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A TOM DIECK THEOREM FOR STRONG SHAPE THEORY

BERND GÜNTHER

Abstract. We consider an appropriate class of locally finite closed coverings of

spaces, for which the strong shape of the elements of the covering and of their

intersections determine the strong shape of the whole space. Conclusions con-

cerning shape dimension and spaces having the strong shape of CW-complexes

are drawn, and a Leray spectral sequence for strong homology is given.

1. Introduction

This paper deals with the reconstruction of global properties of topologi-

cal spaces from local ones in the following sense: We suppose we are given

a covering si of a space X, we know some invariant (e.g. homotopy type,

Cech cohomology, etc.) X(A) for the elements A of the covering si and also

for their finite intersections, and we want to find the invariant X(X) of the

whole space. In [16, Proposition 4.1] G. Segal has shown that this problem can

be solved for X = homotopy type, if si is a normal open covering, and for

X = Cech cohomology, if si is a locally finite, finite dimensional closed cover-

ing of a paracompact space. In [6] torn Dieck explored the normal open case

further and concluded, that a map / : X -> Y is a homotopy equivalence, if

there exists a normal open covering % of Y, such that for every finite collec-

tion of sets C/0, ... , U„ e % the restricted map f:fi~x (flLo uk) -» DLo uk
is a homotopy equivalence. Dydak and Nowak proved in [7], that this theorem
holds for locally finite closed coverings of paracompact spaces and for homo-

topy equivalences replaced by strong shape equivalences. This naturally leads

to the question, how Segal's techniques work in the strong shape category. Also

we want to examine suitable conditions for coverings in order to ensure Dydak's

and Nowak's result beyond the class of paracompact spaces.

An appropriate class of "admissible" coverings will be presented in §2. It

turns out that our problem is related to expansion properties of coverings: In

[10] Katètov showed that every locally finite covering of a collectively normal,

countably paracompact space has a locally finite open expansion. Krajewski and
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Smith [12, 17] examined the class of all topological spaces sharing this property,

and called them expandable spaces. We will take the converse point of view and

give a sufficient condition for coverings, such that the expansion property holds

in all topological spaces.

In §3 we give applications concerning shape dimension, spaces of trivial

shape, spaces having the strong shape of a CW-space and spectral sequences

for strong homology or Cech cohomology.

For a treatment of strong shape theory of arbitrary topological spaces we

refer to [5, 7, 13]. The only knowledge required for our present purpose is

a characterization of continuous mappings, which are invertible in the strong

shape category, to be found in [7, Definition 1.1]: A map / : X -> Y is a strong

shape equivalence if and only if it has the following two properties:

(i) Any map from X into an ANR-space can be factored over / up to

homotopy and

(ii) if two maps ¿ft, Si '■ Y —* P into an ANR-space P and a connecting

homotopy H : go fi — g\f axe prescribed, then there exists a homotopy

G : go =■ gx with G (f x id) ~ H relative X x /.

2. Admissible coverings

We will have to assume that our covering is composed of normally embedded

sets. Normally embedded sets are characterized as follows:

Lemma 1. A subspace A of a topological space X is normally embedded if and

only if it has the following property: For any two maps f : A -> P, e : A -»

]0, oo[, where P is an ANR-space equipped with a specific metric d generating

its topology, there exist a normal neighborhood W of A in X and a map
g : W —> P, such that for all x e A the inequality d(f(x), g(x)) < e(x) holds.
If P is an AR we can choose W = X.

We recall that a neighborhood W of A in X is called normal, if its com-

plement can be separated from A by an Urysohn function.

Proof. We assume that A is normally embedded in X and consider the ANR-

space Q := Px]0, oo[, the covering f¿ of Q formed by the open sets U(x, t)

:= {(y, s) e Q | d(x, y) < \t, \s - t\ < \t} and the map F : A —> Q with com-
ponents F = (f, e). By [9, Theorem 2.3.a] there is a normal neighborhood

W of A in X and a map G = (g, S) : W —> Q, whose restriction to A is

^-near to F. Then g satisfies d(f(x), g(x)) < e(x) for all x e A. If P is

an AR then we can find a contracting homotopy H : P x I —► P, H0 = Po e P

and Hx = id. We take an Urysohn function cp : X —> I with cp = 1 on A

and cp = 0 on X \ W and replace g by the function g' : X —► P defined as
follows:

\H(g(x),2cp(x)-l),       cp(x)> 1/2,
Six) ■= <

[Po, cp(x)< 1/2.

