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CAYLEY-BACHARACH SCHEMES
AND THEIR CANONICAL MODULES

ANTHONY V. GERAMITA, MARTIN KREUZER AND LORENZO ROBBIANO

Abstract. A set of s points in f4 is called a Cayley-Bacharach scheme (CB-

scheme), if every subset of s - 1 points has the same Hubert function. We

investigate the consequences of this "weak uniformity." The main result char-

acterizes CB-schemes in terms of the structure of the canonical module of their

projective coordinate ring. From this we get that the Hubert function of a

CB-scheme X has to satisfy growth conditions which are only slightly weaker

than the ones given by Harris and Eisenbud for points with the uniform posi-

tion property. We also characterize CB-schemes in terms of the conductor of

the projective coordinate ring in its integral closure and in terms of the forms

of minimal degree passing through a linked set of points. Applications include

efficient algorithms for checking whether a given set of points is a CB-scheme, re-

sults about generic hyperplane sections of arithmetically Cohen-Macaulay curves

and inequalities for the Hubert functions of Cohen-Macaulay domains.

Introduction

There are many ways in which the study of finite sets of points in projective

spaces has entered into geometric discussions about other objects. One of them

is due to Castelnuovo and centers around the study of smooth and irreducible
curves.

It is well known that the genus g of a curve in P2 is determined by its

degree d via the formula g = ¿(d - l)(d - 2). It was also known to geometers

of the last century that for curves in Pr this formula represents an extreme

among the possibilities for the genus of a curve of degree d. One result that
Castelnuovo showed in [C] was that if C is not contained in a hyperplane, then

g < X(d-r-j(x- l)(r- 1)), where x is the integer with dzz\ -1 < X < jEj ■
He also studied and classified curves whose genera are extremal with respect

to this inequality. Castelnuovo's major tool is a careful examination of the

postulation of a general hyperplane section of C. For a detailed discussion of

his method we refer the reader to the manuscript [HE].

More recently, J. Harris has extended the scope of Castelnuovo's approach

with his proof of the Uniform Position Lemma in [H]. This lemma asserts that

a general hyperplane section (in characteristic 0) of an integral curve has the

uniform position property, i.e. the property that any two subsets of A with the

same cardinality have the same Hubert function.

Received by the editors January 3, 1991 and, in revised form, April 26, 1991.

1991 Mathematics Subject Classification. Primary 13C13, 14A05; Secondary 13P10, 14M05,
14M99, 14Q99.

©1993 American Mathematical Society
0002-9947/93 $1.00+ $.25 per page

163



164 A. V. GERAMITA, MARTIN KREUZER AND LORENZO ROBBIANO

If A is a set of points in P2 with the uniform position property (e.g. a general

hyperplane section of an integral curve in P3), then it is possible to completely

describe all the numerical functions that could be the Hubert function of A.
It is also possible to show that every such numerical function actually arises as

the Hubert function of a general hyperplane section of some integral curve in

P3. For a discussion of the work that has been done on this subject see [GM].

As soon as we look at general hyperplane sections of curves in P^ for d > 4,

the situation becomes much less clear. Harris and Eisenbud have asked for

a characterization of the Hubert functions of sets of points with the uniform
position property, and, as yet, there is no solution to this problem. There

have, however, been some partial results. Most notably, Harris and Eisenbud

themselves give a growth condition that the Hilbert function of a set of points

with the uniform position property has to satisfy (cf. [HE, 3.5]). It is clear that

their growth condition is not sufficient to characterize those Hilbert functions,

since it fails to do so in P2 .

Now we come to a description of our contribution to this discussion. In a

nutshell, what we have done is postulated a small piece of the uniform position

property and investigated the consequences. More precisely, we say that a set A

of 5 points in F** is a Cayley-Bacharach scheme (CB-scheme), if every subset

of j - 1 points has the same Hilbert function. The theme of this paper is then

to find out how much information about A can be obtained from this "weak

uniformity."
One consequence is that every subset Y of A that consists of 5 - 1 points

has Hilbert function Hy(n) = min{Hx(n), s-1} . Therefore we start in §1 with

an investigation of the Hilbert functions of subschemes of degree 5-1 of X .

For this we need not restrict ourselves to reduced O-dimensional schemes A of

P**. We find certain functions, called truncators, which define the subschemes

of A of degree s - 1 scheme-theoretically, and which can be used to determine
whether those subschemes have the Hilbert function given above. Moreover,

the images of those functions in the projective coordinate ring R of A form

a fc-basis of Rax+i, where ax + 1 is the first degree n for which Hx(n) = s,

and they can be used to completely describe the ring structure of R from that

degree onwards.

In §2 we refine the notion of a truncator to include functions of smaller de-

grees defining subschemes of colength one. For a reduced O-dimensional scheme

A and a point P e X, the smallest degree of such a function is called the degree

of P in A. Then A is a CB-scheme if all of its points have (maximal) degree

ax + I ■ When we look at examples, we immediately see that it is necessary

to understand when a subscheme of a CB-scheme is again a CB-scheme. The

remainder of §2 is devoted to giving a few results in that direction.

The central result of this paper is given in §3. Theorem 3.5 characterizes

CB-schemes in terms of the structure of the canonical module cop of their

projective coordinate ring R. More precisely, it says that A is a CB-scheme

if and only if the homogeneous component of least degree of cor contains

a faithful element. From this theorem we get that the Hilbert function of a

CB-scheme A has to satisfy growth conditions which are only slightly weaker

than the ones given by Harris and Eisenbud for points with the uniform position

property. Section 3 concludes with a comparison of our characterization of CB-
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schemes to earlier characterizations that were given in terms of the conductor

of R in its integral closure. The link is established by showing that Dedekind's

formula for conductor and complementary module always holds for sets of

points.
In §4 we explore another way of interpreting what it means for a set of points

to be a CB-scheme. Choose a reduced O-dimensional complete intersection Z

containing A and let Y be the complement of A in Z, i.e. A and Y axe

linked by the complete intersection Z . We then characterize CB-schemes A

in terms of the forms of minimal degree that vanish on 7. One advantage of

this characterization is that it leads to efficient algorithms for checking whether
a given A is a CB-scheme.

In the final section we apply our results to hyperplane sections of curves. We

show that the general hyperplane section of an integral, arithmetically Cohen-

Macaulay curve is a CB-scheme, regardless of the characteristic of the ground

field. In contrast to the topological arguments in J. Harris' proof of the Uniform

Position Lemma, we use a purely algebraic technique. We also compare the

inequalities that we obtain to recent results of R. P. Stanley about the A-vector

of a Cohen-Macaulay domain and to Rathmann's results about the validity of

the Uniform Position Lemma in characteristic p. We close with an example

that shows that not every hyperplane section of a smooth, arithmetically Cohen-

Macaulay curve has to be a CB-scheme.
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1. Truncators

First of all we fix the notation that will be used throughout the paper. We

work over an infinite field k . By A we denote a O-dimensional subscheme of

the projective space Va over k. The degree of A as a projective variety is

denoted by s. It is also the multiplicity of the vertex of the affine cone over

A. We equip A := k[Xo, ... , X¿\ with its standard grading deg(A,) = 1 and
let / := I(X) be the homogeneous ideal of A in A. Then R := A/1 is the

homogeneous coordinate ring of A in Pd . To avoid overburdening the notation

we will use capital letters to denote elements in A and the corresponding lower

case letters to denote their residue classes in R. Once and for all, we choose

our coordinates in Va in such a way that xo, the image of Ao in R, is not a

zero divisor of R.

Given any homogeneous ideal J of A, we define the Hilbert function H(S)

of the ring S := A/J by H(S, n) := dimkSn = dimkA„ - dim¿ /„ for all
n e Z. Analogously, for a finitely generated, graded S-module M, we let

H(M, n) := dimkMn for all n e Z. When J = /(A), we emphasize the
relationship of the Hilbert function of R to the scheme A by setting Hx(n) :=

H(R, n) for all neZ.
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Remark 1.1. We recall some rules which describe a part of the growth behaviour

of the function Hx (see e.g. [DGM]). There are integers ax and ax such that

(a) Hx(n) = dim^ A„ = i"+dd) if ar>d only if n < ax ,

(b) Hx(n) < Hx(n + I) < s fox 0 < n < ax ,
(c) Hx(n) = s fox n > ax .

Given A, it is in general difficult to say much about the Hubert functions

of the various subschemes of A. This problem was explored in [GMR], where

the notion of the truncation of Hx , as defined below, was discussed. We shall

extend some of the results of that paper in this section.

Definition 1.2. The truncation of Hx , denoted Txunc(Hx), is defined by

Hx(n)   for n < ax,

dinu J„/I„ = Hx(n) - H(A/J, n) = Í

Tmnc(Hx)(n) =
(i-1      for n > ax-

We say that a homogeneous ideal J of A truncates Hx , if J contains / and

H(A/J) = Txunc(Hx).

Proposition 1.3. Let J C A be a homogeneous ideal. The following conditions

are equivalent.

(a) J truncates Hx.

