LOOP SPACE HOMOLOGY OF SPACES OF SMALL CATEGORY

YVES FÉLIX AND JEAN-CLAUDE THOMAS

ABSTRACT. Only little is known concerning $H_*(\Omega X; \mathbf{k})$, the loop space homology of a finite CW complex X with coefficients in a field \mathbf{k} . A space X is called an r-cone if there exists a filtration $*=X_0\subset X_1\subset\cdots\subset X_r=X$, such that X_i has the homotopy type of the cofibre of a map from a wedge of sphere into X_{i-1} . Denote by A_X the sub-Hopf algebra image of $H_*(\Omega X_1)$. We prove then that for a graded r-cone, $r\leq 3$, there exists an isomorphism $A_X\otimes T(U)\stackrel{\cong}{\to} H_*(\Omega X)$.

Introduction

The structure of $H_*(\Omega X; \mathbf{k})$, the loop space homology of a finite CW complex X with coefficients in a field \mathbf{k} , is an exciting and interesting subject. In particular it has been conjectured that either the growth of $H_*(\Omega X; \mathbf{k})$ is polynomial or else that $H_*(\Omega X; \mathbf{k})$ contains a free Lie algebra on two generators. On the other hand some important results concerning the depth of $H_*(\Omega X; \mathbf{k})$ have been recently obtained by Halperin, Lemaire, and the authors [8].

In this note we precise the structure of the Pontrjagin algebra, $H_*(\Omega X; \mathbf{k})$, when X is an r-cone with r small.

Recall that an r-cone, $r \ge 0$ (resp. a finite r-cone) X is a sequence

$$* = X_0 \subset X_1 \subset \cdots \subset X_r = X$$
,

where X_i , $i \ge 1$, is the cofiber of a map g_i , $W_i \stackrel{g_i}{\to} X_{i-1} \stackrel{f_i}{\to} X_i$, with W_i a wedge of spheres (resp. a wedge of finitely many spheres) and $(f_i)_*$: $\widetilde{H}_*(X_{i-1}; \mathbf{k}) \to \widetilde{H}_*(X_i; \mathbf{k})$ is trivial.

The image A_X of $H_*(\Omega X_1; \mathbf{k})$ into $H_*(\Omega X; \mathbf{k})$ is a graded sub-Hopf algebra of $H_*(\Omega X; \mathbf{k})$, isomorphic to the quotient Hopf algebra $H_*(\Omega X_1; R)/\mathrm{Ker}(\Omega f_2)_*$ when X is a 2-cone.

An r-cone is a space of Lusternik-Schnirelmann category (LS-category) less than or equal to r.

A space X of LS-category one is a co-H-space. The Bott-Samelson theorem shows that $H_*(\Omega X; \mathbf{k})$ is then a tensor algebra, T(V), with

$$V = \bigoplus_{i \geq 0} V_i$$
 and $V_i = \widetilde{H}_{i+1}(X; \mathbf{k}).$

Received by the editors May 6, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57P35, 57P10, 57T25, 55P62.

Key words and phrases. Loop space, r-cones, Lusternik-Schnirelmann category, Hopf algebra, global dimension, depth.

This research partially supported by a CNRS-CGRI travel grant held by the authors.

In the study of the loop space homology of spaces, the first nontrivial case is given by the 1-connected CW-complex of finite type of category 2. In this case:

- (a) the numbers $\sum_{i=0}^{n} \dim H_i(\Omega X; \mathbf{k})$ grow either polynomially or else the algebra $H_*(\Omega X; \mathbf{k})$ contains a tensor algebra on two generators [9].
 - (b) When $k = \mathbb{Q}$, there exists a short exact sequence of graded Lie algebras,

$$0 \to \mathbb{L}(U) \to \pi_*(\Omega X) \otimes \mathbb{Q} \to L_X \to 0$$
,

with $A_X = UL_X$ [11].

We will precise (a) (Theorem 1), and generalize (b) for some spaces of LS-category less or equal to 4 (Theorems 2 and 3).

In order to make our results more precise, we have to introduce what we shall call algebraic r-cones.

Recall that a *free model* for an augmented chain R-algebra A is a chain algebra map $\varphi: (T(V), d) \to A$ such that

- (i) $V = \bigoplus_{i>0} V_i$
- (ii) φ induces an isomorphism $\varphi_*: H(T(V), d) \to H(A)$.

When X is a 1-connected CW-complex, Adams and Hilton [1] have already established the existence of a model of the chain algebra, $A = C_*(\Omega X; \mathbf{k})$, consisting of the singular cubical chains modulo degeneracies. As shown in [12, Appendix], one can choose V such that

$$V_i \cong \widetilde{H}_{i-1}(X; \mathbf{k}), \qquad i \geq 2.$$

In this case the chain algebra (T(V), d) is called *minimal*.

