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2-WEIGHTS FOR UNITARY GROUPS

JIANBEI AN

Abstract. This paper gives a description of the local structures of 2-radical

subgroups in a finite unitary group and proves Alperin's weight conjecture for

finite unitary groups when the characteristic of modular representation is even.

Introduction

Let G be a finite group and r a prime. Denote Or(G) the largest normal

r-subgroup of G. Following [3], we shall call an r-subgroup R of G a radical

subgroup if R = Or(N(R)), and a pair (R, cp) of an r-subgroup R and an

irreducible character cp of N(R) a weight of G if cp is trivial on R and in

an r-block of defect 0 of N(R)/R, where N(R) is the normalizer of R in G.

Moreover, a weight (R, cp) is a 5-weight for an r-block B of G if cp is con-

tained in an r-block b of N(R) such that B = bG, that is, B corresponds to

b by the Brauer homomorphism. Alperin in [2] conjectured that the number of

weights of G should equal the number of modular irreducible representations.

Moreover, this equality should hold block by block. Here a weight (R, cp) is

identified with its conjugates in G. This conjecture has been proved by Alperin

and Fong [3] for symmetric groups and for finite general linear groups when
the characteristic r of modular representation is odd, and by the author [4] for
finite general linear groups when r is even. In [5] the conjecture is proved for

finite unitary groups when r is odd and in this paper the conjecture is proved

for finite unitary groups when r is even. The defining characteristic of group

may be assumed to be odd since the result is known when it is even.
If (R, cp) is a weight of G, then R is necessarily a radical subgroup of

G. Thus the first step to describe a weight in [3, 5, and 4] is to determine the
structures of radical subgroups in the given group. If £7 is a power of an odd

prime, then these structures in a general linear group GL(«, q) are divided
into two different parts in [4] according as 4 divides q - 1 or q + 1. Following

[11], in the former case, we shall say that 2 is linear and in the latter case, 2 is

unitary. It turns out that the structures of radical subgroups of a unitary group

U(n, q) can be obtained by switching the two cases in the general linear group

GL(«, q). Namely, the structures of radical subgroups in U(«, q) when 2 is

linear are the same as those in GL(«, q) when 2 is unitary; those in U(n, q)

when 2 is unitary is the same as those in GL(«, q) when 2 is linear. These are

proved in §§1 and 2. In §3 we count the number of weights in a block and the
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conjecture is proved in (3E). Although the outlines of our proofs are similar to

those in the case of the general linear group, the proofs in §§1 and 2 are both

longer and more technical. The proofs in §3 can be obtained by modifying those

in [4, §3] since both general linear groups and unitary groups have the similar

local structures of radical subgroups.

I wish to thank Professor Paul Fong, my Ph.D. advisor, for many corrections

and suggestions. I also wish to thank Professor Bhama Srinivasan for a lot of

useful help.

1. The 2-groups of symplectic type

Throughout the paper we shall follow the notations of [4, 5, 6, and 11]. In

particular, 22,y+x denotes the extraspecial group of order 22y+x with type n,

where n = + or -. If E ~ 22,y+x with center Z(E) = (z), then it is gener-

ated by xx, x2, ... , x2y-X, x2y such that [x2i-\, x2i] = x:Jix_xx:Tixx2i-Xx2i = z,

[x2i, x2i+x] = I fox i = 1, ... ,y, [x¡,Xj]= I for \i - j\ > 2, \x¡\ = 2 for
/ > 3, and |jci| = \x2\ = 2 or \xx\ = \x2\ = 4 according as n = + or -, in

the latter case x2 = x2 = z . Let Sß , Dß , and Qß be respectively semidihe-

dral, dihedral, and generalized quaternion groups of order 2^ . A 2-group R is

called of symplectic type if R is a central product EP of an extraspecial group

E and either a cyclic 2-group P or P = Sß , Dß , Qß with ß > 4. Here the
center of E is identified with Q.X(Z(P)). Now we consider the embedding of

R into a unitary group.

Again we denote Aut G the automorphism group of a finite group G, Inn G

the group of inner automorphisms, and Aut0 G the subgroup of Aut G acting

trivially on Z(G).
Suppose R = EZ has symplectic type with Z cyclic. If R > E, then R

can be rewritten as the central product of Z and an extraspecial group E with
plus type, so that Cl2(R) is a central product of a cyclic group of order 4 and

E. If R = E, then Q2(R) = R. In both cases, Aut0 R = Aut0 Q2(R). By [18,
Theorem 1] and [16, §4; 15, pp. 406-407],

Let F? be the field of q elements with odd characteristic, and 2a+x the exact

power of 2 dividing q2 - 1, so that a > 2. We shall say that 2 is linear or

unitary according as 2" divides q - 1 or q + 1.
Let A(T) = Tm+am-XTm~x-\-\-axT+ao be a monk irreducible polynomial

in F^jT]. Denote dA the degree of polynomial A and define

Á(T) = (añx)«Tm(T-m + aqm_J-m+x + --- + a\T~x+ aq0).

In particular, co is a root of A(T) if and only if co~q is a root of A(T). Thus

A = À if and only if A has odd degree dA and the roots of A have order
dividing qd* + 1 (see [11, p. 111]). Let

^ = {A:A6Fg2[7;], A is monic irreducible, A^T, A = Ä},

^ = {AÀ : A e ¥qi[T], A is monic irreducible, A # T, A # Ä},
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and ZF = ZFX U ZF2. Thus any elementary divisor, in the sense of [11], of a

unitary matrix lies in ZF. We also define a sign zY for T in Z? by

f -1    if r e ̂ T,
er ~ \ 1     of r e ft.

Let F be a unitary space over F?2 with a form f(u,v), and G = \J(V).

An element of G is said to be primary if it has a unique elementary divisor.

(1A) Let g be a primary 2-element of G with a unique elementary divisor

reJ of multiplicity m. Then either g e Z(G) or CG(g) ~ GL(m, qdr). In
particular, if 2 is linear and \g\ > 4, then CG(g) ~ GL(m, qdr).

Proof. If r e 9[, then dT is odd, CG(g) ~ U(m, q*), and g e Z(CG(g)).
But Z(G) < Z(CG(g)) and \(h(Z(G))\ = |í%(Z(CG(g)))| by dT odd, so
6>2(Z(C7)) - 02(Z(CG(g))) and g 6 Z(G) .If Ye 3^, then

CG(g)^GL(m,î*).

Suppose 2 is linear and \g\ >4. Then 02(Z(G)) has order 2, so that g £ Z(G)
and then T eZ?i. This completes the proof.

Let R be a 2-subgroup of G = U(V). Then /? acts on the underlying

space V of G. We shall say that an /î-submodule W of V is nondegenerate

or totally isotropic if fF is respectively a nondegenerate or totally isotropic

subspace of V.

(IB)   Let R be a 2-subgroup of G. Then V has an R-module decomposition

(1.1) V = VXLV2L ■ ■ ■ LVSL(UX ® U[)± ■ ■ ■ 1(1/, 0 U't),

where the V¡ are nondegenerate simple R-submodules, the \J¡ and Uj are totally

isotropic simple R-submodules such that Uj © Uj is nondegenerate and has no

proper nondegenerate R-submodule. Moreover, if Z(R) is cyclic and is not a

subgroup of Z(G), then s = 0.

Proof. Let W be a simple /î-submodule of V of minimal dimension. Since the
radical {v e W: f(v , W) = 0} of W is an JR-submodule of W, it follows that
W is either nondegenerate or totally isotropic. If W is nondegenerate, then

V =WLW±, where W-1 = {v e V: f(v , W) = 0} . The decomposition (1.1)
then holds by induction, since W1- is a nondegenerate /?-submodule. If W is

totally isotropic, then W1- is an jR-submodule of V and V = WL © W' for

some /î-submodule W' of the same dimension as W, since F is a semisimple

Zî-module. Moreover, W ®W' is nondegenerate. Thus W' is either a nonde-

generate or a totally isotropic simple /î-module. If W' is nondegenerate, we

can replace W by W' and appeal to the earlier case. Suppose W' is totally
isotropic and W ®W' has a proper nondegenerate /î-submodule Y. Then Y

is simple, so that we can replace W by Y and appeal to the earlier case again.

Thus we may suppose W ®W' has no proper nondegenerate /î-submodule, so

that W ®W' is of the required form Uj © Uj, and we can apply induction to

its orthogonal complement.

Suppose Z(R) is cyclic and Z(R) j¿ Z(G). If V has a nondegenerate simple

/î-submodule Vx, then the representation F of R in U( Vx ) is irreducible, so

that the generator g of F(ZLR)) is primary with a unique elementary divisor
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TeS'i of multiplicity m by (1A). Thus CU{Vi)(g) ~ GL(w, qdr) and ¥(R) <

C\j{v,)is) ■ So Vx has a hyperbolic decomposition Vx = WX®W{ suchthat Wx
and W[ are /î-submodules of Vx. This is impossible. Thus the second half of

(IB) follows.

We consider the groups GL(«, eq)', where e = ±1. Here we are following

the useful convention used by [6] in denoting U(«, q) as GL(«, -q). In
the rest of this paper such terms as orthogonal, orthonormal, nondegenerate,

totally isotropic, and isometric will have meaning only in contexts involving

GL(«, -q) and unitary spaces, but no meaning in contexts involving GL(«, q)

and linear spaces. The following four propositions are known results for general

linear groups (cf. [4, 12, 13, and 14]) and we shall give a proof for both general

linear and unitary groups.

(1C) Let E be a quaternion group and G = GL(2, eq). Then G contains

a unique conjugacy class of subgroups isomorphic to E. In addition, let E be

embedded as a subgroup of G, N = NG(E), and C = CG(E). If 4 divides
q + e, then

C = Z(G),        N/EZ(G)~0-(2,2).
Proof. Let E = (xx, x2) and V the underlying space of G. If 4 divides q - e,

then F^2 has an element w of order 4, so that with respect to an orthonormal

basis of V,

<••» *-(" -)'    '-(-i ')

generates a quaternion subgroup of GL(2, eq). Thus the mapping xx i-> A and

xi >-> Y gives a faithful and irreducible representation of E in G. Suppose

E is embedded as a subgroup of G. Since xx has order 4, at least one of

the elements w and tu3 = -w is its eigenvalue. Without loss of generality,

we may suppose w is its eigenvalue. Let V¡■■ = {v e V: xxv = (—iy+lwv)

for i = 1,2. Then Vf s axe nondegenerate subspaces of V permuted by x2

cyclically, since xxx2 = -x2xx. So both Vx and V2 have dimension 1. Suppose
{vi} is an orthonormal basis of Vx, so that {^i, x2vx} is an orthonormal basis

of V and xx, x2 axe given by (1.2) with respect to this basis. Thus G contains

a unique conjugacy class of E.

Suppose 4 divides q + e. Then by [7, pp. 142-143] a Sylow 2-subgroup P of
GL(2, eq) is semihedral and generated by two matrices A and Y satisfying

the following conditions

|A| = 2a+1,        \Y\ = 4,        X2a = Y2 = -I2,
['> YXY-X=X2"-X = -X-X.

So A2""' has order 4 and FA2""'/-1 = -A2""' . The mapping xx i-» A2'"',

x21->- Y gives a faithful and irreducible representation of E in G. Suppose E

is embedded as a subgroup of G and suppose it is a subgroup of P. Since P =

{A', A'F: 1 < i < 2a+x} , its elements of order 4 are {±A2°"', ±A2,F} , where

1 < i < 2a-2 . If A2'F and X2JY axe generators of E, then X2iY(X2JY)~x =

A2*'--') is an element of order 4 in E, so that (A2«'"^) = (A2""') and E =

(A2"-', A2,y). It is clear that A2""' and A2'F generate a quaternion subgroup

of P, where 1 < i < 2a~x . The subgroup (A2""') of E = (A2*"', A2'F) is
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called a base subgroup of E, in the sense of [10]. Since A2" = -1, P has 2a"2

quaternion subgroups and each contains (A2"-1) as a base subgroup. Since

X~xx2iYX = -X2i~2Y for 1 < / < 2a, all the quaternion subgroups of P
axe conjugate in P. Each quaternion subgroup of G is contained in a Sylow

2-subgroup of G and all the Sylow 2-subgroups are conjugate in G, so that all
the quaternion subgroups of G axe conjugate in G.

