
transactions of the
american mathematical society
Volume 339, Number 1, September 1993

PROBING L-S CATEGORY WITH MAPS

BARRY JESSUP

Abstract. For any map X —> Y , we introduce two new homotopy invariants,

dcat/ and rcat/. The classical category cat/ is a lower bound for both,

while dcat / < cat X and rcat f < cat Y . When Y is an Eilenberg-Mac Lane

space, / represents a cohomology class and dcat / often gives a good estimate

for cat X . We prove that if SI e H" (M ; Z) is the fundamental class of a

compact, simply connected «-manifold, then dcat Í2 = cat M . Similarly, when

X is sphere, then / is a homotopy class and while cat / = 1 , rcat / can be

a good approximation to cat Y . We show that if a e 712 (CP") is nonzero,

then rcat a = n . Rational analogues are introduced and we prove that for

u e H*(X ; Q), dcat0 «=lft»2 = 0 and u is spherical.

1. Introduction

Let Lusternik-Schnirelmann category, cat X, of space X is a subtle invari-

ant which is usually difficult to compute. In particular, good lower bounds seem

to require much more data than is provided by standard homotopy invariants

such as the cohomology ring or homotopy groups. For example, Ginsburg and

Toomer [Gi, To] defined lower bounds using the Milnor-Moore spectral se-

quence, while Felix, Halperin, and Lemairè [Fe-Ha, Ha-Le] employed the full

force of the Sullivan model for their approximations.

Much older lower bounds are provided by the category, cat/, of a map

X -I-* Y, which was introduced originally by Fox [Fo].   Taking his point of

r
view, we introduce two new L-S type invariants for a map X -^ Y, which we

call the domain-category, dcat / and the range category, rcat /. These satisfy

cat/ < dcat/ < catfA"    and     cat/ < rcat/ < cat Y.

When specialized to maps representing cohomology (when Y is an Eilenberg-

Mac Lane space) or homotopy (when X is a sphere), in many cases these

invariants provide excellent approximations to cat X or cat Y. In particular,

we prove

Theorem 2.8. If He Hn(M ; Z) is the fundamental class of a simply connected

n-manifold, then dcat Q = cat M.

This is to be contrasted with the classical category cat Í2, which is 1 in this

case [Be-Ga].
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For homotopy classes a e nn (X), we always have cat a — 1 . However, we

show in Example 2.6 that if a g niiCP") ; where CP" is the complex projective

space, then rcat a = n .

Berstein and Ganea proved that for rational cohomology classes u e

H*(X,Q), cat« = min{m|wm+1 =0}. By introducing rational analogues

of dcat and rcat, we show (Theorem 3.5) that dcatu is at least as large as

Toomer's invariant for u, which is often larger than cat u, particularly when

dim u is odd. We also prove

Theorem 3.8. Suppose u e H"(X; <Q>) is nonzero. Then dcatow = I ■&■ u is

spherical and u2 = 0.

In §2, we define dcat/ and rcat/ and show that they may be characterized

in terms of the classical category of maps which commute, up to homotopy,

with /. This allows us to give examples where dcat / > cat /, rcat / > cat /,

and dcat/ ^ rcat/. Section 3 studies the rational versions. Using work of

Felix and Halperin, we give an algebraic description of dcat fq and rcat fq for

rational maps fq : Xq -* Yq . We can then prove some interesting results about

the domain and range category of rational cohomology classes.

I am grateful to Stephen Halperin for helpful suggestions, and also to Eadie
Henry and Jocelyne Michaud for preparing this manuscript. I also acknowledge

the assistance of the National Science and Engineering Research Council of

Canada.

2. Domain and range category

We restrict ourselves to well-pointed, simply connected spaces with the homo-

topy type of a CW complex of finite type. For this class of spaces, if X -¿-» Y,

is a continuous map, we can define cat / as follows, after Whitehead, Berstein,

Ganea, and Gilbert [G]: Convert the inclusion of the fat wedge Tm+X Y -* Ym+X

into a fibration and pull this back over the diagonal Ay : Y —► Ym+X to obtain a

(Ganea) fibration pm: EmY —► Y. Then cat/ is the least m such that we can

lift / to a map ß: X —► EmY so that the diagram below homotopy commutes.