The same inductive construction as in [1], following the cone filtration instead of the skeleton filtration gives a filtered free model for a 1-connected r-cone X. In this case, V is a bigraded vector space satisfying

- (a) $V = \bigoplus_{0 \le i \le r-1, 0 \le j} V_{i,j}, d(V_{i,j}) \subset \bigoplus_{s \le i, s+t=i+j-1} (T(V))_{s,t},$
- (b) $H_*(\Omega X_i; \mathbf{k}) = H(T(V_{< i}), d)$ for $i \ge 0$,
- (c) $A_X = T(V)/(d(V) + V_{+,*})$ is a sub-Hopf algebra of the graded connected cocommutative Hopf algebra H(T(V), d).

By definition, a space X such that $C_*(\Omega X; \mathbf{k})$ admits a free model, (T(V), d), satisfying the conditions (a) and (c) is called an algebraic r-cone over \mathbf{k} with associated model (T(V), d).

If, moreover each V_i is a graded vector space of finite type (resp. if dim $V_i < \infty$ for any i) we shall say that X is an algebraic r-cone of finite type (resp. a finite algebraic r-cone).

Clearly, any r-cone is an algebraic r-cone over any field k. The converse is false since, for instance for r = 1, there exists co-H-spaces which are not wedges of spheres.

Among the class of algebraic r-cones we distinguish those satisfying the strengthened condition:

(a')
$$d(V_{i,j}) \subset (T(V))_{i-1,j}$$
.

These algebraic r-cones will be called $graded\ r$ -cones. Clearly an algebraic 2-cone is always a graded 2-cone.

For a graded r-cone, X, over \mathbf{k} , the homology of ΩX is a bigraded vector space:

$$H_{\star}(\Omega X; \mathbf{k}) = \bigoplus H_{i,j}(\Omega X; \mathbf{k}).$$

The integer i is called the filtered degree and i+j the total degree. Later on, we shall simply denote $H_{i,*}(\Omega X; \mathbf{k})$ by H_i . In particular $H_0 = A_X$. We can now state

Theorem 1. If X is a 1-connected algebraic 2-cone of finite type over a field k, then there exists a graded subspace U of H_1 such that

- (a) T(U) is a subalgebra of $H_*(\Omega X; \mathbf{k})$,
- (b) The multiplication law induces two linear isomorphisms

$$T(U) \otimes A_X \stackrel{\cong}{\to} H_*(\Omega X; \mathbf{k}) \stackrel{\cong}{\leftarrow} A_X \otimes T(U),$$

(c) If dim $H_*(X; \mathbf{k}) \ge 3$ then either U = 0 or else dim $U \ge 2$.

Notice that U = 0 if and only if there is an isomorphism of Hopf algebras

$$H_*(\Omega X; \mathbf{k}) \stackrel{\cong}{\to} H_*(\Omega X_0; \mathbf{k}) / \mathrm{Ker}(\Omega f)_* = A_X.$$

In this case the attaching map g_2 is called k-inert [12] or strongly free [3].

Example 1. Let X be the 6-skeleton of the product $S_a^3 \times S_b^3 \times S_c^3$, i.e., the fat wedge of the three spheres S_a^3 , S_b^3 , S_c^3 . Then $H_*(\Omega X; \mathbf{k}) \cong A_X \otimes T(U)$; $A_X = \mathbf{k}[a, b, c]$, with $\deg(a) = \deg(b) = \deg(c) = 2$ and $U = \alpha \cdot \mathbf{k} \otimes A_X$, with $\deg(\alpha) = 7$.

Example 2. The restriction of the suspension homomorphism

$$\sigma_*: H_*(\Omega X; \mathbf{k}) \to H_{*-1}(X; \mathbf{k})$$

to V_0 is an injective map. Denote by K_{σ} the kernel of the linear homomorphism induced by σ_* on the vector space of indecomposable elements of $H_*(\Omega X)$:

$$0 \to K_{\sigma} \to Q(H_{*}(\Omega X)) \xrightarrow{\sigma} H_{*-1}(X).$$

This yields the following corollary.

Corollary. The subalgebra of $H_*(\Omega X; \mathbf{k})$ generated by K_{σ} is free: $T(K_{\sigma})$ injects into $H_*(\Omega X)$.

Theorem 2. If X is a 1-connected finite graded 3-cone over a field \mathbf{k} with associated free model (T(V), d), then there exist U_1 and U_2 respectively subspaces of H_1 and H_2 such that $T(U_1 \oplus U_2)$ is a free subalgebra of $H_*(\Omega X; R)$ and such that the multiplication law induces two linear isomorphisms

$$A_X \otimes T(U_1 \oplus U_2) \stackrel{\cong}{\to} H_*(\Omega X; \mathbf{k}) \stackrel{\cong}{\leftarrow} T(U_1 \oplus U_2) \otimes A_X.$$

Over Q, we have

$$H_*(T(V), d) \cong H_*(\Omega X; \mathbb{Q}) \cong \mathrm{U}(\pi_*(\Omega X \otimes \mathbb{Q}))$$
 and $A_X = \mathrm{U}L_X$.