Now let us suppose that A has the property formulated in our lemma. To

show that A is normally embedded in X we want to apply [9, Theorem 2.3.a]

and consider an open covering % of an ANR-space P and a map f : A —> P.

For each p e P we set ô'(p) equal to the supremum of all Ô' > 0, such that
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the open ball around p of radius ô' is contained in a member of fi. Then 6'

is a strictly positive, lower semicontinuous function on the metrizable space P,

and by a Theorem of Dowker [8, Problem 5.5.20.a, p. 347] there is a strictly

positive, continuous function S on P with ó < S'. Our lemma ensures the

existence of a normal neighborhood W of A in X and a map g : W —> P

with d(f(x), g(x)) < ô(f(x)) for all x e A, and this means that / and g

axe i^-near on A .   o

Let X be a topological space and si = {Aa \ a e M) an arbitrary covering

of X. We recall that the nerve JV(si) of si is the simplicial complex,

whose vertices are the indices a e M, and whose Simplexes are those finite

collections of indices 0 / a ç M with Aa := Ç){Aa\a e o} ^ 0. The

geometric realization of JV(si) with the CW topology is denoted by N(si),
and by XxN(si) we mean the cartesian product of these two factors carrying

the weak topology determined by the subspaces of the form X x K with K

running over all compact subspaces of N(si). \o\ ç N(si) is the closed

geometric simplex spanned by the vertices a e a .

Definition 1. Xs* ç XxN(si) is the subspace obtained as the union of the sets

Aa x \a\ with a ranging over the simplexes of yf(si).

Let Jf be the full complex containing Jf(si), i.e. both complexes have the

same set of vertices and any finite, nonvoid collection of vertices determines a

simplex of yT . Ñ is the corresponding geometric realization; we observe that

N is contractible.

Proposition 1. If every finite intersection of elements of si is normally embedded

in X, then Xs* is normally embedded in XxN.

Proof. We want to apply Lemma 1 and consider a map / : Xs* —> P, a metric

d on P generating its topology and a map e : Xs1 —>]0, oo[ ; we may suppose

that the metric d is bounded. P can be isometrically embedded in a normed

vector space, such that P is closed in its convex hull K . Then there is an open

neighborhood U of P in K and a retraction map r : U —> P. Let V be a

second open neighborhood of P in K whose closure is contained in U. We

claim:

(iii) There is a strictly posivite, real valued, continuous function ô on X^ ,

such that for each z e Xs* the open ball in K around f(z) with radius

S(z) is contained in V, and such that for each p e K and z e Xs*

the relation \\f(z)-p\\ < ö(z) => \\f(z) - r(p)\\ < e(z) holds.

(iv) We consider a normally embedded subspace B of a space Y and maps

cp : Y x S"'1 -> K, ip : B x En -» K and <S,, S2 : B x E" ->]0, oo[

with ôx < ô2 on B x E" and \\<p(b, t) - ip(b, Oil < S\(b, t) for all
(b,t) e B x S"~x . Then there is co : Y x E" -> K with co = cp on

YxS"~x and \\co(b, t)-y/(b,t)\\ < S2(b, t) for all (b, t) e B x E".

We suppose for the moment that these two claims are true and take a strictly

increasing sequence of strictly positive numbers p„ converging to 1 . For any

finite, nonempty subset p ç M containing « elements we denote by \p\ ç N

the simplex spanned by the elements of p . Claim (iv) allows us to construct a
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family of maps gß : X x \p\ —» K by induction on n , subject to the following

two conditions:

(v) For v ç p the map gv is the restriction of gp .

(vi) If a is an «-simplex of JK(si), then ga satisfies the inequality

\\go(x , t) - f(x , t)\\ <p„ô(x,t)

for all x e Aa and te \o\.

The collection of all these maps determines a map g : XxN —> K with

\\g(x, t)-f(x, 0|| < «S(x, 0 for all (jc, 0 G ̂  ■ Claim (iii) implies £(*■*)

ç F, so that W := g~x(U) is a normal neighborhood of Xs* in XxÑ, and

by (iii) the map g := rg : W —> P satisfies \\f(x, t) - g(x, t)\\ < s(x, t) for

all (x, t) e Xs* . Now Lemma 1 implies that X^ is normally embedded in

XxÑ.
To prove (iii) we introduce a continuous pseudometric p on Xs* by

p(zx,z2):=\\f(zx)-f(z2)\\ + \e(zx)-e(z2)\.