By [4, (1A)] F, is a splitting field of E, so that C = Z(G). Since

Aut°£/Inn£~0-(2,2)

and each element of N induces an element of Aut° E, it follows that N/EC ~

0~(2, 2) if and only if \N/EC\ = 6. Denote Cß the cyclic group of order

2^ . Since 4 divides q + e, the centralizer CG(C2) of a subgroup C2 of G

is isomorphic to a Coxeter torus GL(1, q2) of G, so that C2 is a subgroup

of the Sylow 2-subgroup Ca+X of CG(C2) and CG(C2) = CG(Ca+x). Thus if
any two subgroups Ca+X and C'a+X both contain a subgroup C2, then Ca+X =

C'a+X. Fix a subgroup C2 . Let H = NG(C2), Ca+X the Sylow 2-subgroup of

CG(C2), and P a Sylow 2-subgroup of G containing Ca+X. Since CG(C2) is
a Coxeter torus and // is its normalizer in G, all the normalizers of cyclic

subgroups of order 4 in G are conjugate in G. We may suppose Ca+X = (A),

C2 = (A2""'), and P = (A, Y), where A and Y are given by (1.2). Thus

P < H, NG(P) = PZ(G) < H, and H = PCG(C2) since \H/CG(C2)\ = 2

(cf. [11, p. 129]). So NG(H) = H, \H\ = 2(q2 - 1), and H has \q(q - e)
conjugates in G. Moreover, a Sylow 2-subgroup of H is a Sylow 2-subgroup

of G and so all quaternion subgroups of H are conjugate in H. Let Q be any

quaternion subgroup of P. Then Q = (A2""', X2kY) for some 1 < k < 2a~2,

so g = X2"~2 fixes A2""' and gX2kYg~x = ±X2"lX2kY, so that g e NH(Q).

Each element of H maps A2"-' either to itself or to -A2"-' and the order

3 element of Aut°ß maps A2"-' either to ±A2*F or to ±7. It follows

that NhÍQ) = (g, QZ(G)), so that \NH(Q)\ = 8(q - e) and H has \(q + e)
quaternion subgroups. Moreover, each quaternion subgroup Q' of H contains

C2 as a base subgroup, since Q' is contained in a Sylow 2-subgroup of H and
each Sylow 2-subgroup of H contains Ca+X. Since NG(Ca+i) = H and G has

exactly one conjugacy class of cyclic subgroups of order 2a+x, G contains also

\q(q-e) conjugates of Ca+X. For each conjugate Hx of H, denote C*+1 the

unique subgroup of Hx of order 2fl+1, and denote C^ the unique subgroup

of order 4 of C*+1 . Then C| are all conjugates of C2 in G, where x run

over representatives of coset G/H. Each C^ serves as a base subgroup of

\(q + e) quaternion subgroups of Hx . All quaternion subgroups of G can be

obtained in this way and each of them contains 3 subgroups of form C| as base

subgroup. It follows that G has \(q + s)\q(q -&)\ = ^q(q2 - 1) quaternion

subgroups, so that \NG(E)\ = 24(q - e) and \NG(E)/EC\ = 6. This completes
the proof.

(ID)   Let E be an extraspecial 2-group of order 22?+x. Then G = GL(23', eq)

contains a unique conjugacy class of subgroups isomorphic to E.

Proof. Let E¡ = (x2i^x, x2i), and V¡ a linear space of dimension 2 over ¥q if
e = 1, or a unitary space of dimension 2 over F92 if e = -1, for 1 < i < y .
Then E¡ acts faithfully, irreducibly, and isometrically on  V¡.  Namely if E¡
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is a dihedral group and {v\[, v[} is an orthonormal basis of V¡, then we may

define

X2i-1 : v'j ^ (-1 )J+' vj,       x2i : vj i-> vj+,,

where the subscripts on the basis vectors are naturally read modulo 2. In par-

ticular, z = [x2i-X, x2i]: vj h-> -vj.

Suppose Ex is a quaternion group and Vx is the underlying space of

GL(2,e<7). Let A and F be matrices of GL(2, eq) defined by (1.2) or (1.3)
according as 4 divides q - e or q + e with respect to an orthonormal basis

{v\ ,v\} of Vx. In the former case, a faithful and irreducible representation

of Ex on V\ is given by the mapping xx >-> X and x2 *-* Y ; in the latter case,

it is given by xx t-> A2"-   and x2 i-> Y.

E then acts faithfully and irreducibly on V = Vx ® V2 ® ■ • • ® V7, since E is
a central product of E¡'s and the element z in £, is represented on V¡ by the

scalar matrix -/. We simplify notation and write

Vj> ®V22®---®VYjy= [jX ,j2,..., jy)

where 1 < j,< 2. So the 2y elements [j\, j2,... , jy] form an orthonormal

basis for V, and

/1 4x *2i-l : L/l ,h,.-., jy] •"► (-1 )ji+i L/l ,J2,-.., jy],

X2i : [j\ , jl, ■■■ , jy] >-► L/'l , - - - , ji-l , ji + I , ji+l ■■■ , jy],

except when E has minus type, in which case the actions of x¡ for i > 3 are

given by ( 1.4) and

(-l)h+xw[jx,j2,...,jy]       if4\q-e,
xi: L/1,/2» ••• ,/j-J1-* ^

(1.5)

x\ : [ji, h » • • •. jy\ *-* \  , v2a-\
\(X2    v\)®\j2,ji,...,)y]   if4|tf + e,

x2: [jx, j2, ... , jy] ^
i-l)hUl + l,J2,...,jy]     Íf4|í-fi,

. iYvxt)®[j2,j3,...,jy]     if4\q + e.

Since basic vectors are mapped onto orthonormal vectors by generating elements

of E, E acts on V by isometries. Thus GL(25', eq) contains a copy of E.
To prove the uniqueness, we suppose E is embedded as a subgroup in G.

It suffices to show that an orthonormal basis of the underlying space V of G

exists such that the actions of x¡ axe given by (1.4) or (1.5). If y = 1 and
E has minus type, then the uniqueness follows by (1C). Suppose either y > 2

or y = 1 and E has plus type. Then the subspaces W¡■ = {v e V: x2y-Xv =

(-l)j+xv} for j = 1, 2 are nondegenerate and permuted by x2y cyclically since

x2y-\X2y = -x2yx2y-X. In particular, Wx and W2 has the same dimension

2y~x. If y = 1, then E has plus type and Wx has an orthonormal basis {vx} .

Thus {vx, x2vx} is an orthonormal basis of V and the actions of xx and x2

axe given by ( 1.4) with respect to this basis. Suppose y > 2. Then the subgroup

(xx, x2,... , x2y--i, x2y-2) of E is an extraspecial group of order 2y~x with

the same type as E and its acts faithfully and irreducibly on Wx . We may

suppose by induction that xx, x2, ... , x2y-i, x2y-2 act on Wx by (1.4) or

(1.5) relative to the orthonormal basis {[jx, j2, ... , jy-i]: ji = 1,2} of Wx .

Then

{[Ji ,J2,-.., jy] = xt+1[ji ,j2, ... , j7-x]: ji = 1,2}
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is an orthonormal basis of V and xx,x2, ... ,x2y act on V by (1.4) or (1.5).
Thus the uniqueness holds.

Remark. (1) Suppose E is embedded as a subgroup of GL(27, eq) and (x2k-X,

x2k) < E is a dihedral group for some k. In the notation of (ID), we claim

that V has an orthonormal basis {[jx, j2, ... , jy]'}, where 1 < j¡ < 2 such

that the actions of X21-1 and x2i for i ^ k are given by (1.4) or (1.5) with

L/i ,J2, ■■■ , jy] replaced by [jx ,j2, ... , jy]' and

X2k-\ :[jl,...,jk,..., Jy]' *-* L/l, • • • » Jk + 1 » • •• » jy]',

X2k:[j\,...,jk,..-, jy]' >-» (- l)A + 1[j'l ,...,jk,..., jy]'-

The proof of the remark is similar to that of the uniqueness above with x2y-X

replaced by x2k, x2y by x2k-X, jy by jk and some obvious modifications.
(2) Suppose E has plus type and X is a faithful representation of E in

U(V) with exactly one Wedderburn component. Then X has degree mly for

some m > 1 and there exists an orthonormal basis {[jx, j2, ... , j7]k} of V,

where 1 < ;', < 2 and 1 < k < m such that for each 1 < k < m, the ac-

tions of X2/-1 and x2i are given by (1.4) with [jx, j2, ... , jy] replaced by

L/i > J2, ■■■ , jy]k ■ It follows that in the decomposition (1.1) of V as an E-
module, V = MX±M2L---±Mm, where the A/^'s are nondegenerate simple

/s-modules linearly generated by {[jx, j2,... , jy]k'■ 1 < ji < 2} , so that E

acts faithfully on each Mk. Moreover, if X' is another such representation

of E in U(V), then X(E) and X'(E) axe conjugate in U(V) by the unique-

ness of (ID). The proof of this remark is similar to that of the uniqueness

above. Since the unique faithful and irreducible representation of E has de-

gree 2y, it follows that X has degree mly for some m > 1. For y = 1,2, let

V- = {v e V: xxv = (-iy+xv} . Then the VJ's axe nondegenerate permuted by

x2 cyclically, so that dim V[ = dim VZ = m2y~x . If y = 1, take an orthonormal

basis {[l]k} of V[, where 1 < k < m and let [jx]k = xJ2'+x[l]k for 1 < jx < 2.

Then {[71]^}, where 1 < ji < 2 and 1 < k < m is a required basis of V.

Suppose y > 2, so that K = (x-¡, Xu,, ... , x2y) is an extraspecial group with
plus type and K acts on V[ faithfully. The representation of K on V[ has

exactly one Wedderburn component. So by induction there exists an orthonor-

mal basis {L/2, J3... , jy]k} of V[ such that the actions of x2i_x and x2i,
for i > 2 are given by (1.4) with [j2, j3... , jy] replaced by [j2, j3, ... , jy]k ■

Let L/i, j2... , jy]k = xJ21+x[j2 ,J3,..., jy]k ■ Then {[jx ,j2..., jy]k), where

1 < /; < 2 and 1 < k < m is a required basis of V. This proves the remark.

(IE) Suppose 4 divides q + e. Let G = GL(2>', eq), and E ~ 22/+1 embedded
as a subgroup of G. Set C = CG(E) and N = NG(E). Then CN(E) = C =
Z(G) and N/Z(N)E ~ Oi(2y, 2). Moreover, each linear character of Z(N)

acting trivially on 02(Z(N)) can be extended as a character of N acting trivially

on E.

Proof. Since F<, is a splitting field of E (see [4, (1A)]), it follows C = CN(E) =

Z(G). The elements of N induce automorphisms in Aut° E. We shall exhibit

elements in N which together with E generate Aut° E . Since Aut° E/ Inn E ~

On(2y, 2), we need only exhibit elements in N which induce generators of

On(2y, 2) on E/Z(E). The group Or,(2y, 2) is generated by orthogonal trans-
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vections on E/Z(E) except when n = + and y = 2, in which case, the sub-

group generated by orthogonal transvections has index 2 in 0+(4, 2) (see [9]).

Thus first we show thai N contains all orthogonal transvections on E/Z(E).

