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IRREDUNDANT SETS IN BOOLEAN ALGEBRAS

STEVO TODORCEVIC

Abstract. It is shown that every uncountable Boolean algebra A contains an

uncountable subset / such that no a of / is in the subalgebra generated by

I\{a} using an additional axiom of set theory. It is also shown that a use of

some such axiom is necessary.

A subset / of a Boolean algebra A is irredundant if no proper subset of /

generates the same subalgebra as /, or equivalently, if no a of / is in the

subalgebra generated by I\{a}. Typical irredundant subsets of A axe chains

of A, i.e., subsets which are totally ordered by the inclusion. Other types

of irredundant subsets of A include infinite subsets of A of pairwise disjoint

elements or infinite subsets I of A which are ideal-independent, i.e., no element

of / can be covered by finitely many others. Note that these two types of
irredundant sets are similar in nature in the sense that an ideal-independent

set reduces to a disjoint family in some quotient of A . It is natural to expect

that large Boolean algebras (BA's) have large irredundant sets and, in particular,

that uncountable BA's have uncountable irredundant sets (a question that has

been explicitly asked in [2, Q21]). One may go further and ask whether every

uncountable Boolean algebra has either an uncountable ideal independent subset

or an uncountable chain or, more reasonably, an uncountable chain in one of its

quotients (see [2, ff4, p. 240] where the stronger form of the question has been

explicitly asked). In this form the problem reduces to a well-known problem

about the structure of perfectly normal compacta which has many ramifications

(see [3]). The algebraic approach to the problem gives more information about
its nature and various connections while its dual form gives us more hints about

methods which might be relevant for its solution. It should be pointed out,

however, that if we ask for an uncountable irredundant set the problem has no

reasonable dual form and is, in some sense, purely algebraic. The purpose of

this note is to present an axiomatic analysis of the problem using the language

of the Proper Forcing Axiom. We shall assume the reader is familiar with

Chapter 8 of [9] which discusses a method of building proper partial orderings

that will be used here. Our principal result has the following form.

Theorem 1 (PFA). Every uncountable Boolean algebra has an uncountable irre-

dundant subset.
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The proof will be given in a sequence of claims and lemmas. Let A be a

fixed uncountable BA and let X be the dual space of A . A subset I of A is

left-separated if there is a well-ordering < of / such that no a in / can be

covered by finitely many elements of / which are < a. The full strength of the

following lemma will not be needed for the proof of Theorem 1 and it is given

here only because it gives a good introduction into more complex arguments

that will be used later.

Lemma 1 (PFA). Suppose I is an uncountable left-separated subset of A . Then

there is an uncountable set J of finite unions of elements of I that is irredundant

in A.

Proof. We may assume that /, < has order type cx>x. For a in / fix xa in X

such that xa e a but xa $ b for all b < a in /. Define now [I]2 = K0UKX by
letting {a, b}< in ^o if xa is not an element of b. By the partition property

(P) of [9, §9] there is either an uncountable O-homogeneous subset of / (which

will clearly be an ideal-independent set), or else uncountable H ç I and disjoint

uncountable ZF ç [I]<w such that for all a in H and F in F above a there

is b in F such that xa eb. If the second alternative occurs, for F in IF

let bf be the union of the elements of F. Then J = [bf : F e F) is an
uncountable irredundant subset of A assuming (which we may) that elements

of ZF are <-increasing in order and that for every F < G in F there is an a

in H such that F < a < G. This completes the proof.
The consequence of Lemma 1 that will be used in the rest of the proof of

Theorem 1 is that we may assume that every ideal of our algebra A is countably

generated. Another observation we shall need frequently is that if / c A is

right-separated (i.e., no a in / can be covered by finitely many elements of

/ above a ) then we can find J ç I of the same size as / such that J is

irredundant in A. Hence we may assume that our algebra A contains no
uncountable left- nor right-separated subset. We can also assume A has size N i

and therefore we can fix a strictly increasing continuous sequence Aç (¿; < cox)

of countable subalgebras of A whose union is equal to A . Let X¿ be the set

of equivalence classes of the relation E$ on X defined by: xE(y iff there is

no a in A¿ containing x but not y. Let T be the union of X$ for Z, < cox.
Then T is a tree under the converse of inclusion. Note that, since every ideal is

countably generated, T cannot have uncountable branches. However, T does

have height exactly equal to cox. For t in T let the height of t be the maximal

£ such that t is an element of X(. To every subset U C T of elements of

different heights we associate a naturally defined well-ordering: t < u iff the
height of t is smaller than the height of u . The next lemma says that elements

of T behave much like the points of X.