(b) There is a homogeneous polynomial F e A of degree ax + 1 such that

J = (I, F), and dimk(J„/I„) = 1 for n > ax ■

Proof. First we show that (a) implies (b). Since J truncates Hx, we obtain

that
for n < ax ,

for n > ax-

It follows that there is an F e Jax+x\Iax+x . Since xo is not a zero divisor of

R = A/I, we have X¿F e Jax+x+i\Iax+x+i for all i > 0. Thus J = (I, F).
As for the converse, since deg F = ax +1, we have that /„ = /„ for n < ax ,

and so H(A/J, n) = Hx(n) for those n. For n > ax we get H(A/J, n) =

dimk(A/I)n - dimk(J/I)n = Hx(n) - 1 = s - 1, as we wanted to show.   D

In general, an ideal J (as above) is not the ideal of the subscheme of A

that it defines. It may happen that the irrelevant ideal of A is an associated

prime ideal of /, i.e. that / is not a saturated ideal. It is important to be able
to decide when J is saturated. In the light of Proposition 1.3 and in order to

discuss this possibility, we make the following definitions.

Definition 1.4. Let F e A be homogeneous of degree ax + 1.

(a) We say that F is a truncator of A, if the ideal J := (I, F) truncates

Hx.
(b) We say that F is a strong truncator of A, if F truncates A and J :=

(/, F) is a saturated ideal.

Remark 1.5. Since A is a O-dimensional scheme, an ideal of the form J =

(I, F) is saturated if and only if / is a perfect ideal, i.e. if and only if A/J is

a 1-dimensional Cohen-Macaulay ring. This last is the case if and only if A/J
contains a nonunit which is not a zero divisor.

We now give a simple criterion for a form to be a truncator.
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Proposition 1.6. Let F e A be homogeneous of degree ax + 1. The following
statements are equivalent.

(a) F is a truncator of X.
(b) (/ : F) is an associated prime of I which describes a k-rational point of

¥d.

(c) J := (I, F) defines a subscheme of X of degree s - 1.
Moreover, there is a 1-1 correspondence (up to multiplication by nonzero

scalars of k and addition of elements of Iax+\) between truncators of X and

subschemes of X of degree s - 1.

Proof. First we show that (a) implies (b). Since degF = ax + 1, we find

that (I, F)/I = (A I (I : F))(-ax - 1). Also, since F is a truncator of A,
we have dimk(J/I)„ = 0 for n < ax and dimk(J/I)n = 1 for n > ax.

Thus dim*(y4/(/ : F))n = 0 for n < -1 and dimk(A/(I : F))„ = 1 for
n > -1. In particular, dimk(I : F)x = d, and so (I : F) D (Li,..., Ld),
where Lx, ... ,Ld are linearly independent linear forms. Comparison of the

Hubert functions of A/(I : F) and A/(LX, ... , Ld) now yields the equality
(I :F) = (LX, ... , Ld). Since the ideal (Lx, ... , Ld) contains / and has the
same height d, it is an associated prime of /.

In order to prove that (b) implies (c), we use the assumption and calculate

dimk(J/I)n = dimk(A/(I : F))„_fljr_, = { °   ¡j* " * *x '
( 1   tor n > ax.

Thus we have dimk(A/J)„ =5-1 for n > ax , and so J defines a subscheme

of A of degree s - 1, as we wanted.

Finally we show that (c) implies (a). Consider the exact sequences

0 -+ (///)„ -» (A/I)n - (A/J)n - 0

for every n e Z. Since Xn is not a zero divisor on R = A/1 and J/I is

an ideal of R, it follows that dimk(JII)n < dimk(JII)n+x for all n e Z.
By the definition of ax, we have dimk(A¡I)„ = s for n > ax ■ Since J

defines a subscheme of A of degree s - 1, we have dimk(A/J)„ =5-1
for all « » 0. Thus dimk(J/I)„ = 1 for all « » 0. Now F 0 Iax+X , so

dimk(JII)ax+x = 1. It follows that dimk(J/I)n = 1 for all n > ax. Since
degF = ax + I, Proposition 1.3 gives that F is a truncator of A.

For the last claim it suffices now to show that every subscheme of degree 5 -1

of A corresponds to a truncator. So, let Y be a subscheme of A of degree s-1

and let / be the ideal of Y in A . Then Hx(ax + n) = s > HY(ax + n) = s - 1
for all n > 0. It follows that dimk(J/I)ax+n = 1 for all n > 1. Hence a
representative in / of a generator for the vector space (J/I)ax+X is a truncator

of A.   G

Corollary 1.7. Let X = {Px, ... , Ps} ç W1 be a set of s distinct k-rational

points where P¡ corresponds to p,■ c A. Suppose that F e A is homogeneous of

degree ax+l ■
Then F is a truncator of X if and only if there is an i e {I, ... , s} such

that F £ pi and F e px n • • • n p,_i n p,+i n • • • n ps.

Example 1.8. Let A = {Px, P2, P3, P4} ç P2 be the points Px = (1 : 0 : 1),
P2 = (1 : 0 : 0), P3 = (1 : 1 : 0) and P4 = (1 : 2 : 0).
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Sketch, drawn in the affine space D+(Ao) :

A-
F2.   P3.   P4»

The Hubert function of A is 13 44..., and so ax = 1 . Here A0A2 E A2 is
a truncator of A, but not a strong truncator.

Remark 1.9. It is worth recalling here that if A is any O-dimensional subscheme

of f1 which has degree s, then A always contains subschemes of degree 5 - 1.

This is completely obvious when A consists of 5 distinct k-rational points.

In the general case, it suffices to note that if p is a prime ideal in A and q is
p-primary, then if lengthy (Ap/qAp) =: r > 1 there is always a p-primary ideal

q' D q having lengthy (Ap/q'Ap) = r-l.

We now consider how to distinguish between truncators and strong trunca-

tors. Let F e Aax+X be a truncator of A, and let / be the image of F in

R. As we have said, F is a strong truncator if and only if R/(f) is a Cohen-

Macaulay ring. Since R is a Cohen-Macaulay ring, this is equivalent to saying

that (f) does not have the irrelevant maximal ideal m of R as an associated

prime. Put another way, F is not a strong truncator if and only if there is an

element g e R with m = (f) : (g). In this case we have lg e (/)\{0} for any

I e Rx which is not a zero divisor in R, and it follows that degg > ax . On

the other hand, since dimk(f)n = 1 for all n > ax + 1 and /: R„ —► R„+x is

an injective map carrying (f)„ onto (f)n+x for n > ax + 1, we are forced to

conclude that g e Rax and lg = cf for some c e k\{0}.
We summarize this discussion with the statement of the following proposi-

tion.

Proposition 1.10. Let X be a O-dimensional subscheme of Vd and let F e Aax+X

be a truncator of X. Then the following conditions are equivalent.
(a) F is a strong truncator of X .

(b) F £ LAax + Iax+\ for every L e Ax whose image in R is not a zero

divisor.

(c) F 0 f]L(LAax + Iax+i), where the intersection ranges over those linear

forms L whose image in R is not a zero divisor.

In [D] E. D. Davis asked whether any O-dimensional subscheme of Pd has a

strong truncator. We now show that this question has a negative answer.

Example 1.11. The ideal I := (A2, A1A2, X^-X^XX) defines a O-dimensional

subscheme A of P2 having degree four which has a unique subscheme Y of

degree three but no strong truncator.

Proof. First observe that rad(7) = (Ai, A2) and therefore I has depth 2. Also,

/ is generated by the 2 x 2-minors of the matrix (*2 *!> ̂  ) • So, 7 is saturated

(cf. [BV], (2.7)) and hence (Xx, A2)-primary. Thus I is the homogeneous ideal

of a O-dimensional subscheme A of P2 which is concentrated at the point

(1:0:0).
It is easy to check that a k-basis of R/(xq) is given by {1, Xi, x2, x2}.

Thus Hx is 1344..., and we see that A has degree 4 and ax = 1. By

Proposition 1.6, a form F e A2 is a truncator of A if and only if (I : F) =

(Xx, X2). A simple calculation shows that this is equivalent to F being of the
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form F = cXqXx + G, where c e k\{0} and G e I2. Using Proposition 1.6,

this means that A has a unique subscheme of degree 3, namely the one defined

by (I, F) = (A0Ai, A,2, AjA2, A3). Since this ideal is not saturated, A does
not have a strong truncator.   □

Remark 1.12. A description of those O-dimensional subschemes of Fd which

have strong truncators has, so far, eluded us. We have an example of two

schemes, each of which does not have a strong truncator, but whose union has

a strong truncator.

In spite of the negative nature of the example above, there is an impor-

tant class of O-dimensional subschemes of Fd which do have strong truncators,

namely sets of k-rational points. To see this, we first study how we can use

truncators to describe the ring structure of R from degree ax + 1 onward, if
A is a set of A:-rational points.

Proposition 1.13. Let X = {Px, ... , Ps} QFd be a set of s distinct k-rational

points. By 1.6, for each i e {I, ... , s} we have a truncator fi e Rax+\ of X

corresponding to the subscheme A\{F,} . Since X ç D+(Ao), we can write P, =

(1 : pu : ■ • • : pid) with py ek for i= 1,... ,s. For g e R and i e {I,..., s}
we write g(P,) := G(l, piX, ... , pid), where G is any representative of g in
A.

(a) The elements fi, ... , fi form a k-basis of Rax+\ ■

(b) By multiplying fi with a suitable element of k, we can assume that

fi(Pi) = 1. For every n > ax + 1 and every element g e Rn we have a unique

representation

g = xn0-a"-ig(Px)fi + --- + x^-ig(Ps)fi.

Proof. First we show claim (a). We know that Hx(ax + 1) = dim^ Rax+X = s.