If Z denotes the metric space obtained from X^ by identifying points of

/^-distance 0, then f and e may be considered as continuous functions on

Z . For each point z of this metric space we denote by S'(z) the supremum

of all positive real numbers ô', such that the open ball in K around f(z) is

contained in V, and such that for all p 6 V the relation \\f(z) - p\\ < S' =>

\\f(z) - r(p)\\ < e(z) holds. Then S' is a lower semicontinuous function on

Z and by Dowker's Theorem there is a continuous function S on Z with

0 < ô < ô'. This function has the required property.

To prove (iv) we set n := \ (S2 - Sx) : B x En —>]0, oo[ and take a map

¥ : Y x E" —» K with ||*F - ^|| < n on 5 x En applying Lemma 1; *F exists

because B x E" is normally embedded in Y x E" . For b e B vie define

f>'(/3) €]0, 1[ to be the supremum of all numbers r> e]0, 1/2], such that ||r|| >

1 - û implies \\cp(b, t/\\t\\) - «F(¿>, Oil < ¿i(6, 0 + »/(ô. 0- The function & :
B —y]0, 1 [ is lower semicontinuous with respect to the continuous pseudometric

p on B given by p(bx, b2) := \\tp(bx) - cp(b2)\\ + sup, H^Fié. , t) - *¥(b2, t)\\,
and by Dowker's Theorem there is a continuous map r>" : B —>]0, 1[ with

Û" < r>'. Applying Lemma 1 we find a continuous map ö : Y —>]0, 1[ with

|i5 - £d"| < ir)" on 5, especially ?3 < ß" . Now we can define co:Y xEn -*K

by

oj(y, 0 := <

fT(v,0,     ||i||<l-ö(y),

d(y)_l{(i - ll'ID^Cv. 0 + (IIí|I - i + &iy))9iy, t/\\t\\)},

i-$(y)<\\t\\,

and this map satisfies all requirements.   D

Lemma 2. We consider two closed subsets A and Bofa topological space X,

whose union is normally embedded in X, and a normal neighborhood U of

Af)B. Then there exist normal neighborhoods VA and VB of A respectively B

in X with VA n VB ç U.
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Proof. Let cp : X —> I be an Urysohn function with cp =1 on A n B and cp = 0

on X \ U. We define ip' : A U B -* / by

l-ip(x),        X€5.

Since ^4 U 5 is normally embedded in X Lemma 1 provides us with a map

y/ : X -> T, such that for all x € .4 U B the inequality |y(jc) - y/'(x)\ < 1/8
holds. We set

VA := {x | y/(x) < 1/2} U {x | cp(x) > 0} ,

VB := {x | y/(x) > 1/2} u {x | cp(x) > 0} ,

then evidently we have VA n VB ç U. To show that VA is a normal neighbor-

hood of ^4 we consider the map ûA : X -> T,

d^(jc) := min < 1 , 4max I - - ip(x), tp(x)

This implies ûAix) > 0 o x e VA , and we claim x e A =>• r)^(x) = 1 . This is
clear for ç»(x) > 1/4, and for ç>(jc) < 1/4 we have i/(x) < 1/8 and therefore

\pix) < 1/4 =*► ^(x) = 1. The neighborhood I# of B is treated similarly.   D

Definition 2. A family of subsets si = {Aa \ a e M} of a topological space X

will be called admissible if

(vii) every element of si is closed,

(viii) every finite union of finite intersections of elements of si is normally

embedded in X and
(ix) there is a normal open covering ^ of X every member of which in-

tersects only finitely many members of si .

Remark 1. (a) If X is paracompact, then admissible families coincide with

locally finite closed families.
(b) By definition a family of subsets si of X is locally finite if there is an

open covering % of X, whose members intersect only finitely many members

of si . However, if X is not paracompact this definition is not too useful; it

improves if % is assumed to be normal.

(c) We observe that the union of two normally embedded closed subspaces

need not be normally embedded; for instance a two point subspace of a non-

Hausdorff Tx -space is normally embedded if and only if the two points can be

seperated by an Urysohn function. If the space X is normal, then the union

of two closed subspaces A and B is normally embedded if A , B and An B

axe normally embedded.

Proposition 2. Let Si = {Aa \ a e M} be an admissible family of subsets of a

space X, and suppose that for any nonempty finite subset of indices p ç M we

are given a normal neighborhood Uß of A^ := f) {Aa \ a e p). Then we can

assign a normal neighborhood Va of Aa in X to each a e M, such that for

every nonvoid finite p ç M the intersection f]{Va\ a e p} is contained in Uß .

■
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Remark 2. Proposition 2 implies in particular that any admissible family of

pairwise disjoint sets may be enlarged to a pairwise disjoint open family. This

is a remnant of collectionwise normality valid for arbitrary spaces.