Lemma 2 (PFA). Let U be an uncountable set of elements of T of different

heights and for every t in U let at be an element of A containing t. Then

there exist t < u in U such that t Cau-

Proof. Suppose t <£ au for all t < u in U. We shall produce uncountable

right-separated subsets of U contradicting our assumption about A . We shall

need the following combinatorial property of the sequence at  it e U ).

Claim 1. Suppose V ç U is uncountable and that for some finite n > 1,

F c [U]" has order type co" under the lexicographical ordering induced by
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<. Then there exist t in V and F in F above / such that t is not covered

by au   (ueF).

Proof. The proof is by induction on n . The case n = 1 is our assumption

about the sequence at (t e U). By throwing out a countable subset of V,

we may assume that if an element of A intersects an element of V then it

also intersects uncountably many of them. (We have used here the fact that the

ideals of A are countably generated.) By the induction hypothesis choose v in
V and F in [U]n~x such that:

(a) v = v\ \JteF at is not empty,
(b) F U {u} e ZF for uncountably many m in 17.

It suffices to find a « as in (b) such that v (f. au . If such a u does not exist,

since the complement of v is a countably generated ideal, there exist a in A

containing v and uncountable £/n Q U such that a ç au for all u in Uo.

Choose Ç such that a e A(. Since a intersects an element of V, the set Vq

of all v in V of height > Z\ intersecting a is uncountable. By the definition

of E/* it follows that v ç a for all u in F0. Pick v0 in V0 and u in t/rj

such that vo < u. Then vo ç au , contradicting our initial assumption about at

(t eU). This proves the claim.

The fact that A contains no uncountable right-separated subset means in

particular that X has a countable dense subset. Thus we may assume A is a

subalgebra of the power-set of the integers, so if 6 is the successor of 2N> all

relevant objects are elements of the structure Hg . Our first poset 9°o is the set

of all pairs p = (Vp, JZp) such that:

(c) JZp is a finite e-chain of countable elementary submodels of the He
containing everything relevant,

(d) Vp is a finite subset of U separated by J^ such that no í in F,, is

covered by the au for u > t in Vp .

( Vp is separated by JZp means that for every t < u in Vp there is a model of

Jp containing t but not u.) The ordering of ZFo is defined by letting q < p

if Vq contains Vp and JZq contains Jp.

Claim 2. â°o is a proper poset.

Proof. Let k be a large enough regular cardinal and let M be a countable

elementary submodel of HK containing p and IFq • Let

q = (Vp,Jpö{MnHg}).

Clearly, q is an element of ZZPo and q < P ■ We shall prove that q is an

M, ^o-generic condition. To this end, let 2 e M be a dense open subset of

â°o and let r < q. Extending r we may assume that, in fact, r is in 2. We

need to find f in 2)'DM compatible with r. Let p = r n M. Note that p is

in â°o n M and that it extends p . Let Fr = Vr\Vp . We may assume this set is

nonempty or else we are easily done. Let n be the size of Fr. Note that every

t of Vp has a countable dense subset and, therefore, t n M is dense in t. This

means that for every t in Vp we can fix x, in /n¥ that is not in any au for

u in Vr above t. Let F be the set of all F in [[/]" such that for some s in

2 end-extending p (i.e., F^ is an initial part of Vs and Jp is an initial part

of JÇ), F is equal to VS\VP and such that xt is not in au for all t in Vp and

u in F . Note that ^" is an element of M n Hg and therefore an element of
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every model of JZT above M n He . Note also that Fr is in F. Using the fact

that Fr is separated by the models of JÇ containing F one easily shows (see

[9, §8]) that F must have order type of[ under the lexicographical ordering

induced by the well-ordering of U . For a family & of finite subsets of U and

I in Í7, set
&t = {Fe[U]<m:{t}\jFe&}.