EmY

/"    I'
x-L

The definitions of domain and range category are variations on this descrip-

tion of cat/. Suppose X -^-> Y, and pm: EmX -» X and qm: EmY —> Y are

mth-Ganea fibrations for X and Y respectively.

Definition 2.1. The domain-category of f, denoted dcat/, is the least m such

that, in the diagram
*EmX

i

>\

the map tp exists so that / o pm o <p ~ /.
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Definition 2.2. The range-category of f, denoted rcat /, is the least m such

that, in the diagram

LynY \

\

Qm    11//
I        I

X -^—+    Y'

the map y/ exists so that / ~ qm o ip o f.

We summarize some straightforward properties of the domain and range

categories in the following theorem. All are immediate from the definitions.

Theorem 2.3. For maps X -A Y and Y -^ Z .

(i) dcat/ and rcat/ depend only on the homotopy class of f.

(ii) cat/ < dcat/catX and cat/ < rcat/ < cat Y.

In particular, catid* = dcatidx = rcat id* .

(iii) dcat(g o /) < dcat/ and rcat(g ° f) < rcat g.

A useful characterization of dcat and rcat in terms of the classical category
of a map is described in

Theorem 2.4. Suppose X -A Y. Then

(i) dcat/ = min{cat5|X -£♦ X and /o j ~ /} .
(ii) rcat/ = min{cats|F -£+ Y and s o f ~ /} .

Proof, (i) Suppose X -^+ X with /o s ~ / and cats = m. Now cat5 = m

implies that there is ß: X -> £mAT with pmoß ~ s. Then fopmoß ~ fos ~ f

and so dcat/ < m. If, on the other hand, dcat/ = m, there is <p: X -* EmX

with f oPm0(P — f ■ Let s = pmo cp . Then cats < m and / o j ~ /. Similar

arguments prove (ii).

Example 2.5. Consider the map /î defined as the composition S2 x S2 -=-*

S4 _g^ S4 _l^ HP3    Here   f extends S2 V S2 -* * and satisfies /*(a4) =

«2X"2 (a2>a2 denoting generators in H2(S2\/S2;Z)) and g is the inclusion

S4 -» 54 U e8 U e12 = HP3 into the quaternionic projective space. We show that

cat h = 1, dcat h = 2, and rcat h = 3.
Now //*(HP3; Z) s Z[w]/(h4) with degree « = 4. Indeed, if ii: HP3 ->

A^(Z, 4) represents u (the latter being an Eilenberg-Mac Lane space), then

S* _A» jjp3 JL> ̂ (2, 4) also represents a4, the generator of H4(S4 ; Z), since

we may choose u so that g*(u) = a4 . Moreover, estimates from Theorem 1.11

of [Be-Ga] establish cat(S2 x S2) = 2, catS4 = 1, and cat HP3 = 3. Clearly,

cat/î = cat(go/) < min{cat/, catg}

< min{cat(S2 x S2), catS4, catHP3} = 1.

If cat A = 0 then h is homotopic to a constant and so h*u = 0. But h*u =

f*g*u = /*«4 = c*2 x a'2 -£ 0, and so cat /z = 1.

Let 52xS2^S2x S2 and HP3 -&♦ #P3 be such that h°sx~h, s2oh~

h, catsx = dcat A, and cat $2 = rcat A.   Then catiï < 2 and cat $2 < 3.
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Suppose that dcat h = catsx = 1. Then

s*x(a2 xa'2) =s*x[{a2 x 1)U(1 x a'2)] = s*x(a2 x l)Us*(l x a2) = 0,

since the cup-length in s*H(S2xS2; Z) is at most catsi = 1. But s*(a2xa2) =

s*h*u = h*u = a2 x a2. Hence catsj > 2 and so dcat h = catsx - 2.

Similarly, suppose rcat h = cats2 < 2. Then, as s2u = Xu for some X e Z,

s*(m3) = ,\3u3 = (s2u)3 — 0 by a cup-length bound. Thus X — 0 and so s2u = 0.