Proof. At first we deal with the special case of a finite family si = {Ak | 1 < k

< n}. For n = 1 there is nothing to prove, so let us consider the case n + 1 .

We apply the induction hypothesis twice: On the one hand to the sets Ak for

I < k < n and the neighborhoods Uß for 0 ^ p ç {1, ... , n} and on the

other hand to the sets Ak n An+X and the neighborhoods UpUin+X} with k

and p as above. We get normal neighborhoods Vkx of Ak and Vk2 of Ak n

An+X with fj {Vkx | k e p) ç Uß and f| {V2 \ k e p} ç UßU{n+x}. Lemma 2
provides us with normal neighborhoods Vk of Ak and Vn+X of An+X with

Vk n Vn+X ç Vk2, and we may assume Vk ç Vk and Vn+X ç C/„+1. This ensures

H {Vk | k e p) ç Uß for all nonvoid //Ç{1,... ;«+i}.
Now we turn to the infinite case. By condition (ix) there is a normal covering

W of X, each of whose members intersects only finitely many members of si .

Let W be a normal star refinement of W and {p,} a locally finite partition

of unity on X subordinated to W . We define a continuous pseudometric d

on X (not necessarily generating the topology) by

1 v-^
dix,y) := ̂ 22\<p,(x) - cp,(y)\ ;

i

then any two points with distance less than 1 are W'-neax. By Wx we denote

the open ball around x of radius 1 with respect to d, and by W'x the open ball

with radius 1/2. We observe that every Wx meets only finitely many members

of si .
We already know that to any index a e M and finite subset pQ M contain-

ing a we can assign a normal neighborhood V„ of Aa with f] {V? \ a e v} ç

Uv for every nonvoid v ç p, and in addition we may assume VZZ ç Vav for

v ç p . We define sets Va ç X by

xeVa:&d(x, Aa) < 1/2 and x € V£ with p := {ß \ W'x n ^ # 0} .

We observe that a is finite and contains a. The intersection property is ev-

idently fulfilled and it remains to show that Va is a normal neighborhood

of Aa. We take a locally finite partition of unity {ip^} on X such that

the sets <Pfl]0, 1] have diameter at most 1/2, and denote by p(X) ç M

the finite set of indices ß such that there is x e X with ip^x) > 0 and

d (x, Aß) < 1/2 . Let ûx: X -^ I be an Urysohn function with u¿ = 1 on /!,»,

ûx(x) >0^d(x, Aa) < 1/2 and, if a € p(X), ûx = 0 on X \ I"^'. We set

Then / is an Urysohn function with / = 1 on An and / = 0 on X \ Vn .   D

Proposition 3. In the situation of Proposition 2 there exists a locally finite family

of functions {\pa} on X with An ç ^,7']0, 1] ç Vn and Yj,„ ¥» = I on \Jsi .
In particular: If si covers X then {V„ \ a e M} is a normal covering of X .
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Proof We take a locally finite partition of unity {r}^} on X, such that for each

X the set p(X) of indices a with Aa n ö^'jO, 1] / 0 is finite; moreover we

choose Urysohn functions fa with /a = 1 on Aa and ^ = 0 on X \ ^.

Then the definition

W,a-=faY,i^\ciep(X)}

leads to a locally finite family of functions with \pa~x]0, 1]C F„ and y/'a=l on

Aa . Finally we set *F := max (1, £Q wá) and Wa '■= wU^ t0 8et tne functions

we are looking for.   D

Corollary 1. (a) Every admissible covering has a normal open enlargement of the

same nerve.

(b) Every admissible family in an arbitrary topological space has a locally

finite open enlargement.

By a Theorem of Katëtov [10] every locally finite collection of subsets of a

collectionwise normal, countably paracompact space has a locally finite open

enlargement. Therefore Corollary 1 .b raises the question whether in the range

of validity of the Katétov Theorem our notion of admissible families coincides

with locally finite ones. The following proposition gives a positive answer:

Proposition 4. In a collectionwise normal, countably paracompact space X a

family of subsets si = {Aa \ a e M} is admissible if and only if it is closed and

locally finite.

