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ûj-CHAOS AND TOPOLOGICAL ENTROPY

SHIHAI LI

Abstract. We present a new concept of chaos, co-chaos, and prove some prop-

erties of co-chaos. Then we prove that co-chaos is equivalent to positive entropy

on the interval. We also prove that co-chaos is equivalent to the definition of

chaos given by Devaney on the interval.

1. Introduction

Chaotic behavior has recently been the focus of considerable study by math-

ematicians and other scientists. Definitions of chaos have been given by Li and

Yorke [LY], Devaney [D], and others.

It is known that if a continuous map of the interval has positive topological

entropy, then it is chaotic according to the definition of Li and Yorke [M,

O, LY, N]. The converse of this result is false; Xiong [X3] and Smitál [Sm]

have given counterexamples. Here, we provide a definition of chaos which is

similar to the one given by Li and Yorke. However a continuous map / of the

interval is chaotic in our sense if and only if / has positive topological entropy.

Furthermore, we prove that such a map has positive topological entropy if and

only if it is chaotic in the sense of Devaney.

Let A be a compact metric space with metric d, and let /: A —> A be
continuous. The following definition is based on the work of Li and Yorke

[LY].

Definition 1.1. A subset 5 of A containing no periodic points is called a scram-
bled set if for any x, y e S with x ^ y, and any periodic point p e X of

/,
(1) limsupB^oorf(/"(x),/»(y))>0;
(2) liminfn^00d(f"(x),f"(y)) = 0;  and

(3) limsupn^ood(f"(x),fi"(p))>0.
We say that / is chaotic in the sense of Li and Yorke, if there exists an

uncountable scrambled set.

Let co(x, f) denote the set of co-limit points of /. Then a>(x, f) is a

closed invariant subset of A.
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Definition 1.2. Let S C A. We say that 5" is an co-scrambled set if, for any

x, y e S with x ^ y,
(1) to(x, f) \ co(y, f) is uncountable;

(2) to(x, f) n co(y, f) is nonempty; and
(3) co(x, f) is not contained in the set of periodic points.

We say that / is co-chaotic, if there exists an uncountable to-scrambled set.

Remark. J. Smitál (personal communication) has proved that in the case of a

compact interval co(x, f) c P(f) implies that co(x, f) is finite (see also [S,
1965], [S,1966]). Thus, in this case, condition (3) is not needed in Definition

1.2.
A continuous map / : A —> A is called topologically transitive if / is onto

and has a dense orbit on A. / : A —► A has sensitive dependence on initial

conditions if there exists a ô > 0 such that, for any x e X, there exists a

sequence {yk} of points in A and a sequence {nk} of positive integers such

that limt^yi = x and d(fn«(yk), /"*(*)) > ¿ .

Definition 1.3 [D]. / is said to be chaotic in the sense of Devaney if there is a

closed invariant set D c A such that the following conditions hold.

1. /|b is topologically transitive;
2. /|d has sensitive dependence on initial conditions; and

3. The periodic points of f in D are dense in D.
We say the set D is chaotic.

Remark. It has been proved recently that if conditions (1) and (3) hold then

(2) holds (see [BBCDS, Li]). Thus condition (2) is not needed.
We will prove the following theorem.

Theorem. Let f be a continuous map of a compact interval I to itself. The

following statements are equivalent.

(I) f has positive topological entropy.
(II) There is an uncountable co-scrambled set S such that

[~\œ(x,f)ï<p.
xes

(III) / is co-chaotic.
(IV) There is an co-scrambled set containing exactly two points.

(V) / is chaotic in the sense of Devaney.
(VI) There is a chaotic set D and an uncountable co-scrambled set S c D.

When we say that / satisfies statement (II) we mean that the second state-

ment in the above theorem is satisfied.

I would like to express my gratitude to my advisor, L. Block, for his guidance

throughout this work and for his attitude towards research which will benefit

my entire life. I would also like to thank M. Misiurewicz and E. Coven for

helpful discussions.

