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HYPONORMAL TOEPLITZ OPERATORS AND
EXTREMAL PROBLEMS OF HARDY SPACES

TAKAHIKO NAKAZI AND KATSUTOSHI TAKAHASHI

Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday

Abstract. The symbols of hyponormal Toeplitz operators are completely de-

scribed and those are also studied, being related with the extremal problems

of Hardy spaces. Moreover, we discuss Halmos's question about a subnormal

Toeplitz operator when the self-commutator is finite rank.

1. Introduction

Let Lp be the Lebesgue space on the unit circle F and let Hp be the corre-

sponding Hardy space for 1 < p < oc . The Toeplitz operator T^ with symbol

(f) in L°° is the operator on 772 defined by T^x = P(<f>x) for x in 772, where

P is the orthogonal projection of L2 onto 772. Brown and Halmos [3] be-

gan the systematic study of the algebraic properties of Toeplitz operators and

showed that T^ is normal if and only if <p = au + ß where a and ß are

complex numbers and « is a real-valued function in L°° . A characterization

of symbols of hyponormal Toeplitz operators is known [5]. An operator A is

called hyponormal if its self-commutator [A*, A] = A*A - AA* is positive.

However the exact descriptions of symbols of hyponormal Toeplitz operators

are not known. The main purpose of this paper is to give such descriptions as

those of Brown and Halmos for normal Toeplitz operators. The symbol of a

hyponormal Toeplitz operator 7^ satisfies that cf> - g = kcf>, g e 77°° , and

k e 77°° with Il/Vil^ < 1 (see Proposition 1). Therefore \<f> - g\ < \4>\ a.e. on
T, and hence our study is related with the extremal problems of Hardy spaces

77°° and 771 . In his paper "Ten problems in Hubert space" [9], Halmos raised

the question: "Is every subnormal Toeplitz operator either normal or analytic?"

A Toeplitz operator 7^ is analytic if its symbol (¡> is in 77°° . Cowen and Long

[6] answered negatively Halmos's question. Abrahamse [ 1 ] gave a very general

sufficient condition for the answer to be yes, after previous works of [ 10] and

[2]. In this paper we give a simple proof of Abrahamse's theorem and a new

sufficient condition for the answer to be yes. A subnormal operator is always
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hyponormal. Hence it is desirable to describe symbols of subnormal Toeplitz

operators in general.

The paper is arranged as follows. In §2, we give the general descriptions of

symbols of hyponormal Toeplitz operators. In §§3 and 4, we study the relation

between the study of the symbols of hyponormal Toeplitz operators and the

extremal problems of Hardy spaces. In §5, we study Toeplitz operators of

symbols of bounded type. In §§6 and 7, the self-commutators of hyponormal

Toeplitz operators are studied. In §8, we discuss a positive answer for Halmos's

question.

Throughout this paper we use the following lemma which was essentially

proved by Cowen [5].

Lemma 1. T^ is hyponormal if and only if there exist two functions k and g

in 77°° such that 4> = faj) + g and Wk]^ < 1.

Proof. Let tj> e L°° and cf> = h + 7 where h and / are in 772. Cowen [5,

Theorem 1 ] showed that 7^ is hyponormal if and only if I = c+ Tjh for some

constant c and some function k in 77°° with H^H«, < 1. If 4> = kcp + g,

g e 77°° , and k e H°° with HfcH«, < 1 , then

(f>-k$ = l-kh + h-kl.

Therefore I - kh e H2 and hence / = c + Tr-h for some constant c. Thus 7^

is hyponormal. For the converse the proof above is reversible.

2. General description of symbols

In this section, the general descriptions of symbols of hyponormal Toeplitz

operators are given. Two kinds of symbols of Toeplitz operators in Propositions
1 and 2 are typical and the arbitrary symbol is a combination of these two

symbols. If q is an inner function then q = (1 + q)2/\l + q\2. We define qx/2

as in the following:

qx'2 = (l+q)/\l+q\.

For an arbitrary nonzero function k in 77°° , if q is the inner part and h is

the outer part then put kx¡2 = qxl2hxl2. We should note that (z2)x/2 / z . For

a measurable set E of F, xe denotes the characteristic function of E .

Proposition 1. If <f> = qx/2u + g where q is inner, u is a real function in L°° ,

and g is a function in H°° with qg in 77°°, then T$ is hyponormal.

Proof. Since <j>-q<j> = g-q~g and qg e 77°° , tp-qtf) belongs to 77°° . Lemma

1 implies that 7^ is hyponormal.

Proposition 2. If <f> = (k~g + g)/(l - \k\2) is bounded where k and g are
functions in H°° and \k\ < 1 a.e., T^ is hyponormal.

Proof. A calculation implies that 4> - k(f> = g and hence by Lemma 1 7^ is

hyponormal.