In particular, the rational homotopy Lie algebra of a graded 3-cone appears as an extension of L_X by a free graded Lie algebra,

$$0 \to \mathbb{L}(U_1 \oplus U_2) \to \pi_*(\Omega X) \otimes \mathbb{Q} \to L_X \to 0.$$

Theorem 3. If X is a 1-connected finite graded 4-cone over \mathbb{Q} , then the structure of $\pi_*(\Omega X) \otimes \mathbb{Q}$ is given by the following two short exact sequences:

$$0 \to P \to \pi_*(\Omega X) \otimes \mathbb{Q} \to L_X \to 0,$$

$$0 \to \mathbb{L}(U) \to P \to N \to 0.$$

where N is the quotient of a free Lie algebra by an ideal generated by quadratic elements. Moreover, if X is a 4-cone the generators of N are in the image of the canonical map $H_*(\Omega X_2; \mathbb{Q}) \to H_*(\Omega X_4; \mathbb{Q}) = H_*(\Omega X; \mathbb{Q})$.

To prove these theorems, we use the *I*-adic spectral sequence [5]. For the convenience of the reader some of its properties are recalled in §2. In the first section we prove that algebraic r-cones X satisfy \mathbf{M} -cat $(X) \leq r$ (see below for the definition). The other sections are devoted to the proofs of Theorems 1 to 3.

I. M-CATEGORY OF AN r-CONE

It is well known that the LS-category of an r-cone is less or equal to r. In this chapter we establish an analogous result for algebraic r-cones.

In [12], Halperin and Lemaire have introduced a new and very powerful approximation of the category. They called it M-cat. We first recall the definition of M-cat X for a simply connected space X.

Consider a free model (T(W), d) of $C^*(X; \mathbf{k})$ in the category of cochain algebras. Any cochain algebra map $(T(W), d) \to (A, d_A)$ factors as $(T(W), d) \to (T(W \oplus U), d) \stackrel{\cong}{\to} (A, d_A)$. In particular, for any m we can factor the quotient map

$$\rho_m: (T(W), d) \to (T(W)/T^{>m}(W), \overline{d})$$

as

$$(T(W), d) \stackrel{j}{\rightarrow} (T(W \oplus U_m), d) \stackrel{\cong}{\rightarrow} (T(W)/T^{>m}(W), \overline{d}).$$

Definition. M-cat(X) = M-cat((T(V), d)) is the least integer m such that there exists a morphism

$$r: (T(W \oplus U_m), d) \to (T(W), d)$$

of left (T(V), d) differential modules such that $rj = Id_{T(V)}$.

The M-category is an approximation of the category in the sense that [12] $M\text{-cat}(X) \le \text{cat}(X)$. We now consider a graded algebra,

$$R=\mathbf{k}\oplus\bigoplus_{k\geq 1}R^k.$$

The global dimension of R (possibly ∞) is the largest integer n such that $\operatorname{Ext}_R^n(\mathbf{k},\mathbf{k})\neq 0$. The depth of R (possibly ∞) is the least integer n such that $\operatorname{Ext}_R^n(\mathbf{k},R)\neq 0$.

Now, by [8, Theorem A'] we have

Proposition 1.1. Let X be a simply connected space, k a field, and assume that each $H_i(X; k)$ is finite dimensional. Then

- (1) depth $H_*(\Omega X; \mathbf{k}) \leq \text{M-cat } X \leq \text{gl dim } H_*(\Omega X; \mathbf{k})$.
- (2) If depth $H_*(\Omega X; \mathbf{k}) = M\text{-cat } X$ then

depth
$$H_*(\Omega X; \mathbf{k}) = \operatorname{gldim} H_*(\Omega X; \mathbf{k}).$$

Here we prove

Proposition 1.2. Let X be a simply connected space, \mathbf{k} a field, and assume that each $H_i(X; \mathbf{k})$ is finite dimensional. If X is an algebraic n-cone then M-cat $(X) \leq n$.

Proof of Proposition 1.2. Let $(T(V), d) \to C_*(\Omega X; \mathbf{k})$ be a free model associated to the structure of an algebraic *n*-cone. For every graded vector space E, we will denote by E^{\vee} the graded dual of E. The letter \underline{B} will denote the (reduced) bar construction. We then have the following quasi-isomorphisms of differential graded coalgebras:

$$\underline{B}(T(V), d) \to \underline{B}(C_*(\Omega X; \mathbf{k})) \leftarrow C_*(X; \mathbf{k}).$$

Write $(T(W), d^{\vee}) = (\underline{B}(T(V), d))^{\vee}$ the dual cochain algebra. By definition of \underline{B} , $W^{i,j} \cong (T^+(V))_{i-1,j}$ and d^{\vee} is a differential of bidegree (1,0).