Proof. We only have to show sufficiency, and since in a collectionwise nor-

mal space every closed subset is normally embedded only condition (ix) is

in question. We take a locally finite collection of open subsets {Va | a e M}

with Aa c Va and choose Urysohn functions y/a with \pa = 1 on A„ and

y/a = 0 on X\ Va. This gives rise to a continuous pseudometric d on X

defined by d(x, y) := £Q \Wa(x) - y/aiy)\ ', let X be the metrizable quotient

space obtained from X by identifying points of distance 0. The functions

\Pa determine continuous maps tpa : X —> R by passing to the quotient,

and their sum O := Y,a Va '■ X —► M is continuous and finite too. The col-

lection {tpa} need not be locally finite on X, but it is point finite, i.e. for

every x e X the set M(x) := {a e M \ <p„(x) > 0} ç M is finite, possi-

bly empty. The set Wx := (y e X | O(y) < 1 + £a€M(j0 tpn(y)} is an open

neighborhood of x. Let us consider y e Wx and ß e M \ M(x) ; we have

cpßiy) < <¡>(y) - YlaeMix)^^) < ' aní* hence y cannot belong to the image

of Aß in X. This means that every Wx meets the image of Aß for at most

finitely many indices ß e M. The sets Wx form an open covering W of X ,

and its inverse image in X may serve as ^ in condition (ix).   D

Now we are ready to show that the elements of an admissible covering deter-

mine the strong shape of the whole space. Therefore we need a characterization

of strong shape equivalences:

Lemma 3. (a) Let B be a closed subspace of a topological space Y, such that the

inclusion map i : B ^-> Y isa cofibration. Then i is a strong shape equivalence if
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and only if it is an SSDR-map, i.e. if for any Hurewicz fibration E —» P between

ANR-spaces E and P the following commutative square admits a filler Y —► Ts

preserving commutativity:

B -► E

Y -> P

(b) If B is a normally embedded subspace of a space Y and if for every

normal neighborhood W of B in Y there is a deformation D : Y x I —> Y

relative B with Do = id and DX(Y) ç W, then the inclusion map B <-> Y is a

strong shape equivalence.

Proof, (a) It follows from conditions (i) and (ii) that i is a strong shape equiv-

alence if and only if every map from B into an ANR-space can be extended

over Y and if any two such extensions are homotopic relative B . By [4, The-

orem 1.2] this is equivalent to the lifting property in (a). Statement (b) follows

from [9, Corollary 2.5].   D

Lemma 4. For any admissible covering si = {Aa | a e M} of a topological space

X the inclusion map X^ ^ XxN is a strong shape equivalence.

Proof. We consider a normal neighborhood W of Xs* in XxN and are going

to construct a deformation D : XxN x I —> XxÑ relative to Xs* with D0 = id

and Dx iXxAM ç W.   Let g : XxÑ —► I be an Urysohn function, which

vanishes outside of W and is identically 1 on Xs* . For any simplex a of

JV(si) we define ga : X —> I by ga(x) := inf{g(x, t) \ t e \a\} . Then ga = 1

on Aa and therefore Ua := gZx]0, 1] is a normal neighborhood of Aa such

that Ua x \a\ ç W. Now Proposition 2 provides us with a family of normal

neighborhoods Va of Aa for a e M, such that f]{Va\ a e p} is contained in

Uß , if p is a simplex of JV(si), and else it is empty. For each index a e M

we choose an Urysohn function fa : X —> I with fa = 1 on Aa and fa = 0

outside Va . Furthermore we apply Proposition 3 to get a locally finite partition

of unity {cpa | a e M} on X with <pZl]0, 1] ç Va for each a.

We are going to construct a locally finite partition of unity {y/ßa \ a e M}

with some additional properties to a fixed index ß e M. We set

y/ßß :=min(l, fß + 2(pß) ,

V-^Va,        <Pß<l/2,a^ß,
¥ßa •■=  (

(O, tpß> 1/2, a iß.

We observe  y/ßß = 1  on Aß and  y¿"„']0, 1] Ç Va  for every a e M.  This

leads to a map *P^ : X —> /V defined by *P^(x) := YlaeM VßaWPa, where
Pa denotes the vertex corresponding to the index a. On Aß the function *fy

takes the constant value Pß ; and for any index a we have ^^(Stpa) C Va .



A TOM DIECK THEOREM FOR STRONG SHAPE THEORY 865

Now we can define our deformation by

Dix,Y,SßPß,t\ := lx,Y,Sß{ii-t)pß + t'¥ß(x)}\.

AU required properties of D axe obvious with the exception of the inclusion

relation Dx ÎXxÂM ç W. Therefore let us consider a point (x, Y,ßSßPß) e

XxÑ and set (x, q) := T),(x, ¿ZßSßPß) = (x, LZßSß^ßix)) • If p ç M is

the finite collection of indices a with q e Stpa, then we have x e Va for

every such a. This means that p is a simplex of JV(si) and x e Uß, and

so we have (x, q) e Uß x \p\ ç W. Since by Proposition 1 Xs* is normally

embedded in IxiV Lemma 3.b tells us that the inclusion map is a strong shape

equivalence.   □

The canonical projection XxÑ —> X induces a map /?•*': X^ —> X by

restriction, and since Ñ is contractible Lemma 4 implies

Theorem 1. The natural projection map p^ : X^ —> X is a strong shape equiv-

alence.

