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AN ATRIODIC SIMPLE-4-OD-LIKE CONTINUUM
WHICH IS NOT SIMPLE-TRIOD-LIKE

PIOTR MINC

Abstract. The paper contains an example of a continuum K such that K is

the inverse limit of simple 4-ods, K cannot be represented as the inverse limit

of simple triods and each proper subcontinuum of K is an arc.

1. Introduction

All topological spaces considered in this paper are metric. A continuum is a

connected and compact space. A simple n-od is the union of « arcs meeting

at a common endpoint and which are mutually disjoint otherwise. A simple

3-od is called a simple triod. If X and Y are continua, we say that Y is

X-like provided that Y is the inverse limit of a sequence of copies of X.

A continuum is atriodic if does not contain three subcontinua A , B and C

such that none of them is contained in the union of the remaining two and

0¿AnBnC=AnB=AnC=BnC.
In 1972, W. T. Ingram gave his brilliant example of an atriodic continuum

which is simple-triod-like and not arc-like [4]. Note that an arc-like contin-

uum is simple-2-od-like. The Ingram continuum is not only atriodic, but each

of its proper subcontinuums is an arc. S. Young asked whether there exists

a simple-4-od-like continuum which is not simple-triod-like and whose every

proper subcontinuum is an arc [7, Problem 115]. A similar question was asked

by H. Cook, W. T. Ingram and A. Lelek. They asked whether there exists an
atriodic simple-4-od-like continuum which is not simple-triod-like [1, Problem

5]. Of course, if every proper subcontinuum is an arc, then the continuum is

atriodic [3], so a positive answer to Young's question implies a positive answer

to the question by Cook, Ingram and Lelek. Even after a perfunctory glance at

the problems, it becomes apparent that they should have a positive answer. It

is very easy to get an example of a simple-4-od like continuum such that every

proper subcontinuum is an arc. Most of such continua appear not to be simple-

triod-like and it is very likely that they really are not. So the only difficulty

is a proof. Ingram proved that his continuum [4] is not arc-like (chainable)

by showing that it has a positive span, and it was proved earlier by Lelek that

chainable continua have the span zero [6]. The same method was subsequently
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used by Ingram in [5] and by Davis and Ingram in [2]. A topological invariant

different than the span is needed to distinguish between those continua which

are simple-triod-like and those that are not. Another way of approaching the

problem is to use a continuum with simplicial (piecewise linear) bonding maps

and prove that they cannot be factored through a simple triod. In this paper

we choose this way to prove that there is a simple-4-od-like but not simple-

triod-like continuum K such that every proper subcontinuum of K is an arc.

Recently, the author [8] introduced an operation d assigning to a simplicial

map between graphs a simplicial map between another pair of graphs and using

it characterized simplicial maps which can be factored through an arc. This

characterization yielded an alternate proof [8, Examples 5.12 and 5.14] of non-

chainability for the Ingram and Davis-Ingram continua. In this paper we adapt

the same idea to show that some maps cannot be factored through a simple

triod.

2. Simplicial maps

In this section we introduce the notion of simplicial maps and prove some

auxiliary propositions.
By a graph we understand one dimensional, finite simplicial complex. If G

is a graph then ^~(G) will denote the set of vertices and %(G) will denote

the set of edges. By the order of a vertex v we understand the number of

edges containing v . Two points belonging to an edge are called adjacent. A

simplicial map of a graph Gx into a graph Go is a function from W(GX) into

"V(Go) taking every two adjacent vertices either onto a pair of adjacent vertices

or onto a single vertex. A simplicial map is light if the image of each edge is

nondegenerate.
In this paper the same notation is kept for a graph and for its geometric

realization. We will assume that every graph is a subset of three dimensional

Euclidean space and every edge is a straight linear closed segment between its

vertices. In this convention a simplicial map is understood as an actual contin-

uous mapping (linearly extended to the edges). But it is important to note that

a graph, either abstract or geometric, has a fixed collection of vertices and any
change in this collection changes the graph.

A graph with a geometric realization homeomorphic to an arc is simply called

an arc. Observe that two arcs are isomorphic if and only if they have the same

number of vertices. A connected graph without a simple closed curve is called a

tree. A tree T is a triod if it is the union of three arcs intersecting at a common

endpoint. If u and v axe two adjacent vertices of a graph, by (u, v) we will

denote the edge between u and v . Additionally, if u and v axe two vertices

of a tree, by (u,v) we will denote the arc between u and v .

2.1 Proposition. Let {Gj, tp'j} be an inverse system of graphs with simplicial

and surjective bonding maps (py. G¡ —> Gj. Let K denote the inverse limit (in

the topological sense) of {G¡, <p'j} . Suppose that K is simple-triod-like, i.e. K

is the inverse limit of simple 3-ods with continuous and not necessarily simplicial

bonding maps. Then for each positive integer j there is a positive integer i such

that tp'j can be factored through a (simplicial) triod.
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Proof. Let p„ denote the projection of K onto G„ . For each v £ ^(Gf), let
U(v) denote a small ball around v in Gj suchthat U(vi)nU(v2) = 0 for each
Vu v2 £ ^(Gj) and Vi ^ v2 . Let % be the open covering of Gj consisting of

the sets U(v) and all open edges of Gj. (By an open edge we understand an

edge without its endpoints.) The collection f% = {pJx(U)\U e ^} is an open

covering of K. Since K is simple-triod-like, there is an open covering y of

K such that y subdivides 3? and the nerve of y is a triod. By a chain

of elements of ET we understand a sequence of sets tu t2, ... , tk such that

tnfttm^ 0 if and only if \n - m\ < 1. Since the nerve of y is a triod, for any

two elements a and b of y there is exactly one chain ch(<z, b) with the first

element a and the last b. (ch(a, a) denote the chain reduced to one element

a.) If A is a subset of y, then by conv(^4) we will denote the union of all

chains ch(a, b), where a, b £ A . Let t be the only element of y intersecting

three other elements of y, and let au a2 and a3 be the three elements of

y such that ch(t, ax) U ch(/, a2) U ch(i ,a3)=¥.

