),d") - (T(W)/T>*(W), d")
=koW,d)— (kosV,sdy)
is a quasi-isomorphism of bigraded differential vector spaces. Thus
H(T(W),d")=0

for i > n and any cocycle in T"+!(W) is a coboundary. This makes possible
the construction of a retraction r. O

II. THE I-ADIC SPECTRAL SEQUENCE

The [I-adic spectral sequence is defined in [5]. For the convenience of the
reader, we recall here its construction and main properties.

Let (T(V), d) be a chain algebra over a field k such that V =@, V; is
a graded vector space satisfying d(V;) ¢ T(V),_,. We denote by I the kernel
of the composite T(V) — T(Vy) — Hy. This gives a short exact sequence of
graded algebras: I — T(V) — Hy. It appears that I is a free left (and right)
T(V)-module: I =T(V)® M for some subspace M of I.

The powers of the ideal I define an increasing filtration

F0=T(V)9 F—p:Ip’ P>O>
which generates a second quadrant spectral sequence of Hy-algebras satisfying:
(1) E%, o= (IP/1P*Y)_pyg = (Hy © (@ M) pug-
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(2) The multiplication law induces an isomorphism of Hj-modules
1,0(1/12) — (IP/17*Y) = EY , and (I/1%), = Hy® V, ® Hy for any
n>0.

(3) Elp,q =0 if g < 2p, therefore the I-adic spectral sequence converges.
(4) f V=Vg,,then E) , =0 for g>p-(n+1).
(5) If H(T(V),d)=0 for 0<r<m,then E!, =0 for g <r-(m+1).

Remark that property (3) gives for n < 2p the short exact sequences

E°, ,Nkerdy— E°, , 4 E°, ,_ Nkerd.

As I"/I"*! is a free Ho-module, E°, (= E°  Nkerdy is a projective Ho-
module. An induction on n shows then that, for each n < 2p, E° ».nNkerdp
is a projective Hy-module.

Lemma 2.1. Let (T(V), d) be a chain algebra over a field k such that V = Vy&
Vi is a vector space, d(V;) C T(V),—,. Then there exists a natural isomorphism
of algebras Ty,(H\(T(V))) — E! ..

Proof of Lemma 2.1. By properties (3) and (4) E; , =0 if g # 2p. Therefore
the I-adic spectral sequence collapses at the E! level and

Hy(T(V),d) = El—p,Zp'

Now, E!| ,=E?, ,Nkerdy is a projective Hp-module.
On the other hand, the natural inclusion E', , — E?, , extends to a homo-
morphism of differential R-algebras

(Try(EL, 1), 0) = (T (E2, 5), do) = (EY .., do).

Thus, an induction on the tensor powers and the Kiinneth spectral sequence
show that this homomorphism induces an isomorphism Ty, (E!, ,) = E! ,
and thus an isomorphism of algebras

Tu,(H(T(V)) S El .. O

III. PROOF OF THEOREM 1

Consider a minimal free model associated to an algebraic 2-cone X . We
thus have

i) V=Weh, dh) =0,
(1) W= @15,‘53 Vo,i» Vi = GBISISV Vij-1s
(i) d(¥) =0, d(V1,;) C(T(V))o,)»
(iv) Ho(T(V),d)= Ay .
The first two parts of Theorem 2 are now easy consequences of Lemma 2.1.
Indeed,
H.(QX; K) = Ty (H(T(V))),

and since H\(T(V)) is a free left and right Hy-module [14, Lemma 5}, we put
H(TWV)=U®Ay or AxU.
The last part of Theorem 1 requires some preliminaries:
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Lemma 3.1. If Ax is an algebra of global dimension 2 then Ay = H(T(V), d).

Proof of Lemma 3.1. Any graded connected chain algebra with trivial differen-
tial, (B, 0) admits a free bigraded model [12], f: (T(Z), d) > (B, 0) which
is a bigraded differential chain algebra satisfying:

(1) Z = @p>0 q>OZp,q~

(2) d(Zy q) € T2XZ)porg.

(3) Ho,«(T(Z),d)= B, H; .(T(Z),d)=0, i>0.
(4) (T ( ), d) is unique up to an isomorphism of bigraded differential alge-
bras.

Following Adams and Hilton [1], we can associate to (7(Z), d) an acyclic
(T(Z),d)-module C = T(Z) ® (k® sZ) with a differential D extending d
and defined by

(1) D(sz)=z-s(dz), z€ Z,

(2) s(sz) =0, z€ Z, s(xy) = (—1)4eXxs(y), x,y e T(Z).

The chain complex

BekosZ) = B ®71(z) C

is then a resolution of the field k by free B-modules:

- B®s(Z) 2 Bes(Z) L Bos(Zy) % B -k
Denote by z an element of Z,. We have
D(sz) =z — s(dz).