But every orthogonal transvection is uniquely determined by a nonsingular vec-

tor in E/Z(E), so we need to investigate such a vector in E/Z(E). By [18 or

15] the quadratic form q(x) on E/Z(E) is given as follows: if x e E and

x2 = zk for some k e Z/2Z, then q(x) = k, where x = xZ(E) e E/Z(E).
Thus x is nonsingular in E/Z(E) if and only if x has order 4 and then the

transvection T corresponding to x is given by T: ïï i-> ïï + (ïï, x)x for all

ïï e E/Z(E), where (ïï, x) = q(ü + x) + q(ü) + q(x) is the bilinear form de-
fined by the quadratic form. So it suffices to show that for each element x e E

of order 4, there exists an element g e N such that ghg~x = ±hxk for h e E,

where k = 1 + i + j e Z/2Z with h2 = zl and (hx)2 = zj . Such an element g
will be called the transvection for x . It is clear that if x and u are elements

of order 4 in E and they are conjugate under N, then the transvection for x

exists in N if and only if the transvection for u exists in N. Thus we con-

sider the A-conjugacy classes of elements of order 4 in E. We may suppose

the action of E on the underlying space V is given by (1.4) or (1.5).

First suppose E has plus type.

(1) Let g be the element in G such that

g:[j\, J2, ■■■ , ji, ■■■ , jy] ■-> L/i, J2, .■■ , jl, ■■■ , jy]-

Then g~xxxg = x2i-X, g~xx2i-Xg = xx, g~xx2g = x2i, g~xx2ig = x2, and

S~xXkg = Xk for all other indices. It follows that N contains a subgroup

inducing the symmetric group S(y) on the set {Ex, E2, ... , E7} .

(2) Let {L/i, j2, J3, ■ ■ ■ , yy]'} be the basis of V given by the Remark (1)
above with k = 1, and g the element in G such that

g ■ L/l , J2, J3, ■■■ , jy]' *-* [Jl , J2, J3, •■■ , jy]-

Then g~xxxg = x2, g~xx2g = xx , and g~xxkg = xk for k > 3. Since

x2 = xxxxx2 and xx = -X2X1X2, the element g is the transvection for X1X2

in N.
(3) Let g be the element in G such that

g:[j\, J2, ■■■ , jy] I-» L/l +/2 + 1 , Jl, -. ■ , jy]-

Then g~xxxg = xxXi, g~xx^g = X2X4 , and g~xxkg for all other indices. Since

(xi, X3, ... , x2y-X) and (x2, x^, ... , x2y) give a hyperbolic decomposition of

E/Z(E), g induces

((! !) ,        )

V u
relative to this decomposition of E/Z(E). By (1) we may replace Ex and E2

by E¡ and E¡ for I < i < j <y . Thus there is a subgroup of N inducing

(1.6) ^A   A_ty.AeGL(y,2)^

on E/Z(E).



2-WEIGHTS FOR UNITARY GROUPS 259

In order that A contain all orthogonal transvections on E/Z(E), it then

suffices to show that every element x in E of order 4 is conjugate with X1X2

under N. Moreover, we shall show that every noncentral element y of order

2 in E is conjugate with xx in A. Suppose y = 1. Then x = ±XiX2 and

y = ±xi or ±X2 . If x = -X1X2, then X2XX2 = X1X2, so that x is conjugate

with X1X2 in A. If y = ±X2, then g~xyg = ±xx for some g e N given by

(2). We may suppose y = ±xi. If y = -xi, then X2yx2 = xi. Thus y is

conjugate with xi in this case. Suppose y > 2. Let D = (xx, x2, xs, ... , x2y),

then D ~ 22T1. It follows by (1.4) that L = CG((x3, x4)) - GL^-1, eq) and
D < L. Thus by induction every element of order 4 in D is conjugate with

X1X2 under Nl(D) and every noncentral element of order 2 in D is conjugate

with xi under N¿(D). It is clear that NL(D) < N and centralizes (X3, X4).

If x and y are elements of D, then x is conjugate with X1X2 and y is

conjugate with xx under N. If x ^ D, then x = X3X', X4X', or X3X4X' for

some element x' of D. Suppose x = X3X' or x = x$x'. In the latter case,

take the element g e N which is a product of some elements given by ( 1 ) and

(2) such that g~xx$g = X3, g~xx^g = X4 , and g~xx¡g = x¡ for other indices.

Thus g~xxg = X3X', so that we may suppose x = x3x'. Thus x' has order

4, so that h~xx'h = xxx2 for some h e Nl(D) and h~xxh = x^xxx2. Thus

g~xh~xxhg = X1X2 for the element g e N given by (3). Suppose x = x3x4x'

for some element x' e D of order 2 or 1. If x' e Z(D), then x = ±X3X4

and g~xxg e D for some element g e N given by (1), so that x is conjugate

with X1X2 in A. If x' is a noncentral element, then h~xx'h = xx for some

h e Nl(D) , so that h~xxh = X3X4X1 and g~xh~xxhg = X1X2X4 for the element

g by (3). By the argument above x is conjugate with X1X2 under A. Similarly

if y $ D, then y = x3y', x4y', or x3x4y' for some y' e D. Suppose y = x3y'

or X4y'. In the latter case, g~xyg = x^y' for an element g e N given by (1)

and (2), so that we may suppose y = X3y'. Thus y' has order 2 or 1. In the case

y' e Z(D), g~xyg e D for some element g given by (1). Thus y is conjugate

with xi in A. Suppose y' is a noncentral element of D. Then h~xy'h = xx

for some h e NL(D), so that h~xyh = x3xx and g~xh~xyhg = xx, where g

is the element given by (3). Suppose y = X3X4y', so that y' has order 4 and

we may suppose y' = X1X2 by replacing y' by h~xy'h for some h e Ni(D).

Thus y = X3X4X1X2 and then g~xxg = x$x2, where g is the element given by

(3). By the argument above, y is conjugate with Xi in N. It follows that A

contains a subgroup H inducing a subgroup of O^y, 2) which is generated

by all orthogonal transvections on E/Z(E).

Suppose E has minus type and by (1C) we may suppose y > 2. Then

X3, X4, ... , x2y generate an extraspecial group K of order 22y~x with plus

type, so that A contains the elements given in ( 1 ), (2), and (3) with Xi replaced

by X3, X2 by X4, and some obvious modifications. For example, the action of

the element g given by ( 1 ) is defined by

g'[jl, J2, ■■■ , ji, ■■■ , jy] I-* [jl , ji, ■■■ , J2, ■■■ , jy],

where {[jx, j2, ... , ji, ... , jy]} is the basis of V given in (ID). It follows

that all the elements given by (1), (2), and (3) act trivially on xi and X2. In

particular, the element g given by (2) is the transvection for X3X4 in A. If y is

a noncentral element of order 2 in E, then y lies in K. It follows by (1.5) that

CG((xx, x2)) ~ GL(23'_1, eg) and K < CG((xx, x2)). Apply a similar proof



260 JIANBEI AN

to K and CG((xx, x2)), so that y is conjugate to X3 under NCg((X, ,x2))(K) <

N. Thus every noncentral element of order 2 in E is conjugate to X3 in

A. Let D = (xx,x2,x5,x6, ... , x2y), so that D ~ 22y'x . By (1.4) L =

C(j((x3, x4)) ~ GL(2>,_1, eq) and D < L. If y = 2, then each element of

order 4 in D are conjugate with Xi in A¿(D) by (1C). Suppose y > 3. Then

each noncentral element of order 2 in D is conjugate with X5 under NL(D)

by applying the proof above to D and L. By induction we may suppose each

element of order 4 in D axe conjugate with Xi under NL(D). It is clear that

Nl(D) < N and NL(D) centralizes (x3, x4). Let A be the matrix given by

(1.3) and g an element in G such that

(1.7)      g: [jx Ji,..., j7] ~ (-iy>+x((x2°-'yivxjt) ® [j2 ,j3,..., jy].

Then g~xxxxAg = x3x4 , g~xx2g = -x3x2, and g~xx¡g = x, for ¡'^ 2, 4, so

that g e N. Suppose x is an element of E of order 4. If x e D, then x

is conjugate with xx in A¿(D). If x £ D, then x = X3X', X4X', or X3X4X'

for some x' e D. Suppose x = X3X' or x4x'. Then in the former case

g~xxg = X4X' for some element g e N given by (1) and (2) with xx replaced

by X3, X2 by X4, and some obvious modifications. Thus we may suppose

x = X4x', so that x' has order 4 and h~xx'h = xx for some h e A¿(D). So

g~xh~xxhg = X3X4, where g is the element given by (1.7). Finally suppose

x = X3X4X' for some x' e D. A similar proof to above shows that we may

suppose x' is a noncentral element of order 2, so that h~xx'h = X5 for some

h e Ni(D) and hence g~xh~xxhg = X3X4 for some element g given by (3).

Thus each element of E of order 4 is conjugate with X3X4 in A. Since the

transvection for X3X4 is given by (2), A contains a subgroup H inducing a

group on E/Z(E) generated by all orthogonal transvections.

It follows that A = HZ(G) and N/EZ(G) ~ 0'(2y, 2), except n = + and
y = 2, in which case H/EZ(E) is a subgroup of 0+(4, 2) of index 2. Let g

be an element of G such that

r.     -,      f -[2,2]   ifjx=j2 = 2,
1-8 g: [jx,j2]^ <

I L/i > J2]    otherwise.

Then g~xx2g = x2x$, g~xx4g = Xix4 , and g~xx¿g = x¿ for / = 1, 3 . Thus

g e N and the subgroup generated by elements given by (1.8) and (3) induces

a Borel subgroup of 0+(4, 2), the subgroup generated by the elements (1) and

(2) induces a Weyl group on E/Z(E). Let //' be the subgroup generated

by elements (1), (2), (3), (1.8), E, and Z(G). Then Z(H') = Z(G) and
H'/EZ(G) ~ 0+(4, 2), so that N = H'.

To prove the last assertion, suppose Z is a linear character of Z(A) = Z(G)

acting trivially on 02(Z(N)). Let 5" be the subgroup of G whose elements

has determinant 1. Then 5 = SL(2'', q) or SU(2)>, q) according as e = 1
or -1. For any element g e Z(N) n S, g = ul for some u e ¥qi, so that

degg = uv = 1 and g e 02(Z(N)). Thus Z(N)S is a central product of

Z(A) and S over 02(Z(N))nS. Let | be the tensor product of Z and the

trivial character of S. Then Z, is an irreducible character of Z(N)S acting

trivially on EnS and G stabilizes |. Since G/Z(N)S is a cyclic group, Z,
can be extended as a character of G which is trivial on E by Clifford theory,
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so that the restriction of the latter to A is a required extension of Z • This

completes the proof.

(IF) Suppose 4 divides q-e. Let G = GL(2y, eq) and R = EZ a subgroup of
G ofsymplectic type, where Z = 02(Z(G)) and E is an extraspecial subgroup

of order 22y+x. Set C = CG(R) and A = NG(R). Then CN(R) = C = Z(G)
and N/Z(N)R ~ Sp(2y, 2). Moreover, each linear character of Z(N) acting
trivially on 02(Z(N)) can be extended as a character of N acting trivially on

R.

Proof. The statement C = CG(R) = Z(G) is a consequence of the fact that

R is an absolutely irreducible subgroup of GL(27, eq). The proof of the last

assertion is the same as that of (IE). Each element of A induces an automor-

phism in Aut0cl2(R) = Aut°R. Since R > E, we may suppose E has plus

type and acts on the underlying space V as in (1.4). Set W = ii^R). Then

W = (p)E, where p = wl and w e ¥qi has order 4. By [18] or [15] the alter-

nating from (ïï, x) on W/Z(W) is induced by commutation: If [u, x] = zk ,

then (ïï, x) = k, where u, x axe elements of W, ïï = uZ(W), x = xZ(W),

and k e Z/2Z. The group Sp(2y, 2) is generated by all symplectic transvec-

tions (see [9]) and each nonzero vector of W/Z(W) uniquely determines a

symplectic transvection which is defined the same as the orthogonal transvec-

tion above. It is clear that the elements defined by (1), (2) and (3) in the proof

of (IE) are elements of A. It follows by the same proof to that of (IE) that
every element of order 4 in E is conjugate with xxx2 and every noncentral

element of order 2 in E is conjugate with xx under A. We claim that pxx is

conjugate with xxx2 in A. Indeed, let g be the element in G such that

(1.9) g:[fi,J2,..., jy] h» (-iy''+V'[;,, J2,..., ;,].