2. Shift maps satisfy statement (II)

Let T2 denote the set of sequences aoaxa2... , where a„ = 0 or 1 for each

n with the metric

d(x,y) = ̂ ^A
n=0        Z
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if x = XqXX ... and y = yoyx.... Then I.2 is a compact metric space, and the

'one-sided shift' o : Z2 —> Z2 defined by o(aoaxa2 ...) = axa2... is continuous.

Proposition 2.1 [MH]. There is an uncountable collection {Ma : a e Jr} ofi

pairwise disjoint minimal sets in I2 under the one-sided shift map a.

Recall that if M and N are minimal sets, then either Mr\N = cp or M = N.

For any 5 € Ma with 5 = SoSXs2 • • •  ,  define t = t(s) e X2 by

n many

t = OsoOOsoSXOOOsosxs20... 0...0 s0sx...s„^x0... .

Let 0 = 00...0... . Set

J? = J?(s) = {x e I2 ; x = s¡...s„0...0... where n > i > 0},

k many

cf = cf(s) = {x e I2 ; x = 0...Oíosla... where fc > 1}.

If we take a different 5 in Ma , we may get different J? and cf. But the

following property does not depend on the choice of s.

Lemma 2.2. co(t, a) = {0} U Ma U Z2? U cf, and co(t, a) contains only two

minimal sets.

Lemma 2.2 can be proved by carefully listing all possible choices, and using

the fact that Ma is a minimal set. One can easily observe the following property.

Lemma 2.3. Let sa e Ma and Sß e Mß where a and ß are distinct elements

of S. Then co(t(sa), a) n Mß = cp.

Theorem 2.4.  o satisfies statement (II).

Proof. Define S = {ta ; ta = t(sa) for some sa e Ma , a e J'}. We leave it to

the reader to use the previous two lemmas to verify that S is an uncountable

co-scrambled set and f)xeS co(x, a) ^ <j>.   D

We remark that it similarly follows that one- or two-sided shifts on any num-

ber of symbols satisfy statement (II).

3. Some properties of w-chaos

Let A and Y be compact metric spaces. Let / : A —► A and p : Y —> Y
be continuous maps.

Lemma 3.1. If f and p are semiconjugate, i.e., there is a continuous onto map

h : X —> Y such that hfi = ph, then h(co(x, /)) = co(h(x), p) for each x e X.

Theorem 3.2. If f is countable to one semiconjugate to p with semiconjugacy

h : X -* Y, then p satisfies statement (II) implies that f satisfies statement

(II). Also we can take an co-scrambled set in X from the preimage under h of

some co-scrambled set in Y.

Proof. Since p satisfies statement (II), there is an uncountable w-scrambled

set S(p) in Y with r\yeS{p) a>(y, p) ¿ <t>. Let y0 e Ç]yeS{p) <o(y, p). For each

y e S(p), choose one point x = x(y) e h~x(y) and let T = {x(y): y e S(p)}.
By Lemma 3.1, co(x, f) nA-1(yo) i1 4> for every x e T. Since h is countable
to one, there exists Xq e h~x(yo) such that xq e co(x, f) for uncountably many
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x e T. Then S(f) = {x e T : Xo e co(x, /)} is an uncountable co-scrambled

set with f)yeS{f)to(y,f)¿cp.   a

Lemma 3.3 [C, X]. Let n be a positive integer.

n-\ n-\

co(x ,f)=\J f(co(x, /")) = (J co(f(x), fi") ,
i=0 ¿=0

and fi(co(x, fi")) = co(fl(x), fi") for each i = 0, 1, 2, ... , n - 1.

Let An, Xx, ..., A„_! be compact subspaces of A, which are invariant

under /". Suppose / : A —> A is a continuous map such that f(X¡) c

A1+i(mod(/!)) for each i = 0, 1, ... , n - 1. Then we have the following

property.

Lemma 3.4. Let JZi denote the collection ofi fin-minimal sets ofi Xi. Then p~l

sets up a one-to-one correspondence between JZi and JZ¡ for given positive inte-

gers i and j with i < j.

Theorem 3.5. Suppose that fim satisfies statement (II), and let S(fm) be an

co-scrambled set as in statement (II). Suppose also that for any x e S(fm) the

following conditions are satisfied.