For each v £ ^(Gf), let £F(v) be the set of the elements of y contained

in pJx(U(v)). Denote by y the union of y(w), where v £ T(Gj). We will

define an equivalence relation = on y in the following way:  ti = t2 if there

is v £ T~(Gj) suchjhat h, t2 £ ^(v) and ch(i,, t2) c (J^U/fti). Let

8 denote the set y / = . If x £ 6, then by v(x) we will denote the vertex of

"V(Gj) such that x c y(u(r)). Observe that if t) and x2 are two distinct

elements of 8, then the sets conv(ii) and conv(T2) are disjoint. Note also

that conv(Ti U x2) c (!J~\eT) U Xi U x2 if and only if there are elements ti £ xi

and t2 £ x2 such that ch(ii, t2) c (¡T\^) U xx U x2.

Let T be the graph defined in the following way: *V(T) = 8 and two

vertices Xi and x2 of T are adjacent if conv(ti ut2) c (y\y) Uti UT2. Let

ß-.T^Gj be defined by the formula ß(x) = v(x) for x £ T(T). Clearly, ß
is a simplicial map.

We will prove that T is a triod (possibly degenerate). Note that if y is
contained in the union of two of the chains ch(i, ai ), en(t, a2) and ch(z, a3),

then T is an arc (or a single vertex). So we can assume that for each k =

1,2,3, there is b^ £ 8 such that bk intersects the chain ch(i, ak) and no

other element of 8 intersects conv(¿»¿U{?}). Let Vk denote the set of elements

of 8 contained in con\(bk U {ak}), and let Ak be the subgraph of T spanned

by Vk. Observe that Ak is an arc (possibly degenerate) and bk is an end

point of Ak . Suppose that T is not a triod. Then the vertices bx , b2 and

b3 are distinct and each of them is adjacent to the remaining two. Since for

each two of the sets conv(èi), conv(¿>2) and conv(¿>3) there is a chain in y

between them which does not intersect the third, we may assume that / ^ y

and bk c ch(i, ak) for k — 1, 2, 3. Let s^ be the first element of ch(/, ak)

belonging to y. Clearly, sk £ bk . Since t ^ ¡T, there is an open edge e of

Gj such that Pj(t) c e. Let v' and v" be the vertices of e. Observe that

Pj(z) c e for each z £ ch(í, S/OUs/J • It follows that v(sk) is either v' or v"
and consequently two of bx , b2 and b3 coincide. This contradiction proves

that T is a triod.
Let e be a Lebesgue number for the covering y (i.e. e is a positive number
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such that for each subset Y of K, if the diameter of Y is less than e, then

Y is contained in some element of y ). There is a positive integer i such that

the diameter p~~l(z) is less than e for each z £ G,. Since the bonding maps of

the inverse system defining K are surjective, we have that p,(p~x(z)) = z . For

each w £ "V(Gi), let a(w) be an element of y containing p¡~l(w). Note that

a(w) £ ¿7~(<p'j(w)). Let a(w) be the vertex of T representing a(w). Clearly,

ß o a = cp'j . To complete the proof it is enough to show that a is a simplicial

map.

Let w and w' be two adjacent vertices of G,■. We will prove that a(w) and

a(w') axe adjacent vertices of T. Let IX,I2, ... ,In be a chain covering of

(w , w') such that p~l(h) c a(w), p~x(In) c a(w') and the diameter p~x(Ik)

is less than e for each k = 1,...,« . Let Bk be an element of y containing

p~l(Ik) with Bi = a(w) and 1?„ = a(i//).

Consider two cases <p'j(w) = <plj(w') and ç>j(io) # (p)(w'). If ç>j(to) =

0>j(iu'), then <p'j(Ik) - ç>j(w) and thus Bk £ ^(cp'^w)) for each k = 1,...,« .

It follows that in this case a(iu) = a(w'). So we may assume that tp'-(w) ^

pj(u>'). Let e be the edge between <p'j(w) and <p'j(w'). Since Pj(Bk)C\e / 0 ,

we have the result that Pj(Bk) ceu U(tp'j(w)) u U(<p'j(w')) and thus 5*. e

(y\y)uy(ç>j(io))uy(pj(w')). Let m be the greatest integer such that ßm e

y(i»j(u;)). Since ç»j(/iU---U/m) C U(<p)(w)) and £/(ç»j.(«7))nt/(ç»j.(ti;')) = 0>

we have the result that Bk e (^\^) U ̂ (cp)(w)) for each /c = 1, ... , m . It

follows that Bi=Bm. Let m' be the least integer such that 2?m- e y(çpj(u/)).

Clearly, m' > m . By the same argument as the one above we infer that Bm> =

B„ . Since the collection Bm, Bm+i, ... , Bmi contains the chain ch(Bm , Bm>),

we have the result that a(w) and a(w') are adjacent vertices of T.   □

We need to recall the following definitions from [8, 5.1 and 5.3].

2.2 Definition. We will say that a graph G' subdivides a graph G if G' is a
graph obtained from G by adding vertices on some of its edges. More precisely,

G' is a graph such that T(G) c T~(G') and for every edge e £ %(G) there is
an arc (e, G') contained in G' such that

(i) (e, G') has the same endpoints as e ,

(ii) (d, G')n(e, G') = dne for d,e£%(G) and d ¿ e, and
(iii) every vertex from J^(G') belongs to some (e, G') and every edge from

%?(G') is an edge of some (e, G').