By 1.7, we have fi(l ,pjX, ... , pjd) = 0 for ;' ^ i and fi(l ,piX, ... , pid) ¿ 0.
Suppose now that g = cxfi H-h csfi = 0 for some c, e k . By evaluating g

at Pj we find that c, = 0. That is enough to show that fix, ... , fi are linearly

independent, and so form a k -basis of Rax+\ ■

Now we prove part (b). From dim^ Rn = s for n > ax + 1 and from

the injectivity of the multiplication by xo it follows that Rn = XQ~"x~xRax+x .

Thus we have to show that every g e Rax+\ satisfies g = g(Px)fi -I-\-g(Ps)fi ■

This follows from the observation that g - g(Px)fix - ■ ■ ■ - g(Ps)fis vanishes at

every point of A.   □

Using this proposition, we can now show that sets of /c-rational points always

have strong truncators.

Proposition 1.14. Let X = {Px, ... , Ps} CFd be a set of s distinct k-rational

points.

(a) A has at least s - Hx(ax) + 1 linearly independent strong truncators.

In particular, there is always a subscheme Y of X with deg 7 = 5-1 and

HY = Trunc(TLx).
(b) For any r e {1, ... , s} there is a subscheme Y of X consisting of r

points such that the Hubert function of Y is given by HY(n) = min{r, Hx(n)}

for all neZ.

Proof. First we show (a). With no loss in generality we can assume that x, :=

Xj+I is not a zero divisor in R for each i = 0, ... ,d. Then the spaces x,Rax
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cannot all be equal, since they span Rax+i ■ Thus dimk(xoRax n ■ ■ -r\xdRax) <

dimkRax = Hx(ax). In view of Propositions 1.10 and 1.13, we conclude that

A has at least s - Hx(ax) + 1 strong truncators. Each of those corresponds to

a subscheme 7 of A with Hubert function Txunc(Hx).
Claim (b) follows by repeated application of (a).   D

Compare this with Lemma (2.3) in [GMR]. The number 5 - Hx(ax) + 1

does not, however, appear to be a very good estimate for the number of strong

truncators of A. It would be interesting to have sharper bounds. A. Sodhi, in

[So], has made some observations on this question.

Remark 1.15. We had occasion to use the computer algebra system CoCoA (see

[GN]) to help us with the initial explorations of the ideas in this paper. We

found those explorations quite useful and want to mention some of the things

one can do in that regard.
When X = {Px, ... , Ps} consists of s distinct &;-rational points, then the

truncator of A corresponding to Y, = A\{F,} can be found by looking at a

generator of the 1-dimensional vector space (I(Yi)/I)ax+x. In the next section

we shall see that having a truncator for each of those subschemes 7, of A is
very useful for performing other computations with the scheme A.

2. Separators

From now on and for the rest of this paper A will always denote a 0-

dimensional subscheme of Fd of degree s which consists of s distinct k-

rational points Px, ... , Ps. We shall continue to use the notations and assump-

tions given at the beginning of the first section. In particular, we assume A ç

D+(Ao), so we can write P,■■ = (1 : p¡x : ■■■ : pid) with p¡j e k fox i = I,..., s.

For f eR and i e{l, ... ,s} we write f(P¡) := F(l ,piX,... ,pid), where F
is any representative of f in A .

Definition 2.1. Let j e {1,..., s), let n > 0 and let / e Rn . We say that /
is a separator of P¡ from A\{F,} , if /(/»■) f 0 and f(P¡) = 0 for all j±i.
The minimal number n > 0 such that there is a separator of P¡ from A\{F,}

is called the degree of F, in X and denoted by degx(F,).

We shall often just say that " / is a separator of F," when the enveloping

scheme A is clear from the context. We shall also refer to an element of An

as a separator of P¡ if it is a representative of a separator of F,. Another way

to phrase the definition of degx(F,) is that it is the largest number n such

that any hypersurface of degree less than n which contains A\{F,} must also

contain F,.

Remark 2.2. A separator f e Rn of F, is unique up to multiplication by a

scalar from k\{0}.

Proof. Suppose f, g e Rn axe two separators of F,. If n > ax + 1, then /

and g differ only by a scalar factor by 1.13(b). If n < ax then multiply /

and g by Xq*+1_" and get separators of F, again. Therefore, by 1.13(b), the

elements Xqx+1_"/ and x02x+]'~ng only differ by a scalar factor. The fact that

Xo is not a zero divisor of R finishes the proof.   G
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Proposition 2.3. Let F e Aax+X. Then the following conditions are equivalent.

(a) F is a separator of P¡ from A\{F,}.
(b) F is a truncator of X corresponding to A\{F,}.

Proof. This follows from Corollary 1.7.   D

Lemma 2.4. For every i e {I, ... , s} we have degx(F,) < ax + 1.

Proof. If we let 7, := A\{F,} , then 7, is a subscheme of A of degree s - 1,

and so, as we observed in 1.6, there is a truncator of A corresponding to 7,.

Using 2.3, it follows that degx(F,) < ax + 1 for every i e {1,..., s}.   D

Example 2.5. For A = {Px, P2, P}, P4} ç P2 as in Example 1.8 we have

deg^(Fi) = 1 and degx(P¡) = 2 = ax + l for / = 2, 3, 4.

Proposition 2.6. Let i e {I, ... ,s} and let F e Aax+X be a truncator corre-

sponding to A\{F,} . The following statements are equivalent.

(a) F is a strong truncator of X.

(b) de%x(Pi) = ax+l.
(c) 7 := A\{F;} has Hilbert function HYi = Ymnc(Hx) ■

Proof. Conditions (a) and (c) are equivalent by Definition 1.4. If F is a strong

truncator, then the homogeneous ideal of 7, is given by (I, F). Therefore

it agrees with I up to degree ax and we must have degx(P¡) > ax + 1 . By

Lemma 2.4, this means degx(F;) = ax + 1.

Conversely, suppose that degx(F() = ax + 1 but F is not a strong truncator

of A. By Proposition 1.10, we can write F = LG + H where L e Ax is a

linear form whose image in R is not a zero divisor, G e Aax and H e Iax+\ •

Since L(P) ^ 0 for every F e X, it follows that the image of G in R is a

separator of F,. This contradicts our assumption degx(F,) = ax + 1.   ü

In view of Proposition 1.14 there are always at least s - Hx(ax) + 1 points

of A with degree ax + 1. Again this appears to be a rather bad bound. In

practice, usually almost all points of A have degree ax + l. The extremal case

is the most important situation in our investigations.

Definition 2.7. We say that X is a Cayley-Bacharach scheme (CB-scheme), if

one of the following equivalent conditions holds.

(a) Every P e X has degree degx(P) - ax + I ■
(b) For any F € A we have HX\{p} = Yxnnc(Hx).
(c) The Hilbert function of A\{F} is independent of the choice of P e X.

(d) Every hypersurface of degree less than ax + 1 which contains all but one

point of A must contain all the points of A.

Condition (d) is the one referred to by most authors discussing this property.

For CB-schemes A, the notions of truncator, strong truncator and separator of

degree ax + 1 all agree by 2.6 and the definitions.

Example 2.8. Every set of points in P^ which is a complete intersection of d

hypersurfaces is a CB-scheme. More generally, any arithmetically Gorenstein
set of points in P** is a CB-scheme (cf. [DGO]).

Example 2.9. If C is a reduced and irreducible curve in Fd+X, then J. Harris

[H] has shown that the points of a general hyperplane section of C are in

uniform position, i.e. any two subsets of A with the same cardinality have the
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same Hilbert function. Harris' proof is for characteristic zero, but with some

notable exceptions J. Rathmann [Ra] has also shown this result in characteristic

p t¿ 0. From the above definition we see that this notion of "uniform position"

is equivalent to saying that the points of a general hyperplane section of C

form a CB-scheme and that this is true for every subset of those points.

Example 2.10. Let A = {F,,... , F8} ç P2 be given by F, = (1 : 0 : 2),
F2 = (1 : 0 : 1),  F3 = (1 : 0 : 0),  F4 = (1 : 1 : 2), F5 = (1 : 1 : 1),
F6 = (1 : 1 : 0), F7 = (1 : 2 : 1) and F8 = (1 : 2 : 0).

Sketch in D+(X0) :
Pi*   Pa*
F2»   F5.   F7«

F3.   F6.   F8.

It is easy to check that A is a CB-scheme but not a complete intersection. Also,

A is clearly not in uniform position.

Notice that Example 2.10 is a complete intersection less a point. Since we

have already mentioned that complete intersections are CB-schemes, one is nat-

urally led to ask which subschemes of a CB-scheme are also CB-schemes. For

points in uniform position the answer is "all of them", but e.g. the scheme of

Example 1.8 is a complete intersection minus two points and not a CB-scheme.

The remainder of this section is devoted to investigating this question a bit

further.