Let $M = \mathbf{k} \oplus T^{n+1}(W)$, then $M^{i,*} = 0$ for $0 < i \le n$. On the other hand, by [8, proof of Theorem A'], we have a differential D and a quasi-isomorphism of $(T(W), d^{\vee})$ -differential modules:

$$(T(W) \otimes M, D) \xrightarrow{\varphi} (T(W)/T^{>n}(W), \overline{d^{\vee}}).$$

M-cat $(X) \le n$ if and only if there exists a morphism

$$r: (T(W) \otimes M, D) \rightarrow (T(W), d^{\vee})$$

of differential $(T(W), d^{\vee})$ -modules such that the composite

$$(T(W), d^{\vee}) \rightarrow (T(W) \otimes M, D) \xrightarrow{r} (T(W), d^{\vee})$$

equals $Id_{T(V)}$.

By [10] we know that the composite q:

$$\underline{B}(T(V), d)^{\vee} = (T(W), d^{\vee}) \to (T(W)/T^{>2}(W), d^{\vee})$$
$$= (\mathbf{k} \oplus W, d') \to (\mathbf{k} \oplus sV, sd_V)^{\vee}$$

is a quasi-isomorphism of bigraded differential vector spaces. Thus

$$H^{i,*}(T(W), d^{\vee}) = 0$$

for i > n and any cocycle in $T^{n+1}(W)$ is a coboundary. This makes possible the construction of a retraction r. \square

II. THE I-ADIC SPECTRAL SEQUENCE

The *I*-adic spectral sequence is defined in [5]. For the convenience of the reader, we recall here its construction and main properties.

Let (T(V), d) be a chain algebra over a field \mathbf{k} such that $V = \bigoplus_{i \geq 0} V_i$ is a graded vector space satisfying $d(V_i) \subset T(V)_{i-1}$. We denote by I the kernel of the composite $T(V) \to T(V_0) \to H_0$. This gives a short exact sequence of graded algebras: $I \to T(V) \to H_0$. It appears that I is a free left (and right) T(V)-module: $I = T(V) \otimes M$ for some subspace M of I.

The powers of the ideal I define an increasing filtration

$$F_0 = T(V), \qquad F_{-p} = I^p, \quad p > 0,$$

which generates a second quadrant spectral sequence of H_0 -algebras satisfying:

(1)
$$E^0_{-p,q} = (I^p/I^{p+1})_{-p+q} \cong (H_0 \otimes (\bigotimes^p M))_{-p+q}.$$

- (2) The multiplication law induces an isomorphism of H_0 -modules $\bigotimes_{H_0}^p (I/I^2) \to (I^p/I^{p+1}) = E_{p,*}^0$ and $(I/I^2)_n \cong H_0 \otimes V_n \otimes H_0$ for any n > 0.
- (3) $E_{-p,q}^1 = 0$ if q < 2p, therefore the *I*-adic spectral sequence converges.
- (4) If $V = V_{\leq n}$, then $E^0_{-p,q} = 0$ for $q > p \cdot (n+1)$.
- (5) If $H_r(T(V), d) = 0$ for 0 < r < m, then $E^1_{-p,q} = 0$ for $q < r \cdot (m+1)$.

Remark that property (3) gives for $n \le 2p$ the short exact sequences

$$E^0_{-p,n} \cap \ker d_0 \rightarrowtail E^0_{-p,n} \stackrel{d_0}{\to} E^0_{-p,n-1} \cap \ker d_0.$$

As I^n/I^{n+1} is a free H_0 -module, $E^0_{-n,0} = E^0_{-n,0} \cap \ker d_0$ is a projective H_0 -module. An induction on n shows then that, for each $n \leq 2p$, $E^0_{-p,n} \cap \ker d_0$ is a projective H_0 -module.

Lemma 2.1. Let (T(V), d) be a chain algebra over a field \mathbf{k} such that $V = V_0 \oplus V_1$ is a vector space, $d(V_i) \subset T(V)_{i-1}$. Then there exists a natural isomorphism of algebras $T_{H_0}(H_1(T(V))) \to E^1_{*,*}$.

Proof of Lemma 2.1. By properties (3) and (4) $E_{p,q}^1 = 0$ if $q \neq 2p$. Therefore the *I*-adic spectral sequence collapses at the E^1 level and

$$H_p(T(V), d) = E^1_{-p, 2p}.$$

Now, $E_{-1,2}^1 = E_{-1,2}^0 \cap \ker d_0$ is a projective H_0 -module.

On the other hand, the natural inclusion $E^1_{-1,2} \to E^0_{-1,2}$ extends to a homomorphism of differential R-algebras

$$(T_{H_0}(E^1_{-1,2}), 0) \to (T_{H_0}(E^0_{-1,2}), d_0) \cong (E^0_{*,*}, d_0).$$

Thus, an induction on the tensor powers and the Künneth spectral sequence show that this homomorphism induces an isomorphism $T_{H_0}(E^1_{-1,2}) \stackrel{\cong}{\to} E^1_{*,*}$ and thus an isomorphism of algebras

$$T_{H_0}(H_1(T(V))) \stackrel{\cong}{\to} E^1_{*,*}. \quad \Box$$

III. Proof of Theorem 1

Consider a minimal free model associated to an algebraic 2-cone \boldsymbol{X} . We thus have

- (i) $V = V_0 \oplus V_1$, $d(V_0) = 0$,
- (ii) $V_0 = \bigoplus_{1 \le i \le g} V_{0,i}$, $V_1 = \bigoplus_{1 \le j \le r} V_{1,j-1}$,
- (iii) $d(V_0) = \overline{0}, d(V_{1,j}) \subset (T(V))_{0,j}^{\overline{0},\overline{0}},$
- (iv) $H_0(T(V), d) \cong A_X$.