If v is a vertex of G and e is an edge of G containing v , then by (v , e, G')

we denote the edge of (e, G') containing v .
Let cp : Gi ->• Go be a simplicial map between graphs. Let G'0 be a graph

subdividing Go and let cp' be a simplicial map of a graph G\ subdividing Gi
onto G'0 . We will say that cp' is a subdivision of cp matching G0 provided that

cp'(v) = <p(v) for each vertex v £ 2^(Gi), and for each edge e £ W(G\) we

have that

if cp(e) is degenerate then (e, G'x) = e, and

if cp(e) is an edge of Go then cp' is an isomorphism of (e, G\) onto

(9(e), Go).
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2.3 Proposition. Suppose y/ : Gi —► Go is a simplicial map between connected

graphs. Let G'0 be a graph subdividing Go and let y/' : G'x -> G0 be a subdivision

of cp matching G'Q. Then tp can be factored through a triod if and only if y/'

can be factored through a triod.

Proof. Observe that by [8, Proposition 5.4], if ip can be factored through a

triod, then cp' also can be factored through a triod. Suppose that there is a
triod V and there are simplicial maps a': G\ -* V and ß': V —► G'0 such
that ß' o a' = \p'. In view of [8, Proposition 5.13] we can assume that a' is

surjective. Let t denote the only order 3 vertex of V. Let to, h and t2 be

the endpoints of T. Let V = {v £ T(T')\ß'(v) £ T~(G0)}. Observe that

a'(T(Gx)) = V and a'(r-(G\)\T(Gx)) = T(T')\V. Let V, = Vn(t, U) and
let Wi be the vertex of V, which is the closest to t. Let A, denote the graph

with Vi as its set of vertices such that any two vertices of V, axe adjacent if

there are no other points of V between them. Observe that A, is an arc. We

will prove the following claim.

Claim. We can assume that ß'(wo) = ß'(w2).

If t £ V, then t = wo = Wi = w2 and the claim is true. So we can assume

that t £ V. Since a' is surjective and Gi is connected there are two pairs a,

a' and b, V of vertices of Gi suchthat a and a' are adjacent in Gi, b and

V are adjacent in Gi, and the set {of (a), a'(a1), a'(b), a'(b')} consists of all

three vertices w'0, wi and w2 .

Without loss of generality we can assume that a'(a) = w0, a'(a') = Wi =

a'(b) and a'(b') = w2 . Let eo be the edge of Go joining ß'(w0) = ß'(a'(a)) =

\p(a) and ß'iwx) = ß'(a'(a')) = y/(a'). Let ex be the edge of Go joining

ß'(wx) = ß'(a')b)) = y/(b) and ß'(w2) = ß'(a'(b')) = yv(b'). Since (e0, G0)

and (ex, G0) have two common vertices ß'(wx) and ß'(t), eo and ex coincide.
Thus ß'(w0) = ß'(w2).

We will define T considering two cases ß'(wo) = ß'(wi) = ß'(w\) and

ß'(w0) = ß'(w2) t¿ ß'(wx). In the first case T is the union of A0, Ax and A2

with tu0, wx and w2 identified to one vertex. If ß'(w0) = ß'(w2) ^ ß'(wx),
T is the union of A0, Ax and A2 with too and w2 identified to one vertex,

and with an edge between the result of the identification and wx .

Let ß: T -► G0 be such that ß(v) = ß'(v) for each v £ V. Note that
ß is a simplicial map. Let a: Gx —> T be such that a(v) = a'(v) for each

v £ ^(Gi). One can verify that a is a simplicial map and ß o a — y/ .   D

3. Construction of the example

In this section we will construct a simplicial map <p between two subdivisions

of a simple 4-od. Then we consider the inverse system with subdivisions of cp

as bonding maps. We define K to be the inverse limit of this system. We show

in this section that each proper subcontinuum of K is an arc. We will show

later than K is not simple-triod-like.
Let X be a tree with its vertices named as in Figure 1.

Let X' be a subdivision of X with twelve new vertices uq, Ui, ... , Uu

added as shown in Figure 2. Let cp : X' -» X be the simplicial map defined by

Table 1 and the following equality cp(uo) = cp(u2) = cp(un) = cp(us) = cp(u-j) =

cp(u9) = <p(uio) = v0.
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Table 1

x:   vo   vx    v2   v3   v4   v5   v6   v7   ux    u3    u¿    u%    uxx

cp(x) :   v3   v4   vx    v6   vj   vx    v6   v7   v5    v2    v2    v$    v5

The map cp is indicated in Figure 3. The dotted line graph represents the

domain, X', while the solid black represents the range, X, and each vertex

of the domain is mapped onto the nearest vertex of the range. Only vertices

vo, vx, ... , vj of X' are labeled. Not labeled are the remaining vertices of X'

and the vertices of X, which are named exactly the same as shown in Figure 1.

3.1 Proposition. <p4((uxx, i>0)) = X and for each vertex x of X', cp^(x) is

either V(, or v-¡. (cpn is the nth iteration of cp.)   D

We need to recall another definition from [8].

3.2 Definition. Let « be a positive integer and let N denote either the set

{0,1,...,«} or the set of all nonnegative integers. Denote by Nx the set

Ar\{0}. Let Go, Gx, G2, ... be a sequence of graphs with N as the set of

indices. Let E be a sequence of simplicial maps yix,y/2, ... such that for

each j £ Nx , y/j maps a graph G'j subdividing Gj into Gy_i . Using induc-

tively Proposition 5.4 from [8], we can define a sequence of simplicial maps

ox, o2, ...   such that oi = y/i  and for each j £ NX\{1}, o¡  subdivides y/j



AN atriodic simple-4-od-like continuum 543

O-

Vl

-or-;

v0

'5/0-N

:v2'

,0

--o

66-

i i o-
I I   I

I I   I

II I

II   I

o  '
/

XV

_ - o- - -"

Figure 3

v6
- -o-

—•-

_-o-

v7
--o

--o
V4

matching the domain of Oj-\ . For each j £ Nx, denote by X, the domain of

y/j. Set Zo = Go . For every two integers i and ;' from N such that i> j, let

1,'j denote the composition oj+x o • • • o o¡ mapping X, into X,-. By X¡- we will

understand the identity on X,-. We will say that the inverse system {X,, X'} is

generated by the sequence X.