Theorem 3. Let <f> be a nonzero function in L°° .  7^ is hyponormal if and onlv

t = XE{kV2u+yg) + XEi.k8 + g^
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where k and g are functions in 77°° with \\kl\oo <1,E = {e'e e F: \k(e'e)\ =

1}, kg = -g a.e. on E and u is a real-valued function in L°° .

Proof. For the 'if part, by a simple calculation

<t>-kj) = XEijg - {kg) + x&g = g

because kg = -g a.e. on E.

We will show the 'only if part. Lemma 1 shows that 4> = ktf> + g where

g e 77°° and k £ 77°° with HJfcH«, < 1 . Put E = {ew e F: \kiew)\ = 1}. If
g = 0 a.e., then <p2 = k\cj>\2 and hence <j> = XEkl^2u where u is a real-valued

function in L°° . We will assume that g is nonzero. Since cj> = k(kcf> + ~g) + g,

(1 - \k\2)4> = k~g + g . This implies that on Ec

<l> = (kg + g)/(l-\k\2)

and on E, kg + g = 0 and hence ig = kx/2\g\(2xE0 - I), where Eq is a

measurable set of F. Since 4>g~x - k<f>g~x = 1,

<t>/g + 0/g = I    onE

because kg = -g on E. Then

<p = (ig)lm((j)g-x) + \g = kx'2u + {g

and u = \g\ lm((j)g~'x)(2xEo-l) because ig = fc1/2|^|(2^£0-l). This completes
the proof.

In Theorem 3 cf> has the different forms on E and Ec. We can expect that

dd(E) = 271 or dd(Ec) = 2%. However this is not the case by the following

example. If k = exp(/£- 1 + iv) then ||/t||oo < 1, \k\ = 1 a.e. on E and \k\ =

e~x a.e. on Ec, where v is a harmonic conjugate of xe and 0 < dd(E) < 2n .

Put g = ikx'2. Then

<l> = XE(kl/2 + &) + xEc(kg + g)(l- \k\2)-x

is bounded and kg + g = 0 on E . Moreover,

<p = kx'2{(l + \i)xE + i(l- e~l)i\ - e-2)-lX*}.

Therefore <f> is not of bounded type and hence this representation is unique

(see §6). In Proposition 2, if HfcH«, < 1 then cf> is bounded for arbitrary g in
77°° . In Proposition 1, if q = z then g is a polynomial of degree at most one.

For arbitrary k in 77°°, we want to know such functions g. For k e 77°°

with Ufen«, < 1, put

MTik) = {g e 77°° : <f> = k~4> + g for some <j> e L°°}.

By [5, Theorem 1] we can describe %f(k) as

MT(k) = {g € 77°° : g = f - kj + T^f - k(Tjf) for some / £ 772}.

The following corollary gives another description of ß?(k).

Corollary 1. Let k be in 77°° and \\kWoo < 1. Then ß?(k) is a nonzero real

subspace of 77°° and

&(k) = {ag: \g + kg\ + \k\ < 1 a.e., g e H°° and a e K}.
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If ll^lloo < 1 then %?(k) = 77°° and if k is inner then

ß?(k) = {geH°°:kg = -g}

= {g-kg: geH2ekzH2 and g e 77°°}.

Proof. It is clear that ßf(k) is a real subspace and 1 - k e ßf(k). Since

(1 - \k\2)cj> = kg + g by the proof of Theorem 3, ßf(k) has the form above.

Hence if ||/c||oo < 1 then ß?(k) = 77°° trivially. If k is inner then \g + kg\ <

1 - \k\ = 0 and hence g = -kg. Thus ^(k) = {g e H°°:kg = -g). If
¿?o = g - kg~ where g e H2 e acz772 and g e 77°°, then kg0 = -go and

go £ ^(k). If go e %f(k) then kg0 = -g0 and hence g0 e H2 e kzH2.

Put g = go/2 ; then go = g - k~g and g e H2 e A:z772. Therefore ß?(k) =

{g - kg: g e H2 e rcz772 and g e 77°°}.

In the following corollary the equivalence between (1) and (2) is clear by

Theorem 3. Statement (3) shows that such a hyponormal Toeplitz operator is

the product of a normal Toeplitz (possibly unbounded) and an analytic Toeplitz

operator (hence subnormal).

Corollary 2. Let (j) be a function in L°° . Then the following are equivalent.

(1) f/3 = q<j) + g where q is inner and g e 77°°.

(2) (p = qxl2u + g where u is a real-valued function in L°°,  q is inner,

and g e 77°° with qg = -g.
(3) (f> = iv + c)f where v  is a real-valued measurable function,  c  is a

complex number, and f e 77°° with qf = f ■

Proof. We will show only the equivalence between (2) and (3).

