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COMPLEX MULTIPLICATION CYCLES
AND A CONJECTURE OF BEILINSON AND BLOCH

CHAD SCHOEN

Abstract. A generalization of the conjecture of Birch and Swinnerton-Dyer

is investigated using complex multiplication cycles on a particular Kuga fiber

variety. A weak finiteness result consistent with the conjecture is proved. The

image of complex multiplication cycles under the Abel-Jacobi map is computed

explicitly. The results provide numerical evidence supporting the conjecture.

They also give evidence for a relationship between complex multiplication cycles

and a modular form of weight 5/2 and raise questions for further investigation.

0. Introduction

The purpose of this article is to subject an important conjecture concerning

Chow groups to a modest but needed test. At issue is the conjecture of Beilinson

[Be] and Bloch [Bl] which predicts for each smooth, geometrically irreducible,
projective variety V defined over a number field F the relationship

(0.1) rank CH"(VF)hom = oxds=pLF(H2"~X(V), s).

The group CHp(VF)hom of nullhomologous, codimension p algebraic cycles

modulo rational equivalence is an important although often mysterious in-
variant of VF. The L-function on the right is a holomorphic function for

Re(s) > p+l/2 which one hopes can be analytically continued to an entire func-

tion. Certainly an analytic continuation is necessary for (0.1) to have meaning.

In certain instances the analytic continuation is known to hold and the right

hand side is computable. Thus the conjecture raises the distant but tempting
possiblity that there is a relatively simple and occasionally computable formula

for a geometric invariant which is presently intractable.
Historically (0.1) was first proposed by Birch and Swinnerton-Dyer when

p = 1 and V is an elliptic curve over Q. In the past twenty years substantial

progress has been made towards verifying this special case. Our concern here is
with the much more mysterious situation where the Hodge structure H2p~ ' ( Fan)

has level > 1 . With this hypothesis there is no case for which the left-hand

side of (0.1) is known to be finite.

We shall work with a single projective threefold, W, defined over Q and

constructed from the self-fiber product of a certain elliptic modular surface
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n : Y —► A by resolving singularities. The Hodge numbers in degree 3 are

h3'°(W) = 1 and h2'x(W) = 0. The L-function is entire and satisfies the

expected functional equation. Our first main result is a finiteness theorem for a

naturally defined subgroup of the Chow group of W. To state it we note that

there is a tautological morphism p : W —> A. For each field extension F/Q

we write nF for the generic point of XF and define

(0.2) CH2(WF)cu = Ker[C/72(í^)hom - CH2(W xx nF)].

Theorem 0.3. If [F : Q] < 2 and the sign in the functional equation for

LF(H3(W),s) is positive, then xankCH2(ÏVF)CM = 0.

The rank of CH2(Wq)cm is known to be infinite [Sch-CM]. The first part of
the proof of (0.3) is a geometric argument presented in §2. It is inspired by the

proof that the Chow group of zero cycles for a certain surface of general type

with pg = 0 and large automorphism group is finitely generated (cf. [B15, Lec-

ture 1] and references therein). This step depends very much on the particular

situation at hand and cannot be generalized even to varieties analogous to W

which are constructed by starting with elliptic modular surfaces with larger geo-

metric genus than Y. It turns out that a finite index subgroup of CH2(Wq)CM
has a very natural set of generators, so-called complex multiplication (CM) cy-

cles, which can be described in modular terms. In particular their precise fields

of definition are understood. The second step in the argument, carried out in

§4, analyses the action of the Galois group on the CM cycles.
The hypothesis on the sign in the functional equation in (0.3) is verified for

real quadratic fields unramified at 3. Up to a nonzero scalar factor the value of

the L-series at the center of the critical strip is given by the Fourier coefficient
cd, d = Disc(.F), in a modular form of weight 5/2. Among those discriminants

d < 250, d = ±1 mod 3 only the Fourier coefficient cXj2 is zero. Thus for real
quadratic fields F with discriminants in this range

rank CH2(WF)CM < oxds=2LF(H3(W), s)

with equality for d =£ 172.
The situation which originally motivated the present work is when F is an

imaginary quadratic field for which oxds=2LF(H3(W), s) = 1. In this case

there are infinitely many distinct CM cycles defined over F whose image in

CH2(WF) <g> Q lies in the negative eigenspace for the Gal(F/Q)-action. No

relations of rational equivalence among these cycles are known to the author.

Nonetheless (0.1) predicts that all such cycles are rationally equivalent to ratio-

nal multiples of a single cycle. A consequence of this prediction will be investi-

gated with the help of the Abel-Jacobi map from nullhomologous 1-cycles to the

intermediate Jacobian. It turns out that this map can be explicitly evaluated at

CM cycles (§6). When F = Q(V--T) we work through the details and with the
help of a personal computer evaluate the Abel-Jacobi map for about 50 cycles.

Remarkably, we find convincing numerical evidence (although no proof) that
the Abel-Jacobi images are all integral multiples of a single point on the interme-

diate Jacobian. The integral multiples themselves are significant. As suggested

by B. Gross they are, up to a fixed constant which depends only on a certain

discriminant modulo 3, appropriate Fourier coefficients of the above-mentioned

cusp form of weight 5/2.
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An outline of the individual sections is as follows. The first section intro-

duces the variety W from the three different points of view needed in the paper:

As the desingularization of an explicit hypersurface in Pq x P^, as a modular

variety, and via the uniformization of a Zariski open subset of Wm . The ex-

plicit equation is then used in §2 to show that the quotients by certain modular
automorphisms are rational varieties. This allows one to understand how au-

tomorphisms act on the Chow group and eventually is the basis for the proof

of Theorem (0.3). The complex multiplication cycles are described in §3. The

modular viewpoint leads to a precise determination of their fields of definition.

The action of the Galois group on CM cycles associated to a fixed quadratic
order is studied in §4. In §5 we collect basic facts concerning the L-function

LF(H3(W), s) when F is a ring class field. Root number computations suggest

several themes for further investigation. One is to try to establish

rank CH2(WF)CM = ordJ=2 LF(H3(W), s)

for many ring class fields F. It is a somewhat surprising fact that there is an

infinite family of special ring class fields, F, for which ordi=2 LF(H3(W), s)

is positive and rank CH2(WF)Cu - 0 (5.4). It would be interesting to "ex-

plain"the vanishing of LF(H3(W), s) in terms of zero cycles in the generic

fiber of p.
The problem of evaluating the Abel-Jacobi map at a CM cycle is treated in

§6. Here the fact that a Zariski open subset of Wan possesses a natural uni-

formization in terms of modular functions plays an important role. A point

in the intermediate Jacobian is given by a complex number modulo a known

lattice. When this point is the Abel-Jacobi image of a CM cycle, a formula for

the complex number is obtained by evaluating certain power series at appropri-

ate points in the upper half-plane (6.2). The explicit computations for cycles

defined over Q(V^Ï) axe carried through in §7. In the final section the modular

form of weight 5/2 is discussed.
For other works which are in one way or another concerned with gathering

evidence concerning the conjecture (0.1) in case the Hodge structure has level
greater than 1 the reader is referred to [Bl], [B12], [Br], [Ha], [Top], and [Ze].
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Notations. D = discriminant of an order in an imaginary quadratic number

field.
tfD = Z[(D + i/Z>)/2] = the order of discriminant D.

kD = Q(VD).
HD = kD(j(cfi))), where j(cfp) denotes the classical modular function eval-

uated at the lattice cfD .
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E[n] = the «-torsion points on an elliptic curve E .

(s) = the cyclic subgroup generated by an element s .

ßn — (Cn)= the group of nth-roots of unity.

K = QO3).
h = the complex upper half-plane.

Given an «-dimensional variety V over a subfield F c C define
l/an = the complex analytic space associated to V.

ZP(VF) = Z„-P(VF) = the group of codimension p algebraic cycles on VF .

Zp(VF)m = the subgroup of cycles which are rationally equivalent to zero.

Z"(VF)bom = the kernel of the cycle class map cl : Z"(VF) -* H2p(V™, Z).

CHP(VF) = Z"(VF)/ZP(VF)m.

CHP(VF)hom = Zp(VF)h0JZP(VF)m.

1. The modular variety

This section collects basic facts about the elliptic modular threefold W which
is the focus of this paper. The reader may find a more leisurely exposition of

certain points treated quickly here in [Shd] and [Sch-CM].

(1.1) The variety W/Q will be constructed from the smooth rational surface

Y c Pq x P^ defined by the bihomogeneous equation

Uo(Xq + X3 + X2) - UXXoXXX2 = 0.

Projection onto the first factor, which shall be denoted n : Y -> A, gives rise

to the structure of an elliptic surface on Y. The remarkable feature of the
corresponding elliptic pencil on P2 is that each of the nine base points is an

inflection point for every curve in the family. Thus when e = (0 : -1 : 1)

is taken to be the origin, the remaining base points account for all the three

torsion. The singular fibers of n axe of Kodaira type h and lie over the cusps
{00, 3,1/3} C P1 , where ux/uq is taken to be the inhomogeneous coordinate

on P1. Removing these points gives rise to an abelian scheme ñ : Y —> A :=
P1 - {00, 3p3}^ Spec Q[w, (u3 - 27)-1].

To define W, start by letting W := Y xn Y, and W := Y xt Y. Then

o : W —» W will be the blow up of W along Wsing which consists of ordinary

double points. These occur at points (vx, v2) where vx, v2 e n~x(x) axe

both singular points of the fiber. Write p : W -> A for the obvious map and

P — P\w » P = P °à . Evidently W is the hypersurface in Y x Y which under

the natural morphism Y x Y —► P2 x P2 maps birationally to the hypersurface,

W,
xoxxx2(yl +y\ + y¡) = ^WiJ^Xq3 + x3 + x¡).

(1.2) It is important to give an interpretation of these varieties in the con-

text of moduli of elliptic curves with level structure. The appropriate notion

for the case at hand will be refered to as a weak level-3-structure. By such a

structure on an abelian scheme E of relative dimension 1 over a scheme S,

we understand a section sx of exact order 3 together with a subgroup scheme

ßT c E which is isomorphic to p3 over 5 and which is disjoint from sx .