Let <P be an infinite sequence of simplicial maps cpx, cp2, ... each of which

is cp . By {<Pj, <b'j} we denote the inverse system generated by <P. Let K be

the inverse limit of {<P; ,<!>'■}. Denote by Pj the projection of K onto <P;.

3.3 Proposition. Every proper nondegenerate subcontinuum of K is an arc.

Proof. Let P be a proper subcontinuum of K . Suppose that P is not an arc.

Since cp is simplicial on X', there is a vertex x of X' such that x £ Pj(P)

for infinitely many j. In view of Proposition 3.1, we have that either v6 e

Pj(P) for all j or t>7 £ p¡(P) for all j. Since cp restricted to (uxx, vj) is

an embedding, uxx £ Pj(P) for infinitely many j . Since (uxx , v6) c (uxx, v7)

and ^4((«n , v¿)) = X, Pj(P) = X for each j . Thus P is not proper.   D

3.4 Proposition. Let n be a positive integer. Let e be an edge of X. Let ë

denote the interior of e. Suppose Cc$„ ¿s a component of (<bnx)~x(ë). Then

the closure of C is mapped by <1>" isomorphically onto e .

Proof. Since Op-1 is a simplicial map onto X, any component of (Oq~' )_1 (ë)

is the interior of an edge of 0„_i . Since <I>" is a simplicial subdivision of í>o~'

matching X', C is a subdivision of the interior of an edge of <I>„-i . Since

Op-1 maps isomorphically edges of <t>„_i onto edges of X, C is mapped by

<P" isomorphically onto e .   D

3.5 Proposition. Let « be a positive integer. Suppose that a is a vertex of (J>n

such that Oq(<2) = Vo- Then a is a vertex of order 2 in <P„. Moreover, if b

and c are the two vertices of 0„ adjacent to a, then Og is an embedding of

(b, c) into X.

Proof. Since 3>?(<z) is a vertex of X' but not of X, the proposition follows

from Proposition 3.4.
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3.6 Proposition. Suppose that Y is a triod which is the union of three arcs Ax,

A2 and A3 meeting at a common endpoint y. Let y ,y\,yl2, ... , ylk(j, denote

the sequence of consecutive vertices of A,. Let ß: Y —> X be a simplicial map

suchthat ß(y) = v0 and the points ß(y\), ß(y2) and ß(y\) are three different
vertices from the set {vx ,v2,v3, v5} . Suppose there is a positive integer « and

there is a simplicial map a : <t„ —> Y such that ß o a — Og . Then there is a

triod Y' with its vertex of order three denoted by y' and there are simplicial

maps ß':Y'->X and a': <P„ -> Y' such that ß' o a! = % and ß'(y') ¿ v0.

Proof. Let WU2, Wu3 and W2,3 denote the sets a~x(Ax)r\a~x(A2), a~l(Ax)r\

a~x(A3) and a~x(A2) fla"1^), respectively. By Proposition 3.5, the sets

^1,2 > Wi,3 and 1^2,3 are mutually exclusive and a~x(y) is their union.

3.6.1 Claim. If one of the sets Wx,2, Wx3 and W2,3 is empty then the
proposition is true.

Since Ax , A2 and A3 play the same role in the statement of the proposition,

we may assume that Wx2 = 0. Define T"(Y') tobe ^(Y) with y replaced by

two points Wi and w2 . Let f(F') consists of (yf, wx), (y\, w2), (wx, y\),

iwi y\) and all edges of Y not containing y. Define ß'(wx) = ß'(w2) = v0

and ß'(w) = ß(w) = a(v) for w £ T(Y')nT(Y). Define a'(v) for v £

W(Q>n)\cx~l(y), a'(v) = wx for v £ Wx^3 and a'(v) = w2 for v £ W2y3. One

can verify that the hypothesis of the proposition is satisfied with y' =y\.

3.6.2 Claim. Suppose that ß(y\) = vx and ß(y2) = v2. Suppose also that

either ß(y\) = v3 or ß(y\) = v5 and ß(y\) = v6. If WXt2 ¿ 0, then a(0„) C
AXUA2.

By Proposition 3.5, there are three vertices wx, w and w2 of On such

that Wi is adjacent to w, w is adjacent to w2, a(wx) = y\ , a(w) = y

and a(w2) = y\ . Since v2 - u4 - u3 is the only pair of intersecting edges of

X' mapped by cp onto vx - vo - v2, we have the result that <t>"(wx) = v2,

<&{(w) = u4 and Q>"(w2) = u3. Let x be an arbitrary vertex of <I>„ . Let

So = w , sx, ... , sk = x be vertices of (w , x) such that fox i = 0, I, ... , k-l ,

a(s¡) = y and a(a) ^¿ y for any vertex a from the interior of (s,, s,+x).

In order to prove the claim, it is enough to show that if 0^(i,-) = u4, then

a((Sj, Sj+i)) c Ax U A2 and if i + 1 < k, then also 4>"(i,-+i) = u4. Observe

that a((Sj, Sj+i)) is contained in one of the arcs Ax , A2 and A3. Let «o =

Si, ax, a2, ... , am = s¡+x be vertices of (s¡, si+x) listed in the natural order.

Clearly, either Q>"(ax) = u3 or O"(a0 = v2. We will consider each of these

cases separately.