Write d(z) = ) ,vifi + Z v+ zj, with B; a basis of Z;, and z; a basis of
Di>1 Zi - Th1s implies

2)=3fr)-s(z)),  f(n)€B..
J

Thus, Torp (k, k) =5Z,_; .

Since the global dimension of B is less or equal to 2 and since d(Z) C
T22(Z), this last relation implies that Z,=0 for p>2.

Now, for B = Ay, the two minimal models (T(Z<;), d) and (T(V), d)
are isomorphic [12, Appendix], and therefore H, =0 forany p >0. O

Lemma 3.2. Let G be a graded connected cocommutative Hopf algebra of finite
type over a field k. Then the depth of G is zero if and only if dimG < c.

Proof of Lemma 3.2. As
Ext}(k; k) = Homg(k, G),

one see that depth(G) = 0 if and only if the annihilator of G,, AnnG, is
nonzero.
AnnG = {x € G|gx =0for all g € G;}.

Clearly, if dim G < oo then depth(G) =0.

We now prove the converse, and we suppose depth(G) =0.

(a) If k = Q. The Milnor-Moore theorem implies that G = UL for some
Lie algebra L = EB,>0 . In this case depth(G) = dimg Leven [7]. Thus, L is
concentrated in odd degrees and the Poincaré-Birkoff-Witt theorem [14] implies
that dimy UL < .
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(b) If k =2, f_or a fixed prime p. Let A: G, — G, ® G, be the reduced
diagonal. Define A,: Gy - G, ®G, ®---® G, (n+1 times) by

Z0=X, Zn+l:(Z®1"'l®1)°Zn

and
F°G =R, F™!G =KerA,, n>0.
(FPG) is an increasing filtration of G: FPG C FP*'G, Upso FPG=G.

Set A? = FPG/FP~'G, A= @, 47 . Then by [6, 1.3] the Hopf algebra 4 is
both commutative and cocommutative and &(A4;) =0 where &(x) = x”.

The Borel theorem implies that the algebra A4 is isomorphic to @ A(i) where
the x; are generators of 4 and A(i) = Zy[x;] or Z,[x;]/x? if x; has even
degree and A x; if x; has odd degree or p = 2.

Now, by our assumption, the annihilator of A is nonzero which implies that
dimy A =dimy G is finite. O

End of the proof of Theorem 1. We denote by (T(V), d) a free model that gives
to X its algebraic 2-cone structure. We put 4 = H.(QX; k) = H(T(V), d)
and recall that Ay is a sub-Hopf algebra of 4 which is not necessarily a normal
subalgebra.

By Propositions 1.1 and 1.2, we reduce the proof to three cases.

First case. The global dimension of 4 is 2 and dimAy = .

The global dimension of Ay is then 2 and Lemma 3.1 implies that H; =
H\(T(V), d) =0 and thus part (b) of Theorem 1 implies U=0. O

Second case. Depth of A =1 and dimAy = .
We suppose that U is generated by only one element # and we will construct
a contradiction. As 7(u) is a normal subalgebra, we have isomorphisms

Ax®Tw) S 4 & T(u) ® Ay.

This defines a linear automorphism of Ay, b — b satisfying u-b—b*-u € (u?)
where (u?) denotes the two-sided ideal of 4 generated by u?.
On the other hand,

Ext(k, 4) = Hom,(4, , A)/Hom (A, A) # 0.

We denote by f: A, — A a morphism of left A-modules representing a non-
trivial element of Ext)(k, 4), i.e., 8 does not extend into an A-linear endo-
morphism of 4.

By linearity, u - (b) — b* - B(u) is an element of the right Ay-submodule
(u?)+ T*(u) ® Ax for any b € (Ax),. We decompose the element S(u) as

ﬂ(u)=b0+ua, boe Ax, ae A.

Necessarily,
b*-by=0 forany b e (Ay),.

As dimAy = oo, Lemma 3.2 implies by = 0. Now the relation ub = b'u
associates to any b € Ay some element b’ € A. This leads to the relations

up(b) = b'B(u) = b'ua = uba.

As A is a free left T(u)-module, this gives B(b) = ba for any b € Ay. This
yields a contradiction with the assumption of nontriviality of the cocycle f.
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Thus, by # 0. By the above rclation, the element by belongs to the annihi-
lator of (Ax), and by Lemma 2, dimAy < co. O

Third case. DimAy < co.

The Poincaré series of a graded vector space M = @; M; will be denoted
by P(M) = Y ,dimM;t'. In the same way, the Koszul-Poincaré series of a
bigraded vector space N will be denoted by

KP(N) = (-1)'dim N; ;¢/~".
i,j
From the obvious relation, KP(T(V)) = KP(H(T(V), d)), we deduce
Y (=0T (V) =) ()7 P(H)).
i i

On the other hand, as V' = V@& V1, with ¥y = @, vik, degree of v; = m;

and V| = GBISjS,v}k, degree of v} =n;+ 1, we have

Y (=OP(T(V)) = (Qu)™", with Q) =1-Y 1"+ 1.
r i€l JjeJ

We have also (since u € H; ; and Ay is finite dimensional):

Y (=0)'P(H;) = P(4x)/(1 + £),

i
where P(Ay) is a polynomial. Thus,
P(Ax)Q(1) = (1 +2).