Setting Si — (-1 : 0 : 1) and s2 = (0 : -£3 : Çf) gives rise to the weak level

3-structure (sx, (s2)) on Y. In fact (Y, sx, (s2)) is the universal family which

represents the functor, F : Affine Q-algebras without zero-divisors —>  Sets,



COMPLEX MULTIPLICATION CYCLES 91

defined by F (A) = isomorphism classes of abelian schemes of relative dimen-

sion 1 with weak level-3-structure over Spec A . This is a remarkable property

in the sense that the universal families for most similar moduli problems can-

not be described by such simple equations. The connection between ñ and

the moduli of elliptic curves was realized in the last century (cf. [Bi]). The

precise statement that ic represents F can be established with relatively little

machinery. A few sentences will suffice to roughly sketch the idea. The main

point is that given (E, sx, ß?) over Spec A one can explicitly describe the

induced map Spec A —► Spec Q[u, (u3 - 27)_1] as follows: The Cartier divi-

sor (ßiZ + sx) - (ß?) on E gives rise to an invertible sheaf L such that L|r2$,]

has a nowhere vanishing section. As L has trivial restriction to each fiber, it
is the pullback of an invertible sheaf on Spec A [H, III Ex. 12.4], whence
L ~ 0F. There is a unique rational function tx on E which is identically

-1 along the section [2si] and has divisor (tx) = (ß? + sx) - (ßf). Write t2
for the transform of tx by inversion on E. It may be shown that the rational

function p = (1 + t\ + t2)/txt2 has trivial divisor on geometric fibers. In fact
after adjoining a cube root of unity to A, we may choose a generator 52 of

ß?. Let s, denote translation by the section s¡. The divisor of (I + tx+12) is

[ii] + [2si] - [s2] - [2s2], whence

g= (  II (4r(l+'i+'2)W2
\l<i<3 /

has trivial divisor. But s2t¡ = C3i;, which implies p = g + 3 . Thus p is pulled

back from A . The map /: Q[w] -► A, f(u) = p lifts to Q[u, (u3 - 21)~x].
The task of showing that this map of functors

F -» Morph( , Spec Q[u, (u3 - 27)"1])

is a isomorphism is left to the reader (cf. [M-S]).

(1.3) Our approach to the Abel-Jacobi map for 1-cycles on W is based on

the fact that the analytic space Fan and hence W™ has a natural uniformiza-

tion given by modular functions. To describe this let T(3) := Ker SL(2, Z) ->

SL(2,Z/3) and let T(3)j denote the semidirect product T(3)-(Z^)2 with mul-
tiplication

(a,(m,n))*(ß,(m',n')) = (aß,(m,n)ß + (m',n')),

where m,n,m', n' elJ are column vectors. Let h denote the upper half-

plane. There is a natural free action of T(3)¡ on h x CV given by

(1.3.1) ((c   Î). (*.»)) *<*.*>
= ((ax + b)/(cx + d), (ex + d)~x(z + xm + «)).

The quotient r(3)i\hxC is a family of genus 1 Riemann surfaces with sections

Si : T(3)\h -+ f(3)i\h x C, i e {0, 1, 2}, given by s0(x) = (x, 0), sx(x) =
(x, 1/3), s2(x) = (t, t/3) . Take so to be the zero section so that sx and s2

have exact order 3. Meromorphic functions tx, t2 yieldingamap f(3)i\hxC—»

Tan may be constructed with the help of the Weierstrass sigma function:

o(x,z) = z     W     (1 - z/(ax + b))e^aT+be^ar+b)2'2.

(a, 6)^(0,0)
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Define

x0(x, z) = o(x, z)a(x, z-x/3)o(x, z + x/3),

xx(x, z) = a(x, z + 2/3)a(x, z - 1/3 - x/3)o(x, z - 1/3+ x/3)e(x),

x2(x, z) = o(x,z- 2/3)a(x, z + l/3- x/3)o(x, z + 1/3 + x/3)e(x),

where

e(T) = -ff(T,l/6)/(j(T,-5/6).

Now set tx = xx/xo, t2 = x2/xo- Using the transformation properties of the o

function [La, § 18] one can verify

Lemma 1.4. (1) The functions tx, t2 on h x C are invariant under the action of

f,(3).
(2) íi(t,2/3) = -1.
(3) t2(x, z) = tx(x,-z).

(4) U(x, z) = ui-t, z).

By (1), (2), (3) the situation is analogous to (1.2). In particular, the function

p(x, z) = (1 + t\ + t\)/txt2 is independent of z. There is a commutative

diagram of holomorphic maps

T(3)i\hxC

pi-*,

r(3)\h

(l : p)(l : t, :t2)

(I:/«)
P.r {oo, 3p3},

which is an isomorphism on fibers. It is bijective on base curves, as each elliptic

curve with weak level-3-structure occurs exactly once in each family. It follows
that the top horizontal arrow is an isomorphism. The theory of torus embed-

dings gives rise to a natural compactification B of r(3)i\h x C [AMRT, 1.4].
The above map then extends to an isomorphism B -* Fan .

(1.5) For the numerical computation of the Abel-Jacobi map, it is crucial to

have a manageable basis for F2H3(W, C). Such is provided by the classical

theory of modular forms. Indeed, the transformation formula for the Dedekind

eta function, n(x) = exp(27riT/24)rT„>i(l - exp(27r/«t)) [La, p. 259], shows

that co = (2ni/3)tf(x)dxdzxdz2 is r2(3)-invariant, hence descends to a global

holomorphic 3-form on Wan . Using the explicit description of the compacti-

fication B of Tan [AMRT, 1.4], one checks that co extends to a holomophic

form on  WiD - Wún%, and hence to a global section of the dualizing sheaf

cow . It follows that co yields a global holomorphic 3-form on Wan . In fact

co 6 F2H3( WaD ,C) is a basis as the next lemma shows.

Lemma 1.6. The numerical invariants of W&n are as follows.

(1)   7ii(i^an)~ 1

(2) /z2'°(*Fan) = 0

(3) h2'x(W™) = 0

(4) cow^cfw, h°(W, û>s>) = l.w
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Proof. (1) [Sch-CM, 1.1], (2) [Sch-CM, 1.2], (3) [Sch-CM, 1.7], (4) [Sch-FP,

§7].

2. The action of automorphisms on the Chow group

In this section we describe how certain obvious automorphisms of Wc act on

C>72(Ií;c)hom ® Q • These automorphisms arise naturally from automorphisms

of the corresponding moduli problem which we now describe.

(2.1) To begin fix a primitive cube root of unity £3. Given an elliptic

curve with weak level-3-structure (E, sx, ßiZ) defined over an extension field

of Q(d), let s2e ßiZ denote the unique generator for which the Weil pairing
yields (sx ,s2) = Ç3. Thus if £3 is in the base field, a weak level-3-structure

is the same as a symplectic level-3-structure. In particular Fq({3) is the moduli

space for elliptic curves with symplectic level-3-structure. Changing the choice

of symplectic level 3-structure gives rise to an action of SL(2, Z/3) on Yqißi).

Only the automorphisms ±Id are defined over Q, although in the induced

action of SL(2, Z/3)/±Id on the modular curve Aq^) elements of the Sylow-

2-subgroup are defined over Q. Explicit generators in terms of the coordinates

introduced in (1.2) are given by Ux and Sx, where Xo ° Ux = £3X0, x, o

Ux = Xi:, (€{1,2}, «o ° U\ = Ç3M0, ux o Ux = ux and Si acts on the right
on the x-coordinates by the matrix ((C3)'y)o</,;<2 and on «-coordinates by

(«o : Hi) ° Si = (-3«o + «i '■ 18«o + 3ux). In terms of the uniformization of

Fan , the SL(2, Z/3)-action is induced by the obvious action of the semidirect

product SLJ2, Z)-(Z2) (1.3.1). Now let SL(2, Z/3) act diagonally on W and

hence on W. By the product formula for rf(x), the matrix (¿ j ) transforms

this function by a primitive cube root of unity. Thus the action of SL(2, Z/3)

on the one dimensional vector space H°(W, co~) is nontrivial, and in fact

necessarily factors through the quotient group Z/3.
(2.2) Write M for the unique nontrivial irreducible Q[Z/3]-module

viewed as a module over Q[SL(2, Z/3)] via the obvious homomorphism

Q[SL(2,Z/3)]-+Q[Z/3].

Proposition 2.2.1. CH2(Wc)hom ® Q is isomorphic to a direct sum of simple

Q[SL(2,Z/3)]-modules M.

We begin with the observation

Lemma 2.2.2.  -Id e SL(2, Z/3) acts trivially on CH2(Wc)hom <8> Q.

Proof. Write t]c for the generic point of Ac. Tensoring the localization se-
quence with Q gives an exact sequence

®   CHx(p-x(x))®Q^^CH2(Wc)®®^CH2(p-x(nc))®®^0.

xex(c)

Since

Albp_,(,c)(C(A)) ~ Pic°_,(f/c)(C(A)) ~ (Pic°-1(,C)(C(A)))2 ~ (Z/3)4,

the image of CH2(Wc\om ® Q in CH2(p~x(nc)\om ® Q lies in the kernel of

the Albanese map. Inversion on the abelian variety induces the identity map on

this group of cycle classes [B13, A.9].
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Since W is the fiber product of rational surfaces, cycles which are alge-

braically equivalent to zero in a smooth, closed fiber p_1(x) are rationally

equivalent to zero on W. Thus y/x: CHx(p~x(x)) -> CH2(W) factors through

the Neron-Severi group, NS(/?_1(x)). Inversion on p~x(x) induces the identity

on NS(/7_1(x)). Thus a nullhomologous cycle z 6 im(0xeA-(C) y/x) is ratio-

nally equivalent to a nullhomologous cycle, z0, supported on the singular fibers

plus cycle classes on which -Id acts trivially. However a multiple of z0 is
rationally equivalent to zero [Sch-CM, 5.3]. The lemma follows.

The main step in the proof of (2.2.1) is the

Lemma 2.2.3. Given any U e SL(2,Z/3) of order 3, the quotient (U)\WC isa
rational variety with a smooth model V for which H3(V, Q) = 0

Proof. As all subgroups of order 3 in SL(2, Z/3) are conjugate it suffices to

check the assertions for any particular order three element. Consider the model

W c P2 x P2 (1.1) and the order three automorphism U given by Ux acting

diagonally. Pass to the affine coordinate system x, = x,/x2, y, = y,/y2 and

then make the substitutions c = yo/xo, e = yx/xx so that the equation for W

becomes

yo(c3 - ce) + y\(e3 - ce) + 1 - ce = 0.