Suppose 0"(iii) = u3. Since ß o a = <T>1 = cp o <&nx , a(ax) = y\ and

consequently a((s¡, si+x)) c A2. By Proposition 3.4, there is a vertex b of

í>„ such that 4>q maps consecutive vertices of (ax, b) onto the sequence

vi, v0, v5, v0, v3. To match this pattern, a must map (fli, b) into A2 and

we must have that ß(y\) = v0, ß(y3) = v5, ß(y}) = v0 and ß(y2) = v3.

Now, assume that a(si+x) = y. Clearly, m > 5 and a(a2) =y\, a(a3) = y\,

a(a4) = y\ and a(a¡) = y2. Let j < m be the greatest integer such that

a(aj) = y\ . Note that m > j + 4. Since ß o a = Oq , it follows from Propo-

sition 3.5 that a(üj-\) = y\ and a(aj+x) = y\ . Observe that Og(aj_i) = v3,

Og(a7-) = v0 and 4>g(a7-+i) = v5. Since v0 - Uo - ux is the only pair of inter-

secting edges of X' mapped by cp onto v3-Vo-v$, <¡>"(aj+x) = ux . By Propo-
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sition 3.4, there is a vertex c of i>„ such that a¡ £ (aj-X, c) and (a¡-\, c)

is mapped by <I>" isomorphically onto (v0, v2). It follows from Proposition

3.4 that the vertices fl/+i, a¡+2, a¡+3 and a¡+4 belong to (a,_i,c). Since

(üj-u c) has seven vertices, aj+4 is adjacent to c. Since a(a,_i) = y\,

a(üj) = y\ , a(üj+x) = y2 and <Pq maps consecutive vertices of (üj-X , c) onto

the sequence v3, v0, f5, Vo, v2, v0, vx, we have the result that a(c) = y\.

Thus a(aj+4) = y, s¡+\ = üj+4 and consequently <J>"(s,+i) = u4. This com-

pletes the proof of the claim in the case where 0"(ax) = u3.

Suppose 0"(tfi) = v2. The proof in this case is essentially the same as in

the previous case. Since ß o a = <Pg = cp o(p^ , a(a{) = y\ and consequently

a((Si, s¡+i)) c A\. Now, suppose that a(s¡+x) = y. Clearly, m > 2 and

O"(«2) = M4 • Observe that either a(a2) = y or a(a2) — y\ . In the first case the

claim is satisfied, so we can assume that a(a2) =y\. By Proposition 3.4, there

is a vertex b of <P„ such that <Pq maps consecutive vertices of (ax, b) onto

the sequence vx, v0, v2, v0, f 5, v0, v3. To match this pattern, a must map

(ax, b) into Ax and must have that ß(y\) = v0, ß(y\) = v2, ß(y\) = v0,

ß(yl5) = v5, ß(y\) = vo and ß(y7) = v3. Clearly, m > 1 and a(a3) = y\,

a(a4) = y\, a(a5) = y\, a(a¿) = y\ and a(a7) = yx. Let j < m be the

greatest integer such that a(aj) = y\. Note that m > j+6 . Since ßoa = Oq , it

follows from Proposition 3.5 that a(a;_i) = y) and a(a¡+i) = y\ . Observe that

Oq(û;_i) = v3, <&o(aj) = Vo and <Pq(<2/+i) = v$. Since Vo-Uo-Ui is the only

pair of intersecting edges of X' mapped by cp onto v3 - vo - v5, O"(o,+i) =

«i. By Proposition 3.4, (a;_i, íz,+5) is mapped by Of isomorphically onto

(v0, v2). In particular Oy(a7+5) = v2 and consequently 0"(a;+6) = «4 • Since

a(üj-i) = y), a(üj) = y¿ , a(aJ+i) = y\ and Og maps consecutive vertices of

(aj-i, Oj+i) onto the sequence v3, vo, v5, vo, v2, vo, Vi, we have the result

that a(aj+s) = y\ . If a(a/+6) = y, then s¡+\ = a7+6 and the claim is true.

Suppose that a(aj+f¡) ^ y and thus a(aj+^) = y\ . By Proposition 3.4, there is

a vertex c of d>„ such that a;+6 £ iaj+s, c) and («;+5, c) is mapped by O"

isomorphically onto (i»o, ̂ 2). Since a(aj+s) = y\, a(aj+^) = y\ and i>g maps
consecutive vertices of (aj+s, c) onto the sequence Vi, Vo, v2, Vo, v¡,, Vo, v3,

we have the result that a((aj+s, c)) = (y\, y)). It follows that m > j +11 and

a(a7+io) = y\ ■ This contradicts the choice of j. So the claim is true.

We will consider the following four cases: Case (i). ß(y\) = vi, ß(y2) = v2

and ß(y}) = v3, Case (ii). ß(y\) = v{, ß(y\) = v2 and ß(y]) = v5, Case

(iii). ß(y\) = vi , ß(y\) = v3 and ß(y3x) = v5, and Case (iv). ß(y\) = v2,

ß(y2) = v3 and ß(y\) = v5.

Case (i). ß(y\) = vx , ß(y2) = v2 and ß(y\) = v3.

By 3.6.2, if Wit2^ 0, then a(<P„) is an arc and the proposition is trivially

satisfied. So, we can assume that W\ 2 — 0 and infer the proposition from

3.6.1.
Case (ii). ß(y\) = vx, ß(y\) = v2 and ß(y\) = v5.
If wx>3 = 0, then the proposition is true by 3.5.1. So we can assume that

Wx¡3 t¿ 0 . By Proposition 3.5, there are three vertices wx, w and w3 of i>„

such that wx is adjacent to w , w is adjacent to w3, a(wx) = y\, a(w) = y

and a(w3) = y\. Since v¡ - uXo - uxx is the only pair of intersecting edges

of X' mapped by cp onto t>i - Vo - v5, we have the result that ®"(wx) =v5,

<S>1(w) = «io and ®"(w3) = uxx . By Proposition 3.4, there is a vertex c of 0„
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such that c is adjacent to w3 and 4>"(c) = V(,. Since <S>q(c) = V(,, a(c) = y\

and ß(y2) = v6. Now, we can use 3.6.2. If WX2 ̂  0, then a(0„) is an arc

and the proposition is trivially satisfied. So, we can assume that Wx 2 — 0 and

infer the proposition from 3.6.1.