(2) => (3). For some measurable subset E of F

qx/2 = ig(2XE-l)/\g\

because qg = -g. Put v = u(2xe - l)/\g\, f — ig, and c = -/; then

(f> = (v + c)f.
(3) => (2). Let c = a + iß where a and ß axe real. For some mea-

surable subset is  of T, //l/l = ql/2(2xE - I) because qf = /.   Put u =

\f\(v + a)(2xE - I) and g = ißf; then 4> = qxl2u + g.

3. Extremal problems in Hardy spaces

The equation of a hyponormal symbol cfi: (f> = kcfi + g is related to the

extremal problem in 77°° (and hence 77') (cf. [8, Chapter IV]) because \tj>-

g\ < \4>\ a.e. on F. When ¡j> = k<j> + g and 0^0 a.e., the following are

equivalent: (1) g = 0 a.e., (2) </> = kcf>, (3) <j> = kx/2u where k is inner and

w is a real-valued function in L°° , and (4) <j> = fv where v is a real-valued

measurable function and / £ 77°° with kf = /. When does the symbol cj>
satisfy one of the equivalent conditions? Such Toeplitz operators have been

studied in [4]. We answer this question in the following theorem.

Theorem 4. Let <f> be in L°° and <j> ± 0 a.e.

(1)   When log 101 is not integrable, 7^ is hyponormal if and only if 4> = qtfi
for some inner q .
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(2) Suppose Tç is hyponormal. If there does not exist a nonzero function g

in 77°° with \cj> - g\ < 101 a.e. then 4> = qcf> for some inner q .

(3) Suppose T$ is hyponormal and nonnormal. If tf> = q<f> for some inner q

then there does not exist a nonzero function g in H°° with \cf>—~g\ < \<f>\

a.e.

Proof. (1) Suppose 7¿ is hyponormal and log|0| is not integrable. If 0 does

not have the form 0 = qc¡> for some inner q , then by the remark above Theorem

4 there exists a nonzero function g in 77°° such that |0 - g\ < |0| a.e. Hence

|¿?|2 < 2|0| \g\ and log|0| is integrable. This contradiction shows that 0 = qcf>

for some inner q . The converse is just Lemma 1.

(2) By the proof of (1) if 0 does not have the form 0 = q<f> for some inner

q , then there exists a nonzero function g in 77°° such that |0 - g\ < |0| a.e.

(3) If there exists a nonzero function g in 77°° with |0 - ~g\ < |0| a.e.,

then by the proof of (1) log|0| is integrable and hence there exists an outer

function k in 77°° with |0| = \k\. Put Q = 0/A: then \Q + g'\ < 1 a.e. where
g' = g/k. By a lemma of Koosis (cf. [8, pp. 161-163]) there exists an outer

function / in 771 such that Q = f/\f\. If 0 = qxl2u where q is inner and u

is a real-valued function in L°° then

qx'2u/\u\ = 0/101 = \fk\lfk,

and hence qifk)2 = \fk\2. Therefore q(fk)2 is a nonnegative function in

771/2 and hence by [13] q(fik)2 is constant. Since / and k are outer, q is

constant and T^ is normal. This contradiction implies (3).

Corollary 3. Suppose T$ is hyponormal and 0^0 a.e.

( 1 ) If there does not exist an outer function h in 77°° such that Tf T$ >

T¿ Th then 0 = q<j> for some inner q .

(2) Suppose T¿ is not normal. If there exists an outer function h in 77°°

such that T^T^ > T^Tf, then 0 does not have the form 0 = q<f> for
some nonconstant inner q .

Proof. By [12, Theorem 2], there exists an outer function h in 77°° such that

TIT$ > T^Tf, (or T^T^ > Tj*Tf,) if and only if there exists a nonzero function

g in 77°° such that |0 - g\ < |0| a.e. (or \4>-g\< |0| a.e.). Now Theorem 4

implies the corollary.

The converses of (2) of Theorem 4 and (1) of Corollary 3 are not true. For

example, if 0 is a positive invertible function in L°° then 0 = 0 and 77 T¿ =

T(j,Tl > T*TC for some positive constant c and there exists a nonzero function

g in 77°° with |0 - g\ < 101 a.e. Statement (3) of Theorem 4 (or (2) of
Corollary 3) is the weak converse of (2) (or ( 1 ), respectively) for nonnormal and

hyponormal Toeplitz operators. Now we concentrate on unimodular symbols

of Toeplitz operators. In the following theorem (3) is known in the different

proof [1, Proposition 2].

Theorem 5. Let <j> be a unimodular function in L°° .

(1) If T$ is hyponormal then 0 = //|/| for some nonzero function f in

771  or 02 = q for some inner function q .
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(2) 7/ 0 = l/l// for some nonzero function f in 77'  whose inverse does

not belong to Hx, then 7^ is not hyponormal.