For a finite F ç U, set a(F) = \JteF at. Finally, for t in U, set

Wx = {t e U : F has order type wn~x}.

Then Wx is uncountable and it is an element of M. By removing countably

many elements of Wx we may assume that if an element of A intersects an

element of Wx then it intersects uncountably many of them. Note that t<£a(F)

for every t in Wx and F in Ft. Since co"~x cannot be covered by countably

many sets of smaller order types, since every t of Wx, as a subspace of X, has

a countable dense subset, and since every point of X is countably generated, to

every t of Wx we can associate bt of A intersecting t and ,f, ç Ft of order

type co"~l such that 6, is disjoint from a(F) for every F in if,. Clearly, we

may assume that the mappings t \-* bt and t *-> 3?t axe both elements of M.

Fix now a tx in WxnM. We claim that btl n ?i cannot be a subset of a(Fr).

Otherwise, since the complement of bt, n tx is countably generated (and since

it is an element of M ) there is a c in An M such that bh n ij ç c c û(iv).

Choose £ in M such that c e Aç . By our assumption the set Wx of all w in

W\, such that cDw ^ 0 and height^) > £, is uncountable. By the definition

of E(_, it follows that w Cc for all w in Wx . Let

J = {i7ë[(/f:cÇfl(F)}.

Then %Z is in MnHg and therefore is in any model of JZ. above M(~)He . Since

Fr is in !%Z and since it is separated by models of JZr above MnHg it follows

easily that %Z has order type ca" under the lexicographical ordering. Note

that for every w in Wx and F in ^, we have w ç c ç a(F), contradicting

Claim 1. This proves that bt, nfi is not a subset of a(Fr) and that therefore, for

every F in ^ , {tx}liFuFr satisfies condition (d) for t = tx. Now, working

in M with ^ instead of 5*", we find f2 in Af n U and ^,|/2 ç (&h)t2 in Af

of order type co"~2 such that for all F in ^Í1Í2, {tx, t2}öFöFr satisfies (d)

for t = tx and t = t2, etc. This procedure will give us {tx, ... , t„} in F DM

which together with Fr satisfies condition (d). By the definition of F, choose

T in 2 n M end-extending p such that

Vr\Vp = {tx,...,tn}.

Then r and r axe compatible in ZF0 . This finishes the proof of Claim 2.

Choose a countable elementary submodel M of some large enough HK con-

taining ZPo, He, and all other relevant objects. Let p = ({t}, {MC\He), where

t is an arbitrary element of U\M. Then for all £, < cox,

2t = {p e â°o : ht(t) > £, for some t e Vp}

is dense below p. For suppose that for some r < p and £, < o)x there is no

q < r containing an element of U of height > £. Let % be the set of all

extensions r of r n M for which there is an n < cox such that no q < r has a
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node of height > n. Then W is in M and r is an element of %. The proof

of Claim 2 shows that p is an M, ^-generic condition, so there must be an

f in If n M compatible with r. So, choose q < f, r. By the elementarity of
M there is an ordinal n in ojx n M witnessing the fact that r is in I?. But

this is a contradiction, since q is an extension of f which has the node t of

height > n. So we can choose a filter of F'o intersecting all 2$ which will

clearly give us an uncountable right-separated subset V of U. This completes
the proof of Lemma 2.

We are now ready for the final step of the proof of Theorem 1. For this we

choose a sequence ct  (t e U) of elements of A such that:

(e) U is an uncountable set of elements of T of different heights,

(f) ctnt and t\ct axe both nonempty for all t in U,

(g) for t < u (i.e., ht(t) < ht(u)) in U there is Ç < ht(w) such that

ct e Ac.

Note that this means that for all t < u in U, ct either contains or is disjoint

from u. Our goal is to force uncountable V ç U such that for all t < u in

V, cu either contains or is disjoint from t. Hence for all t in V no element

of V\{t} can split t ; so, in particular, c¡ is not in the subalgebra generated by

cv  (veV\{t}).  -

The poset £P\ is the set of all pairs p = (Vp, JZp) such that:

(h) JZp is a finite e-chain of countable elementary submodels of Hg con-
taining everything relevant,

(i) Vp is a finite subset of U separated by JÇ such that if t < u axe in
Vp then cu either contains or is disjoint from t.