Then g~xpx2g = xxx2, and g~xxkg = xk for all other indices. Thus the claim

holds. It follows that A induces a transitive action on the nonzero vectors

in W/Z(W). The element g given by (1.9) induces a symplectic transvec-

tion on W/Z(W) corresponding to x2, so that A induces a subgroup of
Sp(2y, 2) containing all symplectic transvections. Thus A induces Sp(2y, 2)

on W/Z(W) and then N/RC ~ Sp(2y, 2). This completes the proof.

The following proposition is proved in [4] for general linear groups and we

shall give a proof for unitary groups.

(IG) Let P = Sß,Dß, or Qß with ß > 4, and let W be a faithful and
irreducible representation of P in G = U(«, q) such that 02(C(W(P))) <

W(/>). Then 2 is linear, n = 2, and ß < a + 2. Moreover, if P = Sß, then

ß = a + 2 and W(P) is a Sylow 2-subgroup of G; if P = Dß or Qß, then

there exists an element x e G such that \x\ = 2&, x normalizes W(/>) and

xeCG([W(P),W(P)]).

Proof. Let A = NG(W(P)) and C = CG(W(P)). Since (h(Z(G)) < tZh(C) <
W(P), it follows that <h(Z(G)) < Z(W(/>)). But Z(W(P)) has order 2. Thus
02(Z(G)) < Z(W(P)) = {±I„}, so that 2 is linear. Suppose o and x axe

generators of W(P), where |<r| = 2?~x > 8 and |t| = 2 or 4 according as

P ^ Qß ox P = Qß and in the latter case t2 = -/„ . Let K = (o). By (IB)
the underlying space V of G has a A-module decomposition (1.1) such that
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5 = 0. But if M is a simple A-submodule of V , then V = M + xM as V is
a simple P-module. Thus V has a decomposition V = U © U', where U and

U' axe totally isotropic simple A-modules. It follows that o is primary with
a unique elementary divisor T e ZF2 and CG(W(A)) ~ GL(1, qdr) is Coxeter

torus of G. If ß - 1 < a + 1, then \o\ = 2&~x and it divides q2 - 1, so
that dr = 2 since U is a simple A-module. Thus W(P) is a subgroup of

a Sylow 2-subgroup of G = U(2, <?). By [7, p. 143] a Sylow 2-subgroup of
G is semidihedral of order 2fl+2 and by [14, 5.4.3] a semidihedral group has

no proper semidihedral subgroups. Thus if P = Sß, then W(P) is a Sylow

2-subgroup of G; if P = Dß or Qß, then W(.P) is a subgroup of a Sylow

2-subgroup D of G. Let L be a subgroup of D containing W(/>) such that

(L : W(P)) = 2, so that L < N. The same proof as that of [4, (ID)] can be
applied here to show that there exists an element x e L such that |x| = 2^

and xeCG([W(/>),W(/>)]).
Suppose ß - 1 > a +1. Since Í7 is a simple A-module, the commuting alge-

bra of K on U is isomorphic to F 2ß-a-\ , so that CG(W(cr)) ~ GL(1, g2""    )

and dr = 2^a~x .lfT = CG(W(K)), then W(A) = 02(3"). Let a = ß-a-1,
so that a > 2 and dr = 2a . Since T is a Coxeter torus of G, it follows that

AG(r) = (Ç, T), where £ acts on 7 by ( h rq (cf. [11, p. 129]). Thus
NG(T)/T is cyclic of order 2a .

Suppose R = Sß, so that tot-1 = -a~x and t2 = 1 . Thus x induces an

element of order 2 in NG(T)/T. Since NG(T)/T ~ (Q is cyclic, it follows

that t = Ç2" t' for some /'e T,so that x and C2° induce the same action

on T. Since a - 1 > 1, t acts on 7 by ; ^ ¿(-i)2""'?2"-1 = ^2Q_' > s0 that

aq = -er-1 and oq +1 = -1 since t<tt_1 = -o~x . Since 2 is linear, it

follows that 2 is the exact power of 2 dividing g2""' + 1, so that o has order

4. This is a contradiction.
If R = Dß or Qß , then tot-1 = cr-1 and t2 g jT, so that t induces an

element of order 2 in NG(T)/T. Thus t = C2"~V for some i'e T,so that t

and C2°~   induce the same action on T. Thus x acts on T by í i-> tq       and
2a—' i 2a~ '     i

aq = (T_1, so that oq +1 = 1 and \a\ = 2. This is impossible and (IG)
follows.

Now we consider the embedding of other groups of symplectic type in a

unitary group. In the following two propositions, suppose R = EP is a central

product of E and P over Z(E) = Z(P), where P = Sß, Dß or Qß with

ß > 4, and E ~ 22/+1. The first proposition can be proved by replacing GL by

U and some obvious modifications in the proof of [4, (IE)].

Suppose 2 is linear. Let Y be a faithful and irreducible representations of E

in U^, q), Nx the underlying space of U(2'',q),N = NX±NX±- ■ ■ 1A. (m
copies), and X = wY the faithful representation of E in U(A). Let W be

a faithful and irreducible representation of P in U(2, q), M the underlying

space of W, and V = N ® M. Then R acts faithfully on V and we denote

by F the representation of R in U(V). The central product U(A)U(Af) of

U(A) and U(Af) over Z(U(A)) = Z(U(Af)) also acts faithfully on V. For
simplicity of notation, we denote again by F the representation of U(A)U(Af)

in U(V).
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(1H) With the notation above, let N(X(E)), NÇW(P)), and N(F(R)) be the
normalizes of X(E),W(P), and ¥(R) in U(N),V(M), and U(V) respec-
tively. In addition, let F(R)° = CF{R)([F(R), F(R)]), and

N°(XV(P)) = {xe N(W(P)): [x, [W(/>), W(/>)]] =1},

N°(F(R)) = {xe N(F(R)): [x, [F(R), F(R)]] = 1}.

Then F(N(X(E))) < N°(F(R)) and F(N°(W(P))) < Z(CNo{¥{R))(F(R)0)). In
particular, if P = Dß or Qß , then F(R) is not radical in U(V).

(II)   Suppose 2 is linear. Let G = V(2y+X, q), P = Sa+2, and R = EP.
(a) There exists a faithful and absolutely irreducible representation T of R

in G. Moreover, R is independent of the type of E and G contains a unique

conjugacy class of subgroups isomorphic to R.

(b) Identity R with J(R) and let

R° = CR([R,R]),        N = NG(R),        N° = {geN:[g,[R,R]]=l}.

Then R° is a central product of a cyclic group of order 2a+x and an extraspecial

group of order 22y+x, R n A0 = R°, Z(N°) = Z(G)Z(R°), and A°/Z(A°) ~

Aut° R°. In particular, N°/R0Z(N°) ~ Sp(2y, 2). Moreover, each linear char-

acter of Z(N°) acting trivially on 02(Z(N°)) can be extended to a character of

N° acting trivially on R°.

Proof, (a) With the assumption of (1H), suppose P = Sa+2 and X = Y is

irreducible. Denote by T the representation F in (1H). Then T is a faithful

and absolutely irreducible representation of R in G. The same proof as that

of [4, (IF), (a)] shows that R is independent of the type of E, so that we may

suppose E has plus type. Suppose T' is another faithful and irreducible repre-

sentation of R in G. Then both T|¿ and V\e have exactly one Wedderburn

component. By the Remark (2) after (ID), T(E) and V(E) axe conjugate

in G and we may suppose T(E) = T(E). Thus J(P) and T(P) axe Sylow

2-subgroups of CG(T(E)), so that they are conjugate in CG(J(E)) and then

T(R) and V(R) are conjugate in G.

(b) The rest of the proof is similar to that of [4, (IF), (b)].

(U) Let either R = E or R = EP and G = \J(n, q) = U(V), where

E ~ 22/+1 and P ~ Sß, Dß, or Qß with ß > 4, and let J be a faithful
representation of R in G and C = CG(J(R)).

Suppose in the decomposition (1.1) of V as an R-module all the nondegen-
erate components are isomorphic and J(R) is radical in G. Then 2 is linear

and all the nondegenerate components are simple. Moreover, if R = EP, then

P = Sa+2 and J(R) is uniquely determined up to conjugacy in G.

More general, if R = E and J has exactly one Wedderburn component, then

all the nondegenerate components of V in (1.1) are simple, so that J(R) is

uniquely determined up to conjugacy in G.

Proof. Let E = (xx, x2, ... , x2y) and P = (a, x), so that \o\ = 2^~x, \x\ = 2

or 4 according as P ^ Qß ox P = Qß , and xox = ±o~x. Since J(R) is rad-

ical, it follows 02(Z(G)) < 02(AG(J(/Î))) = J(R) and (h(Z(G)) < Z(3(R)).
Thus 2 is linear. Suppose in the decomposition (1.1) of V, V = mVx,

where the nondegenerate /î-submodule Vx is either simple or Vx = Ux © U[
for totally isotropic simple /î-modules  Ux  and  U[.   Moreover,   Vx  has no
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proper nondegenerate /î-submodule. Let Y be the representation of R on Vx,

Gx = U(Fi), and Cx = CGl(Y(/?)). In addition, let Eq be a dihedral group
of order 8, D = RE0 the central product of R and Eq over Z(R) = Z(E0),

and Rx = (x3, x4, ... , x2y), so that Rx ~ 21?~x. Suppose Vx = Ux © U[.
We shall show that Vx has a proper nondegenerate /î-submodule and induce a

contradiction.

First consider R = E. Thus R has a unique faithful and irreducible repre-

sentation of degree 2y over any finite field of odd characteristic, so that Ux and
U[ are isomorphic /î-modules and Y has exactly one Wedderburn component.

If R ~ 22Z+X, then Vx has a proper nondegenerate A-submodule by the Remark

(2) of (ID). This is impossible and (U) holds in this case. Suppose R ~ 22J+X .

Since Ux has dimension 2y over ¥gi, it follows CGl(g) ~ GL(2y, q2), where

g = Y(xx). Thus Y(x2) induces a field automorphism of order 2 on CG{(g)

and Y induces a faithful representation of Rx in GL(2>", #2) which has one

Wedderburn component. By [4, (1A)] ¥qi is a splitting field of Rx, so that

Cqg (?)(Y(/î)i)) ~ GL(2, q2) and Y(x2) induces a field automorphism of order

2 on it. Thus the fixed-point set of the automorphism on CGg (g)(Y(Rx)) is iso-

morphic to U(2, q), so that Cx ~ U(2, #). By (ID) E0 has a faithful and ir-
reducible representation in Cx < Gx, so that Eq has a faithful representation in

Gx. Denote again by Y the representation of Eq in Gx. Then K = Y(R)Y(Eq)

is a central product of Y(A) and Y(£b) over Z(Y(A)) = Z(Y(E0)), so that
A ~ 22y+3. Since A is a subgroup of Gx and Fi has dimension 2y+x, the

natural representation of A in C?i induces a faithful and irreducible repre-

sentation of D in Gx . Denote again by Y the representation. In addition,

let M\ and M2 be nondegenerate subspaces of Vx of dimension 2y such that

V\ = MXLM2. By (ID) there exists a faithful and irreducible representation

X of A in U(2y,q). Identify XJ(2y ,q) with U(Af.) and U(Af2). Then R
acts on M\ and M2 through X, and on MXLM2 through Y' = 2X. Thus Y'
is a faithful representation of R on Vx and the M, are nondegenerate simple

Y'(A)-modules. If Y(JR) and Y'(R) are conjugate in Gx, then we may suppose

Y(R) = Y'(R) and then the M¡ axe nondegenerate Y(/î)-submodule. In order

that V\ be simple, it then suffices to show that Y(R) and Y'(R) axe conjugate

in Gx. Let C[ = CGl(Y'(R)). Then C[ ~ U(2, q) and E0 has a faithful and
irreducible representation in C[ < Gx , so that Eq has a faithful representa-

tion, denoted again by Y , in Gx . Thus K' = Y'(R)Y'(Eq) is a central product

of Y'(R) and Y'(Eq) over Z(Y'(A)) = Y'(A0), and the natural representation

of A' in Gx also induces a faithful and irreducible representation of D, de-

noted again by Y', in Gx. Thus both Y and Y' are faithful and irreducible

representations of D ~ 22y+3 in Gx. Since D = REq is a central product of

R and £b, both Y^ and Y'|£0 have exactly one Wedderburn component.