Since yi, c, e are fixed by U and yo°U = £3^0 the rationality of the quotient

is clear.
The fixed point set for the action of Ux on Y consists of the line xo = 0 and

the point xi = X2 = 0 in the fiber 7r-1(oo) together with some isolated fixed

points in the smooth fiber n~x(0). Thus the fixed point locus of U acting on

Wc is a disjoint union of isolated points, smooth rational curves and smooth

divisors. A local computation, using the fact that U has order three, shows

that there is a composition of blow ups W —> Wc centered at isolated points
and along smooth rational curves with the property that U acts on W with

nonsingular quotient^. Since H3(Wan, Q) ~ H3(Wan, Q) and there are no

{/-invariants in H3(Wan, Q), we have H3(V, Q) = 0.

Corollary 2.2.4. If U e SL(2, Z/3) hasorder 3, then (l + U+U2)'CH2(Wc)hom
= 0.

Proof. By the moving lemma, a class in CH2(Wc\om may be represented by

a cycle z whose support is disjoint from the fundamental locus of the corre-

spondence q :W —> V. Clearly

Z+ UZ + U2Z = Q* o Q*(Z).

For a nonsingular rational 3-fold, V/C, CH2(V)hom is isomorphic to Murre's

abelian variety [Bl-S, Theorem 1], which is zero when H3(V, Q) = 0 [Mu].

It is now apparent that CH2(Wc)hom <g> Q is a direct sum of the simple
Q[.PSL(2, Z/3)]-modules with the property that for each order 3 element U,

(1 + U + U2) annihilates the module. There are three isomorphism classes of

simple modules over this group ring, namely M, the trivial module, and the

Steinberg module. The latter has dimension 3 over Q. Of these, only M is

annihilated by (I + U + U2).
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(2.3) It would be interesting to know if the representation of the algebra

generated by Hecke correspondences on C/f2(Ifc)riom <g> Q also has a simple

description.

(2.4) The analog of (2.2.2) for those elliptic modular threefolds W(T) [Sch-

CM, §1] for which h2'°(W(F)) is nonzero is false when the base field is the

complex numbers. This follows from the fact that the Chow group of zero

cycles on the elliptic modular surface Y(T) is large and that -Id acts as -1

on Pic°(/>~'(•*)) [Sch-CM, p.780].

3. Preliminaries on complex multiplication cycles

(3.1) The variety Wq is equipped with a remarkable collection of nullho-

mologous 1-cycles supported on those fibers p~l(x) where the Picard number

jumps. We recall the definition of these so-called complex multiplication cycles
from [Sch-CM, §2].

Suppose given an elliptic curve E defined over a number field L with the

property that Lnd(EL) is isomorphic to the unique quadratic order, cfD, of

some discriminant D < 0. The complex multiplication cycle zE is the positive

generator of the free, rank one, oriented subgroup of NS(is x E) which is

orthogonal to Span{is x e, e x E, A}. The orientation is specified with the
help of the standard map [Sch-CM, p. 799]

</> : NS(£ x E) - End(C//o(£)dego) = End(£L)

which sends Span{is x e, e x E, A} to Z. It is determined by choosing a

positive half-space End(EL)+ c End(EL) • This is done systematically by the

following conventions: First, all number fields in this paper are assumed to

be subfields of C. A choice of \/-T> and hence of an upper half-space in
h c C is made once and for all. Secondly, we embed End(£¿) in L by means

of the action of endomorphisms on the rank one L-module H°(E, QF/l) ■

Set End(EL)+ = End(£,¿) n h. If v e End(^¿) is in the positive half-space
and Z[i/] = End(££), then zE can be written in terms of the graphs of the
endomorphisms v and v,

zE = (a(D)/2)-(Yv-Yv)

where e(D) = 1 (respectively 2) when D is even (respectively odd). B. Gross

points out that zE is the unique element of Span{.E xe, exE, A}1- such that

cp(zF) is the positive trace zero element in End(Ef) of minimal norm. Other

characterizations of this cycle are given in [Sch-CM, 2.4].

(3.2) The set CMD = {x e X(Q): End^"1^)) = ¿b} will be called the
set of CM points of discriminant D. For x G CMq, set E = 7r_1(x) and

let zx e CHx(Wq) denote the image of zF under the homomorphism <px :

NS(£ x E) —y CHx(Wq) induced by inclusion. Recall from the proof of (2.2.2)
that ipx is well defined. By [Sch-CM, 2.5], the complex multiplication cycle,

zx , is homologous to zero in Wq .

Lemma 3.2.1. Complex multiplication cycles generate a finite index subgroup of

Kex[CH2(Wq)hom -» CH2(W xx nq)].
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Proof. Clearly all complex multiplication cycles are contained in the kernel. The
divisors k~x(x) xe, ex n~x(x), and A on a smooth fiber p~x(x) axe restric-

tions of obvious divisors Dx, D2, D3 on W. By intersecting with DX,D2, D-$

one sees that for J2xYl\<i<3ax^i\p-l{x) to be homologous to zero on Wq it

is necessary that J2X a'x = 0 for each i. As the base curve A is P1, this

implies that ^x axDi\P->{X) is rationally equivalent to zero. Thus a nullhomol-

ogous 1-cycle on Wq supported on closed fibers is rationally equivalent to a

linear combination of complex multiplication cycles and a cycle supported on

the singular fibers. The contribution of the latter to the Chow group is at most a

finite group [Sch-CM, 5.3]. The assertion follows from the localization sequence

(2.2.2).

(3.3) Before describing a field of definition for the cycle class zx, it is

helpful to introduce the notion of Heegner point in analogy with [Gr]. A point

x € CMd is called a Heegner point if the subgroups (sx ) and ßf of the three

torsion in 7r-I(x) are both ¿fß-submodules. Since the three torsion in 7r_1(x)

is isomorphic to cfD/3 as an ¿fo-module, Heegner points only occur when 3

splits in cfD . In such cases exactly two points in the SL(2, Z/3)/±Id-orbit of x

are Heegner points. In the analytic picture a point x e h satisfying an equation

with integral coefficients ax2 + bx + c = 0 with a > 0 and gcd(a, b, c) = 1

is a Heegner point exactly when 3\a and 3\c. Indeed, if D = b2 - 4ac then

cfD = Z + Zax = End(Z + Zx). So cfD(l/3) = (1/3) iff 3\a and cfD(x/3) =
(x/3) iff 3\c.

(3.4) Given D, the discriminant of an imaginary quadratic order, write

kD = Q(VD) , j(cfo) e C for the modular invariant of the lattice, cfD, and

Hd = ko(j(cfD)) for the associated ring class field. Given x e CMD let H =
Ho if x is a Heegner point and H = H9d otherwise. By class field theory,

(^b/3)7im(d^) ~ Gal(H9D/HD). In particular, H9D ~ HD(p3) when D = 1
mod 3 or D = -4; Gal(H9D/HD) ~ Z/4 if D = -1 mod 3 and D < -4;

Gal(H9D/HD) ~ Z/3 if D = 0 mod 3 and D< -3.

Proposition 3.4.1. The point x is defined over H.

Proof. By the theory of complex multiplication [Sh-3, §5] 7T~'(x) has a model

E defined over Hd c H. If x is a Heegner point, (sx) and ßf c E[3]

axe Gal(Q///o)-modules. After replacing E by its twist with respect to an

appropriate quadratic extension of HD if necessary, we find that the Galois
group acts trivially on (sx ). Thus sx is an //o-rational point, and from the

Weil pairing, ß? ~ p-t,. Now (E ,sx, Z%Z) is an elliptic curve with weak level-

3-structure defined over Hd , whence x e X(Hd) ■
If x is not a Heegner point then one of (sx ) or ßZZ is not an ¿fD-module.

It is easy to see that the endomorphism ring of E/(sx) or E/ßlZ is cf9D , hence

H9d is contained in any field extension of Hd over which the weak levels-

structure is defined. A weak level-3-structure on an appropriate twist of E will

certainly be defined over the fixed field of the kernel of

p : Gal(Q/HD) -+ Aut(E[3])/Aut(E).

But Aut(£[3]) ~ (cfD/3)* and Aut(£) ^ cf*. As the fixed field of Ker(/?)
contains H9D and Gal(H9D/HD) ^ (cfD/3Y/cf^ , these fields are equal.

Corollary 3.4.2.  H is the smallest field ofi definition of the cycle zx.
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Proof. Because the formation of zx involves the graph of a complex multi-

plication, ko is contained in any field of definition. A fundamental theorem

[Sh-3, Theorem 5.7] asserts that the smallest extension of ko over which E

is defined is HD. Observe that the entire Neron-Severi group of the product

ExE is defined over Hd • The smallest extension of HD over which the weak

level-3-structure may be defined is H.

Remark 3.4.3. This very simple description of the field of definition of CM
points is a happy accident attributable to the fact that the level, N = 3, satisfies

(Z/N)*~{±1}.
(3.5) We close this section by recalling two basic facts about the action of

automorphisms on CM cycles. Because the level structure does not enter in the

definition of these cycles we have for all T e SL(2, Z/3) that T*zx = zFx . For

an element a e Gal(H9D/Q), it is not difficult to verify that o(zx) = £d(o)z<j(x),

where to is the quadratic character associated to the extension ko/Q [Sch-CM,

2.2].

4. The action of the Galois group on CM cycles

Fix D < 0 the discriminant of an imaginary quadratic order. Let Z(D)

denote the subgroup of ($xeCM¡}NS(p~x(x)) which is generated by complex

multiplication cycles. The purpose of this section is to make some progress in

the direction of describing the action of the Galois group Gal(H9D/Q) on the

image of Z(D) in CH2(Wc)hom <g> Q. We are able to proceed far enough to

show that the contribution of CM cycles to (CH2(Wq) ® Q)Gal(Q/öo) js zero,

where Qo is the compositum of Q(//3) with all real quadratic fields which are

unramified at 3 (cf. 4.4.2). The first step is to pass to a quotient of Z(D) by

certain natural equivalences which we now describe.