(3) If T$ is hyponormal and 0 = qb where q and b are inner functions,

then 0 = bx where bx is an inner divisor of b.

(4) Suppose 0 = //l/l for some nonzero function f in 771  and f is of

bounded type. If 7¿ is hyponormal then cf>2 = q for some inner q.

Proof. ( 1) If 7^ is hyponormal then by Lemma 1 \4>-g\ < 1 a.e. and cf>(cf>—g) e

77°° for some g in 77°° because |0| = 1 a.e. If g is nonzero then by a theorem

of Koosis (cf. [8, pp. 161-163]) 0 = //|/| for some nonzero / in 771 . If g
is zero then 02 = q for some inner q .

(2) If 7^ is hyponormal then by (1) |/|// = h/\h\ for some nonzero h

in 771 or |/|2//2 = q for some inner q. When |/|// = h/\h\, hf is a
nonnegative function in 771/2 and when |/|2//2 = q, qf2 is a nonnegative

function in 771/2. Hence by [13] hf is constant or qf2 is constant. Both

contradicts that f~x £ Hx.

(3) Put qb = qxbx where qx and bx are relatively prime inner functions. If

T$ is hyponormal then by Lemma lqxbx=kqxbx+g where k and g axe in

77°°. Therefore
b\ = kq\ + qxbxg = qx(kqx +bxg)

and hence qx is constant. This implies (3).
(4) If Tç is hyponormal then by Lemma 1

f = kf+g\f\
where k and g are in 77°° . If g is zero then 02 is an inner function. Suppose

g is nonzero. If q is an inner function with qf e 77' then by the equality

above qg\f\ belongs to 771. Put / = bh and g = si, where b and 5 are

inner and h and / are outer. Then qsb\f\/f e H°° and hence 0 = Qqsb for

some inner Q. Now (3) implies (4).

Corollary 4. Put 0 = //|/| and

l m n

fi(z) = Y[(z-aJ)H(z-ßj)Yl(z-yj)
7 = 1 7 = 1 7 = 1

where |a,| < 1 for 1 < j < l, \ßj\ = 1 for 1 < j < m, and \yj\ > 1 for
1 < j < n.   Then T¿ is hyponormal if and only if I > n and a'fy¡ = 1 for

1 < j < n where {a'j}"=x is a subset of {a.j}lj=x.

Proof.  02 = /2/|/|2 = /// and

r-        m n I n    i _ ., — 1 _

J 7=1 7 = 1     J 7=1 ;     7 = 1 yj

By (4) of Theorem 5, 7^ is hyponormal if and only if 02 is inner if and only

if
TT z~ai TT       y'

Ai 1 -ätz Ll z-y~x
7=1 J     7 = 1 '1

belongs to 77°° . This implies the corollary.
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4. Arguments of symbols

If 7¿ is hyponormal, |0| > 0 a.e., and 0n = 0/|0| then is 7^0 hyponormal?
In this section we answer this question. Statement (3) of Proposition 6 is a

generalization of (4) of Theorem 5.

Lemma 2. Suppose log|0| is integrable, 0n = 0/|0|, and s = h/\h\ where h

is an outer function in H°°  with |0| = |A|.   7^ is hyponormal if and only if

0o(0o - sg) = k, where g and k are in H°° , and ||fc||oo < 1 •

Proof. By Lemma 1, 7¿ is hyponormal if and only if 0 - gx = k<¡> where gx

and k axe in 77°° , and ||/c||oo < 1 • Since 0 = 0os7? , 4> - gx = kc¡> if and only

if 0o(0o - sg\/h) = k . Since gx/h is in 77°° , this implies the lemma.

Proposition 6. Suppose |0| is positive almost everywhere and 0o = 0/|0|.

(1) If T^ is hyponormal and log|0| is not integrable then T^ is hyponor-

mal.
(2) Suppose 101 = \h\ for some outer h in 77°° and h/\h\ is inner. If 7^

is hyponormal then T^0 is hyponormal.

(3) Suppose 0 and <f> are of bounded type and <t>l & 77°°.  Then if T^ is
hyponormal, T$0 is not hyponormal.

Proof. (1) By (1) of Theorem 4, 0 = q<j> for some inner q and hence 0n = qcf>0 .

This implies that 7^0 is hyponormal.

(2) In Lemma 2, s is inner by the hypothesis on h/\h\ and hence 7^, is

hyponormal.

(3) Under the conditions on 0,0, and 0o , if both T^ and 7¿0 are hyponor-

mal then we claim a contradiction. By Lemma 1, there exist four functions

k\,k2, g\, and g2 in 77°° such that 0 = kx<f> + gx and 0O = ä:20o + g2. If g2
is zero then this contradicts that 0q is not inner. If g2 is nonzero then

0 = /C20 + g2|0|.