(1) co(x, fm) contains a finite, nonzero number of infinite minimal sets.

(2) co(x, fim) contains only countably many points which are not in these

minimal sets.
Then fi satisfies statement (II).

Proof. For any x e S(fm) and any /""-minimal set M either M c co(x, f)

or M n co(x, f) = (j). By the above two lemmas and hypothesis 1), co(x, f)
contains only finitely many fm-minimal sets. Since S(fm) is uncountable,

there exists an uncountable subset Sx(fm) such that co(x, f) contains the

same number of /""-minimal sets for each x e Sx(fim).
For x, y e Sx(fm), say x ~ y if co(x, f) and co(y, fi) contain the same

fim-minimal sets. It is easy to see that this is an equivalence relation. Note that

for distinct x and y co(x, fm) \ co(y, fm) contains an infinite /""-minimal

set by Definition 1.2 and hypothesis (2). Thus each equivalence class is finite.

Let S(f) be a subset of Sx(fm) which contains exactly one representative of

each equivalence class. Then S(f) is uncountable. Also for any pair of distinct

points x, y e S(f), co(x, f) \ co(y, fi) contains an infinite minimal set and

hence is uncountable. We leave the rest of the proof to the reader.   D

4. Proof of Theorem

In this section, we let I denote a compact interval, and we suppose that

f: I -* I is a continuous map. Let C(2°°) denote the set of maps / with no

periodic points of periods not a power of two. Let P, AP, R, and A denote

the sets of periodic points, almost periodic points, recurrent points, and co-limit

points, respectively. Let A2 = \Jx€A co(x, f).

Proposition 4.1 [XI, S].  co(x, f) contains only one minimal set for fi e C(2°°).

Proposition 4.2 [X2].  A \ A2 is countable for any continuous map f:I-*I.

Proposition 4.3 [X2].  A2 = R = AP for fie C(2°°).
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Lemma 4.4. For f e C(2°°) and x e I, if co(x) c A2, then co(x) is a minimal
set.

Proof. By Proposition 4.1, w(x) contains a unique minimal set M. For any
y e co(x), we have co(y) c co(x), since co(x) is a closed invariant set. Then

y e co(x) C A2 = AP by Proposition 4.3. Thus co(y) is a minimal set, and y e
co(y). Hence M = co(y) and y e M. Since y was arbitrary, eu(x) = M.   D

Proposition 4.5 [Bl]. If fi has zero entropy, then fi e C(2°°).

Proposition 4.6. Let y and z be distinct points ofi I. If {y, z} is an co-

scrambled set, then f has positive entropy.

Proof. Suppose that / does not have positive entropy. Then, by Proposition

4.5, /eC(2~).
Suppose one of co(y) and co(z) is contained in A2 . By Lemma 4.4, if co(y)

and co(z) have nonempty intersection, then one is contained in the other. This

contradicts the definition of an co-scrambled set. So, both co(y)n(A\A2) and

co(z) n (A \ A2) are nonempty.

By Proposition 4.1, co(y) contains a unique minimal set M(y), and co(z)
contains a unique minimal set M(z). It follows from Proposition 4.3 that

co(y) n A2 = M(y) and co(z) n A2 = M(z).
From the second condition of Definition 1.2, we know that co(y) C\co(z) ̂  cp.

Let u e co(y) n co(z). Then Af(y) = co(u) = M(z) by Proposition 4.1 and

Lemma 4.4. Thus, co(y)DA2 = Af(y) = M(z) = co(z)nA2 , and co(y)\co(z) c

A\A2.
By Proposition 4.2, A\A2 is countable, and hence co(y)\co(z) is countable.

This contradicts the definition of an co-scrambled set. Therefore / has positive
entropy.   D

Proposition 4.7 [C]. If f has positive entropy then there exists a closed set Ac/

and m > 0 suchthat /""(A) = X and fm\x is at most two-to-one semiconjugate

to the one-sided shift map a. Furthermore, there are only countably many points

in Z which have 2 preimages, and if one of the preimages is periodic, then so
is the other.

The last statement of this proposition is not included in [C], but is easily
observed.