(4.1) By (2.2.2) the alternating group A = SL(2, Z/3)/ ± 1 acts on Z(D).
The Sylow-2-subgroup A2<A acts trivially on the intermediate Jacobian (2.1)

and on CH2(Wc\om ® Q (2.2). For this reason we consider the coinvariants

Z(D)A2 which form an Z[A/A2] ~ Z[Z/3]-module. Given an element, U e A

of order 3, l + U+U2 annihilates the intermediate Jacobian and C£/"2(W"c)hom<g>

Q so we are led to study 2Z(D) := (Z(D)A2)/(l + U+U2). Since the Sylow-2-
subgroup of SL(2, Z/3) is normal in the semidirect product 9 = SL(2, Z/3) •

Gal(H9D/Q) c Awt(WHw), we find that A/A2 • Gal(H9D/Q) acts on Z(D)Al
which gives rise to an action of Gal(H9o/Q) on 2Z(D).

(4.2) As the set of Heegner points is not preserved by the action of A2 , it

is desirable to work with a slightly larger class of CM points. If D = 1 mod 3

we shall say that a point is special if it is in the /^-orbit of a Heegner point.

In terms of level structure, this means that the data (E, sx, ß?) gives a special

point iff either both (sx) and ß? are ^-modules or neither is. When D = -l

mod 3 and D < -4 it is also of interest to define a notion of special point. In

this case Gal(H9D/HD) ^ (cfD/3)*/ ± 1 a p»/ ± 1, which allows us to identify

the element of order two o e Gal(H9D/HD) with >/-T e (tfD/3)*. It follows
that o acts on the set of four elements (actually the projective line over Z/3 ),

Pis[3] ~ P(tfD/3), as the product of two disjoint transpositions. The data

(E, sx, ß?) is said to correspond to a special point if (sx) and ßiZ e PZs[3]

are interchanged by a . Note that A2 acts on P£[3] as the group of all pairs
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of disjoint transpositions, so that the action of a coincides with the action
of some element of this commutative group. It follows that the action of A2

preserves special points. Here are some other elementary properties of special

points valid for D = ±1 mod 3, D < -4.
(4.2.1) The set of special points of discriminant D, CMD Sp . is stable under

the action of Gal(H9D/Q) ■
(4.2.2) A2 acts simply transitively on the special points in any SL(2, Z/3)-

orbit o c CMD .
(4.2.3) Write Zsp(o) ® C c Z(D) ® C for the vector space generated by CM

cycles over the special points in o. Then Zsp(o)^2 ® C ~ C.

Only the first assertion deserves comment. When D = —1 mod 3 this follows

from the fact that o lies in the center of Gé\(H9DIQ) ■ Indeed, (a) is a

normal subgroup since the fixed field Hd(Pz) is a Galois extension of Q. When

D = 1 mod 3 (4.2.1) is a consequence of the fact that elements of A2 give

automorphisms of A which are defined over Q (2.1).

(4.2.4) A criteria for when a CM point x e h is special in terms of the triple
of integers (a,b,c) associated to x (3.3) is needed only later (7.3).

(4.3) Prior to decomposing 2Z(D) ® C as a direct sum of irreducible

C[Gal(//9o/Q)]-modules, we mention a few general facts about the represen-

tation theory of Galois groups of ring class fields of imaginary quadratic fields.
The main point is that these groups are generalized dihedral groups. In other

words they are semidirect products of an abelian normal subgroup N with Z/2

where the action of Z/2 is by inversion [La, p. 134]. It is not hard to see

that all one dimensional representations of such groups are characters of order

two. The remaining complex irreducible representations are two dimensional.
They are obtained by inducing characters ç : N —► C* where ç ^ ç~x . The

restriction of such a representation to N is clearly ç © ç-1 .

(4.4) We adopt the following notation which is motivated by root number

calculations for Lk(W, s) : A quadratic field k is said to be of type — 1 if it is

imaginary and unramified at 3 or is real and ramified at 3. Any other quadratic

field is of type 1. Write S(k) for the type of k .

Proposition 4.4.1. If D = +1 mod 3 then Gal(H9D/Ho(pi)) acts trivially on
3Z(D). Every irreducible two dimensional representation of Gal(HD(pi)/<Q) oc-
curs in 2Z(D) <g> C with multiplicity one. Nontrivial one dimensional represen-

tations occur with multiplicity one (respectively zero), depending on whether the

quadratic field fixed by the kernel is of type -1 (respectively 1). The trivial

representation does not occur.

If D = 0 mod 3, then every irreducible representation of Gal(H9D/Q) occurs

in Z2Z(D)®£ with multiplicity one except those which factor through the quotient

Gal(HD/<Q) which do not occur.

Proof. We treat first the case D = ±1 mod 3. By (3.4) Gal(H9D/HD(C3)) is
trivial unless D < -4 and D = -1 mod 3, in which case the group is Z/2.

The resulting involution changes the symplectic level-3-structure but preserves
the isomorphism class of each elliptic curve %~x (x). The effect on any complex

multiplication cycle is the same as an element of A2 (4.2), which of course acts

trivially on Z(D)Ä2 and 3Z(D).
Let Zsp(D) c Z(D) be the subgroup spanned by cycles over special points.

We claim that Gal(//o(£3)/HD)  acts trivially on the coinvariants Zsp(D)Al.
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When D = 1 mod 3, Zsp(D)A2 is generated by Heegner points which are de-

fined over Hd . Now suppose D = -1 mod 3, D < -4, x e CMd Sp > and

y e Gal(Q/HD) maps to a generator of Gal(H9D/HD). Write (E, sx, ßt) for
an elliptic curve defined over Hd with a weak level-3-structure defined over Q

so that this data corresponds to x. We claim that there is an Se A2 such

that (E, Ssx, Sß?) ~ (E, ysx, yßiZ). From the claim and (3.5) we deduce

Szx = z$x = zyx = yzx, from which the desired triviality of the action of

Gal(HD(Pi)/HD) follows.
Due to the existence of the inversion isomorphism on E it will suffice to

construct S e A2 which has the same effect on the points (sx), ßiZ e ¥E[3] as
y. We seek a permutation S of the four points Pis[3] which is the product

of two disjoint transpositions and which satisfies S(sx) = y(sx), SßiZ = yß?.

Such an S will exist if we can show that y sends the two points (sx), ßtf to the

two other points in Pis[3]. This may be verified by choosing an isomorphism

of ¿Vmodules, cfD/3 ~ E[3] which sends (1) to (sx) and (s/^) to ß?.

Clearly, such an isomorphism exists iff x is special. Using the identification

of (3.4) Gal(H9D/HD) s (@d/3)*/((fD)* we see that the y action on P£[3]
may be identified with the action of an eighth root of unity, £g e (cfD/3)* on

¥(cfD/3). Thus y behaves as required.

Let ^d denote the set of /-invariants of fractional ideals for cfD. Then

/d ^ A2\CMd sp (4.2.2). By the theory of complex multiplication ^0 is
a principal homogeneous space for Gal(HD/kD) [Sh-3, Theorem 5.7]. Conse-

quently Zsp(D)Ä2®C is isomorphic to the regular representation of Gal(r7ß//Cß)

(4.2.3). It follows that when Zsp(D)Al ® C is viewed as a Gal(./7D/Q)-module,
every two dimensional irreducible representation occurs with multiplicity one

(4.3). From each pair of one dimensional representations which have the same

restriction to Gal(J7o/^o) exactly one occurs. In fact I claim that it is always
the unique member of the pair whose corresponding field is imaginary quadratic.

To see this, note that if the two-rank of Gal(HD/kD) is /, then Gal(//0/Q) has
2t+x distinct characters, half of which do not annihilate complex conjugation,

x. From the formula for an induced character [Se, 3.3 Theorem 12] it is clear

that if p is an irreducible two dimensional representation of Gal(HD/Q) then
tx(p(x)) = 0. We may now deduce the claim by evaluating the character of the

representation Zsp(D)Al ® C at x. This amounts to studying the fixed points

of the action of complex conjugation on A2\CMD %p—<?d- Real /-invariants

correspond to 2-torsion in Pic <fb . Above each of these 2'-fixed points com-
plex conjugation acts by -1 on the corresponding one dimensional subspace of

ZspiD)Al ® C (3.5). It follows easily that the trace of x e End(Zsp(D)Â2 ® C) is

—2'. Since 2' is the number of one dimensional representations which occur

when this representation is decomposed, we find that none of these representa-

tions annihilates complex conjugation as claimed.

It remains to deduce from the decomposition of the representation of

Gal(HD/Q) on Zsp(D)Al ® C a decomposition of the Gal(//fl(//3)/Q)-module

3Z(D) ®C. For If e A of order 3, lJi€z/3 U¡CMD sp = CMD. The obvious
map gives rise to isomorphisms of Q-vector spaces:

Q[U]®zZsp(D)~Z(D)®Q,

Q[U] ®z Zsp(D)A2 ~ Z(D)Al ® Q,



100 CHAD SCHOEN

®[U]/(U2 + U+l)®z Zsp(D)A2 ~ 3Z(D) ® Q.

The Galois group Gal(//D(/i3)/Q) a Gal(HD(p3)/HD) x Gal(//D(/i3)/Q(/*3))
acts on the right-hand side. A compatible action on the left-hand side is ob-

tained by letting the first factor in the product of Galois groups act on the first

factor in the tensor product, while Gal(Ho(P3) /<Q(P3)) acts as discussed above

on Zsp(D)À2. A generator of Gal(HD(p3)/HD) sends U to U~x which makes

the first factor the regular representation for this group. The case D = ±1

mod 3, D < -4 of the proposition now follows. The case D = -4 is not

difficult and is left as an exercise.

Now suppose that D = 0 mod 3, D < -3 . Then p$ c Hd ■ For x e CMd ,
a generator a e Gal(H9D/Ho) fixes the isomorphism class of the curve 7r-1(x)
but changes the symplectic level-3-structure. It follows that o has the same ef-

fect on the CM cycle zx as an order 3 element in SL(2, Z/3) (3.5). In particu-

lar, G&1(H9d/Hd) permutes simply transitively the /i2-orbits within any given

,4-orbit in CMd • By the theory of complex multiplication [Sh-3, Theorem

5.7] Gal(Ho/ko) acts simply transitively on the ^-orbits in CMd ■ It follows

that Z(D)Al ® C is isomorphic to the regular representation of Gal(H9D/ko).