Since both 0 and 0 are of bounded type, |0| is also of bounded type and
hence 0o is of bounded type. Therefore 0n = qb where q and b axe inner.

By (3) of Theorem 5 0o is inner. This contradicts that <j>\ is not inner, too.

5. Bounded type symbols

Abrahamse studied a hyponormal Toeplitz operator 7^ when 0 or 0 is of

bounded type. He gave several sufficient conditions [1, Proposition 1]. In this

section we give necessary conditions, partially solving Problem 1 in [1]. If 0

is of bounded type then 0 has the form 0 = \\Zqih where qx and q2 are

relatively prime inner functions, and h is outer. We call qo a minimal inner

function for 0 when qo is inner and it satisfies the following: if q is inner

with q<j> e 77°° then qôq e 77°° . In fact qx is the minimal inner function for

0-
Proposition 7. Suppose 0 is of bounded type, that is, 0 has the form 0 = q¡q2h

where qx and q2 are relatively prime inner functions, and h is outer.

(1) If T^ is hyponormal then h/h has the form h/h = F G where F and

G are inner, and Gq\ is in H°° .
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(2) If h/h = FG where F and G are inner, and both Gq\ and Fq\ are
in 77°° , then T^ is hyponormal.

Proof. (1) By Lemma 1 and the hypothesis on 0, qxq2h - g = kqxq2h where
g and k axe in 77°° and hence1

Q2 - Q\Qig/h = kq\h/h = kqJGF

where G and F axe inner.  Therefore G(q2 - qxq2g/h) = kq\F and hence

Gq\ € 77°° becasue qx and q2 are relatively prime.

(2) If h/h = F G then by the hypothesis on F and G,

t = *?J = (qxG)(q2F) £ H°°.
0      Q\Q2h

Lemma 1 implies that T¿ is hyponormal.

Corollary 5. Let m and n be nonnegative integers. Suppose 0 = Y0j=-n ajzj <

a-n / 0, and am ̂  0; then the following hold.

( 1 ) If T¿ is hyponormal then m> n .
(2) Suppose m>n and if z"4> is zero on a point zn outside the closed unit

disc, then it is zero on the inverse of z~o with higher multiplicity. Then

Tç is hyponormal.
(3) Suppose m = n and 7^ is not normal. If z"0 does not have any zeros

in the open unit disc then 7^ is not hyponormal.

(4) Suppose m = n and if z"0 has zeros only on the unit circle, then 7^ is

normal.

Proof. Put k = z"0 = qh where q is inner and h is outer, and write

/ t s

k = \{(z-aJ)\l(z-ßJ)\{(z-y))
7=1 7=1 7=1

where |a7-| < 1   for  1 < j < I,  1/3,1 =1   for  1 < j < t, and \yj\ > 1   for
1 < j < s . Then

ÍJl-°7*
and

/ t s

h = Y[(l-äjz)H(z-ßJ)]l(z-yJ),
7=1 7=1 7=1

and the degree of k = m + n = I + t + s. Hence

(1) If 7^ is hyponormal then by (1) of Proposition 7 zm+"/z2" is analytic

and hence m > n .

(2) By the hypothesis a'fy} = 1 for 1 < j < s < I where {a'j}lJ=x = {aj}lJ=x ,

and hence



HYPONORMAL TOEPLITZ OPERATORS 761

Then (2) of Proposition 7 implies (2).

(3) If m = n and k = U'J=ÁZ ~ h) lX=i(z - Vj) then

t = znfl(z--ßj)f[(z-yj) = znk',
7=1 7=1

where

k = f[il-~ßJz)f[(l-yJz).
7=1 7=1

By (2) T*f is hyponormal and hence if 7^ is not normal then it is not hyponor-

mal.
(4) is clear by (2) and (3)

When 0 = a-X~z + ao + axz and a-X ^ 0, it is easy to see that 7^ is

hyponormal if and only if |ai| > |fl-i|. When 0 = ~z~iz - a)iz - y) and

ay t¿ 0, Tç is hyponormal if and only if |ay| < 1 . Therefore the question

about polynomials is still open.

Corollary 6. Suppose 0 is a rational function in L°°: 0 = k2/kx where kx and

k2 are relatively prime analytic polynomials with the same degree. Write

l n

kx=Y\(z-aj)\\(z-c])
7=1 7=1

where |a,| < 1 for 1 < j < I and \cj\ > 1 for 1 < j < n, and

d e f

k2 = Y[(z-aJ)l[(z-ßJ)l[(z-yJ)
7=1 7=1 7=1

where |a/| < 1 for 1 < j < d,  \ßj\ = 1 for 1 < j < e, and |y7| > 1 for 1 <

j<f. IfT+ is hyponormal then {aJl}'J=x ç {cj}j=l. If {aJx}lJ=l ç {Cj}"J=l

and{a~x}dj=xz> {yM=x  then T^ is hyponormal.