By the Remark (2) of (ID) Y(Eq) and Y'(jE'o) are conjugate in Gx, so that

we may suppose Y(A0) = Y'(L'o) and then both Y(R) and Y'(R) axe sub-

groups of CGí(Y(Eq)) ~ U(2y,q). By (ID) Y(R) and Y'(R) axe conjugate in
Cg,(Y(Eq)) , so that they are conjugate in Gx. It follows that Vx has a proper

nondegenerate A-submodule. This is impossible. Note in the proof above we

only suppose Vx = Ux © U[ has no proper nondegenerate A-submodule and R

acts on Vx faithfully.
Suppose J has one Wedderburn component and in the decomposition (1.1)
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V has a nondegenerate A-submodule of the form V = U ®U', where U and

U' axe totally isotropic simple A-submodules and V has no proper nonde-

generate A-submodule. Then R acts faithfully on V. Repeating the proof

above with Vx replacing by V , we can get that V has a proper nondegener-

ate A-submodule. This is impossible. Thus all the nondegenerate components

of V in (1.1) are simple, so that by (ID) we can suppose all the irreducible

representations of R on the components have the same images and then J(R)

is uniquely determined up to conjugacy in G.

Finally suppose R = EP. If g = Y(o), then CGl(g) a GL(2>"+1, q2S) for
some integer ô > 1, so that Y induces a faithful representation of E in CG,(g)

with one Wedderburn component. Thus CGi((Y(g),Y(E))) ~ GL(2,q2S)

and Y(t) induces a field automorphism of order 2 on it. The fixed-point set

of the automorphism on CG¡((Y(g), Y(E))) is isomorphic to U(2, qs) and

Cx ~ U(2, q3). By (ID) E0 has a faithful and absolutely irreducible repre-
sentation in C) < C7i , so that Eq is embedded as a subgroup in Gx. De-
note again by Y the representation of Eq in Gx. Thus A = Y(R)Y(Eq) is

a central product of Y(R) and Y(E0) over Z(Y(A)) = Z(Y(£0)) and the

natural representation in A in Gx induces a faithful and irreducible repre-

sentation of D in Gx. Denote again by Y the representation. Since D is

a central product of EEq and P, Y\ee0 has one Wedderburn component.

By the proof above we may suppose all the components in the decomposi-

tion (1.1) of Vx as an (EEQ)-mod\ile axe isomorphic nondegenerate simple

A-submodules, so that by (ID) we can identify these components by a con-

jugate in Gi. Thus Cg¡(Y(EEq)) ^ U(s, q) and Y induces a faithful and
irreducible representation W of P in CGí(Y(EEq)) , where s is an integer

such that s2y+x = dimFi. Since CGl(Y(L>)) = CCl(Y(£b)) ss U(l,/) and

o!î(U(l, q5)) has order 2, it follows that CCoî(y(ee<,))ÇW(P)) ~ U(l, qs) and

then ft(CCoi(Y(££b))(W(P))) < W(/>). By (IG) 5 = 2 and ß < a + 2, so that

dim Vx = 2y+2. Moreover, if P = Sß , then ß = a + 2. By the proof above

CGl(Y(P)) ~ \3(2y+x, q) and Y induces a faithful representation X' of E in

CGl(Y(P)) which has one Wedderburn component. Apply the proof above to
X' and CGl(Y(/>)). Then all the nondegenerate components in the decomposi-

tion ( 1.1 ) of the underlying space A of X' as an A-module are simple, so that

A = Ai 1A2 , where Nx and A2 are simple X'(A)-submodule. Since Y is the
tensor product of X' and W, Vx = N ® M and Nx ® M is a proper nonde-

generate A-submodule of Vx, where M is the underling space of W. This is

a contradiction. Thus Vx is simple and Y is irreducible of degree 2y. Similar

proof to above shows that CGl(Y(A)) ~ U(2, q) and Y induces an irreducible

representation W of P in CGl(Y(E)). Moreover, CG(J(P)) ~ U(m2y, q), J
induces a faithful representation X of A in CG(J(P)) with one Wedderburn

component, and all the nondegenerate components in the decomposition (1.1)

of the underlying space of CG(J(P)) as an A-module are simple. Now J is

the tensor product of X and W. By (1H) and J(R) radical, P = Sß and then
ß = a + 2 . Thus (1J) follows by (II), (a).

Let ZQ be a cyclic group of order 2a+a > 8 if a > 1, of order 2a > 4 if 2 is

unitary and a = 0 but of order 2 if 2 is linear and a — 0. Let E7Za be a central

product of an extraspecial group Ey a: 22/"1-1 and Za over Z(EY) = iïx(Za).
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Define
Í -1    ifa = 0,

£a~ll       ifa>l.

Then EyZa can be embedded as a subgroup of GL(2y, eaq2") such that Za is

identified with 02(Z(GL(2y, eaq2"))). Moreover, if a = 0, then GL(2'', eaq2")
= \J(2y, q) ; if a > 1 and g is a primary element of order 2a+a in U(2a+7, q),

then Cu(2°+)'>9)(^) sí GL(2>', g2") and we can identify these two groups. Thus

GL(2}', eaq2") is embedded as a subgroup of \J(2a+y, q) such that a generator

of Za is primary as an element of lj(2a+y, q). Denote H7 the normalizer of

E7Za in GL(2y, eaq2"), so that by (IE) and (IF) Hr/Z(Hy) =a Aut°r22(A7ZQ),
and Aj,Za, Hy are absolutely irreducible over Wqi or Fg2° according as a =

0 or a > 1. Moreover, each linear character of Z(Hy) acting trivially on

Oi(Z(Hy)) can be extended as a character of Hy acting trivially on EyZa. The

images Ra,y of EyZa and Ha>7 of H7 under the composition

K^GL(2y,eaq2")^U(2a+y,q),

where A = EyZa or //y, is then determined up to conjugacy in U(2Q+>', q).

We identify Ey and Za with their images in U(2a+y, q). So Ra,y = E7Za .

If a > 1 and Za = (y), then we claim there exists a e lJ(2a+y, q) such that o

normalizes Ray and aya~x = y~q . Indeed there exists x e \J(2a+y , q) such

that Tyr-1 = y~q and x induces a field automorphism of Cu(2«+y,9)(ZQ) ~

GL(2'', q2°). The embedding of Ray in CU(2<.+y;9)(ZQ) can be viewed as an

embedding of Ray in GL(25', q2") in which y is represented by a scalar

multiple of the identity matrix. So t^t-1 , E7 are extraspecial subgroups of

GL(2y, q2") with same type, and hxEyx~xh~x = Aj, for some h e GL(2>", g2")

by (ID). Thus o = hx normalizes Ray and ayo~x = y~q. Thus the claim

holds. A similar proof shows that Ra >y is uniquely determined up to conjugacy
in U(2a+}', q), since all cyclic subgroups of order 2a+a generated by a primary

element are conjugate in U(2a+Î', q).

(IK) Let R = EyZ be embedded as subgroup of G = U(«, q), where Z is
cyclic and |Z| > 4. Suppose the underlying space V of G has one component

of nondegenerate R-module in the decomposition (1.1), i.e. V is either a simple

R-module or decomposes as V = U ®U', where U and U' are totally isotropic

simple R-modules and V has no proper nondegenerate R-submodule. If Z =

Ch.(Z(CG(Z))), then \Z\ = 2a+a, n = 2a+y, and R is of the form Ra¡y as a
subgroup of G.

Proof. If F is a simple A-module, then by (IB) Z < Z(G), so that 2 is
unitary since \Z\ > 4. Thus F is a simple Aj,-module and then n = 2y.

Since Z = Ch(Z(CG(Z))) and Z(CG(Z)) = Z(G), it follows Z = (h(Z(G))
and \Z\ = 2a.   Thus R is of the form Ro,y.   Suppose  V = U © U' and
V has no proper nondegenerate A-submodule. If Z < Z(G), then each Ey-

submodule of V is an A-submodule. Thus U and U' are simple Ay-modules

acted faithfully by Ey. Since Ey has a unique such module over F?2, the

representation of Ey in G has one Wedderburn component, so that by (U)

V has a proper nondegenerate A-submodule. This is a contradiction and so

Z ^ Z(G). Let Y be the representation of R in GL(U). Then Y is ir-
reducible and a generator of Y(Z) is primary as an element of GL(U), so
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that CGl(c)(Y(Z)) ~ GL(«, q2d) for some integers n and ô. Thus Y(Ey) is

an irreducible subgroup of CGl(£/)(Y(Z)) , so that n = 2y and then 2y is the

multiplicity of the unique elementary divisor T of a generator of Z . By (1A)

CG(Z) ~ GL(2'', qdr) and so dT = 20 . Since Z = 02(Z(CG(Z))), it follows
that \Z\ = 2a+a for some a > 1, so that ô = 2a~x and A has the form Ra<7

as a subgroup of G. This completes the proof.

For each m > 1, the images Ama>7 and Hm,a¡7 of AQy and //Q,y under

the w-fold diagonal mapping in \J(m2a+y, q) given by

(1.10) g

í8 \
g

V        '" g)
geRa,, or Hay >   ul ■■••a, y 5

is also respectively determined up to conjugacy. Denote again E7 and Za

the images of E7 and Za under the diagonal mapping (1.10). Thus Za =

Z(Rm,a,y) and E7 is a subgroup of CU(m2!.+?i?)(Za) ~ GL(m2y, eaqr). It

follows by (U) and [4, (1A)] that E7 is uniquely determined up to conjugacy

in Cu(m2«+y,9)(Za), so that Rm,a,y is uniquely determined up to conjugacy

in \J(m2a+y, q), since all the cyclic subgroups of order 2a+a generated by a

primary element are conjugate in \J(m2a+y, q). It is clear that

,7(u        . ( Sp(2y, 2)    if either 2 is unitary or a > 1 ;
Hm,a,y  Z\tim  a  7)Km a7 ~ < .

l,0,'(2y,2)   if 2 is linear and a = 0,

where n is the type of Ey.

(IL)   Le/C7 = U(m2a^,^),A = Am;Q,y, H = Hm,a,7, Z = Za = Z(Rm>a,7),
and let

C = CG(R),        N = NG(R),        N° = {geN:[g,Z]=l}.

Then the following hold:
(1) C ~GL(m,eaq2a)®I7, [H, C] = I, HnC = Z(H) < Z(C), N° =

HC, where I7 is the identity matrix of size 2y and GL(m, eaq2") ® I7 =

{g ® I7: g e GL(m, eaq2")} . Moreover, each linear character of Z(H) acting

trivially on Qi(Z(II)) can be extended as a character of H which acts trivially
on R.