Since the effect of a generator o e Gal(H9D/HD) on zx, x e CMd , is the

same as that of an order 3 element in SL(2, Z/3) the trivial representation

of Gal(H9D/HD) does not occur in 2Z(D) ® C. Thus irreducible representa-

tions of Gal(H9D/kD) which factor through Gal(/7o/A:o) do not contribute to

2Z(D) ® C. The remaining irreducibles appear with multiplicity at most one,

in fact exactly one, since dimc^D) ®C) = (2/3) dimcXQGaK/iW/co)]). In
particular, characters of order 2 on Gal(H9D/kD) do not appear in this de-

composition. By (4.3) the representation of Gal(H9D/Q) on 3Z(D) ® C is

completely determined by the restriction to Gal(H9D/kD). The case D = 0
mod 3, D < -3 of the proposition follows immediately. When D = -3,

3Z(D) ® C ~ 0 and H9D = Hd = ko, whence the proposition is valid in this
case as well.

Corollary 4.4.2. Let Qo denote the compositum of all quadratic fields of type 1.

Then complex multiplication cycles make no contribution to

(CH2(Wq)®Q)G*xWQ°\

Proof. It suffices to show that for each discriminant D of an imaginary qua
dratic order, (2Z(D) ® Q)Gd(n9D/H9DnQ0) _ 0, But this is an immediate conse-

quence of (4.4.1).

The next corollary makes explicit that if x is a special point, then the element

of the Chow group represented by zx is invariant under a larger group than

Gal(Q///9o). In this sense, the notion of special point is a generalization of the

notion of Heegner point.

Corollary 4.4.3. If x e CMD sp then zx e (CH2(WQ) ® Q)Ga'(Q/"z>).

(4.5) Let Dr, D{ ̂  0 mod 3 denote discriminants of real (respectively imag-

inary) quadratic fields. If (Dr, D¿) = 1, then D = DrD¡ is the discriminant

of an imaginary quadratic field. By genus theory ko, c HD. Write eD, :

Gal(Q/Q) -> ±1 for the quadratic character corresponding to kDJQ. By (4.4.1)
(3Z(D) ® Q)e°i is one dimensional. This means that for fixed D¡ and variable
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Dr one finds infinitely many (2"(D)) which contribute cycles defined over kD,.

Beilinson and Bloch conjecture that the subspace of CH2(Wko )hom ® Q gener-

ated by these cycles is finite dimensional. Whether or not relations of rational

equivalence exist among these cycles is unknown. In §7 we present numerical

evidence that modulo Abel-Jacobi equivalence relations do in fact exist; at least

when D,■ = -4.
(4.6) The problem of describing the image of the cycle class map cl : 2Z(D) ®

Q -> CH2(Wc)i¡om ® Q remains difficult. It seems however reasonable to hope

that cl is often injective. It would be interesting to investigate this question in

a case where numerical computation indicates that the Abel-Jacobi map is not

injective (eg. D = -688) (cf. (7.5)).

5.   L-SERIES

In this section we discuss the L-series L¡]9D(H3(W), s) which factors as

a product of L-series parametrized by irreducible representations, £, of

Gal(H9D/Q). When 0=1 mod 3, there is a correspondence between those

factors where the root number is -1 and representations £ which appear in

the decomposition of the Gal(>79o/Q)-module 2Z(D)®£. This is analogous to

the situation for Heegner points on Weil curves and has the correct flavour for

the conjecture of Beilinson and Bloch. However when the imaginary quadratic

field ko is Q(/¿3) there are infinite families of ray class fields H9D and rep-

resentations £ for which the L-series has root number -1 but there are no

corresponding CM cycles. Write r\q for the generic point of Xq . The conjec-

ture of Bloch and Beilinson predicts that the Chow group of degree zero cycles

on the generic fiber p~x(nq)(X) has infinite rank. Presently however this group

is not even known to have positive rank.

Some of the L-series computations described below have been done using a
more sophisticated approach which works for arbitary new forms [Gr] and [K].

However it is of interest here to treat a broader class of representations £ than

in these references. ____

(5.1) Recall that the L-series of W over a number field F is defined in terms

of a system of continuous representations of the Galois group GF := Gal(Q/F),

pFJ:GF^Aut(H3(Wq,®i)).

For primes p of F which do not divide 3/ this representation is unramified

since W has good reduction away from 3. For such primes the polynomial

Fp(í) = det(Id-í-Frobp-'|w3(^Q;))

is independent of / by Deligne's proof of the Weil conjectures. Write p*F for

the contragredient representation of pF j . Define

(5.1.1) LF(H3(W),s) = L(pF,s)=   n    Pp(Np-')-1-
(P,3)=l

This product converges absolutely for Re(s) sufficiently large. A more precise

definition would include factors corresponding to the primes p|3. As we are

only concerned with the order of vanishing at the center of the critical strip we

may and will ignore such terms.
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Set p = Pq. It is formal to verify

L(p*F , s) = L(lnd^(p*), s) = L(p* ® Ind^ 1, s).

When F/Q is Galois, the right-hand side factors

(5.1.2) L(p*F,s) = ]jL(p*®Z:,s)áim-i,

í

where the product is over the absolutely irreducible representations of Gal(F/Q).

Given a representation, V, of Gal(F/Q) over an algebraically closed field of

characterisitic 0 and an irreducible representation £ write V* for the £-iso-
typical component and v^(V) for the multiplicity with which £ occurs in V.

Inspired by Gross [Gr], one is led to state the following refinement of the con-

jecture of Bloch and Beilinson:

dim(CH2(WF)hom ® C)« = ordJ=2 L(p* ® (Ind? if, s).

Which may be rephrased as

(5.1.3) vs(CH2(WF)hom ® C) = oxds=2L(p* ®£, s).

We shall be concerned with the case when F is the ring class field H9d ■
(5.2) The analytic continuation for (5.1.1) when F = Q will follow once the

L-function has been identified with that of a normalized new form. To this end

set q = exp(27r/t/3), and consider the ^-expansion w8(t) = lZ„>i a"^" an<*

the associated Dirichlet series L(«8(3t) , s) = lZh>i ann~s ■ F°r eacn prime p

not dividing 3 the trace of the Hecke operator of level p is related to the trace

of arithmetic Frobenius by [De]

Tr(^(Frob;1)) = Tr( 77^,0).

As the cohomology group H3'0 is one dimensional and generated by co (1.5)

the right-hand term is the coefficient ap in the ^-expansion of ns(x). It follows

that L(w8(3t), s) has an euler product expansion which, at least away from

p = 3 agrees with (5.1.1) when F = Q.
It turns out that L(w8(3t) , s) coincides with the L-series of a Hecke char-

acter ¥ of the field K = Q(p3) defined as follows: Let L/zj denote the ideals

of Z[£3] prime to \/-3- Define

T:/^3-A*,    ¥(a) = a3,

where (a) = a and a = lmodv7-^. Since \NK¡q(\/^3) • Disc(K)\ = 9,
L(4*, 5) is the Mellin transform of a weight 4, normalized new form on T0(9)

[Sh, Lemma 3]. There is only one such, namely n%(3x), so we may write

(5.2.1) L(n*(3x),s) = L(V,s)=    ]\   (1 -V^NwT1,

where the product is over primes of K.
It is also convenient to express the L-series on the right-hand side of (5.1.3)

as the L-series of a Hecke character. Observe that when F = H9d (5.1.2)

becomes

Lipkn >s)=n w ® indi k . s) n w ® y) >
k y
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where the first product is taken over all characters k ^ k~x of Gal(H9D/ko)

and the second over all characters y : Gal(H9o/Q) -» p2 ■ If we abuse notation

and write y and k for the corresponding ideal characters we have the following
equalities (up to possible disagreement at finitely many bad eubr factors which

does not change the order of vanishing at 5 = 2):

(5.2.2) L(p* ®y,s) = L(V.yo NK/q, s),

(5.2.3) If K Í kD then L(p* ® Ind« k , s) = L(V o NKko/K • k o NKIcd/Ic , s),

(5.2.4) When kD = K, L(p* ® Indf k , s) = L(V-k,s)- LÇ¥• k~x , s).

Remark 5.2.5. In fact there is a dominant rational map defined over Q from the

threefold product of the modular curve A0(27) to W [Sch3, §10]. Hence the

equality Lq(W, s) = L(*¥, 5) may also be deduced from the fact that Ao(27)
is an elliptic curve with complex multiplication.

(5.3) The functional equation and analytic continuation for the Hecke L-
series (5.2.2), (5.2.3), and (5.2.4) follow from Tate's thesis. To describe the pre-

cise form of the functional equation it is convenient to normalize each Groessen-

charakter, «P, which appears on the right-hand side of (5.2.2-5.2.4) by setting

*(P) = <Ï>(P)/(AP)3/2 . Define

L(X ,s) = Y[(l- X(V)(NP)-S)-1 = L(<D, 5 + 3/2).
p

Write 2r for the degree of the field M = Kk or K for which <P is a Hecke
character. Let d denote the absolute different of M and c the conductor of

<D. Set
L*(X, s) = (NM/qcd)rs'2(27ty^3^r(s + 3/2)rL(X, s).

Now there is an analytic continuation and functional equation [Lan, Corollary
1, P- 299],

w(x)L«(X,s) = L*(x,l-s).

For the Hecke characters in question xiP) = Xiv) > whence L*(x, s) = L*(x , s)
and w(x) e {±1}. The computation of w(x) proceeds via the idele class
character Xa associated with x ■ Set 10(<P) = w(x) ■

We recall briefly the tools which are used to compute the root number w(Q>).

Write Ml for the ideles of M, S for the union of the places where x ramifies
with all archimedian places, and M£ s = {a e M£ : av = 1 for v e S} . Write

1(c) for the fractional ideals prime to the conductor and define

cp : M^s - Mls/ J] cf*Mu ~ /(c)    by cß(a) = l[p°«>a.
^x p

Let

M*k s = {aeM*k:av = l   if v i S and av e cf*Mu

with av = 1 modc„ if v e Sf,n}.