But this contradicts 0^Q2xa2 — h*u = h*s2u and so we must have rcat/z = 3.

Example 2.6. Consider the complex projective space CP" . Computations as

in Example 2.5 show that if q g n2(CP") is the class of a generator, then

rcat a = n. This is in contrast to the fact that cat a = 1. Similarly, if « is a

generator of H2(CP" , Z), straightforward calculations show that dcat(wfc) = n

for any k, 1 < k < n . However, cat(uk) < n for any k > 1, and in particular,

cat{un) = 1.

Remarks 2.7. These examples show that standard bounds of the form cat/ <

(dimX)/p for X -A Y (where Y is p - 1 connected, p > 2) are not valid

for dcat or rcat. In Example 2.6, HP3 is 3 connected but dcat/z and rcat/z

both exceed (dimS2 x S2)/p = 4/4=1.
The following results show that when applied to cohomology and homotopy

classes of a space, dcat and rcat can provide excellent lower bounds for its L-S

category.

Theorem 2.8. Suppose M is a compact, simply connected n-dimensional mani-

fold and let Q e H"(M, Z) be the fundamental class. Then dcatQ = catM.

Proof. Let M -^+ M be such that cats = dcatQ and s*Q. = Q. Since M
satisfies Poincaré duality, let D: HP(M, Z) —» H„-P(M, Z) denote the isomor-

phism induced by capping with the fundamental homology class 6 = D(l).

Since Hn(M, Z) = Z(0) and s*il = SI, if s* denotes the induced map on

homology, we have s*Ds* = D. As D is an isomorphism, s» is surjective. But

H„(M, Z) is a finitely generated abelian group so s* is an isomorphism. By

the Whitehead theorem, s is a homotopy equivalence. But if s' is a homotopy

inverse, cat M = cat id = cat(s' ° s) < cats so that cats = cat M. This proves

dcat Q = cat M.

When the structure of a space X depends on more than a single class, we

still have

Theorem 2.9. Let k denote Q or Z/pZ with p prime. Let {«,} be a collection

of homogeneous generators of H*(X, k) as a k-algebra. If ü¡: X —> K(k, |w,|)

represents u¡ and u: X —> ̂Kik, \u¡\) is u = (ux, u2, ...), then dcat« >

catXp, where Xp is the localization of X at p, or the rationalization if k = Q.

Proof. Suppose X -^ X is such that dcat« = cats and pj ~ u. Then

s*ü¡ = u, and so s* is an isomorphism. Then the localized map sp: Xp —> Xp

is a homotopy equivalence, so cat sp = cat Xp . But sp — s o lp where lp is the

localization map X —► Xp , and so cats,, < cats. Hence dcat« > catXp .

An analogous result holds for rcat and homotopy.
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Theorem 2.10. Let a, G nn¡{X) generate n*(X) and let A: \/¡Sn' -* X be the

map which is a, on each summand. Then rcat .4 = catf^f.

Proof. Any map X -i» X which commutes with A induces an isomorphism on

homotopy groups and so is a homotopy equivalence. This implies that dcat A =

cat .if.

3. Rational category for maps

In [Fe-Ha], Felix and Halperin used Sullivan's minimal models to provide a

useful algebraic characterization of cat X when X is a rational space. We will

define the rational domain and range categories of a map using their methods.

For the homotopy theory of commutative graded differential algebras

(CGDAs), we refer the reader to an excellent summary in [Fe-Ha] and for com-

plete details to [Hal] or [B-G]. For our purposes, we recall the following.

Sullivan defined a functor A which associates to each space X the CGDA

over Q, (A(X), d), which consists of the compatible rational differential forms

on the singular simplices of X. This CGDA computes the rational cohomology

of X: H(A(X), d) s H(X ; Q). Any continuous map X -L Y gives a CGDA

Af) m
morphism (A(X), d) <-{A(Y), d). If (A, d) —■> (B, d) is a morphism of

CGDAs with H°(A) = H°(B) = Q, then a Sullivan minimal model of tp is a
diagram

(A,d) —?U (B,d)

•I
(A®AW,d)

where the ~ indicates that >p is an isomorphism on cohomology and (A, d) -Í-»

(A ® AW, d) is a KS extension as defined in [Hal]. In particular, i (a) = a ® 1

and the graded vector space W has a well ordered, homogeneous basis {wa\a e

1} such that dwa e A ® AW<a and a < ß => degu^ < degu^ . Here, AW
is the free CGA on W and W<a denotes span{Wß\ß < a}. The diagram is

determined up to isomorphism by tp and we say that i represents <p .