So, as P(Ax) has nonnegative coefficients, the relation

P(Ax)(1)Q(1) =2, Ql)=1-g+r,
implies
dimAy = P(Ax)(1)=1or 2.
If Ay =k then X is an algebraic 1-cone thus the only case to consider is

Ax = Ax. Inthiscase g =1, r =1, and A is the homology of the chain
algebra (T(x,y),dy =x2),ie, dimH, (X, k)=2. O

IV. PROOF OF THEOREM 2

Let (T(Voo Vio Vy),d) —» Ci(QX; k) be a free model which defines the
structure of graded 3-cone on X . The associated /-adic spectral sequence
satisfies then

E!l, ,=0 if2p>gqorg>3p.

This implies

(1) H, = Ellyz , Hy = El] )3 D E32,4 s

(1) O=dy=d3s=---.

On the other hand, H, is a sub-Hopf algebra of H(T(V), d) = @,5( H;.
By [5, Lemma 5], the Hy-modules E‘_l‘2 and Elm are free. -

The differential module (I/12, do) = (E°, ,®E°, 5, do) is quasi-isomorphic
to the free module (E', 0) = (El, ,® E!, ;,0) and then, using the Kunneth
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spectral sequence and the isomorphisms of Ho-modules @7 I/1? = L o
we obtain an isomorphism of Hy-modules: E' S Ty, (E!, ). From (ii) and
(1), we obtain an isomorphism of Hjy-module,
H(QX; k) — Ty, (Hy & M)
where M is a direct summand of the Hy-module H,.
Then we obtain
H =Hy, Uy =U,® Hy and Eil,3 =Hy U, =U, ® Hy

and thus the inclusion U; @ U, — H,(QX ; k) uniquely extends to an algebra
homomorphism 7T(U; & U;) — H.(Q2X ; k), and to two linear isomorphisms

BeT(Uy & Uy) > H(QX k) < T(Uye Uy) ®B. O

V. PROOF OF THEOREM 3

Let
(Theehely),d — C(QX;Q)
be a free model which defines a structure of graded 4-cone on X . The associated
I-adic spectral sequence satisfies then

1
E—qu

Over the rationals, the I-adic spectral sequence is a spectral sequence of Hopf
algebras, thus each term E,l s 1s a free Hyp-module. This gives an isomorphism

of Hy-modules: E' = Ty (EL, ,). Now, the differential d, is completely
defined by its restriction on E!, ,:

=0 if2p>qorq>4p.

.l 2 1 1
ditELy 4= EZ, 42 EL ,®m B\ 5.

By [13, Appendix A], (T(V), d) is the enveloping algebra of a differential
free bigraded Lie algebra. Hence E' = Hy ® UL(W, .), with

W=W_,eW_130W_4,
Hy=ULy, El ,=Hy®W_, 5,
EL, ;=Hy@W_, 3, ELl, 42 Hy® W_| 4
As, di: W_; . — L_y .(W). Itis clear that
El ¥ Hy® H(T(W_ .), dy).
To compute H.(T(W_, .), d;), we decompose W_; , in the form
Woi.=WooW,, Wo=W_1,, Wi =W_30W_4
The first part of Theorem 1 gives an isomorphism
H(T(W_y,.), d\) 2 [T(W-y 2)/di(W-1,4)]® T(U).

The preceding discussion yields thus the two following exact sequences of
Hopf algebras [14]:

Q— H(T(W-1.),d) = E* = Hy— Q,

Q—-TWU)—- H(TW_,.),d)) = T(L_y)/di(L_,4) = Q.
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Moreover, as U is concentrated in bidegrees (—n—1, 2n+4), the differentials
dy, ds, ... are all trivial on U by property (4) in §II. The spectral sequence
collapses thus at the E2-term.

Denote by P the Lie algebra of primitive elements of H.(T(W_, .), d))
one get a short exact sequences of Lie algebras:

0-P-m(QX)Q—-Ly -0,
0 L(U) = P — L(OW_, )/ (L(W- 2)) — 0,

Thus, N =L(W_, .)/d;(L(W_, 4)) is the quotient of a free Lie algebra by an
ideal generated by quadratic elements.
Moreover, if X is a 4-cone, it is clear that the generators of N are in the
image of the canonical map H.(QX;; Q) — H.(QX4; Q) = H.(QX; Q).
Remark finally that

H(T(W_y,.),d) 2 T(W_y 3) % (H(T(W-1 2® W_1 4), d1)),
and applying again Theorem 1 shows that
HA(T(W_y.), d) = T(W_y 3) % (T(W-y 2)/d(W_, 4) ® T(U")),

for some graded Q-vector spaces U’. O
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