Theorem 1 should be compared with a Theorem of G. Segal saying that

pjif . x& -> y isa homotopy equivalence if si is a normal open covering [16,

Proposition 4.1]. Our Theorem 2 is modelled after a Theorem of T. torn Dieck

valid in the same situation as the G. Segal Theorem:

Theorem 2. Suppose we are given two spaces X and Y, admissible coverings

si = {Aa | a e M) of X and 38 = {Ba | a e M} of Y with the same index

set M and a map f : X -» Y with f(Aa) ç Ba for all a e M. If for every
nonvoid subset p ç M the restricted mapping fß : Aß -> Bß is a strong shape

equivalence, then f is a strong shape equivalence.

Proof. At first we treat the special case where every fß : Aß —> Bß is an SSDR-

map. By Theorem 1 it suffices to show that the obvious map F : X^ —> Y®

is an SSDR-map, and to this end we consider a fibration n : E —> P between

ANR-spaces and two maps cp : X^ —> E, \p : Ym -» P with ncp = y/F. By

[4, Corollary 1.6] Aß x \p\ u Bßx d\p\ —> Bßx \p\ is an SSDR-map for every
p, and therefore we can construct a family of maps coß : Bß x \p\ —> E by

induction on the number of elements of p , such that coß (fß x id) equals the

restriction of cp, itcoß equals the restriction of y/ and such that for v 2 p

the maps cov and coß coincide on B„ x\p\. The collection of all these maps

determine a map co : Ys —► E with coF = cp and nco = y/, and F is shown

to be an SSDR-map.
To deal with the general case we cover the mapping cylinder Z = Y Uj X x I

by the sets Ca := Ba U Aa x I ; it is readily checked that these sets form an

admissible covering of Z . The inclusion of the bottom of the mapping cylinder

of fß : Aß —> Bß is by assumption a strong shape equivalence for every finite,

nonvoid p ç M, and by Lemma 3.a it is an SSDR-map. From the special

case treated before we learn that the inclusion map X <—> Z is a strong shape

equivalence, and therefore / : X —> Y is a strong shape equivalence too.   g
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Let f : X -» Y be a map between paracompact spaces and 38 a locally

finite, closed covering of Y, such that for each finite collection of elements

Bx, ...Bn e & the restricted mapping / : /"' (C]"k=l Bk) -> f]"k=iBk is a
strong shape equivalence. By [7, Theorem 2.9] / is a strong shape equivalence.

To see that our Theorem 2 extends this result we simply have to observe that

the coverings 38 and si := {f~x(B) \ B e38} axe admissible. The reason that

two coverings enter our Theorem in contrast to the simpler formulation of the

Dydak-Nowak Theorem is, that continuous inverse images of admissible cover-

ings need not be admissible, because the inverse image of a normally embedded

subspace is not necessarily normally embedded. For a counterexample one con-

siders a space X, which is not collectionwise normal, and a closed subspace A

of X, which is not normally embedded. If p : X —► X/A denotes the quotient

map, then B := p(A) c X/A as a one point space is normally embedded in

X/A , although A = p~x(B) is not normally embedded in X.

3. Applications

Theorem 3. If a space X has an admissible covering si , such that every finite

intersection of elements of si has trivial shape, then X is of trivial shape.

Remark 3. It has been shown by Koyama, Mardesic and Watanabe [11] that a

space has trivial strong shape if and only if it has trivial ordinary shape. We

emphasize that by a space Y of trivial shape we mean one having the shape of

a one point space, so that in particular Y cannot be empty.

Proof. It follows readily from conditions (i) and (ii) that a space Y has trivial

shape if and only if every map from Y into an ANR-space is homotopic to a

constant map, and if for every n > 0 every map from Y x S" into an ANR-
space has an extension over Y x En+X . By induction over the cells of N(si) we

see that Xs* has this property, therefore by Theorem 1 X has trivial shape,   d

Example 1. The above theorem is clearly false, if "strong shape" is replaced by

"homotopy type", as the reader can see from an example taken from Spanier's

book [18, p. 56, exercise A5]: Let A := {(x, y) e K2 | 0 < y < l,x =

0, l/n ox y = 1, 0 < x < 1} be the comb space, and let B be the space

obtained from A by reflection at the origin. Then A, B and A n B axe

contractible compact metric spaces, but A U B is not contractible.