Case (iii). ß(y\) = vx, ß(y\) = v3 and ß(y\) = v5.
If Wi 3 = 0, then the proposition is true by 3.6.1. So we can assume that

Wi,3 # 0• By Proposition 3.5, there are three vertices w¡ , w and w3 of 0„

such that Wi is adjacent to w , w is adjacent to u^ , a(wi) = y\, a(w) = y

and a(w3) = yx . Since v¡ - «io — «11 is the only pair of intersecting edges

of X' mapped by cp onto Vi - vo - v$, we have the result that <b"(wx) = «5,

<p^(w) = «io and <&"(w3) = Un . By Proposition 3.4, there is a vertex c of 0„

such that c is adjacent to IU3 and 4>"(c) = i>6. Since Oq(c) = w6, a(c) = y\

and yff(y|) = v6.

If W2t3 = 0, then the proposition is true by 3.6.1. So we can assume that

1*2,3 ¥" 0 ■ By Proposition 3.5, there are three vertices u2, u and u3 of 0„

such that u2 is adjacent to u, u is adjacent to «3, a(u2) = y2, a(u) = y

and a(u3) = y\. Since v0 - «0 - "i is the only pair of intersecting edges of

X' mapped by cp onto v3 - vo - v$, we have the result that <&"(u2) = v0,

0"(w) = «o and ®"(u3) = ui . By Proposition 3.4, there are vertices a and

b of On such that a is adjacent to u3, b is adjacent to a, Q>"(a) = u2

and <b"(b) = u3. Since í>o(a) = i>o and y?^) = v6, we have the result that

a(a) = y. Thus a(b) must be one of the points y\ , y\ and y\. This is a

contradiction, because ß(a(b)) = «^(è) = u2, ß(y\) = vx , ß(y2) = v3 and

ßiy\) = v5.

Case (iv).  ß(y\) = v2 , ß(y2) = v3 and ß(y\) = v5.

If W23 = 0, then the proposition is true by 3.6.1. So we can assume that

W235Í0. By Proposition 3.5, there are three vertices w2 , w and w3 of <!>„

such that w2 is adjacent to w , w is adjacent to w3, a(w2) = y\ , a(w) = y

and a(u>3) = yx . Since vo - Uo - ux is the only pair of intersecting edges of

X' mapped by cp onto v3 - vq - v$, we have the result that <t>"(w2) = vq ,

<S>"(w) = uo and Q>"(w3) = ux . By Proposition 3.4, there is a vertex b of 0„

such that w3 £ (w2, b) and O^ maps (w2, b) isomorphically onto (vo, v2).

Note that <J>q maps the consecutive vertices of (^3, b) onto the sequence

v$,Vo,v2,Vo,vx. To match this pattern we must have that

(3.6.3) either ß(y\) = v0, or ß(y\) = v0 and ß(y\) = vx.

If Wx 2 = 0, then the proposition is true by 3.6.1. So we can assume that

Wx2^ 0. By Proposition 3.5, there are three vertices zi , z and z2 of í>„

such that zi is adjacent to z, z is adjacent to z2, q(zi) = y\ , a(z) = y and

"(22) = y\ • Since Vo- u$ - w6 is the only pair of intersecting edges of X'
mapped by cp onto v3-vü-v2, we have the result that Q>nx(z2) = v0 , Q>"(z) =

Us and 0"(zi) = «6. By Proposition 3.4, there is a vertex c of <ï>„ such that

zi e (z2, c) and O" maps (z2c) isomorphically onto (v0, v3). Note that C^

maps the consecutive vertices of (zi, c) onto the sequence v2, v0, v5, v6. To

match this pattern we must have that

(3.6.4) either ß(y\) = v0 and ß(y\) = vs, or ß(y\) = v6.

We will prove that

(3.6.5) either ß(y\) = v0 and ß(y\) = vx, or ß(y\) = v6.
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Again, by 3.6.1, we can assume that Wx<3 ̂  0. By Proposition 3.5, there

are three vertices xx, x and x3 of <!>„ such that Xi is adjacent to x, x is

adjacent to X3, a(xi) = y\ , a(x) = y and a(x3) = y\. Since U(, - «7 - u%

and u3-u2-ux axe the only two pairs of intersecting edges of X' mapped by

cp onto v2 - vo - v$, we have the result that either 0¡ (xi) = U(¡, 0¡(x) = u-¡

and <&[(x3) = M8, or G>"(xi) = 1/3, 4>"(x) = u2 and i>"(x3) = ux. Suppose

that <P?(x3) = u%. Then by Proposition 3.4, there is a vertex s of <P„ such

that s is adjacent to x3 and Q>"(s) = v3. This forces ß(y\) = v6 and (3.6.5) is

true. So, we can assume that Ô"x(xx) = u3, 0"(x) = u2 and Oy(x3) = ux. By

Proposition 3.4, there is a vertex q of 4>„ such that xi £ (x3, <?) and (pnx maps

(xi, q) isomorphically onto («3, v2). Note that <Pq maps the consecutive

vertices of (xx, q) onto the sequence v2,Vo,vx. To match this pattern we

must have that ß(y\) = v0 and ß(y\) = vx. So (3.6.5) is true.