Notation. For the rest of this section we shall use the following notation. For

each P,■ e X, we choose a separator fi e Rax+\ and a representative F, of fi

in Aax+X. By Proposition 1.13(a), the set {fi , ... , fs} is a A;-basis of Rax+i ■

Lemma 2.11. Let r e {I, ... , s}, and let J := (I, Fx, ... , Fr). Then

a-     < a,t\       J ^mk(A/I)n   for n<ax,
d\mk(A J)n = \ f

\ s - r for n > ax-

Proof. If 7 := A\{Fi, ... , Pr} , then the elements of / all vanish on 7. For

i e {r + I, ... , s} the polynomial F, is not in J by Proposition 1.13. So the

ideal J defines the subscheme 7 of Fd scheme-theoretically and dimk(A/ J)n

= 5 - r for n > 0.
Now we claim that k • (lnfi) © • • ■ 8 k • (lnfi) = (J/I)ax+x+n for every n >

0 and every I e Rx which is not a zero divisor. The case n = 0 is true

by hypothesis. The inclusion ç is then obviously true. If n > 1 and the

inclusion is strict, then dimk(J/I)ax+x+m > r for all m > n, because / is

not a zero divisor of R. This contradicts the fact that dimk(J/I)ax+x+m =

dimk(A/I)ax+x+m - dimk(A/J)ax+x+m = r for m > 0. Thus the claim is true,

and we get dimk(A/J)ax+x+n = s - dimk(J/I)ax+x+n = s - r for n > 0 as

desired.   D

Definition 2.12. If / is a homogeneous ideal of A , we define the first difference

function AH(A/J, -) of the Hilbert function of A/J by

AH(A/J, n) := H(A/J, n) - H(A/J, n - 1)

for all n e Z. In the case J = I we also write AHx(n) or simply hn for

AH(R,n).
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By Remark 1.1 we have AHx(n) ^ 0 if and only if 0 < n < ax + 1. The last
nonzero value of ALLr is denoted by A := AHx(ax + 1). Notice that if / e Rx
is not a zero divisor of R, then AHx is the Hilbert function of R/lR.

Proposition 2.13. Let r e {I, ... , A}, let Y := X\{PX, ... , Pr} and choose
L e Ax such that its image I in R is not a zero divisor. Then the following

conditions are equivalent.

(a) The residue classes fi, ... , fi are k-linearly independent in (R/lR)ax+x.

(b)I(Y) = (I,Fx,...,Fr).
(c) Hy(n) = Hx(n) for n <ax and HY(n) = s - r for n > ax ■

Moreover, it is possible to renumber the points of X such that the above

conditions are satisfied.

Proof. First we show that (a) implies (b). As we observed in the proof of 2.11,

the ideal J := (I, Fx, ... , Fr) defines 7 scheme-theoretically, so it suffices to

prove that J is saturated. We shall do this by showing that the image of L in

A/J is not a zero divisor. Notice that /„ = /„ for n < ax , whence L + J

does not annihilate any homogeneous element of degree less than ax in A/J .
For « > ax we have Jn = I„® kLn-ax~xFx e • • • e kLn-ax~xFr, as shown

in the proof of Lemma 2.11. Suppose that LG e Jn+\ for some G e An . This
means that L(G-cxLn-ax-xFx-crLn-ax-xFr) e In+\ for some c¡ e k. But

/ = L+I is not a zero divisor, so G e I„®kLn-ax-xFx®- ■■®kLn-a*-xFr = J„ .

Finally we need that if LG e Jax+\ for some G e Aax , then G e Iax = Jax ■

In this case write LG = H + cxFx + •• • + crFr with c¿ e k and H e Iax+\ ■

Now consider this equation in R/lR. We get cxfi + ■■■ + crfi = 0. Since the

elements fi, ... , fi are linearly independent, we have cx = ■■■ = cr = 0. Thus

LG e Iax+i, which implies G elax , as we wanted to show.

Now we prove that (b) implies (a). From 1.13 we know that {fix, ... , fi}

is a linearly independent set in Rax+\ ■ So to prove the result it will suffice to

show that (kfx © • • • © kfi) n lRax = (0). Suppose that lg = cxfx H-h crfr
with g e Rax and c, e k is in the intersection. From the hypothesis we get

that lg e I(Y)/I. Since the image of / in A/I(Y) is not a zero divisor, this

implies that g e (I(Y)/I)ax . But I(Y)ax = Iax , so g = 0 and we are done.

Conditions (b) and (c) are equivalent by Lemma 2.11, because J ç I (Y)

and both ideals agree if and only if their Hilbert functions agree.

The last claim follows from Proposition 1.14, or from the fact that {fix,...,fi}

is a basis of Rax+X which implies that {fi, ... ,fi} generates the A-dimensional

vector space (R/lR)ax+x .   D

As a first application of this proposition we can give a criterion for a sub-

scheme 7 of A to be a CB-scheme, if 7 is of the form 7 = A\{Fi, ... , Pr}
with 1 < r < A.

Corollary 2.14. Under the assumptions of the proposition let A > 2 and 1 < r <

A - 1. Then the following conditions are equivalent.

(a) 7 is a CB-scheme with Hilbert function Hy(n) = min{Hx(n), s - r}.

(b) For every i e {r+ 1, ... , s} the residue classes {fi , ... , fi, fi} form a

k-linearly independent set in (R/lR)ax+x .

Proof. Combine the proposition and 2.6.   D
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In the situation of Corollary 2.14 it is not always possible to choose a num-

bering of the points of A such that 7 becomes a CB-scheme, even if A is a

CB-scheme to begin with. Our next example demonstrates this fact.

Example 2.15. Let A := {Px, ... , F6} ç P3, where Fi = (1 : 0 : 0 : 1), F2 =

(1:0:0: -1), F3 = (1 : 0 : 1 : 0), F4 = (1 : 0 : -1 : 0), P$ = (1 : 1 : 0 : 0),
and F6 = (l :-l : 0 : 0).

Sketch in D+(X0) :

T
•   <—

/ Ï
•       •

Here Hx is 1466... and AHX is 1320.... Thus ax = 1 and A = 2. Also,
A is a CB-scheme, since any hyperplane contains at most four of the six points

of A. But no subset of five points of A forms a CB-scheme.

To see why this is so, observe that, since A is a CB-scheme, all subsets

7 ç A of degree five have HY : 14 5 5... and aY = 1. Also, it is geometrically
clear that each of those subsets has a point with degr(F) = 1, namely the one

opposite the point that we removed. Hence none of those 7 is a CB-scheme.

In the case r = A an application of Proposition 2.13 to our question yields

a much more satisfactory answer.

Corollary 2.16. Suppose that X is a CB-scheme. Renumber the points of X

such that Y := X\{PX, ... , FA} satisfies the conditions of 2.13.
Then Y is a CB-scheme.

Proof. From 2.13(c) we see that aY = ax - 1. Suppose that 7 is not a CB-

scheme, i.e. that there is a point F, 6 7 and a form G e Aar which is a

separator of F, from 7\{F,} . Let Le Ax be a linear form which vanishes at

Pi, but at no other point of A. Then LG e I(Y)ar+x = (I, Fx, ... , FA)ax = Iax
means that G is a separator of F, from A\{F,} . That contradicts the fact that

A is a CB-scheme.   D

Corollary 2.17. If X is a CB-scheme with A = 1, then A\{F,} is a CB-scheme
for every i e {1,... , s} .

Proof. Definition 2.7(b), Proposition 2.3 and Proposition 1.10 imply that ev-

ery fi is nonzero in (R/lR)ax+x. Hence the subscheme A\{F,} satisfies the

conditions of 2.13. Now apply the previous corollary.   D

Example 2.18. If A is a complete intersection of d hypersurfaces of Fd, or,

more generally, if A is arithmetically Gorenstein, then A = 1 and Corollary

2.17 applies. For instance, in this way one can see immediately that the scheme

of Example 2.10 is a CB-scheme.

The following example shows that not every subset of 5 - A points of a

CB-scheme is again a CB-scheme. Corollary 2.16 merely claims that there is

at least one such subset. Of course, this raises the question whether one can

characterize the CB-schemes having the property that all subschemes of degree

5 - A are CB-schemes again. We do not know an answer to this question.

/
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Example 2.19. Let A := {Px, ... , F8} c P2 be given by F,
F2 = (1 : 0 : 2),  F3 = (1 : 0 : 1),  F4 = (1 : 1 : 1), F5

F6 = (1 : 0 : 0), F7 = (1 : 1 : 0) and F8 = (1 : 2 : 0).
Sketch in D+(X0) :

Px'
F2.

F3»   F4.   F5.

F6.   F7.   F8.

It is easy to see that Hx is 13 6 8 8... , that ax = 2 and that A is a CB-scheme

with A = 2. Now 7j := A\{F,, F5} has Hilbert function HYl : 1 3 6 6... and
by 2.16 we conclude that 7 is a CB-scheme.

On the other hand, 72 := A\{Fs, F8} and aYl = 2, and there is a conic
which vanishes on 72\{F4}, but not on F4. Thus 72 is not a CB-scheme.

Notice also that 73 := A\{Fi, F2} is a complete intersection and therefore a

CB-scheme, but it does not have the same Hilbert function as 7i.

Remark 2.20. Finally, we would like to make some comments about the com-

putability of the notions of this section. On either of the computer algebra

systems Macaulay or C0C0A, it is possible to calculate the defining ideal of

a given set of points A and the Hilbert function Hx of that set of points.

For simplicity it is useful to assume that the points of A do not lie on the

hyperplane defined by Ao. If that is not the case at the outset one makes an

appropriate linear change of coordinates.

To check if A is a CB-scheme it suffices to check that for n < ax and any

subset 7 of degree 5 - 1 we have (I(Y)/I)n = 0. Another way to check this,

which also gives information for other computations, is to find a truncator for

each subscheme of A of degree 5 - 1. Then A is a CB-scheme if and only if

each truncator is a strong truncator. This can be tested by setting A0 = 0 in

the truncator and seeing if the result is in I or not. Neither of these tests is

very efficient. We shall see later (see §4) another approach to this problem.