Proof. Suppose k¡ = q¡hj   (7=1, 2) are inner outer factorizations. Then

« = Ut=£i>    hx = ii(i-âjz)fi(z-cj)
7=1 J 7=1 7 = 1

and

*=n rf^t ' hi=ft1 - ̂  ñ(z - ßj) tit* - va •
7=1 J 7=1 7 = 1 7 = 1

0 = Q\Qih  and h = h2/hx .  Since

\=Azi+n^ n ^-
hx ij- 1 -c~xz

and

^=Bz^q2{ll-^é^
h2 fJi z-yj
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where A and B axe constants, l + n = d + e + f, h/h = F G, and

f  1 - y~xz                          "   z -c~x

F = Cq2l\-err    and   G = ̂ \\-,-V
7=1 z~V fJil-cJz

where C is a constant with absolute value 1. Now Proposition 7 implies the

corollary.

6. Self-commutator of T$

For 0 in L°° , put

ir(0) = {fc£77°°:0 = /c0 + £,  g£77°°, and plU < 1}.

If <£(cp) contains an inner function q then by Corollary 2 0 has a simple form.

In this section we study when l?(0) contains an inner function.

Proposition 8. Suppose W(§) contains at least two elements. Then the following

are valid.

(1) 0 is of bounded type.
(2) For any fixed function k in l?(0)

ïï(<p) = {k + qofi: \\k + (/„/lu < land fie 77°°}

where qo is the minimal inner function for 0.

(3) There exists an inner function b in ^(0).

Proof. If kx and k2 are in i*(0) and kx ̂  k2 then 0 = kxcf> + gx = /c20 + g2

for some gx and g2 in 77°° . Hence (kx - k2)<f> = g2 - gx and this implies

(1). Since (kx - k2)cf> e 77°° , qcf> belongs to 77°° where q is the inner part of

kx - k2. If qo is the minimal inner function for 0 then q0q £ 77°° and hence

q0(kx - k2) £ 77°° . This implies (2). If e'(cp) contains at least two functions

then by (2) and a well-known theorem of Adamyan, Arov, and Krein (cf. [8,

Theorem 5.3]) there exists an inner function in l?(0).

We use Hankel operators. For 0 £ L°°, the Hankel operator 77^ : 772 ->

L2e772 is defined by H¿f = (I-P)(<pf) for / £ 772 , where P is the orthogonal

projection of L2 onto 772 (cf. [14]).

Proposition 9. Suppose 0 is not bounded type and 7^ is hyponormal. If

Ker[r;,7^{0}

then there exists an inner function in &(cj>).

Proof. Suppose x £ Kex[T*, 7^] and k £ <T(0).   Then \\HjX\\2 = \\H^x\\2

because T;T^ - T¿T; = H±Hj - H;H¿ and

WH+xh = \\H#x\\2 < WkHjxh < \\HfXh.

Since 0 is not of bounded type, ||77^x|| ^ 0 and hence \k\ = 1 a.e.

The following lemma is known and is easy to prove.
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Lemma 3. For k e «?(0),

[T;,T,] = Hl(l-JTkTlJ)H-^

where k(z) = k(z) and (Jx)(z) = x(~z)~z for x in L2.

Theorem 10. 7¿ is hyponormal and [T¿ , T¿] is a finite rank operator if and

only if there exists a finite Blaschke product b in e'(cß). Then we can choose b

such that the degree of b = rank[F^ , 7^].

Proof. If b € i?(cp) is a finite Blaschke product of degree n then

xank(l - JTbT?J\-zH2) < n

and hence by Lemma 3 rank[F^, 7¿] < n. We will show the existence of a

finite Blaschke product b in é?(0) of degree n, assuming that k e %Z(4>) and

rank[rf, 7^] = n < oo . If 0 is not of bounded type then RanTTr is dense in

_—2 _—2
z77   and hence by Lemma 3 rank[7J , 7¿] = rank(l - JT-kT?J\zH ). Hence

k is a finite Blaschke product of degree n and so is k . Now we assume that

0 is of bounded type. Then by Beurling's theorem Ker 77- = qH2 for some

inner q . By Lemma 3 Ker[7^ , T¿] 2 Ker 77-.

Case (i).  Kex[T*, 7¿] = Ker77-. Then the closure of Ran[T*, T4] = 772 e

qH2 and hence

dim(H2 e qH2) = ranker,, F0] = n < oo.