Now define X\- M¿ s * M*k s ~* c* by

X\(a)=X°<t>°V>rM.s(a)-  ]\ (av/\av\)-3
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where pr^. : Ml -» M*k s is the obvious projection. If M* is viewed as

embedded diagonally in Ml, then M* n (Ml s x M*k ■) is contained in the

kernel of xa hy the product formula. Since Ml = M* • Ml s x M* „ , xa is

well defined on M*JM*. The formulae for the local root numbers is given by

Theorem 5.3.1 (Täte). w(x) = Ylv Wv(Xv) where Xv denotes the restriction of

Xa to (1,1,... , l, M;,!,... ,1) and

(1) If v is finite and Xv is unramified, then wu(xv) = Xu(du)~[-

(2) If v is finite and Xv is ramified with conductor c„ , then

wv(xv) = (Ncv)-xl2xAr-x)      Y.       Xv(a)exo(2na(tx(a/r)))

"^mJx+c"

where X is the composition ofi canonical maps

X:%^ Qp/Zp -+ Q/Z

and r generates the ideal dM„c„ .

(3) If v is archimedian, wv(Xv) = (-i)3-

The following standard corollary is especially useful.

Corollary 5.3.2. Suppose p is of finite order. If p and x have coprime conduc-

tors Cp and cx, then

w(x ■ p) = w(x)w(p)x~l(cp)p-x(cx).

These formulae, together with a theorem of Froehlich and Queyrut [F-Q, The-

orem 2], provide the necessary tools for computing the desired root numbers.

The results are summarized in the following theorem.

Theorem 5.3.3.  w(*¥) = 1 and L(V, 2) ¿ 0.

(2) Let L denote the quadratic field corresponding to a nontrivial character

y : Gq —> p2. Then w^ • y o NK/q) = â(L), with notation as in (4.4).

For (3)-(5) assume k / K is an imaginary quadratic number field,

L c Kk is the maximal subfield which is unramified at 3, and that k

is a ring class character for k.

(3) If k is unramified at 3, it;(4* o NKk¡K • k o NKkiK) = ö(L).

(4) If k is tamely ramified at 3, w(f¥ o NKk/K • k o NKk/K) = 1.

(5) If k is wildly ramified at 3, w^ o NKk/K • k o NKk/K) = -1.
In (6)-(7) consider the case of Hecke characters for the field K. In

particular k is a ring class character for this field.
(6) If k ramifies at 3, then k ^ k~x and w(*P -k) = -wÇV 'K~x) .

(7) If k is unramified at 3, then w^ ■ k) = e-¡(b) • k~'((\/-3)) where
bZlCi] is the conductor of the ring class character k with b e Z positive.

If k has odd order, then k((\/-3)) = 1 •

Proof. The first assertion in (1) follows immediately from the formulae for the

local root numbers. The nonvanishing of the L-series was verified by numerical
computation. Such computational techniques are discussed in [Bu-G-Z]. As the

remainder of the proof is rather tedious we give details only for (7), which is

the most mysterious case from the point of view of conjecture (5.1.3) (cf. 5.4).
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Set *(p) = ¥(p)/(Ap)3/2 . By (5.3.2)

w(x • k) = w(x)w(k)x(ck)-xk(cx)~x.

From (1), w(x) = 1. The theorem of Froehlich and Queyrut [F-Q, Theorem 2]

gives w(k) = 1. The conductor of k , cK = cK , may be written bZ\p{\ with b

a positive rational integer prime to 3. By direct computation, xÍck) = e-3(b) ■

Finally cz = c^ = (V-3) •
To establish the second assertion in (7) use the fact that ideals of Z[p}] which

are pulled back from Z are annihilated by k [F-Q, §3]. Thus k((-3)) = 1 and
the second assertion follows.

The following corollary, which is simply a combination of (5.3.3) and (4.4.1),

describes the relationship between root numbers of L-series and ranks of certain
cycle groups before passing to rational equivalence. Although this relationship

is very far from the conjecture (5.1.3), it suggests that CM cycles may go a long

ways toward explaining the vanishing of the L-functions.

Given an irreducible representation £ of Gal(H9D/Q), w(p*®c¡) denotes

the root number of the corresponding L-series (5.2.2-5.2.4).

Corollary 5.3.4. Case I: ko # K.
(1) Suppose 32 does not divide D. If w(p* <g>£) = 1, vi(2Z(D)) = 0. If

w(p*®c;) = -l, Vli3ZiD)) = l.

(2) Suppose 32\D. If w(p* ® £) = 1, u^iD/l2')) = 0 for all / > 0. //
w(p* <g>£) = -1, v6(&(D/32J)) = 1 for exactly one / > 0.

Case II: kD = K.
(3) Suppose dim(£) = 1. Then the same conclusions as in (1) apply.

(4) Suppose £ = Ind^K with k ramified at (\/-3), then w(p* <g>£) = -1.
Furthermore vif2Z(D/32i)) = 1 for exactly one / > 0.

(5) Suppose £ = Ind^«r with k unramified at (y/^3), then L(p*®Z;,s) is

the product of two L functions with the same root number which is computed in

(5.3.1(7)). Furthermore v((&(D)) = 0.

Recall from (0.2) and (3.2.1) the subgroup CH2(WF)CM C CH2(WF)hom.
Corollary (5.3.4) raises the question for which D and £ might one expect the

relation

(5.3.5) rank(Ctf2(ÍF„9D)cM ® C)« = ordi=2L(p* ®Ç,s).

In the case that £ is the quadratic character corresponding to the real quadratic

field of discriminant 172, the left-hand side is zero by (4.4.1) while the L-
function vanishes to order at least two (8.1-8.2). However this situation seems

exceptional, since it depends on the vanishing of a Fourier coefficient in a mod-

ular form of weight 5/2. Experience with Heegner points on elliptic curves leads
one to expect that the following two hypotheses will frequently hold:

(5.3.6) ordi=2 L(p* ® £, s) = 0 or 1 depending upon the parity restriction

ordi=2 L(p* ® £, s) = (w(p* ®£)- l)/2   mod 2.

(5.3.7) 3Z(Df - (CH2(WH9D)cm ® C)« is injective.
In the cases covered by (l)-(4) in (5.3.4) these hypotheses imply

(5.3.8) xank(CH2(WH,D)CM®C)t > oxds=2L(p* ®£, s).
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There are two difficulties in establishing the opposite inequality. As was men-

tioned in (4.5), when £ is the character of an imaginary quadratic field, unrami-

fied at 3, CM cycles in fibers with complex multiplication by fields other than kü

contribute to Z2(WHw\om . This situation is considered in §7 in the case £ cor-

responds to the quadratic character attached to Q(v/^î)/Q. As for the second

difficulty, note first that £ may be viewed as a representation of Gal(/79„20/Q)

bypullback. If (3,n) = l, vi(2'(n2D)®C) = vi(2Z(D))®C One would hope

that the images of these two vector spaces in (C/f/2(W///9D)CM®C)i coincide. If

the Hecke operators 7), (/, 3) = 1, act by scalars on CH2(Wq)Cu ® C, they
will give rise to relations between these images. However the action of 7) is

not presently understood.

Note finally that there is no Hecke operator of level 3. In light of (5.3.5) this

could conceivably explain the peculiar form of (2) and (4) in the corollary.

(5.4) Let K' denote the composition of all odd order abelian extensions of

K which are unramified above 3. By (4.4.1) CH2(WK,)CU ® C = 0. The L-
function for infinitely many subextensions vanishes (5.3.3(7)). It follows easily

that the conjecture of Beilinson and Bloch predicts that the Chow group of zero

cycles on the generic fiber p~x(n¡c) which map to zero in the Albanese is of

infinite rank. It would be interesting to find such cycles. In analogy with the case

of Heegner points on modular elliptic curves, one might look for such cycles

first on modular varieties of higher level. If one can produce appropriate cycle

classes here, one is still left with the notoriously difficult problem of producing
correspondencesJjetween higher dimensional varieties which transfer the cycle

classes back to W. In light of (5.2.5) it might be more hopeful to apply this

philosophy to A0(27)3 rather than directly to W.

6. The intermediate Jacobian

In this section we describe the intermediate Jacobian of Wan and the strategy

for computing the Abel-Jacobi image of an arbitrary CM cycle.

(6.1) By (1.6) and (2.1), H^(Wan, Z)/torsion is a free, rank one Z[p3]-

module.  Fix a basis £, set ii = Leo, and define the intermediate Jacobian

Jx(Wan) = C/ClZ[p3]. The Abel-Jacobi map a: Z2(W)hom -> Jx(W*n) is de-

fined by

a(z) = í co modQZ[/í3] e Jx(WaD),
J%

where %Z is a differentiable 3-chain bounding z. For x e h a CM point, zT the

corresponding CM cycle, bounding 3-chains fT have been described [Sch-CM,

2.8]. If ax2 + bx + c = 0 with a, b, c e Z, gcd(a, b, c) = 1, a > 0, and
r = Re(r), s = Im(t), then Jr œ is given by the formula [Sch-CM, 3.3] where

one takes Q = Id. To put this in a more concrete form give A := (0, oo) x

(0, 1) x (0, 1) the standard product orientation, and define f :A-»hxC by
<pr(t, zx, z2) = (x + it, zx, z2). Write q = exo(2nix/3), ns(x) = £„>, a„qn ,

and set

(6.1.1) ß(x) = -\^ = ~ C n\x + it)d(it) = £ ^f.
/a •>  Jo ~r,   n
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Now [Sch-CM, 3.3] may be rewritten

(6.1.2)
a(zT) = e(b)a(re2^3ß(x/(-x + 1)) + (|r|2 - r)ß(x) - (r - l)ß(-l/x))

modQZ[p3],

The fastest way to compute the coefficients a„ in the power series for w8(t) ,

is to exploit the happy accident noted in (5.2) that rf(3x) is the cusp form

associated to the unique Hecke character of infinity type (3,0) on (X/^) with

conductor (\f-3). The following description of the coefficients a„ is then

immediate.

If n = 0 mod 3, a„ = 0.
For p prime: If p = -1 mod 3, then ap = 0.
If p = 1 mod 3, then ap = n3 + n3, where p = nñ in Z[p¿], and n =

1 modtv/^).
For n composite, (n, 3) = 1, the coefficient a„ is determined by the coeffi-

cients ap with p a prime factor of n by the usual formulas for eigenfunctions

of the Hecke algebra [Ser, VIL5],
The expression (6.1.2) for the Abel-Jacobi image of a CM cycle is well suited

for machine computation. The expression for ß(x) converges for all x in the

upper half-plane, and the convergence is very rapid as long as Im(r) is not too

small. ___
(6.2) It remains to choose an Z[/¿3]-basis £ for H3(WaD, Z)/torsion.