The first two parts of Theorem 2 are now easy consequences of Lemma 2.1. Indeed,

$$H_*(\Omega X; \mathbf{k}) \cong T_{H_0}(H_1(T(V))),$$

and since $H_1(T(V))$ is a free left and right H_0 -module [14, Lemma 5], we put $H_1(T(V)) = U \otimes A_X$ or $A_X \otimes U$.

The last part of Theorem 1 requires some preliminaries:

Lemma 3.1. If A_X is an algebra of global dimension 2 then $A_X = H(T(V), d)$. Proof of Lemma 3.1. Any graded connected chain algebra with trivial differential, (B, 0) admits a free bigraded model [12], $f: (T(Z), d) \stackrel{\simeq}{\to} (B, 0)$ which is a bigraded differential chain algebra satisfying:

- (1) $Z = \bigoplus_{p>0, q>0} Z_{p,q}$.
- (2) $d(Z_{p,q}) \subset T^{\geq 2}(Z)_{p-1,q}$.
- (3) $H_{0,*}(T(Z), d) \cong B$, $H_{i,*}(T(Z), d) = 0$, i > 0.
- (4) (T(Z), d) is unique up to an isomorphism of bigraded differential algebras.

Following Adams and Hilton [1], we can associate to (T(Z), d) an acyclic (T(Z), d)-module $C = T(Z) \otimes (\mathbf{k} \oplus sZ)$ with a differential D extending d and defined by

- $(1) D(sz) = z s(dz), z \in Z,$
- (2) s(sz) = 0, $z \in \mathbb{Z}$, $s(xy) = (-1)^{\deg(x)} x s(y)$, $x, y \in \mathbb{T}(\mathbb{Z})$.

The chain complex

$$B \otimes (\mathbf{k} \oplus sZ) = B \otimes_{T(Z)} C$$

is then a resolution of the field k by free B-modules:

$$\cdots B \otimes s(Z_2) \xrightarrow{d_2} B \otimes s(Z_1) \xrightarrow{d_1} B \otimes s(Z_0) \xrightarrow{d_0} B \rightarrow \mathbf{k}.$$

Denote by z an element of Z_p . We have

$$D(sz) = z - s(dz).$$

Write $d(z) = \sum_i \nu_i \beta_i + \sum_j \gamma_j \cdot z_j$, with β_i a basis of Z_0 , and z_j a basis of $\bigoplus_{i>1} Z_i$. This implies

$$d_p s(z) = \sum_j f(\gamma_j) \cdot s(z_j), \qquad f(\gamma_i) \in B_+.$$

Thus, $\operatorname{Tor}_{p}^{B}(\mathbf{k}, \mathbf{k}) = sZ_{p-1}$.

Since the global dimension of B is less or equal to 2 and since $d(Z) \subset T^{\geq 2}(Z)$, this last relation implies that $Z_p = 0$ for $p \geq 2$.

Now, for $B = A_X$, the two minimal models $(T(Z_{\leq 1}), d)$ and (T(V), d) are isomorphic [12, Appendix], and therefore $H_p = 0$ for any p > 0. \square

Lemma 3.2. Let G be a graded connected cocommutative Hopf algebra of finite type over a field \mathbf{k} . Then the depth of G is zero if and only if $\dim G < \infty$.

Proof of Lemma 3.2. As

$$\operatorname{Ext}_G^0(\mathbf{k}; \mathbf{k}) = \operatorname{Hom}_G(\mathbf{k}, G),$$

one see that depth(G) = 0 if and only if the annihilator of G_+ , Ann G, is nonzero.

Ann
$$G = \{x \in G | gx = 0 \text{ for all } g \in G_+\}.$$

Clearly, if $\dim G < \infty$ then $\operatorname{depth}(G) = 0$.

We now prove the converse, and we suppose depth(G) = 0.

(a) If $\mathbf{k}=\mathbb{Q}$. The Milnor-Moore theorem implies that $G=\mathbf{U}L$ for some Lie algebra $L=\bigoplus_{i\geq 0}L_i$. In this case $\mathrm{depth}(G)=\mathrm{dim}_{\mathbf{k}}\ L_{\mathrm{even}}$ [7]. Thus, L is concentrated in odd degrees and the Poincaré-Birkoff-Witt theorem [14] implies that $\mathrm{dim}_{\mathbf{k}}\ UL<\infty$.