To find out which subschemes of a CB-scheme are also CB-schemes, we use

2.14 and 2.16. We know that the residue classes of the truncators form a ba-

sis for the vector space Rax+i (cf. 1.13). Using the truncators that have been

found (cf. 1.15), set Ao = 0 in each of them. We then need to discuss the linear

independence of the residue classes of the resulting elements in (R/xoR)ax+\ ■

To apply 2.16 we just need to find A truncators which remain independent in

R/xqR. To apply 2.14 we need to find r truncators which remain indepen-

dent in R/x0R and have the property that every other truncator also remains

independent of those r truncators in R/xoR. Both computer algebra systems

mentioned earlier are very well suited to this kind of computation.

3. The canonical module of a CB-scheme

Throughout this section we continue to use the assumptions and conventions

of the previous two sections. Since the projective coordinate ring F of A is a

Cohen-Macaulay ring and xo is not a zero divisor of R, we have k[xo] ç R,

and R is a free /c[xo]-module of rank 5 . A homogeneous basis for R can be

found easily by lifting a homogeneous k-basis of R/xqR . In this way we get

=(1:0:3),
= (1:2:1),
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an isomorphism of graded /c[xo]-modules

ax+\

R= @ik[xQ\i-i))h>

i'=0

where h¡ := AHx(i) as in 2.12. Now consider the graded F-module

Hom^o](F, k[x0]),

whose homogeneous component of degree n consists of all graded fc[xo]-linear

homomorphisms cp : R —> k[xo] with cp(Rm) ç k[xo\m+n for all m eZ. Its

F-module structure is defined by setting (rcp)(r') := tp(rr') for all r' e R.

We shall be particularly interested in the F-module

cor := Homk[Xo](R, rc[x0])(-l).

By [GW, 2.2.9], this is the canonical module of R. It is a finitely generated,

graded F-module. First of all, let us compute its Hilbert function.

Proposition 3.1. For every neZ we have Hü)R(-n) = s - Hx(n).

Proof. From the above description of R we find

ax + \

coR =■ ($(Homk[Xo](k[xo](-i),k[x0])h')(-l).

;=0

Therefore the ith summand is canonically isomorphic to k[xo](i - l)hi, and

so HWR(-n) = X^í' h &mk k[xo]i-i-n • On the other hand, since Hx(n) =

Yllio1 hi dimfc k[x0]n-i, and since i — 1 — n > 0 if and only if n - i < 0, we
get

ax+l

Ha>Ri-n) + Hx(n) = ^ h, = s

i=0

for every n e Z.   O

Our next goal is to give a characterization of CB-schemes in terms of the

structure of their canonical module.

Lemma 3.2. Let fi e Rax+i be a separator of P¿ for some i e {I, ... , s}, let

g e R„ for some n>0, and let cp e (cür)-cx . Then

(a)gfi = g(Pi)x»fi,
ib)ig<p)ifi) = g(PiK<P(fi).

Proof. Claim (a) follows from 1.13(b) using the fact that the difference of the

two expressions vanishes on A . Claim (b) follows immediately from (a), since

cp is /c[xo]-linear.   D

Remark 3.3. Let us consider Lemma 3.2(a) from another point of view. It gives

a description of the multiplication in R from degree ax +1 onward in terms of

the separators of degree ax + l. Now recall that the integral closure F of F in

its total ring of fractions is of the form R = k[Tx] x • •• x k[Ts] with polynomial

variables Tx,... , Ts. In one sense, we already know the multiplication of R

from degree a^ + 1 onward, since R and R agree in that range. Lemma 3.2(a)

simply recognizes that structure and interprets it in R itself.
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In particular, if fi,... , fs e Rax+\ are separators of Px, ... , Ps respec-

tively, then we find that fifij = 0 for ; ¿ i and fi2 = fi(P)x^+lfi for
i=l,...,s.

Lemma 3.4. (a) There is a 1-1 correspondence between elements of (coR)-ax and

k-linear maps from Rax+i to k which vanish on xoRax , given by cp i-> cp\Ra +1.

(b) Let g e Rn for some n > 0, and let cp e (cx>R)-ax . Then gcp = 0 if and

only if the restriction of gcp to Rax+i is the zero linear transformation.

(c) For i = 1, ... , 5 let fi e Rax+\ be a separator of Pi. An element

cp e (cx>R)-ax is faithful, i.e. AnnR(cp) = (0), if and only if cp(fi) ̂  0 for all
ie{l,...,s}.

Proof. First we prove statement (a). Using the above description of cur ,

an element cp e (cx>R)-ax can be regarded as a graded fc[xo]-homomorphism

cp: F —> A:[xo] of degree -ax - 1. It follows that tp(R„) = 0 for n = 0, ... , ax

and that cp\ Ra +1 : Rax+i —> k is a /c-linear map which vanishes on xoRax .

Conversely, suppose that we are given a k-linear map \p : Rax+\ —► k which

vanishes on xoRax • We can extend \p to a /c-linear map cp: R -> k[xo] in

the following way. For g e Rn with n < ax define cp(g) := 0. For g e R„

with n > ax + I write g = Xq~üx~xg' using 1.13(b) and define cp(g) :=

x¡¡~ax~ V(#') • Now the condition y/(xoRax) = 0 is precisely what we need to

show that this definition makes cp a /c[x0]-linear map which is homogeneous

of degree -ax - 1. Hence cp represents an element of (o)R)-ax ■

For the proof of (b) suppose that g e R„ and cp e (cx>R)-ax are such

that the restriction of gcp to Rax+\ is zero. If h e Rm with m < ax,

then xaQx+x-m(gcp)(h) = (g<p)(x^x+l~mh) = 0 implies that (gcp)(h) = 0. If

h e Rm with m > ax + 1, then we write h = x™~"x~xh' as in 1.13(b) and find

(gcp)(h) = x™~ax~x(gcp)(h') = 0, too. Hence gcp = 0 as we wanted to show.

Finally we prove (c). If cp is faithful and cp(fi) = 0 for some i € {1,..., s},

then fiep restricted to Rax+\ is the zero homomorphism, because Lemma 3.2

yields (ficp)(fij) = fi(Pj)x^+ltp(fj) = 0 for ; = 1,... , 5 and {fi , ... , fi} is
a fc-basis of Rax+i ■ By (b), this implies that ficp = 0 in contradiction to our
assumption.

On the other hand, if cp(fi) ̂  0 for / = 1, ... , s and g e F„\{0} for some

n > 0, then there is at least one i € {1, ..., s} such that g(P¡) ^ 0. Using 3.2

again, this means (gcp)(fi) = g(P¡)xQ<p(fi) ^ 0. Therefore gcp 7^ 0 and we are

done.   D

Theorem 3.5. The following conditions are equivalent.

(a) A is a CB-scheme.

(b) There is a faithful element in (coR)-ax .

(c) A generic element of (coR)-ax is faithful.

(d) There is a homogeneous exact sequence of graded R-modules

0 -* R -> coR(-ax).

Proof. Since (b) and (d) are clearly equivalent, and since (c) obviously implies

(b), it suffices to prove that (a) implies (c) and (b) implies (a).

Suppose that A is a CB-scheme, and take a generic element cp e (cx>R)-ax .

By 1.10 and 2.6 we have fi g xoRax for i = I, ... , s . By 3.4(a) and since cp
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is generic, it follows that tp(fi) ^ 0 fox i = 1,..., s. Thus cp is faithful by
3.4(c).

If we start with a faithful element cp e (cx>R)-ax , we get cp(fi) ^0 and fi &

x0Rax from the lemma. By 1.10(c) and 2.6, it follows that degx(P¡) = ax + I
for i = 1, ... , s , i.e. that A is a CB-scheme.   D

Remark 3.6. There is also a nonreduced version of Theorem 3.5, which is

proved in [Kl, §2] using a similar technique. More precisely, there is a faithful

element in (coR)-ax if and only if X is locally Gorenstein and a CB-scheme.

One consequence of this theorem is that the property "A is a CB-scheme"

implies certain inequalities for its Hilbert function.

Corollary 3.7. Let X be a CB-scheme.
(a) For all i eZ we have Hx(i) + Hx(ax - i) <s.
(b) For i = 0, ... , ax+l we have h0 + hx-\-\-h¡ < hax+X-i + ■
(c) For all i, j with 0 < i < j < ax + 1  we have ho + hx +

hj-i + --- + hj.

Proof. From Proposition 3.5(d) and Proposition 3.1 we obtain

Hx(i) < HœK,-ax)iï) = HWR(i -ax) = s- Hx(ax - i).

This proves (a). Since Hx(i) = h0 + hx H-\-h¡ and s = h0 + hx + —h hax+x,
claim (b) follows from (a). It remains to prove (c). By repeatedly applying

Corollary 2.16 we find a subscheme 7 of A of degree Hx(j) with Hilbert

function HY(n) = min{Hx(n), Hx(j)} for n eZ and such that 7 is also a

CB-scheme. Now (c) is nothing but (b) applied to 7.   □

Remark 3.8. Like 3.5, this corollary also has a generalization to O-dimensional

locally Gorenstein schemes A. In fact, we do not even have to assume that
A is a CB-scheme, if we replace ax by the largest integer n such that every

hypersurface of degree n containing a subscheme of degree degA - 1 also
contains A. That number is occasionally referred to as the Cayley-Bacharach

number ex of A. In this case the inequalities that are valid are

Hx(i) + Hx(cx -i)<s   for i = 0,... , ax + 1.