For p and q in ^ set q < p iff Vq 2 Vp and Jq2Jp-

Claim 3. IFX is proper.

Proof. Let k be a large enough regular cardinal and let M be a countable
elementary submodel of HK containing p and ZZ°X. Let

q = (Vp, JZp u {MDHg}).

Then q eZFx and q < p. We will show q is M, ^-generic. So let 2 e M
be a dense open subset of ZPX and let r < q be given. We may assume r is

in 2 and we need to find f in 2 n M compatible with r. Let p = rn M.

Then p e 3°x n M. Let F(r) = Fr\I^ and let n be the size of F(r). We may
assume n > 1 since otherwise we are easily done. Let F be the set of all F

in [U]" for which there is an s in 2 end-extending p such that F = VS\VP .

Then F is an element of M nHe and therefore of every model of JZr above

MnHg . Since .F(r) is in F, it follows as before that the order type of F,
<iex, is equal to co" . As before for t in U, set

Ft = {F e[U]n~x :Fö{t}eF}.

Let
Wx = {t e U : Ftnas order type oj"-1 }.

Then Ifi is uncountable and Wx is in M. Choose £ such that cu e A¡ for
all m in Fr and choose w in JFJ of height > £. Then by the definition of the
equivalence relation E(, w ç cu or w n cu = 0 for every m in Vr. Choose
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aw in A containing w such that for every u in Vr, aw is either included or

is disjoint from cu . Since Wx is an element of the elementary submodel M,

by Lemma 2 there is a tx in WxnM such that tx ç aw . Note that this means

that no cu for u in Vr splits tx . Working with Fti instead of F we find t2

in U n M such that (Ft, )h has order type co"~2 and such that no cu for u in

Vr splits Í2, etc. This procedure will give us {tx, ... , tn} in F n M such that

none of the t¡ is split by any cu for u in Fr. This means that {tx, ... , tn) U Vr

satisfies condition (i) from the definition of ZFX . By the definition of F, there

is an T in 2 n M such that {tx, ... , t„} is equal to Vf\Vp . It follows that r
and f axe compatible in ZPX. This finishes the proof of Claim 3.

Choose a countable elementary submodel M of some large enough HK con-

taining everything relevant and set p = ({t}, {MnHg}), where t is any element

of U\M. Then for all Z, < cox,

2¡¡ = {p e£Px:Vp has an element of height > £}

is dense below p . Then a filter of ZFX intersecting all these dense sets gives the

uncountable irredundant subset of A we have been searching for. This finishes

the proof of Theorem 1.

Remark 1. The final step of the proof of Theorem 1 can also be done via the

partition property (P) already used above in Lemma 1. Again we start with

a sequence ct (t e U) of elements of A with properties (e), (f), and (g).

Define [U]2 = K0UKX by letting {/, «}< in K0 iff cu either contains or is

disjoint from t. The partition property (P) of [9, §9] says that either there is

uncountable V ç U such that [V]2 ç K0, or else there is uncountable W CU
and disjoint uncountable F ç [U]<co such that if t is in W and F is in y

above t then there is u in F such that {t, u} is an element of Kx, i.e., cu

splits t. Note that the first alternative is just what we want, i.e., cv for v in V
forms an uncountable irredundant subset of A. So it suffices to show that the

second alternative cannot happen. This will be done using Lemma 2. For each

F in F let tF be the minimal element of W that is above every element of

F . By the definition of equivalence relations Eç (and by (g)) this means that

tf is either contained or is disjoint from cu for every u in F . Let

aF = f] eucu,
ueF

where eucu = cu if cu contains tF and eucu = -cu if cu is disjoint from tF.

Note that tF ç aF . Refining F, we may assume that tF < G for F < G in

F . By Lemma 2 there exist F < G in F such that tF Cao . This means that

no cu for w in G splits tF, contradicting the property of W and F.