(b) If $\mathbf{k} = \mathbb{Z}_p$ for a fixed prime p. Let $\overline{\Delta} \colon G_+ \to G_+ \otimes G_+$ be the reduced diagonal. Define $\overline{\Delta}_n \colon G_+ \to G_+ \otimes G_+ \otimes \cdots \otimes G_+$ (n+1 times) by

$$\overline{\Delta}_0 = \overline{\Delta}, \quad \overline{\Delta}_{n+1} = (\overline{\Delta} \otimes 1 \cdots 1 \otimes 1) \circ \overline{\Delta}_n$$

and

$$F^0G = R$$
, $F^{n+1}G = \operatorname{Ker}\overline{\Delta}_n$, $n \ge 0$.

 (F^pG) is an increasing filtration of $G: F^pG \subset F^{p+1}G$, $\bigcup_{p>0} F^pG = G$.

Set $A^p = F^p G/F^{p-1}G$, $A = \bigoplus_p A^p$. Then by [6, 1.3] the Hopf algebra A is both commutative and cocommutative and $\xi(A_+) = 0$ where $\xi(x) = x^p$.

The Borel theorem implies that the algebra A is isomorphic to $\bigotimes A(i)$ where the x_i are generators of A and $A(i) = \mathbb{Z}_p[x_i]$ or $\mathbb{Z}_p[x_i]/x_i^p$ if x_i has even degree and $\bigwedge x_i$ if x_i has odd degree or p = 2.

Now, by our assumption, the annihilator of A is nonzero which implies that $\dim_k A = \dim_k G$ is finite. \square

End of the proof of Theorem 1. We denote by (T(V), d) a free model that gives to X its algebraic 2-cone structure. We put $A = H_*(\Omega X; \mathbf{k}) = H(T(V), d)$ and recall that A_X is a sub-Hopf algebra of A which is not necessarily a normal subalgebra.

By Propositions 1.1 and 1.2, we reduce the proof to three cases.

First case. The global dimension of A is 2 and dim $A_X = \infty$.

The global dimension of A_X is then 2 and Lemma 3.1 implies that $H_1 = H_1(T(V), d) = 0$ and thus part (b) of Theorem 1 implies U = 0. \square

Second case. Depth of A = 1 and dim $A_X = \infty$.

We suppose that U is generated by only one element u and we will construct a contradiction. As T(u) is a normal subalgebra, we have isomorphisms

$$A_X \otimes T(u) \stackrel{\cong}{\to} A \stackrel{\cong}{\leftarrow} T(u) \otimes A_X.$$

This defines a linear automorphism of A_X , $b \to b^u$ satisfying $u \cdot b - b^u \cdot u \in (u^2)$ where (u^2) denotes the two-sided ideal of A generated by u^2 .

On the other hand,

$$\operatorname{Ext}_{A}^{1}(\mathbf{k}, A) = \operatorname{Hom}_{A}(A_{+}, A) / \operatorname{Hom}_{A}(A, A) \neq 0.$$

We denote by $\beta: A_+ \to A$ a morphism of left A-modules representing a non-trivial element of $\operatorname{Ext}_A^1(\mathbf{k}, A)$, i.e., β does not extend into an A-linear endomorphism of A.

By linearity, $u \cdot \beta(b) - b^u \cdot \beta(u)$ is an element of the right A_X -submodule $(u^2) + T^+(u) \otimes A_X$ for any $b \in (A_X)_+$. We decompose the element $\beta(u)$ as

$$\beta(u) = b_0 + ua$$
, $b_0 \in A_X$, $a \in A$.

Necessarily,

$$b^u \cdot b_0 = 0$$
 for any $b \in (A_X)_+$.

As dim $A_X = \infty$, Lemma 3.2 implies $b_0 = 0$. Now the relation ub = b'u associates to any $b \in A_X$ some element $b' \in A$. This leads to the relations

$$u\beta(b) = b'\beta(u) = b'ua = uba.$$

As A is a free left T(u)-module, this gives $\beta(b) = ba$ for any $b \in A_X$. This yields a contradiction with the assumption of nontriviality of the cocycle β .

Thus, $b_0 \neq 0$. By the above relation, the element b_0 belongs to the annihilator of $(A_X)_+$ and by Lemma 2, $\dim A_X < \infty$. \square

Third case. Dim $A_X < \infty$.