These results follow from [K2], 4.18 with ZZ?X = cfpd(i) and Zzf2 = <f¥d(cx - i) ■

Example 3.9. Let A be a CB-scheme which does not lie on a hyperplane of Fd .

If hax+x = 1, then hax > d. For if not, then hax + Kx+X < 1 + d = h0 + hx,
and that contradicts Corollary 3.7(b).

Remark 3.10. If A has the uniform position property, i.e. any two subsets of

A of the same cardinality have the same Hilbert function, then J. Harris and

D. Eisenbud showed in [HE], 3.5 that

(1) Hx(i + j) > min{5, Hx(i) + Hx(j) - 1}

for all i, j eZ. Note that if i + j>ax, then Hx(i + j) = 5 and the inequality

holds trivially. So, the interesting case of ( 1 ) is i + j < ax. In that case,

Hx(i + j) < s and (1) is equivalent to

■ + hax+x .

• • + h¡ <

(2) Hx(i + j)>Hx(i) + Hx(j)-l.
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It is easy to see that (2) is the same as 3.7(c), if in those inequalities we replace

hj by 1. In particular, if we let i + j = ax, then (2) is equivalent to

(3) h0 + hi + --. + hi < hax+x-i + ■ ■■ + hax + 1.

Again this is the same as 3.7(b) with hax+x replaced by 1.

The stronger inequalities (2) are no longer true for arbitrary reduced CB-

schemes A, as the following example shows.

Example 3.11. Let Li and L2 be two skew lines in P3, and let Px, ... , P4 e

Lx and F5, ... , F8 e L2 be /c-rational points. Then it is easy to check that

A := {Px.F8} is a CB-scheme with Hilbert function Hx : 146 8 8...
which does not satisfy (3).

This raises the question whether it is possible to find weaker conditions than

the uniform position property which still imply the inequalities (2). One possi-

ble case is given by the following proposition.

Proposition 3.12. Suppose that X is a CB-scheme with the property that for every

i e {0, ... , ax} there is a CB-scheme Y, C X of degree deg 7, = Hx(i) + 1
and with Hilbert function HYj(n) = min{Hx(n), deg 7,}.

Then we have the inequalities Hx(i + j) > Hx(i) + Hx(j) - 1 for i, j > 0

such that i + j < ax.

Proof. Applying 3.7(a) to Yi+j , we get the inequality Hx(i+j) = deg Yi+j - 1 >

HYl+i(i) + HYi+j(aY,+j -i)-l= Hx(i) + Hx(j) - 1.   □

Another possibility is to ask for conditions that imply inequality (3) only.

For instance, we have no example of a CB-scheme X with hax+x > 2 and

the property that every subscheme 7 of degree 5-2 has Hilbert function

HY(i) = min{s -2, Hx(i)} which does not satisfy (3).
In the last part of this section we want to point out the relation of the canoni-

cal module of R to the conductor of R in its integral closure. For i = 1,..., s

we set d¡ := degx(P¡) and we let fi be a separator of F, of degree d,. Recall

that the integral closure F of F in its total ring of fractions is given by

F S R/px x ••• x R/ps = k[Tx]x---x k[Ts],

where p, is the ideal of F, in F and T¡ is the image of Xo in F/p,.

Proposition 3.13. Let <£-,_ denote the conductor of R in R.
Kf K

(a) We have £~/R = Tdlk[Tx] x • • • x Tdsk[Ts] as an ideal of R.

(b) We have <¿~¡R = (fi, ... , fi) asan ideal of R.

Proof. Part (a) is shown in [O]. We now use (a) to prove (b). The image of fi

under the inclusion RCR is a scalar multiple of fi := (0,..., 0, Ti■', 0,..., 0).

Since the fc[xo]-algebra structure of F is given by xo >-> (T\, ... , Ts), those

elements generate €~    as a fc[xn]-module, and the claim follows.   □

More precisely, note that from the above description of R we get fi =

fi(Pi)fi and jf = fi(P,)xdi fi . In view of 3.13 it is possible to make a simple
connection between the conductor and the CB-property.
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Corollary 3.14. The scheme X is a CB-scheme if and only if £~   = ÇBn>ax+1P" ■

Proof. Since dim^ Rn — s if and only if n > 0, and since dim^ R„ = s if and

only if n > ax + 1, we have R„ = Rn precisely for n > ax + 1. The ideal

®n>ax+\ P" is an ideal °f Dotn P an(* P ' anQl tnus always contained in the

conductor. By the proposition, we have equality if and only if deg fi = ax + 1

for i = I,... , s, i.e. if and only if A is a CB-scheme.   D

In other words, CB-schemes could have been defined as those schemes whose

conductor is as small as possible. This characterization translates to 3.5 via

Dedekind's formula for conductor and complementary module, which is the sub-

ject of the next proposition. Recall that the canonical module of R is given by

co~ = HomklXo](R,k[xo])(-l).

Proposition 3.15. For any set of k-rational points X the following formula holds.

€R/R-coR = coR.

Proof. For r e <tR/R and cp e cùr we have (rcp)(K) = <p(rR) C cp(R) ç k[xo],

so that rep eco~. Obviously this defines an inclusion C~    • coR ç co~.

To prove that this is an equality, we first compute the Hilbert function of

co~. Since F is a free rc[xo]-module of rank 5 with a homogeneous basis of

degree 0, it follows from the above description of co~ that H^n) = 0 for

n < 0 and H^n) = s for n > 1. Therefore the projections

cp,: : R * k[Tx] x • • • x k[Ts] -» k[T¡] S k[x0],

where i e {1,..., s}, form a /c[xo]-basis of co~ and it suffices to show that

they lie in <t~/R • coR .

Consider the epimorphism e : Homk[XoX(R, k[xo]) -» Homk(R/(xo), k) in-

duced by reduction modulo Xo. Since f¡ is a separator of F, of minimal

degree, we must have fi £ (xo). Hence its image fi in (R/(x0))d, is not zero,
and there is a homogeneous fc-linear map y7¡ : R/(xq) —> k of degree -d¡

such that Wiifi) ¥" 0 • Now lift ~tp, via e to a homogeneous /V[xo]-linear map

y/i : R —► A;[xo] of degree -d¿ with y/¡(fi) ^ 0. We conclude the proof by
showing that there is a A, e k\{0} such that cp¡ = A¡fiipi as elements of co~.

Then 3.13(b) yields cpi e €R/R • coR as desired.

Write fi = fi(Pi)fi as in the note after 3.13. On one hand we have cpi(fi) =

0 for j ^ i and (Pi(fi) = Xq' . On the other hand we have (fiWi)ifj) =

fii(Pi)¥i(fiifj) = 0 for ; ¿ i and (fiwt)(fi) = fiiPÔVtif2) = fii(Pi)2xd'¥i(fi).
We conclude that ç?, = lifiipi for A, = fi(P¡)2y/i(fii) e k\{0} as we wanted to
show.   D

Remark 3.16. This proposition is also a consequence of [KW, 4.32 and 4.35(b)].

It is an easy exercise to use 3.15 to show that 3.5(c) and the condition on the

conductor in 3.14 are equivalent. For example, if 3.5(c) is satisfied, then we

must have degf¡ = ax + 1 in 3.13(b), because otherwise 3.15 yields a nonzero

element of (co~)o • The other direction is left to the reader.
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4. CB-SCHEMES AND LIAISON

Continuing with our standing notation, we let A be a set of 5 distinct k-

rational points in P**, we let /(A) be the homogeneous ideal of A in A :=

k[Xo, ■■■ , Xd], and R := A/1 its projective coordinate ring.
In addition, we suppose that we have another set of /^-rational points 7,

disjoint from A, such that Z := A U 7 is a complete intersection in Fd . In

other words, A and 7 are linked by the complete intersection Z . Since most

results in this section make use of the particular choice of 7, we would like to

point out that at least one set of this type always exists (cf. Remark 4.11). Let

I(Y) be the homogeneous ideal of 7 in A , and let {G\, ... , Gd} be a homo-

geneous regular sequence in A which defines Z , i.e. I(Z) = (Gx, ... , Gd). It

is well known that /(A) = I(Z) : I(Y) and I(Y) = I(Z) : I(Z).
In this situation the projective coordinate ring of Z is S := A/(GX, ... , Gd).

Let us denote the images of I(X) resp. I(Y) in S by / resp. J. Thus we

have / = Ann5(/) and J = Anns(I). We also assume that the coordinates

{A0,... , Xd} of Fd are chosen in such a way that the image of Ao in S is

not a zero divisor. We shall use "    " to denote residue classes modulo A0 .

Finally, let aX/z denote the initial degree of /, i.e.

ax,z = min{« eN:/„^0} = min{« e N : I(X)„ D (Gx, ... , Gd)n).

It may be worth noting that aX/z is not necessarily equal to

ax = min{« e N : I(X)n ¿ 0},

but of course aX/z > ax ■ Analogously, let aY/z = min{« eN:/„j¿0} be the

initial degree of /.
The following preparatory results trace back to the work of Gröbner [G].

More modern versions are also contained in [DGO].

Lemma 4.1. For every ideal a of S and every n > 0 we have

(Annj(a„))az+i_„ = (Ann^(o))az+i_„.

Proof. We only have to show that the left side is contained in the right one.
Take an element x e Saz+X-„ which annihilates an . Then xom = 0 for every

m > n simply because Saz+X-„+m = 0. Suppose that m < n and x y ^ 0 for

some y e am . Since S is a O-dimensional local Gorenstein ring, its socle is

Saz+X, and therefore there is an element z e S„-m such that xyz e Saz+X\{0}.