Combining (3.6.3), (3.6.4) and (3.6.5) we get the result that

(3.6.6) ß(yx2) = v0, ß(y\) = vx and ß(y\) = v6.

Figure 4 shows the map ß on the "central" part of Y . As before, the dotted

line graph represents the domain, Y, while the solid black represents the range,

X, and each vertex of the domain is mapped onto the nearest vertex of the

range.

Define "VifY') tobe If (Y) with y replaced by four points go, g2, gs and
g7, with y\ replaced by two points g3 and g(,, and with y\ replaced by

two points gx and g$. Let f(F') consists of (yx2,g3), (y2,gs), (yj, go),

(y2x , c?5>, (go, g\), (g\, gi), (gi, gî), (gs, gi), (¿?6, gi), (gi, gs) and all

edges of Y not containing any of the vertices y, y\ and y\. Observe that

Y' is a triod and y\ is its vertex of order 3. (See Figure 5.) Define ß'(go) =

ß'(gi) = ß'(gs) = ß'(gi) = vo, ß'igi) = ß'ige) = v2, ß'(gx) = ß'(gi) = v5
and ß'(w) = ß(w) for w £ T'(Y')nT'(Y). Figure 5 shows the map ß' on the

"central" part of Y'. As usual, the dotted line graph represents the domain, Y',

while the solid black represents the range, X, and each vertex of the domain is

mapped onto the nearest vertex of the range. Compare this figure with Figures

3 and 4.
Let G denote the set {v e ^(^„)\a(v) is either y, or y\, or y\}.  Let
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G, denote the set {w € G\®nx(v) = u,} where í = 0, 1, 2, 3, 5, 6, 7 or 8.
Using 3.5.6 and Proposition 3.4 one can prove that G = G0L> GXU G2U G3U

G5 U G6 U G7 U G8. Define a'(v) = a(v) for v £ ^"(<D„)\G and a'(v) = g¡

for v £ Gi,  i = 0, 1,2,3,5,6,7,8.  Clearly, a' is a simplicial map and

4. The operation «i

In this section we will recall combinatorial methods introduced in [8] and

apply them to the map cp .

4.1 Definition. For a graph Go, Let D(Go) denote the graph such that
(i) the set of vertices of D(Gq) consists of edges of Go and

(ii) two vertices of D(Gq) are adjacent if and only if they intersect (as edges

of G0).

Let y/:Gx —► Go be a simplicial map between graphs. For every (closed)

edge e £ 'S (Go), let JT(e) denote the set of components of y/~l(e) which

are mapped by y/ onto e. Denote by JF(y/) the union of all Jf(e). Let

D(y/, Gx) be the graph such that

(i) the vertices of D(y/, Gx) are elements of 5?(y/), and

(ii) two vertices of D(y/, Gx) are adjacent if and only if they intersect (as
subgraphs of Gi ).

Let d[y/] : D(y/, Gx) -> D(Go) be the map defined by the formula d[y/](v) -
y/(v) for every vertex v of D(y/, Gx).

Every vertex v £ "V(D(y/, Gx)) is also a subgraph of Gi . To avoid confu-

sion we will denote this subgraph by v*.

Let o be simplicial maps of a graph G2 into Gi. Let d\yi, o] : D(y/oo, G2)

-» D(y/, Gx) be the map such that for every vertex v of D(yi o a, G2),

d[y/, o](v) is the vertex of D(y/, Gx) containing o(v*).

4.2 Proposition. Suppose that Y is a triod which is the union of three arcs A x ,

A2 and A3 meeting at a common endpoint y . Let y, y[, y2, ... , y'k{¡) denote

the sequence of consecutive vertices of A,. Suppose y/ is a simplicial map of Y

into a graph G. Let p be the least integer such that y/(yxp) ̂  y/(y), and let q
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<v0,v,>~

<v3,v4>

<v0,v3>

~ <V0,V2>

Figure 6

<v5>v6>

<v6,v7>

be the least integer such that y/(y2) ̂  y/(y). If v(yxp) = v(y2), then D(y/, Y)

is a triod (possibly degenerate).

Proof. Clearly, y/((y, yj,)) = y((y,yl)) is an edge of G. Denote this edge

by e. Let t be the vertex of D(y/, Y) representing the component of y/~x(e)

containing (y, yp)l)(y, y2). Observe that for any vertex z ^ t of D(y/, Y), z*

is contained in one of the arcs Ax , A2 and A3. Let Sx = {z £ D(\p, Y)\z ^ t

and z* c Ai}. Let z be an arbitrary point of Zi and let j be an index

such that (y'j,y'j+x) c z* and y/((y), y)+x)) is a nondegenerate edge of G.

Observe that, if s is an element of D(yi, Y) different than z, then either

s* C (y'j+x, y'k(l)) or s* c Y\(y'j+X, yk(i)). It follows that Zi can be arranged

into a sequence z\, z\, ... , z'.^ such that (z\)*r\t* / 0 and (zj)*n(z{,) / 0

if and only if \j-n\ < 1. Observe that (t, zxm(X)), (t, z2m{2)) and (t, z3m(3]) axe

three arcs intersecting at t. Clearly, D(y/, Y) is the union of these arcs.   D

The following proposition follows immediately from 4.2.

4.3 Proposition. Suppose that Y is a triod with its point of order 3 denoted by

y. Suppose ß is a simplicial map of Y into X. If ß(y) ^ v0, then D(ß, Y)

is a triod (possibly degenerate).   D

Figure 6 shows D(X) with its vertices labeled by the corresponding to them

edges of X. Figure 7 indicates d[y>] : D(q>, X') —* D(X). The dotted line graph
represents the domain, D(cp, X'), while the solid black is the range, D(X), and

each vertex of the domain is mapped onto the nearest vertex of the range. The

vertices of D(cp, X') are labeled t0, tu ■■■ , tx2 as shown in Figure 7. Table 2

shows the subgraphs of X' corresponding to the vertices of D(cp, X').