Therefore q is a finite Blaschke product of degree n . By Pick's theorem (cf. [8,

Theorem 2.2]), there exists a finite Blaschke product b such that b ek + qH°°

and the degree of b is at most n. KexH-r = qH2 implies that q is the minimal

inner function for 0, and hence by (2) of Proposition 8 b belongs to ¿?(0).

Case (ii).    Ker[77, 7¿] 2 KerTTr.   Then there exists a function  x  in

Ker[Ff, 7¿] such that ||Ütx|| ^ 0. The proof of Proposition 9 implies that k
_2

is inner. Since KexH± = qzH   = the orthogonal complement of Ran77T in

_2
z77 , by Lemma 3

rank[F; , F0] = dim(l - JTkT¡J)H-^H2

= dim(l - TkT*)(H2 e qH2)

= dim{772 0 qH2/(H2 © qH2) n kH2}.

By a theorem of the first author [11], k is a finite Blaschke product of degree

n.

Corollary 7. If 0 is a trigonometric polynomial and T^ is hyponormal, then

there exists a finite Blaschke product in %($).

7. Kernel of the self-commutator of 7^

In this section we are interested in describing Kex[T£ , T<f\ when T$ is hy-

ponormal.   f(0) 3 0 if and only if 0 £ 77°° .  Then  Ker[F^ , 7¿] = {0}  or
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Ker[Ff, 7^] = qH2 for some inner function q. Proposition 11 is a gen-

eralization of this. There is a constant ß in i?(0) with \ß\ = 1 if and

only if 0 = ßxl2u + a where ß and a axe constants and \ß\ = 1 . Then

Ker[rf, Tjj\ = H2. Proposition 12 is a generalization of this.

Proposition 11. If there exists a function in f(0) which is not inner, then

KerfFT, T^] = qH2 for some inner q or Ker[F^ , 7¿] = {0}. Hence if ¿?(0)

contains at least two functions then Ker[F^ , 7^] = îïTT2 .

Proof. Let k be not an inner function in é?(0) . Then Ker(l - T~kT,*) = {0}

because k is not inner. Hence by Lemma 3 Kex[T£, T^] = Ker 77- and this

implies the proposition.

Proposition 12. If there exists an inner function q in f (0) then

Ker[F; , T^\ = {xeH2: T^(qx) e qH2} = Ker(7^ - TqT¡).

Proof. It is sufficient to prove that Ran[F^ , 7^] is dense in T^(H2 G qH2).

Since

77^/(1 - TgT?)H2 = H±J(H2 e <?772) = P0(z772 9 qtlf)

= P<t>q(H2 QqH2) = T^(H2 G qH2),

by Lemma 3 Ran[7^ , 7^] is dense in T^(H2 e qH2). The second equality is

trivial.

Lemma 4. 77* TT^, = 77*77«, if and only if 0 - c\p e 77°° for some constant c

with \c\ = 1.

Proof. If H*HW - 77T770 > 0 then by the proof of [5, Theorem 1] there exist

two functions k and g in 77°° with ||rc||oo < 1 suchthat 0 = ky/ + g. Lemma

1 is the special case: ip = 0. Hence H*,H^ = 77*77^ then there exist two other

functions h and / in 77°° with Halloo < 1 such that \p = hcj> + f. Then
(1 - kh)4> = kf + g.  If 1 - kh is nonzero then  1 - kh is outer and hence
0 belongs to 77°°. Similarly ip e H°° . If 1 = kh then both k and h axe
constants with \k\ = \h\ = 1 . Hence 0 - cip e 77°° for some constant c with

|c| = 1. The converse is clear.

Theorem 13. Let T^ be hyponormal. Then Ker[Fî, 7^] D ^772 for some inner

function q if and only if 0 is of bounded type or T$ is normal. Moreover if

Ker[F^ , T¿] D qH2, and 7^ is not normal then KerTTr 2 qH2.

Proof. By Lemma 3 Ker[77, 7^] D Ker 77- and hence the 'if part is clear. We

will show the 'only if part. If Kex[T*, T¿\ 2 qH2 then

0 = T*q[T¡ , T¿]Tq = T¡qTH - TjT-^ = H-^H-^ - H¡qH^.

By Lemma 4 <f>q - c<pq € 77°° for some constant c with |c| = 1 . Since 7^ is

hyponormal, 0 - k<j> = g e 77°° for some k e 77°° with \\k\loo < 1 . Hence

0(1 - ck)q e H°° . If 0 is not of bounded type then 1 - ck = 0 and hence
k = c. By the remark above Lemma 4, 7^ is normal. If 7^ is not normal then

1 - ck is nonzero and hence 1 - ck is outer. Therefore 4>q e H2 and hence

KerTTr DqH2.
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8. Subnormal Toeplitz operator

In this section we will give a simple proof of the Abrahamse's theorem

[1] which gives a sufficient condition for the positive answer of Halmos's

question [9]. Then we will consider subnormal Toeplitz operators with self-

commutator of finite rank.