The Poincaré series of a graded vector space $M = \bigoplus_i M_i$ will be denoted by $P(M) = \sum_i \dim M_i t^i$. In the same way, the Koszul-Poincaré series of a bigraded vector space N will be denoted by

$$KP(N) = \sum_{i,j} (-1)^i \dim N_{i,j} t^{j-i}.$$

From the obvious relation, KP(T(V)) = KP(H(T(V), d)), we deduce

$$\sum_{i} (-t)^{-i} P(T(V)_{i}) = \sum_{i} (-t)^{-i} P(H_{i}).$$

On the other hand, as $V=V_0\oplus V_1$, with $V_0=\bigoplus_{1\leq i\leq g}v_i\mathbf{k}$, degree of $v_i=m_i$ and $V_1=\bigoplus_{1\leq j\leq r}v_j'\mathbf{k}$, degree of $v_j'=n_j+1$, we have

$$\sum_{r} (-t)^{r} P(T(V)_{r}) = (Q(t))^{-1}, \quad \text{with } Q(t) = 1 - \sum_{i \in I} t^{m_{i}} + \sum_{j \in J} t^{n_{j}}.$$

We have also (since $u \in H_{1,s}$ and A_X is finite dimensional):

$$\sum_{i} (-t)^{i} P(H_{i}) = P(A_{X})/(1+t^{s}),$$

where $P(A_X)$ is a polynomial. Thus,

$$P(A_X)Q(t) = (1 + t^s).$$

So, as $P(A_X)$ has nonnegative coefficients, the relation

$$P(A_X)(1)Q(1) = 2$$
, $Q(1) = 1 - g + r$,

implies

$$\dim A_X = P(A_X)(1) = 1 \text{ or } 2.$$

If $A_X = \mathbf{k}$ then X is an algebraic 1-cone thus the only case to consider is $A_X = \bigwedge x$. In this case g = 1, r = 1, and A is the homology of the chain algebra $(T(x, y), dy = x^2)$, i.e., dim $H_+(X, \mathbf{k}) = 2$. \square

IV. Proof of Theorem 2

Let $(T(V_0 \oplus V_1 \oplus V_2), d) \to C_*(\Omega X; \mathbf{k})$ be a free model which defines the structure of graded 3-cone on X. The associated I-adic spectral sequence satisfies then

$$E_{-p,q}^1 = 0$$
 if $2p > q$ or $q > 3p$.

This implies

- (i) $\hat{H_1} = E_{-1,2}^1$, $H_2 = E_{-1,3}^1 \oplus E_{-2,4}^2$,
- (ii) $0 = d_2 = d_3 = \cdots$.

On the other hand, H_0 is a sub-Hopf algebra of $H(T(V), d) = \bigoplus_{i \geq 0} H_i$. By [5, Lemma 5], the H_0 -modules $E_{-1,2}^1$ and $E_{-1,3}^1$ are free.

The differential module $(I/I^2, d_0) = (E_{-1,2}^0 \oplus E_{-1,3}^0, d_0)$ is quasi-isomorphic to the free module $(E^1, 0) = (E_{-1,2}^1 \oplus E_{-1,3}^1, 0)$ and then, using the Kunneth

spectral sequence and the isomorphisms of H_0 -modules $\bigotimes_H^n I/I^2 \xrightarrow{\cong} I^n/I^{n+1}$, we obtain an isomorphism of H_0 -modules: $E^1 \xrightarrow{\cong} T_{H_0}(E^1_{-1,*})$. From (ii) and (i), we obtain an isomorphism of H_0 -module,

$$H_*(\Omega X; \mathbf{k}) \to T_{H_0}(H_1 \oplus M)$$

where M is a direct summand of the H_0 -module H_2 . Then we obtain

$$H_1 = H_0 \otimes U_1 = U_1 \otimes H_0$$
 and $E_{-1,3}^1 = H_0 \otimes U_2 = U_2 \otimes H_0$

and thus the inclusion $U_1 \oplus U_2 \to H_*(\Omega X; \mathbf{k})$ uniquely extends to an algebra homomorphism $T(U_1 \oplus U_2) \to H_*(\Omega X; \mathbf{k})$, and to two linear isomorphisms

$$B \otimes T(U_1 \oplus U_2) \stackrel{\cong}{\to} H_*(\Omega X; \mathbf{k}) \stackrel{\cong}{\leftarrow} T(U_1 \oplus U_2) \otimes B. \quad \Box$$

V. Proof of Theorem 3

Let

$$(T(V_0 \oplus V_1 \oplus V_2 \oplus V_4), d) \rightarrow C_*(\Omega X; \mathbb{Q})$$

be a free model which defines a structure of graded 4-cone on X. The associated I-adic spectral sequence satisfies then

$$E_{-p,q}^1 = 0$$
 if $2p > q$ or $q > 4p$.

Over the rationals, the *I*-adic spectral sequence is a spectral sequence of Hopf algebras, thus each term $E^1_{r,s}$ is a free H_0 -module. This gives an isomorphism of H_0 -modules: $E^1 \cong T_{H_0}(E^1_{-1,*})$. Now, the differential d_1 is completely defined by its restriction on $E^1_{-1,4}$:

$$d_1: E^1_{-1,4} \to E^2_{-2,4} \cong E^1_{-1,2} \otimes_{H_0} E^1_{-1,2}.$$

By [13, Appendix A], (T(V), d) is the enveloping algebra of a differential free bigraded Lie algebra. Hence $E^1 = H_0 \otimes \mathbb{UL}(W_{*,*})$, with

$$W = W_{-1,2} \oplus W_{-1,3} \oplus W_{-1,4},$$
 $H_0 = \mathbf{U}L_X, \qquad E_{1,2}^1 = H_0 \otimes W_{-1,2},$ $E_{-1,3}^1 \cong H_0 \otimes W_{-1,3}, \qquad E_{-1,4}^1 \cong H_0 \otimes W_{-1,4}.$