Let S be a function assigning to every vertex of I a set of edges of X

defined in the following way: S(v0) = {(v0, v2), (v0, v3), (d0 , v$)}, S(vx) =

{(v0, vi)}, S(v2) = {(v0,v2)}, S(v3) = {(«o, Vi)}, S(v4) = {(v3,v4)}, S(v5)

= {(vo, vs)}, S(v6) = {(v5, v6)} and S(v7) = {(v6, v-,)}. Note that v, belongs

to each edge from S(v¡) for i = 0, ... , 6. So, S is an edge selection on X

according to [8, Definition 5.5]. Observe that

(i) <p((v¡e, X')) £ S(<p(Vj)) for each v¡ £ "V(X) and each e £ S(v¡), where
(Vj, e, X') denote the edge of (e, X') containing v¡.

Observe also that
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Figure 7

(ii) if e and e' are two different edges of X' intersecting at a common

vertex q then at least one of the edges cp(e) and cp(e) belongs to S(cp(q)).

The above two conditions mean exactly that

4.4   Proposition,  cp preserves (S, S) (in the sense of [8, Definition 5.7]).    D

/*
MO

.. , 7 and each e £ S(v¡) and

tg = (U2 , U3) U («3 , U4) C (Vo , V2) ,

= (u7, w8) c (v0,v3)  and t*2 =

Observe that

(iii) (Vi,e,X')ct* for each i = 0, 1,
(iv) t¡ = (u0, ux) U (ux, u2) c (v0, v2),

- (u5, u6) u (u6, U7) C (Vo,V3),   t\x

(«10, Mu) C (V5,V6).

Let X" be a subdivision of X with five new vertices: v% added between
v0 and t>2, v9 added between vs and v2, vi0 added between v0 and ^3,

and vi2 added between Vio and v3, and Vi2 added between w5 and V(,. Let

A : X" -> Z)(ç?, X') be defined by the formula k(vt) = r, for 1 = 0, 1, ... , 12.
Observe that A is an isomorphism. Conditions (iii) and (iv) mean exactly that

Table 2

t, d[cp](U)

to

h
h
h
U

h
h
h
h
h
MO

Ml

M2

(vo, v3)

(V3 , V4)

(v0,vi)

(V5,V6)

(V6 , V7)

(vo, Vl)

(V5 , v6)

(Vf, , V7)

(VO , v5)

(VO , v2)

(vo , v2)

(vo, v5)

(vo , v5)

(v0, uo)U(v0, u5)U(v0, u9)

(w0,vi)

(u4,v2)

(u»,v3)

(v3 , v4)

(u9, v5)u(v5, uio)

("11, ^6)

(v6 , v7)

(Uo, ux)U(ux, u2)

(u2, u3)u(u3, u4)

(u5, u6)U(u6, u7)

(U7, M8)

(«10;  «11)
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4.5 Proposition, cp is consistent on S and À is a consistency isomorphism (see

[8, Definition 5.7]).   D

The following proposition can be readily verified by Figure 7.

4.6 Proposition. D[cp] is light and for each e £ W(D(X)), each component of

(D[cp])~x(e) is either a vertex or an edge of D(cp, X').   D

5.   K  IS NOT SIMPLE-4-OD-LIKE

5.1 Proposition. Suppose <Pq can be factored through a triod. Then the map

d[cp , <¡>nx] : Z>(Og, <P„) -> D(cp, X') can also be factored through a triod.

Proof. Let Y be a triod with its point of order 3 denoted by y . Let a : 0„ —> Y

and ß: Y —► X be simplicial maps such that a o ß = Oq . By Proposition 3.5,

we can assume that ß(y) ^ vo . It follows from Proposition 4.3, D(ß, Y) is a

triod.
Observe that d[ß, a] : D(<Pn0 , 3>„) -» D(ß, Y), D[ß] : D(ß, Y) -» D(X),

d[<p,Onx] : D(%, <&„) -» D(cp, X') and d[cp] : D(cp, X') -» D(X) are light
simplicial maps. By Proposition 4.6, it follows from [8, Theorem 4.3] that

there is ß' : D(ß , Y) -+ D(cp, X') such that ß' o d[ß, a] = d[cp, O?].   D

5.2 Proposition. The map «Pg cannot be factored through a triod.

Proof. Clearly, the proposition is true if « = 0. Now, suppose that the propo-

sition is true for «- 1. Let T denote the sequence D[cpx]oX, cp2, cp3, ... , cpn,

where tp¡ = cp, and let {Tj, L]}^=0 we denote the system generated by T.

It follows from Propositions 4.4, 4.5 and [8, Theorem 5.11] that the system

{D(^Q, <D;), úf[<D¿, <Dj]}J"=0 is isomorphic to {T;, T< };"=0 .

Suppose 0(5 can be factored through a triod. Then, by Proposition 5.1,

i5?[O0, O"] and consequently T" can be factored through a triod. Since the

system {Tj, T'j}nj=x is generated by subdivisions of cp2, ... , <p„ , according to

the inductive assumption and Proposition 2.3, Y" cannot be factored through

a triod. This contradiction proves the proposition.   D

5.3 Theorem. K is a simple-4-od-like but not simple-triod-like continuum and

each proper nondegenerate subcontinuum of K is an arc.

Proof. K is simple-4-od-like as the inverse limit of the system {Q>j, Oj} of

subdivisions of X. By Proposition 3.3, each proper nondegenerate subcontin-

uum of K is an arc. Suppose that K is triod-like. Then by Proposition 2.1,

Oq can be factored through a triod for some « , contrary to Proposition 5.2.   D
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