Theorem 14 [Abrahamse]. If 7^ is subnormal and if' 0 or cf> is of bounded type

then Tj, is normal or analytic.

Proof. If 7¿ is subnormal then by Lemma 1 0 = k<j> + g, k e H°°, and
g € T7°° . If 0 £ 77°° and 0 is of bounded type then k is nonzero and hence

0 is also of bounded type (see [1, Lemma 6]). Therefore, we may assume that 0

is of bounded type. If T$ is nonnormal then qH2 = Ker TT- ç Ker[7^ , T^] and

q is a nonconstant inner function. 7^ Ker[F^ , T¿] ç Ker[7^ , 7^] because T$

is subnormal [1], and hence T^(qH2) ç Ker[F*, T$]. While (pq e TT°° because

Ker77^, D KerTTr, and hence the closure of 0^7T2 is an invariant subspace in

Ker[F^ , 7^]. By Beurling's theorem and Theorem 13, (pqH2 Ç KerTTr = qH2

and hence 0 £ 7T°° .

Recall that a Toeplitz operator 7^ is hyponormal and Ran[77 , 7^] < oo if

and only if 0 = q<j> + g where q is a finite Blaschke product and g e 7T°° . The

proof of Proposition 12 shows the following lemma.

Lemma 5. If 0 = q<fi + g where q is inner and g e 7T°° then the closure of

Ran[F^ , 7^] equals the closure of T^(H2 G i?772).

Lemma 6. Suppose 0 = q<¡> + g where q is inner and g e 7T°°, and 7^ is

subnormal.

(1) Put M =  the closure of Ran[T*, 7¿] + (7T2 e qH2)  then  M  is a

T-T -invariant subspace.

(2) If 0 is not of bounded type then Ran[F*, 7¿] n (TT2 e qH2) = {0}.

Proof. (1) Since 0 = q$+g, T^(H2QqH2) C T^(H2QqH2) + Tj(H2eqH2).

Hence by Lemma 5

7^(TT2 e qH2) C the closure of Ran[F; , T¿\ + (H2 G qH2).

This implies (1) because the closure of Ran[F^ , 7^] isa Ft-invariant subspace.

(2) Since Ran[F0*, F0] ç 7^(772 G qH2) by the proof of Lemma 5, it is

sufficient to prove that

T4>q-(H2eqH2)n(H2eqH2) = {0}.

If x e T^(H2 G qH2) n (7T2 G <?772) then x = T^y for some y e H2 e qH2.

Since Tqx = 0 because x e H2 Q qH2,

Ttfly = TjTfiy = Tqx = 0,

and hence 4>q2y = zk for some k e H2. Therefore <t>q(qy) = zk e H2 and

qy e H2. If 0 is not of bounded type then y = 0 and hence x = 0. This

implies (2).
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Theorem 15. If T$ is subnormal and 0 = qcf) where q is a finite Blaschke

product, then 7^ is normal or analytic.

Proof. By Abrahamse's theorem we may assume that 0 is not of bounded type.

Under this assumption, we show that q is constant and so 7^ is normal. Since

0 = qcf) and q is a finite Blaschke product, by Lemma 5

Rantr; , 7>] = 7^(772 G qH2) = 7^(7T2 G qH2).

Since 7¿ is subnormal, FvRan[7^ , 7^] ç Ran[7^ , T^] and so

F-{Ran[F; , 7^] + (TT2 Q qH2)} = Ran[F; , TJ.

Then by (2) of Lemma 6

dimKer F^|{Ran[r0*, Trf + (H2 e qH2)} = dim(772 G qH2),

and hence dim Ker Ft > dim(772 G qH2). The relation 0 = qcf> also implies

T^Kex FT) ç Ker Tq = H2e qH2.

Since 7^ is hyponormal, Ker TV D KexT^ and KerF^, = {0} by Coburn's

theorem [7, Proposition 7.24]. Therefore we have T^KerFr) = H2eqH2 and

so Ran T$ D H2 G qH2 . Then, noting the relation T$Tq -TqT^ = Hi-H$ and

RanTT| = H2QqH2, we see that the inclusion Ran 7^ 2 qn(H2QqH2) implies

RanF0 D qn+x(H2 G qH2) for n = 0,1, 2, ... . Thus we have Ran F0 D

\Jn>0qn(H2eqH2). Suppose q is not constant. Then \]n>0q"(H2eqH2) = H2

and 7¿ has dense range. On the other hand, the relation 7^(Ker FT) = H2QqH2

implies Ker Ft ^ {0} . This is a contradiction. We conclude that q is constant.
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