(2) N/N° is cyclic of order 2a .

Proof. (1) If a = 0, then Z < Z(G), so that the underlying space Va,7 of
AQ}, is a simple Ray module. The commuting algebras of Ra<y and Hay

are isomorphic to Fg2, so that C ~ U(w, q) and CG(H) ~ \J(m, q). Thus

[H, C] = 1 and C ~ U(m, q) ® Iy. Suppose a > 1. Then the underlying
space Va>y of Ray decomposes as Va¡y = U @U' for some totally isotropic

simple A-modules U and U'. The commuting algebra of Ra<y and Haty on

U are isomorphic to F^« . It follows that C ~ CG(H) ~ GL(m, q2") and

C = CG(H), since CG(H) < CG(R). Thus [//, C] = 1 and Z(H) < H n C
since R < H. But H n C < Z(//) and so Z(/7) = HnC. By (IE) and

(IF) H/Z(H) ~ Aut°A. The elements of A0 induce the automorphisms of

R trivial on Z. Thus for each element g of N°, there is h e H such that
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gh e C, so that A0 = HC.  The last assertion follows by H ~ Ha>y and

R^Ra.y
(2) If a = 0, then Z = Ö2(Z(G)) and so A = A0. Suppose a > 1.

Since Z = Z(R), the elements of A induce automorphisms of Z . Let y be

a generator of Z(Ra,7) < U(2a+}', #). Then there exists o e \J(2a+y, q) such

that a normalizes Ray and oyo~x = y~q. Let p and w be the images of

a and y under the w-fold diagonal mapping (1.10). Then p e N, Z = (w),

and pwp~x = w~q . For each g e N, gwg~x = w' for some i > 1. Thus w

and wl axe conjugate in G, so that i = (-q)1 for some I > 0 as w is primary.

Thus replacing g by p~lg, we may suppose g fixes it; and then g e N° . It

follows that N = (p, N°). This completes the proof.

Remark. Suppose 2 is linear and a = 0. Then A ~ 22/4"1, A = A0 = //C,

F < A, and H/Z(H)R ~ 0±(2y, 2). If (AmA„ cp) is a weight, then each
irreducible constituent cpQ of the restriction of cp to H has defect 0 as a char-

acter of H/R. An irreducible constituent of the restriction of cpQ to Z(H) is a

linear character Z of Z(//) acting trivially on RnZ(H) = Z(R) = (h(Z(H)),

so that it has an extension Z to H which is trivial on R . Thus <poZ~x is an ir-

reducible character of defect 0 of H/Z(H)R. For y > 2 denote Qi(2y, 2)
the subgroup of index 2 in 0^(27, 2) such that £l+(2y, 2) ~ Dy(2) and
Q~(2y, 2) ~ 2DY(2). Then Q^y, 2) has exactly one irreducible character

of defect 0, i.e. the Steinberg character. Thus Ol,(2y, 2) has no irreducible

character of defect 0, so that no such weight of U(m2y, q) exists. If y = 1

and Ey has plus type, then H/R ~ Z/2Z and so no such weight exists either.

If y = 1 and Ey has minus type, then H/R ~ 0~(2, 2) = GL(2, 2) and
the Steinberg character St is the only irreducible character of defect 0 and so

Pol"1 = St.

Suppose 2 is linear and 2a is the exact power of 2 dividing q — 1 . Let EyP

be the central product of an extraspecial group Ey ~ 22/+1 and a semidihedral

group P = Sa+2 of order 2a+2 over Z(Ey) = Z(P). Then there exists a

faithful and absolutely irreducible representation T of EyP in U(25'+1, q) by

(II). The image Sx,y of EyP in XJ(2y+x, q) is uniquely determined up to

conjugacy, and independent of the type n . Thus we may suppose Ey has plus

type. Denote again P and Ey the images T(P) and T(A) in U(2;'+1, q). Let

s\,y = cSi.,i[Si,y,Si,7]) and Lx>y the subgroup of Au(2,+i,q)(Sx,y) which

acts trivially on [51)7, Sitï]. By (II), (b)

[LUy, Z(Sl?)] = 1,     Z(LX,7) = Z(\J(2y+x, q))Z(Sl7),

Qj(2?+1 ,q)iLl,ySX,7) = CV(2?+t q-)(SXt7) = Z(U(2y    , q)),

and

Lx,7/Z(LXt7) -Aut0^.

Moreover, each linear character of Lx y acting trivially on 02(Z(LXtï)) can be

extended as a character of LXt7 acting trivially on S\   .

For each m > 1, the images Sm,x^7 and Lm¡x>7 of SXy7 and Lx>7 under
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g
g eSXty, or L1,7 >   UI M,y >

the m-fold diagonal mapping in U(m2y+X, q) given by

/* \

(1.11) g»

v        */
is also determined up to conjugacy and Smi,i? is uniquely determined up to

conjugacy in U(m2y+X, q) by (U). Let S°m j y = Cs,,,,,^,,,,, S«,i,,]).

Then LmAt7 normalizes Sm>i,y, [Lm>hy, Z(5° ! y)] = 1, and Z(LmA,y) =

Z(GL(m2y+x,q))Z(S°mXy). Moreover, 5° >1>JP < LM,,,y and

Lmil,,/Z(Lw,li},)~Aut0S0jlir

In particular,

¿m.l.y/Am.i.yZLLm.l,)') -Sp(2y, 2).

Denote again by P and Aj, the images of P and Ay under the m-fold diagonal

mapping (1.11). Let P = (x, o), so that \a\ = 2a+x , \x\ = 2, and tot-1 =

-a"1. Thus [Sm,l>y,Sm,l>y] = (a2), S°mXy = (o)E7, Z(S°m Ay) = (a), and

Sm,\,y = (T> Sm,\,y) •

(IM) Lei G* = U(m2>-+1,0), S = SmA>y, L = Lm,l>y,and S° = S°m x?,
and let

C = CG(S),        N = NG(S),        N° = {geN:[g,Z(S°)]=l}.

Then the following hold:
(1) C~U(m,q)®Iy+x, Z(C) = Z(G), [L,C] = l, LnCS° = S°Z(L),

LnS = S°, N° = CL,and Z(N°) = Z(L) = Z(G)Z(S°), where I7+x is the
identity matrix of size 2y+x and \J(m, q) ® I7+x is defined similarly to (IL).
Moreover, each linear character of Z(L) acting trivially on Oi(Z(L)) has an

extension to L trivial on S°.

(2) N° = {geN:[g,cr2]= 1}, A0 < N, and N = (x, N°).

Proof. (1) Since T is absolutely irreducible, C ~ U(m, q)®I7+x and Z(C) =
Z(G). It is clear that A0 n S = L n S = S° and LC < A0. Since CG(LS) ~
U(m,q) and CG(LS) < CG(S), it follows CG(LS) = C and so [L, C] = 1.
The rest of proof is the same as that of [4, (II), (l)j.

(2) Let A1 = {g e A: [g, o2] = 1}. Since o2 has order 2a > 4, C(a2) ~

GL(2'', q2) and C(o) ~ GL(2'', q2). So C(o2) = C(a) since C(o) < C(o2).
It follows that A1 < C(a) and then A1 = A0 as A0 < A1 . Since [S, S] =

(a2) and A normalizes [5,5], it follows that N° < N. Now 2a is the exact

power of 2 dividing q-l and a2 hasorder 2" , so that (o2)~q = (o2)~x . Since

xa2x'x = o~2, it follows Tcr2T_1 = (o2)~q. For any h e N, h(o2)h~x = (a2)

and so ho2h~x = (o2)' for some i > 1. Thus ha2h~x = (cr2)(-i) for some

/ > 0 since a2 is primary. Replacing h by x~lh e A, we may suppose

ho2h'x = a2 , and then h e N° . Thus N = (x, N°) and this completes the
proof.

2. The radical 2-subgroups

In this section, we shall describe the structures of radical subgroups of unitary
groups.
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For each a > 0, y > 0, ra > 1, and 1 < i < 2, define

p, J Sm, i, y-1       if 2 is linear, a = 0, y > 1, and i = 2,

m-Q'},_ \ Rm,a,7 otherwise,

where Rm,a,y and 5m>ij},_i are subgroups of U(m2a+?, q) defined in (IL)

and (IM). Thus if 2 is linear, a = 0, and y > 1, then Rxm a = Rm,o,y

and R2nay = Smti>y-\. The centralizer Clma7 and normalizer N'may of

R\ntaty in' U(m2Q+'', q) are given by (IL) and (IM).
For each integer c > 0, let ^4C denote the elementary abelian 2-subgroup

of order 2C represented by its regular permutation representation. For any

sequence c= (c\, c2,..., ct) of nonnegative integers, let Ac = Ac¡ \AC2\---\ACl,

and let

be the wreath product in V(d, q), where d = m2a+y+c'+Ci+-+c'. Then R'm Q¡7 c

is determined up to conjugacy in U(d, q). It is clear that [V, R'm Q y]

= V, and Ac acts transitively on the set of underlying spaces of the factors

of the base subgroup of R'm at7 c. Here V is the underlying space of R'm a y

and [V, Aj„ a y] is the set of vectors of V moved by R'mt0ity ■ By [3, (1.4)]

with obvious modifications,

Cv(d,q)iR'm,a,y,c) = Cm,a,y®Ic,

where /c is the identity matrix of size n = 2Cl+C2+"'+c' and Clmaty®Ic =

{g®h~. g e C'may}. Moreover, the following hold:

KvV,q)iKl,a,y,c) = iNL,a,7/K,a,y)®Nm(ACil...lACl),

(2.1) N\J(d,q)iR'm,a,y,c)/R'm,a,y,c

= iN!„,a,y/R¡n,a,y) x GL(cu 2) X • • ■ X GL(C/, 2) ,

except when 2 is linear, a = y = 0, and cx = 1, in which case Rxm 0 0    =

<,o,i!^,and

Mj(rf,i)(Ää,,o,0,c) = iNm,0, l/Rm,0, l) ® As(„_2)(^2 i • • • i A,) ,

(2.2) NU(d,q)iRm,0,0,c)/Rm,0,l

= (tfi.o.i/l&.o.i.) x GL(C2' 2) x ... x GL(c,, 2),

where Aj„ 0 t = (-/m) i^4C| is dihedral of order 8, and c' = (c2, ... , ct). In the

latter case Rxm 0 0 c is not radical by (IL). Here (A¿,ia,7/R'miQ<y) ® NS{n)(Ac)

is defined as [3, (1.5)]. Before proving these equations, we first state a lemma

which can be proved by replacing GL by U in the proof of [4, (2A)].

(2A) Let X < U(m, q), Y = Ac < S(n), where c = (cx, c2, ... , ct) and
n = 2Cl+C2+- -+c>, and let R = X\Y' < U(mn, q), D = Xx x A2 x • • • x X„ the base

subgroup of R, and VX,V2, ... ,Vn the underlying spaces of Xx, X2, ... , Xn.

(a) If either X is nonabelian or there exists w e Z(X) such that \w\ > 3,

then every normal abelian subgroup of R is contained in D.

(b) Suppose X = (-Im) and Y = ACl . If cx > 2, then CR([R,R]) = D
and R is generated by normal abelian subgroups of R. If cx = 1, then R =
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^m,o,i <U(2m, q) and R is dihedral of order 8. In particular, R isnonradical

in U(2m, q).