The skeletal filtration on the polyhedron N(si) gives rise to a filtration on

Xs* : We denote by Nk the /<-skeleton of N(si), set Xf := Xa? n (X x Nk)

and observe that Xf+l is obtained from Xf by attaching the spaces Aa x \a\

via the inclusion map Aa x d\o\ <-* Xf with a running through the k + 1-

simplexes of jV(si). The main advantage of this filtration is the cofibration

property of the inclusion maps Xf «-> X% ■

Theorem 4. If a space X has an admissible covering si of finite dimension n ,

such that every finite intersection of elements of si has shape dimension at most

m, then the shape dimension of X does not exceed n + m .

For the proof we need the following lemma:

Lemma 5. For every space X we have sd(X x S") < n + sd X .
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Proof The case n = 0 is obvious, so suppose the lemma holds for n - 1. If

H+ and TT_ denote the upper respectively lower hemisphere of Sn , then we

have H+ n /T_ = S"'1 and hence sd((X x TT+) n (X x H_)) < n-l+sdX .
Now [9, Theorem 1.2] implies sd(X x S") < n + sdX.   d

Proof of Theorem 4. By Theorem 1 it suffices to show sd Xs* < m + n. To

this end we consider a map / : Xs1 —► P into a polyhedron P and have to

construct a map g : Xs* —► P homotopic to /, whose image is contained in

Pm+n , the m + «-skeleton of P. Applying [9, Lemma 2.8.b] to the inclusions

Aa x d\o\ ç Aa x \a\ we get a sequence of maps gk : Xs* —► P with g*. (Xj^) ç

Pm+k and g¿+1 ~ gk relative Xf . Then gn has the desired property.   D

Corollary 2. For every space X and every locally compact polyhedron P we have

sd(X xP)<sdX + dimP.

Proof. One considers the covering of X x P consisting of the sets X x \o\ with

a ranging over the Simplexes of a triangulation of P and applies Theorem 4.   d

Remark 4. With a slightly different approach the estimate in Theorem 4 can be

strengthened to sdX < sup,j (sd^4CT + dim a) with a running over all simplexes

of yV(si). One has to consider the barycentric subdivision of N(si) and uses

the full subpolyhedron of N(si ) spanned by the barycenters of simplexes of

dimension > n - k as Nk in the definition of Xf . The details are left to the

reader.

Lemma 6. (a) We consider two direct sequences of topological spaces f£ : Xm -»

Xn and g n : Ym —> Y„ and a sequence of maps hn : X„ —► Yn with g^,hm =

hnfm- If all the bonding maps f^ and g„\ arecofibrationsandifa.il h„ are

strong shape equivalences, then Urn. h„ : hn} X„ -» hm Yn is a strong shape equiv-

alence.

(b) We consider spaces and maps as in the following diagram. If f : X ->

Y and g : A —► B are strong shape equivalences, then the map between the

adjunction spaces F : X Uç A x En —> Y U¥ B x E" composed of f and g x id

is a strong shape equivalence.

AxSn~x -> BxS"~x
gxid

/

Proof. Since the constructions are functorial we may assume that the strong

shape equivalences are in fact SSDR-maps, and in (b) we may furthermore

assume that either / or g is an identity map. But then the statements follow

immediately from Lemma 3.a.   D

Theorem 5. If a space X possesses an admissible covering si , such that each

finite intersection of elements of si has the strong shape of a CW-space, then X

has the strong shape of a CW-space.

Proof. By Theorem 1 it suffices to show that X^ has the strong shape of a

CW-space.  We will construct a sequence of CW-spaces  Yk  and strong shape
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equivalences Fk : Xf —> Yk, such that Yk+X containes Yk as a subcomplex

and Fk+X extends Fk , then our Theorem follows from Lemma 6.a.

For each simplex a of JV(si) we choose a CW-complex Pa and a strong

shape equivalence fia : Aa —> Pa . For Yq we can use the disjoint union of the

complexes Pa with a ranging over the vertices of jV(si), Fo is obvious. Now

we suppose Yk and Fk and are already constructed and set A and P equal to

the disjoint union of the spaces Aa respectively Pa with o ranging over the

the k + 1-simplexes of JV(si) ; the strong shape equivalences fi, : Aa —> Pa

provide us with a strong shape equivalence g : A —> P. We observe that

g x id : A x S"~x -»Px Sn~x is a strong shape equivalence too and denote by

i : Äx S"~x «-» Xf the inclusion map. Since Yk has the homotopy type of

an ANR-space we can find a cellular map y/ : P x S"~x —> Yk and a homotopy

»F : F*/' ~ y/(g x id).
We realize the «-cell in euclidean «-space as E" = {t e R" | \\t\\ < 1} and

set C" := {t e En \ \\t\\ > 1/2}, 5'"-' cC"c£". Then we take a look at the
following two pushout diagrams of inclusion maps:

Äx Sn~x -> Àx C" -► Äx En

xf    ->    z    -► xf+l.