Remark 2. The proof of Theorem 1 actually gives the following apparently

stronger conclusion: Every Boolean algebra A of size Ni either has an un-

countable ideal-independent set or is the union of countably many irredundant
sets. To see this note that A is the union of countably many sets having at

most one point in each of the differences Ai+x\Aç for £, < cox, so it suffices to
decompose any such J ç A into countably many irredundant sets. For c in

/, let £ be such that c is an element of Ai+X\A^ . Then there must be t in

Xç such that c n t and t\c axe both nonempty. Hence, we may assume that
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J is equal to some ct (t e U) with properties (e), (f), and (g). Now consider

the partition [U]2 = K0UKX of Remark 1, i.e., we put {/, «}< in K0 iff cu

does not split t. The proof from Remark 1 actually shows (with the help of
the partition property (P)) that the poset ZF of all finite O-homogeneous sets

is ccc. An applicaton of MA«, to F><a> gives us a decomposition of U into

countably many O-homogeneous sets, so we are done.

Remark 3. The conclusion of Theorem 1 can also be extended (without addi-

tional work) to a larger class of algebras that includes all varieties generated by

single finite primal algebras, i.e., algebras having all functions representable by

terms. This is so since every algebra B from such a variety is isomorphic to

a Boolean power of the generating algebra, so the irredundant set of the corre-

sponding Boolean algebra transfers to an irredundant set of B . This answers a

question asked in [4] where we refer the reader for more information about the

existence of irredundant sets in the setting of universal algebra.

Our second result about the problem of irredundance shows that the state-

ment from Theorem 1 has a considerable influence on the real numbers and

that in some sense the axiomatic approach to the problem was necessary. It
should be noted that at the time the problem of irredundance was asked in [2]

it was known that it cannot be solved using the usual axioms of set theory. That

observation depended on an example of M. Rubin from [6]. Our proof will use

the following observation of L. Heindorf [4] which gives a proper formulation

to an old argument (see [10, p. 237] for an explanation of this point).

Lemma 3. //" / is an irredundant subset of a Boolean algebra A then {ay.-a:

a e 1} is ideal-independent in the free product A* A.

Proof. Let F be a finite subset of / and let a be an element of / outside

F. Since a is not in the subalgebra B generated by F , there is an atom c

of B such that a n c and c\a are both nonempty. Then (anc) x (c\a) is a
nonempty subset of a x -a that is disjoint from every b x -b for b in F.

Thus, ax -a is not a subset of the union of bx-b for b in F . This finishes

the proof.

Note that the dual of an ideal-independent set is a discrete subspace of the

dual space. Note also that the dual space of A * A is the square of the dual

space of A. This enables us to state the result of [9, §2] in the following form
relevant to the present context.

Theorem 2. If every uncountable Boolean algebra contains an uncountable irre-
dundant set then every subset of cow of size Ni is bounded in the ordering of
eventual dominance.

Proof. Suppose there is an X ç cow of size Ni unbounded under <*. In [9,

2.4] we have refined its topology to a locally countable locally compact topology

with no uncountable discrete subset in any finite power. Let A be the subalgebra

of the clopen algebra of X generated by compact open sets. Since the dual space

of A is the one point compactification of X, by Lemma 3 it follows that A

has no uncountable irredundant subset. This finishes the proof.

The problem of irredundance versus the size will now be considered using
the terminology of cardinal invariants [5]. So, let ixx(A) be the supremum of

cardinalities of irredundant subsets of A and let ig(A) be the minimal 6 such
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that every ideal of A is generated by < 6 elements. The function ig is the

dual of a well-known cardinal function on topological spaces while irr seems

to be purely algebraic. The next result shows that irr(^) and ig(^4) restrict the

size of A in an interesting way.

Proposition 1. Card(^l) < ig(A)+ • ixx(A).