Now we prove (2.1) and (2.2). Let R'm a>y c = X\ Y where A = R'm^t7

and Y = Ac. First we consider (2.1), so that either A ^ (-Im) or A = (-Im),

but cx > 2. Let A be the subgroup of X í Y generated by all normal abelian

subgroups of A i F and A(X I Y) = Z(CK([K, A])). Then a similar proof to
that of [4, (2.1)] shows that A(X l Y) = Z(X°)n and A(Rim^a^7) is elementary

abelian if and only if 2 is linear and i = 1, where A0 = Cx([X, A]). Thus

Nv(d,q)iX I Y) normalizes Z(A0)" . Let r = {[V, x]: x e Z(A°)\ x / 1}
be partially ordered by inclusion, where [V, x] = (x - 1)F. Then the min-

imal elements in this ordering are the underlying spaces of the factors of the

base subgroup D = (A)" . So AU(í/i9)(A í Y) induces a permutation group on

these spaces, and the equations (2.1) follow by [3, (1.5), (2,1)] with obvious

modifications.

Finally suppose A = (-Im) and cx = I .Let c' = (c2, ... , ct), X' = XlAc¡ ,

and F' = A¿ . Then A l Y = X' i Y' and A' = Rxm 0 , < GL(2m, q). Thus
(2.2) follows by (2.1).

We shall call /?{„>a>y>c a basic subgroup of U(d, q) except when 2 is linear,

a = y = 0, and cx = I. In addition, we shall call deg,R'm a y c = d the degree

of Rim,a,y,c and /(ÄJ„jQ>y>c) = /, the length of R¡m>a y>c.

(2B) Let R be a radical 2-subgroup of G = U(V) and A = NG(R). Then
there exists a corresponding decomposition

v = vl±---±vs±vs+l±...±vt,

R = Rx x • • - x Rs x Rs+X x ••• x Rt

such that R¡ = {±1^} for 1 < i < s, and R¡ are basic subgroup of V(V¡) for

i > s + 1. Moreover, if 2 is unitary, then 5 = 0.

Proof Since R is radical in G, it follows that 02(Z(G)) < 02(A) = R, so
that [V, R]= V and 5 = 0 if 2 is unitary. By (IB) we may write

V = mxVx±m2V2±• ■ ■ ±muVu±nx(Ux © U[)L• • ■ ±nv(Uv © U'v),

where the V¡ represent representatives of isomorphic classes of nondegenerate

simple A-modules, U¡ and Uj represent representatives of isomorphic classes

of totally isotropic simple A-submodules occurring in V, and m,, n¡ are the

multiplicities of V¡, Uj © Uj in V. Moreover by (IB) we may suppose Uj ©

Uj has no proper nondegenerate A-submodule. For simplicity of notation we

rewrite this as

V = mx VxLm2V2± ■ ■ ■ ±muVu±mu+x Vu+l±• ■ • ±mu+vVu+v ,

where m, = «,, V¡ = U¡® U[ for i > u. Let T be the natural representation

of R on V, and let F, be the representation of A on V¡. Thus

(mxFx \

\ "í«+ii'm» /
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Let R¡ be the group of linear operators which agree with an element of R on

m¡V¡ and are the identity on m7 F, for j ^ i. Then A induces a permutation

group on the set of pairs (m,F,, R¡), so that

R < N n (Rx x R2 x ■ ■ • x Ru+V) < N.

Since R is radical, R = Rx x R2 x • • • x Ru+V . Let A, = AU(m.T/)(A;), so that

Ri < OiiNi) and

R < A n iOiiNi) x 02(N2) x ••■ x Oz(Nu+v)) < A.

Again, since R is radical, it follows that A, = £>2(A,) and each A, is radical

in U(m,F,) for all i. By induction we may suppose u + v = 1 and V = mxVx .

Suppose R has a characteristic noncyclic abelian subgroup A.  As an ,4-

module, Vx decomposes by (IB) as

V\ = uxXxLu2X2L • • • LumXm ,

where A, is either a nondegenerate simple ^-submodule or a sum F, © 7/ of

totally isotropic simple ^-submodules F,, Y{ , and u¡ is the multiplicity of A,

in Fi. So R induces a permutation group on the set

Q = {uxXx, u2X2, ..., umXm}.

The sum of each A-orbit is a nondegenerate A-submodule of Vx. If Vx is a

simple A-module, then Q has exactly one A-orbit. If Vx = Ux® U[, then Vx
has no proper nondegenerate A-submodule, so that Q also has exactly one R-

orbit. Thus R acts transitively on Q and the A,'s are either all nondegenerate

simple A-modules or all sums Y¡®Y¡ of totally isotropic simple A-modules Y,■■,

Y¡ . In particular, u¡ = u¡ for all I < i, j < m. Thus V has a corresponding

decomposition and may be rewritten as

(2.3) V = nXx±nX2L---±nXm,

where the A, are mutually nonisomorphic y4-submodules. Here the multiplici-

ties are all equal since V = mxVx . Let E, be the representation of A on «A,.

Thus
/E, \

E2
TU =

V fJ
If A, is a nondegenerate simple ^-submodule, then m > 2 since A is

noncyclic. The same conclusion holds if A, is a sum of totally isotropic A-

submodules F, and Y¡ , since the representation of A on Y{ is the contragre-

dient of the representation of A on F, composed with a field automorphism.

Let

A, = {g e N: gnXx = nXx},        Rx = {g e R: gnXx = nXx}.

Then A < Rx < Nx and Ei extends to a representation, denoted again by Ex ,

of Ai on nXx. Since A is characteristic in R, N induces a permutation group

L on £2' = {nXx, nX2, ... , nXm}. The subgroup A of L corresponding to

the subgroup A of A is transitive on Q'. Moreover

R<Ex(Rx)lK,        N<Ex(Nx)lL.
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An argument similar to that of [3, (4A)] shows that A normalizes Ex (Rx)lK .

We sketch the proof as follows: Every element g of A has the form

Eitel) \
Ei (ft)

Ei (&,)/

where the g¡ e Nx and n(g) e L. Since Rx < Nx, g normalizes the base

subgroup Ex(Rx)m of Ei(Ai)iA. So A normalizes Ex(Rx)\K, since EX(RX)\K

is generated by its base subgroup and R. Thus R < (EX(RX) i A) n A < A.
Since R is radical, it follows that R = Ex(Rx)iK. Now A permutes the spaces

nXx, nX2, ... , nXm . By [3, (1.5)] with obvious modifications

A = (AU(„X|)(E1(A1))/E1(A1))®AS(W)(A),

A/A = (NV[nXl)(Ex(Rx))/Ex(Rx)) x AS(m)(A)/A.

Thus Ei(Ai) and A are radical subgroups of \J(nXx) and S(m) respectively.

Since A is transitive on Q', it follows that K = Ac for some c by [3, (2A)].

By induction, there exist decompositions

nXx =MXLM2L---LMW,        Ex(Rx) = SxxS2x---xSw,

where each S¡ is a basic subgroup of U(M,) for 1 < i < w. Since R =

Ex(Rx)lAc, Z(R)~Z(EX(RX)) is cyclic. Sot« = l and R = SxlAc. Moreover,
since A < Rx, \RX\ ̂  2, so that |Ai| ^ 2 and then A is a basic subgroup of

U(F).
Thus we may suppose that every characteristic abelian subgroup of R is

cyclic. By a result of P. Hall, [14, 5.4.9], R is the central product EP of E and
P over í2i(Z(A)) = Z(E), where E is an extraspecial 2-group of order 22y+x,

and P is one of the following groups: a cyclic group, a semidihedral group Sß ,

a dihedral group Dß , or a generalized quaternion group Qß . Moreover, Sß ,

Dß , and Qß have order 2^ > 16 . By (U) either P is cyclic or P = Sa+2 and
the latter case occurs only if 2 is linear, so that R = Sm¡tXí7. If R = E, then

by (1J) again 2 is linear and R = Rxmi 0    .

Suppose P is cyclic generated by g and \P\ > 4, so that P = Z(R). Thus

A normalizes CG(T(P)) and Z(CG(T(P))) <N. Since P < 02(Z(CG(T(P))))
and R is radical, it follows that (^(zlCo^P)))) < 02(A) = R, so that

02(Z(CG(T(P)))) = Z(A) = P,

since A < CG(T(.P)). Let X be the representation of A on Vx, where V =

mx Vx. Then T = miX. As an element of U(F]), X(g) is primary with a unique

elementary divisor F e ZF of multiplicity u. So Cv^v¡)(X(g)) ~ GL(u, £r<7¿r)

and CG(J(g)) ~ GL(miH, eTqdr). Thus

Z(CG(J(g))) x Z(Cu(Kl)(X(s))) ~ GL(1, £r^r),

so that |X(P)| = |C%(Z(Cu(Kl)(X(£))))| and then X(P) = 0>.(Z(Cv,Vl)(Xig)))),
since X(P) < Z(CV{Vl)(X(g))). By (IK) X(R) = Ra,7 in U(VX), so that R =

Rm,,a,y m G- This proves (2B).

g
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(2C)   Let (R,cp) be a weight of G = U(V) and

v = vl±...±vs±vs+l±...±vt,

R = Rx x ■ ■ ■ x Rs x Rs+X x ■ ■ ■ x R,

be the corresponding decomposition o/(2B). Let

V(k, m, a, y, c) = ^ V¡, R(k, m, a, y, c)

i

= Y\Ri,  G(k,m,a,y, c) = \J(V(k, m,a,y,c)),
i

where i runs over the indices such that A, = A^, Q    c. Then

KiR)=      n     NG(k,m,a,y,c)iR(k, m,a, y,c)),
k,m,a,y,c

N(R)/R=       Yl      NG(k,m,a,y,C)(R(k,m,a,y,c))/R(k,m,a,y,c).
k ,m,a,y ,c

Moreover

NG{k,m,a,y,C)iRik, m,a, y,c)) = N¡¡Ja?ciS(u),

NG{k,m,a,y,t)iR(k, m,a, y,c))/R(k, m,a, y,c)

= (Nm,a,y,JRm,a,y,c)lSiU)>

where if Vm .a, 7tc z's the underlying space of A^, Q >y c then N„\ a¡y c is the nor-

malizer of R^ ayc in U( Vm , a ;7, c), and u is the number of basic components

Rkm,a,y,c in R(k> m,a,y,c).

Proof. Let A = N(R) and 3 = {[V, x]: x e Z(R),x / 1}, which is par-
tially ordered by inclusion. Then A induces a permutation group on 3! . The

minimal elements in this ordering are the spaces V¡, so A permutes the pairs

{(V¡, R¡)} . Let A, be the subgroup of R¡ generated by all normal abelian sub-

groups of Ri, A(Ri) = CKi([Ki,Ki\), and %, = {[V, g]: g e A(R,),g ¿ 1}
partially ordered by inclusion. If R¡ = A^, a y c, then the minimal elements

of ê'i have dimension m2a+y as shown in the proof of (2.1). We claim that

(m, 2) = 1. Indeed let C = CG(R) and 6 an irreducible constituent of the

restriction cp\CR of <p to CR. Then R < kerf/ and 6 has defect 0 as a

character of CR/R. Let C, = Cu(^)(A,). Then C = Cx x C2x ■■■ x Ct and
0 — 0i x 02 x • • • x 6t, where 0, is an irreducible character of C¡Ri/R¡ of defect

0. As a character of C,■, 0, falls into a block b¡ of C, with defect group Z(R¡)
such that 0, is the canonical character of b¡. Now C, ~ GL(m, eaq2"). By a

theorem of Broué, [6, (4.18)], there is a semisimple 2'-element 5 e Ci such that

Z(Ri) is a Sylow 2-subgroup of Cc.(s). This forces Cc,(s) ~ GL(1, eaqmT).