Roughly the idea is to use the real points of W. However this manifold is

not orientable. We pass to a birationally equivalent variety W which is de-

fined over E (in fact over Q ), has orientable W(R), and has the same H3 as

W. The construction of W proceeds by blowing up certain components of the

singular fibers of p : W —> X. To begin, let / denote the Q-rational compo-
nent of n~x(3) and write mx, m2 for the components which are interchanged

by Gal(Q(/z3)/Q). Write U e Aut(WQ{tl})) for the restriction of Ux x Ux e
Aut(y x Fq(^3)) (2.1). Set L = / x /, M = mx x mx + m2 x m2, and let W

denote the variety obtained by blowing up the following sequence of Q-rational
Weil divisors on W in the order indicated: L, UL +U2L, M, UM +U2M.
Next choose an arbirary sequence of irreducible components in the fiber of W

over the point oo € A with the property that each singular point in this fiber

is contained in at least one element of the sequence. Define W to be the va-

riety obtained from W by successively blowing up the Weil divisors in this

sequence. A local computation at the singularities of W shows that W is non-

singular and that the exceptional set is one dimensional. Since the dualizing

sheaf of W is trivial, the same holds for the canonical bundle of W. Note

also that W is defined over Q and that the action of U lifts to Wq^ .

(6.3) Now W(R) is orientable since W has trivial canonical bundle. Fix the

orientation for which J^,R) co + co is positive and let w e Hi(W3Xi, Z)/ torsion

denote the resulting homology class.

Lemma 6.3.1.  wZ\p{\ = 3H3(W, Z)/ torsion.

Sketch of proof. It suffices to show that the intersection product w • U*w — 9 .

In fact

w ■ U,w = (Disc Z[pi]w)x'2 = [H3(W™, Z)/torsion : Z[pi]w],
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and there is a unique Z[/z3]-submodule of index 9. The intersection computa-

tion may be done directly, but it is complicated by the fact that the cycles do

not meet properly. Alternatively one may express w • U*w in terms of certain

integrals which may be numerically evaluated. Indeed, consider the closed 3-

form v = -(oj+uJ+2U*(œ+û)))/3R,-whexe R = jwa>. It is not difficult to get

a good numerical approximation of the real period R as will be explained in

(6.4). Write 31 : H3(W) -» H3(W) for the inverse to Poincaré duality. From

f     uA3w=[u = 0   and      f      U*2uA3Utw=[     U*2v = 0
JW(C) Jw JW(C) JU.w

we have 3w = mv and 3Utw = m'v for m, m! eC. From

m-1 (w-Utw)= /      uA3Utw= /     u = l
JW(C) JU.w

and

(m')-x(U*W'W)= f      U*2uA3w=[u*2u = -l
JWIC) Jw

follows m = m' = (w • U*w). Thus

/     v A U*2v = (w • U*w)~x [    u = (w- U*w)~x.
JW(C) JU.w

Using the well understood action of SL(2, Z/3), the computation of the Pe-

tersen inner-product /^(c) v A U*2v is reduced to the computation of the in-

tegral over the standard fundamental domain for SL(2, Z). Crude upper
and lower bounds may be obtained by integrating over the regions | Re(r)| <

1/2, Im(r) > v/3/2 and |Re(r)| < 1/2, Im(r) > 1. These estimates suffice to
show that the intersection number is less than 11 and greater than 7. Since the

intersection number is the norm of an ideal in Z[p->,] it must be 9.

Thus we may and will take Q = R/3 .

(6.4) We derive a rapidly converging infinite series expression for the real

period R. The real locus of W*D is the fixed locus of the involution induced

by (x, zx, z2) —> (-T, zx, z2) (1.5(4)). The union of the lines in the upper

half-plane Re(r) = 0,3/2 projects bijectively to X(HL). The fibers of Y(TSL)
over the first line consist of two circles and over the second line of a single

circle. It is now straightfoward that

*=(¥)(-<f«+i>G+ it   i dt

To relate the integral over Re(r) = 3/2 to the integral over Re(t) = 0 use

the Hecke operator of level 2 which in fact annihilates co since the Fourier

coefficient a2 = 0. For any prime p ^ 3, the formula for the action of the
level p Hecke operator

t;co = {    E     ^ (T-^-) p-x) + n\px)p'
\0<A:<p-l        \      P      / J

—— ) dxdzx dz2
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is well known and follows from the double coset decomposition [Sch-CM, 1.14].

Applying this when p = 2 yields the relation,

0 = [w8(t/2) + n\(x + 3)/2)]/2 + 8«8(2t) ,

from which

/    n*(3/2 + it)idt = -5       n*(it)idt
Jo Jo

follows. Finally, the functional equation w8(-1/t) = t4w8(t) permits one to

write the real period as

/oo (l + u2)tf(iu)du.

Substituting the ^-expansion for «8(t) and integrating term by term gives the

desired series which converges rapidly to R.
(6.5) It will be helpful to say a word about the action of complex conjugation

on the intermediate Jacobian. At this point it is simplest to give an entirely ad

hoc treatment. Since Q = R/3 is a real number, the involution on C given

by -1 times complex conjugation induces an involution on Jx(Wm). This is

compatible with the action of complex conjugation on Wan and the cycle class

map. Indeed if z c Wm is a nullhomologous 1-cycle with z = ôf, then the

conjugation, c, on Wan yields zc = -dWc. The minus sign arises because the

orientation of the curve is reversed by conjugation. As co = cooc (1.4(4)),

a(zc) = -       co = -     co = -a(z).
Jg' Jg

7. Computations

In this section we describe the construction of a class of nullhomologous
cycles defined over Q(\/^T) and the computation of their images under the

Abel-Jacobi map.
(7.1) Let d = ±1 mod 3 be the discriminant of a real quadratic field.

Then D = -4d is the discriminant of the order cfD := Z[(D + \fD)/2] in
the imaginary quadratic field kD = Q(V~D). By genus theory, HD := kD(j(cfD))

contains the subfield Q(v/-T) •   We associate to each such d a cycle zD e

2-(D)Gal(H9D/Q(V=T))   as follows:

If D = 1 mod 3, let To € h denote a Heegner point in the SL(2, Z)-orbit of

(D + yfD)/2. In the corresponding SL(2, Z/3)-orbit in T(3)\h there are two
choices for to (3.3). The corresponding CM cycles are defined over Hd (3.4)

and have the same class in the 2Z(D) (4.2). Define

ZD = E Z"o-
yeGal(//„/Q(v/=T))

If D = -1 mod 3, let to e h denote a special point in the SL(2, Z)-orbit of

(D+\fD)/2. Again the cycle class of zTo in 2Z(D) is independent of the choice

of special point. By the proof of (4.4.1), Gal(H9D/HD) ̂  Z/4 acts trivially on
the image of the special points in 2Z(D). We set

z»=4 E
j-eGal(/f9o/Q(v/=T))

zl
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(7.2) For computational purposes it is convenient to rewrite the expression

for zd in terms of ideal classes in @d in a manner independent of D mod 3 .

Let Px = Gal(HD/kD(Vz:l)), P-\ = the nontrivial coset of Px in Gal(HD/kD),

and write c e Gal(HD/Q) for complex conjugation. Then Gal(//o/Q(v/-T)) =
Px UcP-X. Identify Gal(HD/ko) with Pic tfo via the Artin isomorphism. A
well defined quadratic character k : Pic (fo -* ß2 is induced by composing the

norm map on fractional ideals prime to 2, I&D(2) -* /z(2), with the quadratic

Dirichlet character e_4 : /z(2) -* p2 associated to the extension Q(\/-ï)/Q.

One has k~x(u) = Pu . For each a € Pic ¿fß write za € 2Z(D) for the class of

zT, where x is an arbitrary special point for which the ^-module Z + Zt is

in the class a. For D = ±1 mod 3 we may now write (3.5), (4.2)

ZD= E K(a)z>-

aePic^D

(7.3) The actual procedure for computing the image, a(zjj), of Zß under

the Abel-Jacobi map will now be described. The first step is to make a list, T ,

of all triples of integers (a, b, c) with a > 0, gcd(a, b, c) = 1, b2 - 4ac =
D, c > a > \b\. If two triples in V have the same values of a and c we

discard the triple for which b < 0. This gives rise to a subset T" c T . By the
classical theory of primitive binary quadratic forms of discriminant D [Bo-Sh,
§2.7], the set T = {x e h : ax2 + bx + c = 0 for (a, b, c) e T"} is in bijective
correspondence with Pic cfD via t —► Z + Zt . Furthermore each x e T lies

in the standard fundamental domain for the action of SL(2, Z) on h. To

each x e T there is a element Rx e SL(2, Z/3), uniquely determined up to
the Sylow-2-subgroup, such that i?TT is a special point. Let rx e p¡ denote the

unique scalar satisfying R*co = rxco.

Lemma 7.3.1. Let £3 e h be the cube root of 1. The formula for rx is

(1) When D = -l mod 3, rT = 1 iffb = 0 mod 3. If b ¿ 0 mod 3, then
a ¿ 0 mod 3 and rx = CZb,a mod 3.

(2) When D = 1 mod 3, rx = 1  if both a and c or neither a nor c is

divisible by 3. If 3\a but not c, rx = £3/cmod 3 and if 3\c but not a,
_ s—b¡a mod 3

'T — S3

Proof. Left to the reader (cf. (3.3)).

It remains to evaluate the quadratic character k .

Lemma 7.3.2. For x e T we may take k(Z + Zx) = e_4(a) // a is odd and

k(Z + Zx) = e_4(c) if a is even.

Proof. The lattice Z + Zt is a fractional ideal for the order cfD = Z + Zat .

The reciprocal of the norm of Z + Zt is |(Z + Zt)/(Z + Zax)\ = a. If a is

odd, the formula for k(Z + Zx) follows. If a is even, then D = b2 - 4ac = 0
mod 4, implies b is even, whence c is odd, by gcd(a ,b,c) = l. Now the

lattice Z + Z(-1/t) corresponds to the same ¿^-module as Z + Zt and has
(c, -b, a) as associated 3-tuple. The formula for k(Z + Zx) when a is even

follows.