The space Z is defined by the diagram; Xf is a strong deformation retract of

Z . We define F' : Z —> Yk to be equal to Fk on Xf , whereas on A x C" we

set F'(x, 0 := ^*(x, t/\\t\\, 2\\t\\ - 1). F' is a strong shape equivalence and
fits commutatively into the following diagram:

-► PxS"x
gxiû

¥

Z        ->       Yk
F'

with <p(x, t) := (x, \t) . We observe Xf+l = Z Uv Ä x E" , set Yk+X :=

YkUy, P x E" and apply Lemma 6.b to get a strong shape equivalence Fk+X :

Xf+X -» Yk+X extending Fk : Xs* -» Yk .   u

Example 1 shows that Theorem 5 does not hold for homotopy type instead

of strong shape, because the spaces A , B and A n B have the homotopy type

of CW-spaces, but X has not.

The Leray spectral sequence constructed in [16, pp. 110-111] can be set
up for admissible coverings and for every homology' or cohomology functor

factoring over the strong shape category, but for infinite dimensional coverings

it converges only in a very weak sense. The reader's attention should be drawn

A xS"~x

•I

'Of course the Leray spectral sequence for strong homology must not be confused with the

Bousfield-Kan spectral sequence. The latter one is of Adams type, the former one is not.
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to the fact that even in the case of finite dimensional coverings Segal's proof is

hardly applicable beyond the realm of paracompact spaces, because his strong

excision axiom (iii) and the exactness axiom (i) together are very restrictive.

For Cech cohomology or strong homology one of the two axioms (which one,

depends on the definition) is known to hold in general, but the other one only

for normally embedded subspaces. To solve this problem we use our filtration

Xf ; since the inclusion maps Xf ^> Xf/ are always cofibrations and a fortiori

normal embeddings the homology or cohomology sequences of these pairs are

exact. Hence the definition

(1) H(p,q):=Y,hn(x*p,X*q)    for - co < p < q < oo,
nez

where «* is a possibly generalized homology functor and Xfœ = 0, X¿ =

X^ , provides us with an H(p, (jf)-system as in [3, p. 335, example 3]. Con-

ditions (SP.1)-(SP.4) from [3, p. 334] are satisfied, but (SP.5) need not hold.
This forces us to restrict our attention to finite dimensional coverings, but the

calculation of the F^-terms requires further restriction to finite coverings:

(2) Elq = E-"'-" = hp+q(Xf,Xf_{)

(3) *hp+q(Xf/Xf_x)

(4) ^hp+9(\jA+f\S'>)

(5) «ULKJ,

where a runs over the set of o-simplexes of JV(si). By [14, Theorem 3] we

cannot prove hq (LL^ct) « ($ahq (Aa) unless the index set is finite. If this
assumption is satisfied, then we learn in [3, Chapter 15, §7] how to construct a

spectral sequence converging to hp+q(X^), and if «, factors over the strong

shape category and si is admissible, then this is isomorphic to hp+q(X).

We summarize:

Theorem 6. For every homology functor «* factoring over the strong shape cat-

egory and every finite, admissible covering si of a space X indexed by a lin-

early ordered set there is a spectral sequence Er„ ofbidegree (-r, r - 1) with

Epq = 0CT hq(Aa) (the sum being taken over all p-simplexes of yV(si)) converg-

ing to hp+q(X). The differential d : Expq —> Exx maps an element Ç e hq(Aa)

to Y?i=o(~^)'hqUi)(Q> where j, : AG <-* Ayi(J is the inclusion map.

We observe that the ordering on the index set is necessary to define an orien-

tation of Sp in (4) and to give a well-defined meaning to the z'th face d,a of

a simplex a in Theorem 6.

The whole scheme may be set up for cohomology as well; one gets an Adams

type spectral sequence. Cech cohomology is infinitely additive, so that in this

case we may consider infinite coverings. In order to deal with convergence we
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either have to restrict our attention to finite dimensional coverings or to use

lim1 short exact sequences. The details are left to the reader.
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