If a > 1, then Z(R¡) has order 2a+a and Cc,(s) ^ GL(1, ^m2Q), so that m

is odd. If a = 0, then C,- ~ U(m, q), Cc,(s) sa U(l, i"1), and |Z(A,)| = 2a
or 2 according as 2 is unitary or linear. Thus s is primary in C, with a unique

elementary divisor T of multiplicity 1, so that r e ZFX, and then m = d\- is

odd. Now the rest of the proof is the same as that of [4, (2C)].
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Remark. By (2C) if (R, cp) is a weight, then there exists an irreducible character

<Po, covered by cp , of AG(fc m Q ,, c)(A(A;, m, a, y, c)), so that cp0 is trivial on

R(k, m, a, y, c) and cpQ has defect 0 as a character of

^G(k,m,a,y,c)(Rik, m,a, y,c))/R(k, m,a,y,c)

= (^,«,,X,»,,,t)isW.
As shown in the proof of [3, (2C)], there exists an irreducible character y/ of

A*    j „ e covered by cpQ . Thus >p has defect 0 as a character of

Nk IRk
lym,a,y, c/ lxm, a, y, c

By (2.1), there exists an irreducible character y/0 of Nm a , covered by ^.

So ^o has defect 0 as a character of Nm!a,ylRm,a,y Suppose 2 is linear

a = 0 and & = 1. Then by the remark after (IL), this only occurs when

Rm,a,y = Rm,0,1 is a quaternion group.

Given m > 1, a > 0, y > 0, and a sequence c = (cx, c2, ... , ct) of

nonnegative integers c,. Let c' = (c2, ... , c,). Define öffli(IJit as follows: If

2 is unitary, then Dma7C = Rm,a,y,z. Suppose 2 is linear. Then

( Rm,a,y,c if Q. > 1

Dm ,a,y,c — *

SXi7-X,c        ifa = 0, and y > 1,

Rm,a,y,c       if a = y = 0 and Ci 7¿ 1,

,Rm,o,i,c'       if a = y = 0 andci = 1,

where Amo,i is a quaternion group. In addition let Dm,Q>), = Dmct¡7Q. By

the remark above, the components R¡ in the decomposition of (2C) can be

supposed to have the form Dmt0,t7¡c.

3. The 2-weights

Let H be a subgroup of a finite group G, K < H, R a normal 2-subgroup of

H with R < K, and 0 an irreducible character of A trivial on A. Following
[4], we denote the sets of irreducible characters of H which cover 8 and which

have defect 0 as characters of H/R by lxx°(H, 0). We also denote by A(0)

the stabilizer of 0 in N(R). By [3, p. 3] we can enumerate the weights for a

block A of G as follows: Let A be a radical subgroup of G, b a block of
C(R)R with defect group R and B = bG, and 0 the canonical character of

b. Then each \p e Irr°(A(0), 0) gives rise to a A-weight (A, I(ip)) of G,

where I(y/) = Ind^e)(v) is the induction mapping. All A-weights of G axe

obtained by letting R run over representatives for the C7-conjugacy classes of

radical subgroups, and for each such R letting b run over representatives for

the A(A)-conjugacy classes of blocks of C(R)R such that b has defect group

R and bG = B.
A Brauer pair (R, b) of a finite group G consists of a 2-subgroup R of G

and a block b of C(R). If G is a unitary group over Wgi, then the Brauer

pairs (R, b) of G have been labeled by ordered triples (R, s, -) in [6, (3.2)],
where s is a semisimple 2'-element of the dual group G* of G, and—is an

empty set. Moreover, by [6, (3.4)] each block B of G is labeled by a pair

(s, -). Since G* ~ G, we may identify G* with G.
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Let ZF' be the set of polynomials Y inZF = ZFX\}!F2 whose roots have odd
orders. Given Y in ZF, let ap be the exponent such that 2Qr = (dr)2 and

mr the integer such that mr2ar = dr. By [6, (3.8)] each T in ZF' deter-

mines a block By of Gp = U(ú?p, q) with label (T, -), where T represents a

semisimple element of CTp with an elementary divisor Y of multiplicity 1 and

no other elementary divisors. By [6, (4.18)] a defect group Ap of By exists as

a subgroup of C^T) ~ GL(1, erqdr). If Y e Fx, then er = -1, dr is odd,

or = 0, and mr = dv, so that CGv(Y) ~ U(l, tfdr) and Ar = 02(Z(C7r)).
Thus Ap has the form L>mr,Qr,o • If Y e F2, then £p = 1, <^r is even, and

ar > 1, so that CGr(r) ~ GL(1, qdr) and Rr has the form Dmr,ar,0. Let

Cp = C^Rr), and Ar = AGr(Ar). Then Cr ~ GL(mr, erqrr) and'Ar/Cr
is cyclic of order 2ar by (IL). Let b\- be a block of Cp with defect group Ar

and bp = BT, let 0r be the canonical character of op, and A(0r) the stabi-
lizer of 0p in Ar. Then 0p acts trivially on Ar and has defect 0 as a character

of Cp/Ap. The pair (Ap, 0p) is determined up to conjugacy in Ap by Brauer's

First Main Theorem. Since Ap is a defect group of Ap, (A(0r): Cp) is odd,

so that A(0r) = Cp. Conversely let A be a block of U(2am, q) with defect
group R = Dm,a,o> (s, -) the label of B, and b a block of CG(R) such
that ¿u(2°m>«) = B. By [6, (4.18)] we may suppose A is a Sylow 2-subgroup

of Cu(2«m,?)(s) • This forces C\j(2°m,q)(s) — GL(1, eaql) for some / > 1, so

that 5 has a unique elementary divisor Y e ZF' with multiplicity 1. If a > 1,

then \Ra,7\ = 2a+a and CU(2»m>q)(s) ~ GL(1, qdr), so that I = dr = 2am and

|GL(1, qm2°)\2 = 2a+a. Thus m is odd, m = mr, and a = ar. If a = 0,

then Rat7 = 02(Z(U(m, q))) and Cv{m<q)(s) ~ U(l, qdr), so that dr = m.

Since Y eF¡, i/p is odd and so m = mp, a = ap. Thus Y and B correspond

in the preceding manner. In particular, U(2am, q) = C7r, Ray has the form

Ap as a subgroup of Gy, B = By , and s, Y axe conjugate in C7p.

(3A) Given Y e 9r'. Let G = \J(2ydr, q) and R = Dmr<ar<7 < G or G =

U(2í/p, q) and R = Amr.;n,i < G, where Amro,i is a quaternion group. Let

C = CG(R) and N = NG(R). Then R is a basic subgroup of G and C = Cp®/,
where I is the identity matrix of order 2y or 2 according as R = Dmr,art7 or

R = Rmr,o, i. The irreducible character of C defined by 6(c ® I) = 8r(c) for

ceCT is then a character of defect 0 of C/Z(R) and \ Irr°(A(0), 0)| = 1.

The proof of (3A) is the same as that of [4, (3A)].

Let r e y, and let G = U(2ddr, q) and R = L>Wr>ar,y,c be a basic

subgroup of G, where e = (cx, c2, ... , ct), and d = y + cx + c2 -\-he,. In

addition, let c' = (c2, ... , ct). Then C = CG(R) = Cy® Iy® Ic, except when

2 is linear, a = y = 0, and cx = I, in which case, C = CG(R) = Cy® I2® h1,
where I7, Ic, I2,and Zc< are identity matrices of orders 2y, 2C|+C2+"'+c', 2,

and 2C2+  +C/ respectively. The irreducible character of C defined by

J 6(c®I2® Ic<) = 0p(c)   if 2 is linear, a = y = 0,    and   cx = 1,

1 8(c ® I7 ® Ic) = 8r(c)    otherwise,

for c e Cy is then a character of defect 0 of CR/R. We shall say that the pair

(A, 0) is of type Y. If b is the block of C containing 0, then (A, b) has
a label (A, 2dY, -), so that the block B = bG of G has the label (2dY, -).
Regard b as a block of CR. Then b has a defect group R. Moreover, using
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the following lemma (3B) and the same proof as [4, (3C), (2)], we can show

that CR has exactly one A(A)-conjugacy class of blocks b such that B = bG .

(3B) Let G = U(n, q), R a basic subgroup of G, (R, cp) a weight ofi G, and
0 an irreducible character ofi CG(R) covered by <p. Then (R, 8) has type Y

for some Y eZF'.

The proof of (3B) can be obtained by using the remark before (3A) and

replacing GL by U in the proof of [4, (3B)] with some obvious modifications.

Therefore we can count the number of A-weights by letting R = Dmv,„r,7,c

run over the basic subgroups of G with degree 2d i/r. Using (3A) and replacing

GL by U in the proof of [4, (3C)] with some obvious modifications, we can get

the following proposition.

(3C) Let B be a block ofi G = U(2d dT, q) labeled by (2dY, -). Then there
are exactly 2d B-weights (R, cp), where R runs over the basic subgroups of G

with degree 2d rfp.

For each Y e F' and d > 0, let %Y,d = {<Pr,dj ■ I <j <2d} be the set of

characters associated with basic subgroups of U(2d¿/p, q) in (3C).

(3D) Let r e ZF', G = U(u;pâfr, q), for some integer wr > 1, and B the
block of G labeled by (wrY, -). Then the number of B-weights is the number

fi- ofi assignments

J^r\rf-* {2- cores},       <Pv,d,} <*-* Kr,dj,
d>0

such that
2d

"£2d^\KY,dj\=WT.

d>0       7=1

The proof of (3D) is the same as that of [4, (3D)] with GL(F,) replaced by
V(Vi).

The main theorem of this paper is the following theorem which can be proved

by replacing GL(F;) by U(F,), F by F', and GL(Fr) by U(Fr) in the proof
of[4,(3E)].

(3E) Let B be a block ofi G = U(F) with label (s, -), X\tSy the primary
decomposition ofi s, Y,y ^t the corresponding decomposition of V, and wr the
integer such that dim Fp = i/pWp. Then the following hold:

(1) The number of B-weights of G is Y[rfr> where Jy is given by (3D). In

particular, fr is the number of partitions of wr.

(2) The number of B-weights of G is 1(B).

References

1. J. L. Alperin, Large abelian subgroups of p-groups, Trans. Amer. Math. Soc. 117 (1965),

10-20.

2. _, Weights for finite groups, The Arcata Conference on Representations of Finite Groups,

Proc. Sympos. Pure. Math., vol. 47, Amer. Math. Soc., Providence, R. I., 1987, pp. 369-

379.

3. J. L. Alperin and P. Fong, Weights for symmetric and general linear groups, J. Algebra 131

(1990), 2-22.



278 JIANBEI AN

4. J. An, 2-weights for general linear groups, J. Algebra 149 (1992), 500-527.

5. _, Weights for classical groups, Trans. Amer. Math. Soc. (to appear).

6. M. Broué, Les l-blocs des groupes GL(n , q) et U(« , q2) et leurs structures locales, Sém-

inaire Bourbaki Astérisque 640 (1986), 159-188.

7. R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra 1

(1964), 139-151.

8. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras,

Pure and Appl. Math., vol. 11, Interscience, New York, 1962.

9. J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin, 1963.

10. L. Dickson, Binary modular groups and their invariants, Amer. J. Math. 33 (1911), 175-192.

11. P. Fong and B. Srinivasan, The blocks of finite general linear and unitary groups, Invent.

Math. 69 (1982), 109-153.

12. S. P. Glasby, Extensions of exlraspecial 2-groups by orthogonal groups, J. Austral. Math.

Soc. (to appear).

13. _, An extension of a group of order 22n+2 by the symplectic group Sp(2«, 2), J. Austral.

Math. Soc. (to appear).

14. D. Gorenstein, Finite groups, Harper's Series in Modern Mathematics, Harper & Row, New

York, 1968.

15. R. L. Greiss, Automorphisms of extra special groups and nonvanishing degree 2 cohomology,

Pacific J. Math. 48 (1973), 402-422.

16. I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-

635.

17. M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc.

London Math. Soc. (3) 50 (1985), 426-446.

18. D. L. Winter, The automorphism group of an exlraspecial p-group, Rocky Mountain J.

Math. 2(1972), 159-168.

Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois

60680
Current address : Department of Mathematics and Statistics, University of Auckland, Private

Bag, Auckland, New Zealand
E-mail address: an@mat.aukuni.ac.nz