This contradicts the assumption xa„ = 0, so also xam = 0 and we are done.   D

Lemma 4.2. For every ideal a of S and every n e {0, ... , az + 1} we have

dim^S,,) = dim^a,,) + dim^Ann^ct))^.,.!-,,.

Proof. Let us consider the nondegenerate pairing Sn x Saz+X-„ -» Saz+X = k.

By the previous lemma, (Ann^(a))az+i_„ is the orthogonal space to a„ with

respect to this pairing. The conclusion follows.   D

Proposition 4.3. Let X, Y_, and Z_ be as above.
(a) We have I = Ann^(7) and J = Ann^(Z).

(b) For n = 0, ... , az + I we have dimk(Sn) = dimk(ln) + dimk(Jaz+x_„).
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(c) For n = 0, ... , az + I we have AHz(n) = AHx(n) + AHY(az + I - n).

(d) We have az = ax + aY/Z = aY + aX/z ■

Proof. For (a) it suffices to prove that J = Ann=(7). Since J = Anns(Z), we

have J ç Ann^(7). Now consider the following equations.

dimk(S/7) = deg 7 = degZ - deg A = dimk(S) - dimk(S/7)

= dimk(S/Annj(I)).

The last equality follows from Lemma 4.2. We conclude that J = Ann^(7).

Statement (b) is a consequence of (a) and Lemma 4.2. Claim (c) follows from

(b), because AHx(n) = dimk(S/7)n and AHY(n) = dimk(S/J)„ . From (c) we

get that the initial degree of 7 is the least number n such that AHY(az +1—n) /

0, i.e. it equals az - aY . But the initial degree of 7 is also the initial degree

of /, and we obtain (d).   D

Corollary 4.4. We have I(Z)az+l : I(Y)ar/z = I(X)ax+x.

Proof. When we read the desired equation in S, we see that what we have

to prove is (Ann^(/ar/z))ûz+i_Qj,/z = lax+\ • This follows from 4.1, 4.3(a) and

4.3(d).   D

Now we shall apply these results and techniques to investigate the relation be-

tween a CB-scheme A and a linked scheme 7. More precisely, we shall derive

another characterization of CB-schemes using the ideal of a linked scheme.

Lemma 4.5. Suppose that X is a CB-scheme. Let P be a point of X, and let

Fp e Aax+X be a separator of P from A\{F} .

Then FP £ I(Z)az+x : I(Y)ar/z .

Proof. On the contrary, assume that FP • I(Y)ar/z ç I(Z)az+x. Then Corollary

4.4 shows that F> e I(X)aj[+l . Hence FP is of the form FP = GP + X0HP

with Gp € I(X)ax+x and HP e Aax . But then also Hp is a separator of F

from A\{F} , in contradiction to degx(P) = ax+l . Thus the assumption was

wrong and the claim follows.   D

Theorem 4.6. The following conditions are equivalent.

(a) A is a CB-scheme.
(b) A generic element of I(Y)ar/z does not vanish at any point of X.

Proof. First we show that (a) implies (b). Let F be a point of A, and let

Fp e Aax+X be a separator of F from A\{F} . Then Lemma 4.5 implies that

FPG £ I(Z)az+x for a generic element G of I(Y)aY/z . Since G vanishes at all

points of 7 and Fp vanishes at all points of A\{F} , we must have G(P) ^ 0.

Therefore a generic element of I(Y)a     does not vanish at any point of A.

Conversely, let G e I(Y)ar/z be an element which does not vanish at any

point of A. Let F be a point of A, and let Fp e A be a separator of

F from A\{F} of minimal degree. Then FPG is a separator of F from

Z\{P}. Since Z is a CB-scheme (cf. 2.8), this yields deg(FPG) > az + I.
Thus degx(F) = deg(Fp) > az + 1 - aY/z = ax+l by 4.3(d), and therefore A
is a CB-scheme.   □
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Remark 4.7. Using the results of §2.2 in [GW], we obtain the following sequence

of isomorphisms of graded F-modules.

mi-ax) = Hom5(F, cos)(-ax) = Homs(S/I, S(az))(-ax)

= Koms(S/I, S)(az - ax) = Anns(I)(aY/z) = J(aY/z).

Based on this isomorphism cor(-üx) - J(aY/Z) one can prove that conditions

3.5(c) and 4.6(b) are equivalent. We chose to give a direct proof of Theorem

4.6 instead, because in this way we do not have to assume any knowledge about

cor except that in our situation it is given by Hom^^F, k[xo])(-l).

Corollary 4.8. Let Z be a O-dimensional complete intersection in Fd  which

consists of distinct k-rational points. Let Y be a subset of Z suchthat I (Y) is

generated by its elements of degree less than or equal to aY/Z ■

Then X := Z\Y is a CB-scheme.

Proof. If A is not a CB-scheme, then a generic element of I(Y)a vanishes

at some point of A. Hence there is a point of A at which all forms of I(Y)ar/z

vanish. This is impossible, since I(Y) is generated in degree less than or equal

to aYjz .    D

Theorem 4.6 and Corollary 4.8 provide us with handy ways to check geomet-

rically whether a given set of points forms a CB-scheme.

Example 4.9. Let Z be the complete intersection of the two cubics Gx = X\ -

X2XX and G2 = A23 - A02A2 in P2 .

Sketch:
Px»   F2«   F3»

A»   P5'   Pc»
Pt   P&*   F9.

Then Z\{P¡} is a CB-scheme for every i e {I, ... ,9} , because a generic line
through F, does not contain any point of Z\{PZ} . (Compare this with 2.17.)

The scheme Z\{Fi, F2} is not a CB-scheme, because there is only one line

containing {Fi, F2} and this line also contains F3. On the other hand, the
scheme Z\{F2, F4} is a CB-scheme, because the line through F2 and F4 does

not contain any point of Z\{P2, P4} .

Finally, the scheme Z\{P2, F3, F5, F6} is a CB-scheme, since the ideal of
the scheme 7 := {P2, F3, F5, F6} has initial degree two and is generated by

forms of degree two, so that we can apply 4.8. In the same manner one can also
show that the scheme of Example 2.19 is a CB-scheme.

The theorem can also be used to formulate characterizations of CB-schemes
which are well suited for the application of computer algebra programs.

Corollary 4.10. The following conditions are equivalent.

(a) A is a CB-scheme.

(b)I(Z):I(Y)ar/z=I(X).

(c) Anns(Jay/z) = I.

(d)I(Z)az:I(Y)aY/z=I(X)ax.

(e) (Anns(JaY/z))ax = hx ■

(f) H(A/(I(Z) : (I(Z) : I(X))ay/z), az - aY/z) = Hx(az - aY/z).
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Proof. First we show that (a) implies (b). We only have to prove that the left

side is contained in the right one. Let F be an element of I(Z) : I(Y)ay/z .

Then F G e I(Z) for every G e I(Y)ay . Using Theorem 4.6 we deduce that

F must vanish at every point of A.

Conditions (b) and (c) are obviously equivalent. In view of formula 4.3(d)

it is also clear that (b) implies (d). Condition (e) is a restatement of (d) in S

and therefore equivalent to (d). Conditions (d) and (f) are equivalent, because

I(Z)az : (I(Z) : I(X))aY/z D I(X)ax is always true, so the equality of those

vector spaces follows from the equality of their dimensions.

Finally we have to show that (d) implies (a). Assume that A is not a CB-

scheme, i.e. that there is a point F in A and a separator FP of F from

A\{F} of degree ax . Then Fp g I(Z)az : I(Y)a by hypothesis. Therefore,

if we take a generic element G of I(Y)ay/z , then FPG is a separator of F

from Z\{P} of degree ax + aY/Z = az . This contradicts the fact that Z is a

CB-scheme.   D

Remark 4.11. Suppose that we are given a O-dimensional subscheme A =

{Px, ... , Ps} of P** which consists of A:-rational points. How can we decide

whether A is a CB-scheme? Two not very efficient ways have been discussed in

2.20. The following method is based on Corollary 4.10 and works much better.

We assume that we are either given /(A) directly, or we have computed

it from the coordinates of the points of A by intersecting the corresponding

prime ideals. We also need a homogeneous regular sequence {Gx, ... , Gd}
in I(X) which defines a O-dimensional complete intersection Z containing
A. In principle, we can always write F, = (1 : piX : ■■• : pid) and use G¡ :=

(Xi -px¡Xo) ■ ■ ■ (A, -PsiXo) fox i = I, ... , d. This choice has the disadvantage

of producing polynomials of high degree, but it has the advantages of being

computationally trivial, if the points are given via their coordinates, and of
producing a Gröbner basis with respect to any term ordering that starts with

the degree in Xx, ... , Xd (cf. [Ro, 9.2(b)]). From here we can proceed in the

following way.
First of all, no matter how we got the regular sequence, we have I(Z) and

az = deg Gx H-h deg Gd-d. Then we start the computation of I(Z) : I(X).
This is done by computing a suitable Gröbner basis, and we recall that the

computation proceeds degree after degree. As soon as an element is found,

we check whether it is in I(Z). This operation is computationally easy, if

we have a Gröbner basis of I(Z) (see above). As soon as we get an element

which is not in I(Z), its degree is aY¡z ■ So we can stop the computation of

I(Z) : I(X) at this degree and we have (I(Z) : I(X))ay/z . Now we compute

(I(Z) : (I(Z) : I(X))ay/z) by means of a Gröbner basis which is truncated

in degree az - aY/Z and we check formula 4.10(f) by simply computing the

dimensions of the respective vector spaces.