Proof. Let 6 = ig(A)+-ixx(A) and suppose that A has cardinality > 6 . We may

assume that, in fact, A has size d+ . Decompose A into a strictly increasing

continuous sequence A^ (t\ < 6+) of subalgebras of size < 6 . Let k = ig(A)+

and for every ô < 6+ of cofinality k choose as in AS+X\AS . Let

Is = {b e As : b n as e Aô}

be the ideal of As determined by as . By the choice of k , for every such

S there is ¡Z, = fi(6) such that Is n A¡ generates Is . By the Pressing Down

Lemma there exist £o and stationary S Ç 0+ of cofinality k ordinals such that

f(ô) = £o for all ô in S. We claim that {as : ô e S} is irredundant in A,
which gives a contradiction that finishes the proof. This will follow easily from

the following fact, where sa = a for e = + and ea = -a for e = - .

Claim 4. Suppose ô < So < ■ ■ ■ < Sn axe elements of S and the e, (i < n) axe

elements of {+, -}. If for some c in As

c n P| e¡aSi ç as,
i<n

then there exist b0, ... , bn in Aio such that

cnp)e;aá, çcn f] b, c aô.
i<n i<n

Proof. The proof is by induction on n . Let

d = fen P| e¡as, j \as.
\       i<n /

Then d e Asn and d c -£naSn. Since Is„ n A^ generates Is„, there is a b„ in

Aç0 such that d ç -bn ç -e„asn. Then

c n P| etas, ç c n bn n f] (aaSi ç aô,
i<n i<n

so we are done by the induction hypothesis.

If {as : S e S} is not irredundant we can find ô < ô0 < • • • < ôn such that as

is generated by As U {a¿0, ... , a¿n} . Considering the disjunctive normal form

it follows that as is the union of elements of the form c n f]i<n ¿¡as,, where

c e As . By Claim 4 every such intersection can be replaced by one of the form

cnf]bn
i<n

for some bo,... , b„ in Aio. It follows that as is in the subalgebra Ag, a

contradiction. This finishes the proof of Proposition 1.

An example of Rubin [6] shows that the successor in Proposition 1 is neces-

sary. However, the proposition suggests the following questions.
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Question 1. Is ig or Card bounded by irr+ ?

Question 2. Is the weight of a compact space X bounded by s(X2)+ ?

Note that Proposition 1 shows that under MAN| every BA of countable irre-

dundance has size at most Ni. Another application of Proposition 1 shows that

if we add a number of Cohen reals then every algebra of countable irredundance

has size bounded by the continuum of the ground model. This uses an argument

involving the homogeneity of the Cohen poset which will be presented in the

proof of the following proposition.

Proposition 2. If 9 is inaccessible and if we add 6 Cohen reals then in the exten-

sion every BA of size continuum has an irredundant subset of size continuum.

Proof. Since the subalgebra of À generated by a maximal irredundant subset

of À is dense in À, we may assume that À has a dense subset of size k < 8 .

Hence we may assume À is a subalgebra of the power-set algebra of k . Choose

names àç (¿¡ < 0) for subsets of k which are forced to be elements of À with

the property that d„ is not in the subalgebra generated by á¿ for £, < n.

Using the inaccessibility of 9 and refining the sequence of names, we may

assume that the domains of the àç 's form a A-system and that they are all

isomorphic modulo the order-isomorphism of their domains. We claim now

that no condition p can force some à„ to be generated by à( (Z\ e F), where

F is a finite subset of 8\{n} . This is so since we can find F and f\ with fj

above F such that an automorphism of the Cohen poset transforms ä„ to af¡

and àç (Ç e F) to àç (<f e F). This would mean that some condition p

forces af¡ to be generated by a¿ (<f e F), contradicting our initial assumption.

This completes the proof.

Concerning Proposition 2 we mention a result of Devlin [1] that if there is a

c-saturated «-complete ideal on k then every (Boolean) algebra of size k has

an irredundant subset of size k . This gives us some restrictions to any use of

ccc forcing in order to provide a negative answer to Question 1.

The axiom used in Theorem 1 has some large cardinal strength so the readers
interested in consistency results may ask whether the consistency of the state-

ment can be proved without any use of large cardinals. This can indeed be

proved using the method described in [7; 8; 9, §8], where the e-chains of sub-

models are replaced by matrices of isomorphic submodels giving us the strong

chain condition to the posets forcing uncountable irredundant sets. The details

of this are left to the interested reader who may wish to consult [8], where a

similar proof is presented.
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