As, $d_1: W_{-1,*} \to \mathbb{L}_{-2,*}(W)$. It is clear that

$$E_{*,*}^2 \cong H_0 \otimes H_*(T(W_{-1,*}), d_1).$$

To compute $H_*(T(W_{-1,*}), d_1)$, we decompose $W_{-1,*}$ in the form

$$W_{-1,*} = \overline{W}_0 \oplus \overline{W}_1, \quad \overline{W}_0 = W_{-1,2}, \quad \overline{W}_1 = W_{-1,3} \oplus W_{-1,4}.$$

The first part of Theorem 1 gives an isomorphism

$$H_*(T(W_{-1,*}), d_1) \cong [T(W_{-1,2})/d_1(W_{-1,4})] \otimes T(U).$$

The preceding discussion yields thus the two following exact sequences of Hopf algebras [14]:

$$\mathbb{Q} \to H_*(T(W_{-1,*}), d_1) \to E^2 \to H_0 \to \mathbb{Q},$$

$$\mathbb{Q} \to T(U) \to H_*(T(W_{-1,*}), d_1) \to T(L_{-1,2})/d_1(L_{-1,4}) \to \mathbb{Q}.$$

Moreover, as U is concentrated in bidegrees (-n-1, 2n+4), the differentials d_2, d_3, \ldots are all trivial on U by property (4) in §II. The spectral sequence collapses thus at the E^2 -term.

Denote by P the Lie algebra of primitive elements of $H_*(T(W_{-1,*}), d_1)$ one get a short exact sequences of Lie algebras:

$$0 \to P \to \pi_*(\Omega X) \otimes \mathbb{Q} \to L_X \to 0,$$

$$0 \to \mathbb{L}(U) \to P \to \mathbb{L}(W_{-1,*})/d_1(\mathbb{L}(W_{-1,4})) \to 0,$$

Thus, $N = \mathbb{L}(W_{-1,*})/d_1(\mathbb{L}(W_{-1,4}))$ is the quotient of a free Lie algebra by an ideal generated by quadratic elements.

Moreover, if X is a 4-cone, it is clear that the generators of N are in the image of the canonical map $H_*(\Omega X_2; \mathbb{Q}) \to H_*(\Omega X_4; \mathbb{Q}) = H_*(\Omega X; \mathbb{Q})$.

Remark finally that

$$H_*(T(W_{-1,*}), d_1) \cong T(W_{-1,3}) * (H_*(T(W_{-1,2} \oplus W_{-1,4}), d_1)),$$

and applying again Theorem 1 shows that

$$H_*(T(W_{-1,*}), d_1) \cong T(W_{-1,3}) * (T(W_{-1,2})/d(W_{-1,4}) \otimes T(U')),$$

for some graded \mathbb{Q} -vector spaces U'. \square

REFERENCES

- 1. F. Adams and P. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1955), 305-330.
- 2. D. Anick, *Homotopy exponents for spaces of category two*, Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin and New York, 1989, pp. 24-52.
- 3. ____, Non commutative graded algebras and their Hilbert series, J. Algebra 78 (1982), 120–140.
- 4. ____, Hopf algebra up to homotopy, J. Amer. Math. Soc. 2 (1989), 417-453.
- H. J. Baues, Y. Felix, and J.-C. Thomas, The Whitehead Γ-functor for chain algebras, J. Algebra 148 (1992), 123-134.
- 6. W. Browder, Differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153-176.
- 7. Y. Felix, S. Halperin, C. Jacobson, C. Löwall, and J.-C. Thomas, *The radical of the homotopy Lie algebra*, Amer. J. Math. 110 (1988), 301-322.
- 8. Y. Felix, S. Halperin, J.-M. Lemaire, and J.-C. Thomas, mod p loop space homology, Invent. Math. 95 (1989), 247-262.
- 9. Y. Felix, S. Halperin, and J.-C. Thomas, Loop space homology of spaces of LS category one and two, Math. Ann. 287 (1990), 377-386.
- 10. ____, Adams' cobar equivalence, Trans. Amer. Math. Soc. 329 (1992), 531-549.
- 11. Y. Felix and J.-C. Thomas, Sur la structure des espaces de LS catégorie deux, Illinois J. Math. 30 (1988), 574-593.
- 12. S. Halperin and J.-M. Lemaire, *Notions of category in differential algebra*, Lecture Notes in Math., vol. 1318, Springer-Verlag, Berlin and New York, 1988, pp. 138-153.
- 13. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295.
- 14. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-164.

Département de Mathématique, Université Catholique de Louvain, Louvain, Belgium

Département de Mathématique, Université des Sciences et Techniques de Lille, Lille, France