Proposition 4.8 [D]. The one-sided shift map is chaotic in the sense of Devaney
with a chaotic set Z2 •

Using Propositions 4.7 and 4.8, we can easily verify the following result.

Proposition 4.9. If fi : I —> / has positive entropy, then there is a positive integer

m such that fm is chaotic on I in the sense of Devaney.

Proof. Let m > 0 and Ac/ be as in Proposition 4.7. By Proposition 4.8,

D(o) = £2 is a chaotic set. Let s e D(a) satisfy Orb(s, o) = D(a). Let

x e X be a preimage of s under the semiconjugacy in Proposition 4.7, and

let D(fm) = Ox\>(x, /""). Then /)(/"") c A, and D(fm) contains at least

one preimage of each point in D(o). It is not hard to show that the periodic

points in D(fim) axe dense in D(fm) and /m|ö(/">) has sensitive dependence

on initial conditions. Thus D(fm) is a chaotic set for fm .   D
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The reader can verify that the following proposition holds for a continuous

map on a compact metric space.

Proposition 4.10. If, for some m > 0, fm is chaotic in the sense of Devaney,

then fi is also chaotic in the sense ofi Devaney. Furthermore, if D(fim) is a

chaotic set for /"", then U™ô' f'iDifm)) is a chaotic set for fi.

Proof ofi the theorem. (II) =>■ (III) and (III) =>■ (IV) are obvious. (IV) => (I) is
proved in Proposition 4.6.

Now let us prove that (I) => (II). By Proposition 4.7, there is a closed

subset A of / and a positive integer m such that fm(X) = X, and fm\x

is at most two-to-one semiconjugate (via a semiconjugacy h ) to the one-sided

shift map c. Also, there are at most countably many points in ~L2 which

have two preimages under h. By Theorem 2.4, er satisfies statement (II),

so, by Theorem 3.2, fm\x satisfies the statement (II). Let S (a) be the co-

scrambled set constructed in Theorem 2.4, and S(fm) be the co-scrambled

set constructed in Theorem 3.2. Let x e S(fm), and let h(x) = s e S (a).

Then co(s, a) contains a unique infinite minimal set M, and there are only

countably many points of co(s, a) not in this minimal set. Since h~x(M) is a

closed invariant set (as h(fm(h~x(M))) = o(h(h~x(M))) = a(M) = M implies

that fm(h-x(M)) c h~x(M) ), h~x(M) must contain a minimal set M. Then

h maps M onto M since h(M) is a closed, invariant subset of M, and hence,

M is infinite. Because there are only countably many points in 1,2 which have

two preimages and co(s, o)\M is countable, we have that co(x, fm)\M is also

countable. Since, x was arbitrary, the hypothesis of Theorem 3.5 is satisfied,

and hence, statement (II) holds.
(VI) =>• (V) is obvious. (V) =► (I) follows from Propositions 4.1 and 4.5.

It remains to show that (I) =» (VI). Suppose that / has positive topological

entropy. By Proposition 4.9 there is an integer m > 0 such that fim is chaotic

in the sense of Devaney. Let D(fm) be a chaotic set for /"" as in the proof of

Proposition 4.9. Set
m-\

D(fi)= \Jfii(D(fm)).
i=0

By Proposition 4.10, D(f) is a chaotic set for /. Clearly D(fm) C D(f).
Let S(o) be the co-scrambled set for a constructed in Theorem 2.4. Let

S(fm) be the collection of the preimages, under the semiconjugacy as in Propo-

sition 4.7, of the points in S(a) which have unique preimages. Since there are

only countably many points in E2 which have two preimages, S(fm) must be

uncountable. Using Theorem 3.2 and its proof, it is easy to see that S(fm) is

an co-scrambled set for fm .

By the proof of Proposition 4.9, D(fm) contains at least one preimage of

each point in Z2 . Since each point in S(fm) is the unique preimage of some

point in S (a), S(fm) C D(fim). Let S if) be the co-scrambled set for /

constructed as in Theorem 3.5. Then

S(f) C S(fm) C D(fm) C D(f).

This completes the proof.   D
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