Thus the Abel-Jacobi image

(7.3.3) a(zD) = ^K(Z + Zx)rxa(zx)

rer
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is presented in a form suitable for machine computation.

(7.4) It remains to derive from the numerical value a(zo) mod OZ^] a

convincing argument that a(zo) is an integral multiple of a fixed reference point

j e Jx(Wan) for all D. For j we choose the Abel-Jacobi image of the cycle

zyry. The Galois group Gal(Q/Q) operates on the class of this cycle in 2Z(-4)

via the quadratic character for Q(v/^T)/Q. Similary in Zsp(D)Al complex

conjugation acts by c(zD) = -zD , since /c(a)c(za) = -/c(a)zc.a = -k(c • a)zc.a.

As the Abel-Jacobi map on complex multiplication cycles of discriminant D
factors through 2Z(D), (6.5) implies that a(zyry) and cx(zd) are contained

in R/Q.Z c Jx(Wan).

The procedure used to decide if a(zD) is indeed an integral multiple of

a(z^zf) is as follows. Write à(zx) for the complex number on the right-hand

side of (6.1.2) which represents a(zx) e Jx(Waa) and define

à(zD) = Y¿ k(Z + Zx)rxà(zx).

Solve à(zD) = ài(z0) -r-à2(z0)£3 for àx(zD), à2(zD) e R. Note that in fact

ôl2(zd) e Z. These numbers were evaluated numerically using the computer

language interactive basic on an IBM personal computer. The infinite series

(6.1.1) was approximated by the first 193 terms. Six significant digit accuracy

was expected and indeed à2(z0) was always found to be an integer up to this

accuracy. For each integer m of absolute value less than 70+|ài(zo)| the com-

puter determined if (àx(zD) + mÇÏ)/àx(z^zzx) is within 10~4 of an integer. For

each D tested there was precisely one m for which this condition was satisfied.

The associated integers, cd where D = -4d and of < 250 is the discriminant
of a real quadratic number field, are tabulated below. This provides some evi-

dence in favour of the conjecture of Bloch and Beilinson. Additional evidence

is provided by the fact that the cd 's are essentially the Fourier coefficients of a

particular weight 5/2 cusp form as will be discussed in the next section.

(7.5) Table.  o:(zd) as a multiple of a(z /^y).

D

d
5
8

17
29
41

-4d = 1 mod 3

D
-20
-32
-68

-116
-164

44 -176
53 -212
56 -224
65 -260

-308
-356
-368

77

89
92

101    -404
104   -416

cd
-3

6
-3

9
15

-24

3
12

-24
-18

15
24

-15
-24

D =

d
13

28
37
40
61
73

76
85
88
97

109
124
133
136

-4d =

D
-52

-112
-148
-160
-244
-292
-304
-340
-352
-388
-436
-496
-532
-544

1 mod 3

Cd

3
12

-12
-6

6
-15
-24

27
-12

21
-27

12
-6

30
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(7.5) Table (continued)

D = -4d =
d D

113 -452
137 -548
140 -560
149
152

-596
-608

161 -644
173 -692
185 -740
188 -752
197 -788
209 -836
221 -884
233 -932
236 -944
248 -992

1 mod 3

Cd
-27

63
24
69

-48
-42

9
-6

24
-33
-6

-42

57
48
36

D = -4d = -l mod 3

d D cd
145 -580 3
157 628 -6
172 -688 0
181 -724 9
184 -736 60
193 -772 24
205 -820 15
217 -868 24
220 -880 -48
229 -916 -27
232 -928 -54
241 -964 21

8. A MODULAR FORM OF WEIGHT 5/2

In this section we show that the integers cd in (7.5) are, up to a fixed constant

multiple depending only on d mod 3, precisely the Fourier coefficients of a cusp

form of weight 5/2 on r0(36). The idea that this might be the case is due to
Dick Gross. We also discuss briefly where this idea comes from.

(8.1) The relationship between forms of half-integral weight and forms of

even weight was discovered by Shimura. An introduction to these ideas may

be found in [Ko-1, IV]. Given an odd integer k > 5, g e Sk/2(To(4N))
an eigenform for all Hecke operators Tp, (p, 4N) = 1, with corresponding

eigenvalues Xp, Shimura [Sh-2] constructs a weight k - 1 cusp form / sat-

isfying f\Tp = Xpf. It turns out that / e Sk_x(To(2N)) [Ni]. In the case

of interest here f(x) = w8(3t) e S3(r0(9)) and Koblitz [Ko-2, p. 216] gives
the following description of a corresponding g e S5/2(r0(36)) : Let gx(x)
denote the unique weight two normalized new form on To(36), and write

6(x) = LZn€Zq" , where q = exp(2nix) for the classical theta function. Then

8 = 2Zn>\bnQn := (£i0)|i+(i/4)r« = (¿«>i^")li+(i/4):r4. The Fourier coeffi-

cients are quickly computed since b„ = b'n + (l/4)b\n , and gx is associated to

the unique Hecke character on Q(/¿3) of infinity type (1,0) with conductor

(2>/-3). As noted in the introduction, for d < 250, d = ±1 mod 3 the dis-
criminant of a real quadratic field, we find only one bd which vanishes, namely

bXn. In fact for all d in this range we find the relationship bd = -€--¡(d)2cd ,
where to denotes the Dirichlet character of the quadratic field of discriminant

D.
(8.2) The importance of the Fourier coefficients bd where d is the discrim-

inant of a real quadratic field lies in their relationship to the central critical
values of twists of the L-function L(fi,s) = LZn>xann~s. For d prime to

the level of / define L(f, ed, s) = LZn>\ ed(n)ann~s ■ Now a deep result of

Waldspurger [Wa, Corollary 2] applied to the particular case at hand implies
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that there is a constant Ci ^ 0 depending only on d mod 3 such that

(8.2.1) d3'2L(f,ed,2) = Cxb2.

A consequence is that the vanishing of the twisted L-function is equivalent to

bd = 0.
(8.3) It remains to speculate about the relationship between the central crit-

ical values of twists of the L-function L(ns(3x),s) and Abel-Jacobi images of

algebraic cycles. We begin by describing briefly the analogous situation with

Heegner points on modular elliptic curves, where much is known thanks to the

work of Gross and Zagier [G-Z]. We recall some of their results in a somewhat

specialized context. Fix a positive integer N which for simplicity we assume to

be the level of a genus 1 modular curve An (TV). Choose odd integers D = dxd2

all of which are discriminants of quadratic fields and such that ko and kdl are
imaginary. Further assume (D, N) = 1 and that all primes which divide N

split in ko and kdl. This last assumption guarantees the existance of Heegner

points of level N and discriminants D and d2 [Gr, §3]. The quadratic char-

acter on the ideles of ko , X = ed, ° Nko/q, corresponds to the field extension

kDkd./kD and is independent of /' e {1, 2} . Write f(x) = Yln>\ a» exp(27t/«T)
for the normalized new form on Y0(N) of weight 2 and set

L(/, tdi, 5) = E ^d,(n)ann-s,    L(f, x, s) = L(f, ed,, s) • L(f, edl, s).

The root numbers in the functional equations for L(f, s), L(f, cdl, s),

L(f,ed¡,s), and L(f,x,s) are respectively-I-1 (since A0(A) has genus

1 [Li]), ed2(-N) = -1, ed¡(-N) = 1 [We, Satz 1], and -1.
For x e X0(N)(HD) a Heegner point of discriminant D, Gross and Zagier

consider the divisor cx = Y,o€Ga\(HD/kD) X(ff~l)ix)a, which up to sign is inde-

pendent of the choice of Heegner point. This divisor class is evidently defined

over kokd2. The generator of Gal(kDkdl/kD) acts by multiplication by -1.

Using the fact that wN acts by inversion on Pic°(A0(A)), one can also check

that complex conjugation 6 acts on cx by multiplication by -ed¡(N) = -1

[G-Z, II. 1], [Bi-S]. Thus cx is defined over kdl. Now Gross and Zagier prove

[G-Z, 1.6, IV.0.4]

(8.3.1) \D\xl2L'(f,x,l) = Cohq(cx),

where hq denotes the canonical height and Co is a constant independent of D

and x ■ This equation may be rewritten as

(8.3.2) d\l2L(d, edl , 1) = [\d2\x'2L'(f, edl, l)/C0rlhq(cx).

For fixed d2 but variable dx the term in square brackets is constant.

(8.4) We now speculate as to how (8.3.2) might generalize to the situation at

hand. Beilinson [Be] and Bloch [B14] have sought to generalize the height pairing

to nullhomologous 1-cycles on threefolds. In the case of CM cycles additional

progress has been made recently by Brylinsky [Br]. Take f(x) = ns(3x), d2 =

-4,d\ = d = ±1 mod 3, the discriminant of a real quadratic field. The root
numbers for L(f, s), L(f, e_4, s), L(f, ed, s) axe 1,-1,1 respectively.
In analogy with (8.3.2) one might hope for a formula

(8.4.1) 43/2L'(/, e_4, 2)d3<2L(fi, ed, 2) = C0h(zD),
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where h isa height function and Co is a constant depending only on d mod 3 .

(When D = -4d = 1 mod 3, zD is constructed from Heegner cycles, otherwise

from slightly more general CM cycles.) Although we have only given evidence

that zd and cdzy^x are Abel-Jacobi equivalent, it is tempting (given our total

ignorance of the actual truth!) to hope that they might also have the same height.

In this case the right-hand side of (8.4.1) could be replaced by CocJ«(zv^T),

yielding (8.2.1)

c2 = Cd3l2L(f,ed,2) = C'b2

for constants C and C depending only on d mod 3 . The relationship which

is actually observed bd = -e--¡(d)2cd (8.1) is consistent with these speculations

and is in fact slightly stronger in that the predicted relationship seems to actually

hold between bd and cd rather than just between the squares.

The question as to whether or not the cycles zD and bdz^rç have the same

class in CH2(Wq^^zr¡)) ® Q remains wide open. Hopefully further develope-

ments in the theory of heights for nullhomologous cycles of higher codimension

will lead to additional insight. A purely geometric investigation could also be

interesting. In any case we note that an analogous result for Heegner cycles on

modular curves has been proved [G-K-Z] and [Za].

Note added in proof. J. Nekovár reports progress on a p-adic analog of the

conjectured formula (8.4.1).
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