To illustrate this method, we explicitly describe how we use it to prove that

the scheme A in Example 2.19 is indeed a CB-scheme. From the coordinates

of the points we compute that

I(X) = (XXX2 — XoXxX2, Aj — 3AoAj + 2A0 Ai,

A24 - 6A0A23 + 11A02A22 - 6A03A2).

Now we choose Gi = At(Ai - A0)(Ai - 2A0) and
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G2 = X2(X2 - Xo)(X2 - 2Ao)(A2 - 3A0)

and we set I(Z) := (Gx, G2) and get az = 4. We start computing
(I(Z) : I(X)) and we get (A22 - 5A0A2 + 6A2, A2 - 3A0Ai + 2A02) in degree

two. Since I(X) starts in degree three, we get aY/Z = 2 and az - aY/Z = 2.

We compute (I(Z) : (I(Z) : I(X))2)2 and we get (0). Also 7(A)2 = (0), so
that we can conclude that A is a CB-scheme.

5. Applications to hyperplane sections of curves

As an application of our results, we would like to show how they fit with

those in a recent paper of R. P. Stanley. Recall that we are always working over

a field k of arbitrary characteristic. For the proof of the next proposition we

need to use the description of cor via local cohomology as outlined for instance
in [GW, Chapter 2].

Proposition 5.1. Let k be algebraically closed, and let C be an integral, arith-

metically Cohen-Macaulay curve in Ff+X.

Then the general hyperplane section X of C is a CB-scheme.

Proof. Let F be the projective coordinate ring of C and let cor be its canon-

ical module. Then cor is a 2-dimensional Cohen-Macaulay F-module. We

define aR := - min{n e Z : (cor)h ^ 0}, and we let x be a nonzero ele-

ment of (coR)-aR ■ Since Ass(Fx) ç Ass(wÄ) = 0, we get dim(F/AnnÄ(x)) =

max{dimF/p : p e Ass(Fx)} = 2. Therefore we have Ann«(x) = 0. Now

consider the homogeneous exact sequence of graded F-modules

0 -> R(aR) -^cor^ coR/Rx -» 0

and the resulting long exact sequence of local cohomology modules

• ■ • - H^(cor) -» HKcor/Rx) - Hl(R)(aR) ^ HÏ(coR)

-> Hl(coR/Rx) -» Hl(R)(aR) A H2m(coR) -» H2m(coR/Rx) -» 0

where m denotes the homogeneous maximal ideal of F.

Since H®(coR) = HX(R) = 0, we get depthÄ(&)Ä/Fx) > 1. Since the

isomorphisms H2(R) = Homk(coR,k) and H2(cor) = Homk(R,k) iden-

tify the multiplication map px : H2(R)(ür) —> H2(coR) with Homk(px, k) :

Homk(coR(-aR), k) —> Hom¿.(F, k), we see that px is surjective and thus

H2(cor/Rx) = 0. Hence dim(<yR/Fx) < 1 < depthR(coR/Rx), and thus
cor/Rx is a 1-dimensional Cohen-Macaulay F-module. In particular, this im-

plies that a general linear form / e Fi is not a zero divisor on cor/Rx .

Now let S := R/(l), and let A := C n T(l). Then A is a general hyper-
plane section of C and S is its projective coordinate ring. Since / is not a

zero divisor of F, we get cos = (cor/Icor)(1 ) and ax = - min{« e Z : (cos)n ¥" 0}

= ÜR + 1. Using these identities we construct the following commutative dia-
gram.
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0 0 0

I I I
0 -►     R(ür)     —-—►     COr ->      cor/Rx      -> 0

/ / /

0 -► R(aR+l) —^ cor(I) -► (coR/Rx)(l) -► 0

II I
S (ax)     —-—>    cos ->     ojs/Sx     --► 0

0 0 0

An application of the snake lemma to this diagram yields An%(x) = 0, i.e. x

is a faithful element in cos(-ax) ■ By Theorem 3.5, this implies that A is a

CB-scheme.   D

In particular, we can apply Corollary 3.7 and get the following inequalities

for the Hilbert function of a general hyperplane section of a Cohen-Macaulay

curve.

Corollary 5.2. In the situation of the proposition let h¡ := AHx(i) for all i > 0.

Then hQ + hx + ■ ■ ■ + h, < hj-i + ■ ■ ■ + h¡ for all 0 < /' < j < ax + 1.

Now let k be an arbitrary infinite field again, and let F be a standard graded

A:-algebra, i.e. Ro = k and F = k[Rx]. When F is a Cohen-Macaulay ring,
we can define its h-vector (ho,..., ht) by h¡ := AdimRH(R, i) and t :=

max{/ e N : h,-^ 0}. Notice that this definition agrees with 2.12, if F is

the projective coordinate ring of a set of /c-rational points.

The next corollary gives more inequalities on the A-vector of a Cohen-

Macaulay integral domain F than [St, 2.1], under the additional assumption

that R is standard graded.

Corollary 5.3. If R is a standard graded Cohen-Macaulay integral domain over

an infinite field k, then its h-vector satisfies

h0 + hx-\-+ hi < hj-i + --- + hj

for all 0 < /' < ; <t.

Proof. Since the /z-vector does not change when we enlarge the ground field,

we may assume that k is algebraically closed. Since the case dim F = 0 is

impossible, and since the case dim F = 1 is only possible for R = k[X], we
can also assume that dim F > 2. If S := dim F > 3, then we find a regular
sequence xi, ... , x¿_2 € Fi such that R/(xx, ... , x¿-2) is a Cohen-Macaulay

domain of dimension two with the same A-vector (cf. [St, 3.3]). Thus we can

assume that dim F = 2. In this case F is the projective coordinate ring of an
integral Cohen-Macaulay curve in Fd+X , where d + 2 is the minimal number
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of generators of the homogeneous maximal ideal of F. Since F is Cohen-

Macaulay, its h -vector agrees with the h -vector of a general hyperplane section

A of C. Now an application of Corollary 5.2 finishes the proof.   D

Let us also compare the inequalities of Corollary 5.2 with Harris' inequalities

for the Hilbert function of hyperplane sections of curves. For this we let k be

an algebraically closed field again, and let C ç P^1 be an integral curve. In

this case char/c = 0, Harris has shown in [H] that the points of a general

hyperplane section of C axe in uniform position, and therefore the stronger

inequalities 3.10.2 hold. But in characteristic p > 0, Harris' result is true only

with some additional hypothesis, as demonstrated by J. Rathmann in [Ra]. The

following example, due to Rathmann, illustrates that although Proposition 5.1

yields weaker inequalities, it applies in some previously not covered cases.

Example 5.4. Let char k = p > 0, let q = pn for some n > 0, and let C ç Fd+X
be the curve defined by

C := ^(Xl -XxXqd+l , Xf - X2X%+X , ... , Xqd_x - XdX%+l ).

Then C is an integral complete intersection curve whose general hyperplane

section is isomorphic to the set of ¥q -rational points of the o"-dimensional

affine space over ¥q (see [Ra, 1.2] for details). By Proposition 5.1 we see that

A is a CB-scheme and therefore its /z-vector satisfies the inequalities given in

5.2. But obviously A is not a set of points in uniform position.

With the pervasiveness of the CB-property for general hyperplane sections of

Cohen-Macaulay curves in arbitrary characteristic one could wonder, if every

hyperplane section of a Cohen-Macaulay curve is a CB-scheme. The following
example shows that this is not the case.

Example 5.5. Let k be a field of characteristic zero. Consider the O-dimensional
reduced subscheme A = {F,,..., F7} of P2 with Fi = (1 : 0 : 0, P2 = (I :

0 : 1), F3 = (1 : 0 : 2), F4 = (1 : 1 : 0), F5 = (1 : 1 : 1), F6 = (1 : 1 : 2) and
F7 = (1:2:0).

Sketch:
F3.   F6.

F2.    F5.

Pi»   P4»   Pt

Here A is not a CB-scheme (cf. 4.9), but we shall show that there is an integral,

arithmetically Cohen-Macaulay curve C such that A is one of its hyperplane

sections. It is not hard to see that the ideal of A in k[Xo, Ai, A2] is given by

/ = (A,(Ai - A0)(A, - 2A0), A, (A, - A0)A2, A2(A2 - A0)(A2 - 2A0)).

The resolution of the ideal sheaf 9x of A in P2 is

0 -+ c?r2(-5) ©cfV2(-4) -* cfvi(-3f ^ZTx^O.

By a theorem of L. Chiantini and F. Orecchia (see [CO]) we can conclude that

there is a smooth, arithmetically Cohen-Macaulay curve C in P3, one of whose
hyperplane sections is A.

In fact, a closer look at the construction given in [CO] shows that if we choose
three general linear forms Li, L2, L3 in k[X0, Xi, X2, A3] and three general
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elements ai, a2, a3 in k , then the maximal minors of the matrix

/ Ai-2A0 + fliA3 A2 + a2A3 a3A3 \

V (A2 - A0)(A2 - 2A0) + Li A3 L2A3 A, (A, - A0) + L3A3 )

define a smooth, arithmetically Cohen-Macaulay curve C such that A is the

intersection of C and the hyperplane 2/'(A3).

We wonder which smooth, arithmetically Cohen-Macaulay curves have the

property that every hyperplane section is a CB-scheme. Clearly smooth complete

intersections do. What are some others?
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