If X is a space, the Sullivan minimal model of (Q, 0) -> (A(X), d) (ob-
tained from a basepoint) is of the form (Q, 0) -> (AW, d) -=* (A(X), d), and

r

(AW, d) is called the Sullivan minimal model of X. If X —> Y is a map,

then a standard lifting lemma [Hal, Theorem 5.19] applied to A(f) gives a

unique homotopy class of morphisms (AWy, d) -^ (AWx, d) between mini-

mal models, any of which is called a Sullivan representative of f.

Sullivan proved that (AWX, d) carries the rational homotopy type of X

(i.e., the homotopy type of Xq). In particular, besides computing the rational

cohomology of X, we have, as graded vector spaces, W$ = Homzin^X), Q).

Moreover, every morphism between Sullivan minimal models of spaces induces

a unique homotopy class of maps between their localizations at Q, the Sullivan

representative of any such may being homotopic to the original morphism.

Now let m be a positive integer, (AW, d) be a Sullivan model of a space X

and EmX —* X denote the wth Ganea fibration. Felix and Halperin showed
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[Fe-Ha, Proposition 2.7 and Theorem 3.1] that one has a commutative diagram

{AW/\>mW,d) —-—►       (AW,d)        ——> (AW/A>mW,d)

(3.1) /

{AW®AV,d)   —-—>(AW®AU,d)-—►   (AW ® AV, d)

in which i represents the projection n and j is a Sullivan representative of

EmX —> X. As in [Fe-Ha], define cat0X to be the least integer m such that

there is a morphism of CGDAs AW ® AV -^ AW satisfying r o i ~ idy^i^ .
(R is called a retract.) The above establishes one of their main results, namely,

that cato X = cat Xq.
In this spirit, let X A Y be a map of spaces and suppose

(AT, d) ^ (AS, d)

is a Sullivan representative of /. Consider the diagram

(3.2)
(AT/A>mT, d) *-?—- (AT, d) -       * (AS, d) —^ (AS/A>mS, d)

j

(AT®AU,d)    (AS®AZ,d)

where i and j are Sullivan representatives of Ganea projections.

Definition 3.3. (i) cato / is the least m such that a CGDA morphism

(AT ® AU, d)-^ (AS, d)

exists satisfying ro i ~ <p .

(ii) dcato / is the least m such that a CGDA morphism

(AS®AZ,d)-^(AS,d)

exists satisfying r o j o tp ~ <p .

(iii) reato / is the least m such that a CGDA map

(AT®AU, d)-1*(AT, d)

exists satisfying <p o r o / ~ tp .

Remark. If (Ar, rf) -^» (A5, <i) is a CGDA morphism then cato V > dcato Í» ,
and reato P can also be defined by the above.

Now, if Xq : fq —> Xq , is a localization of X —► Y, we have, (referring to

(3.2) when necessary)

Proposition 3.4.

(i) cato / = cat fq < cat /.
(ii) dcato / = dcat fq < dcat /.

(iii) reato / - rcat fq < rcat /.
(iv) cato / < dcato / and cat0 / < rcat0 /.

(v) dcato/ = min{catos|(Ar, d) -i-» (Ar, d) satisfies s o q> ~ <p} .

(vi) reato / = min{cat0 s\(AS, d) -^-> (AS, d) satisfies <p o s ~ tp).
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Proof, (i) If we localize the diagram given by cat/ < m at Q, and note that

(EmY)q ~ EmYq, we obtain one establishing catfq<m. Then, any Sullivan

representative of Xq —> EmYq (from cat fq < m), precomposed with the map

£ of the F-version of diagram (3.1), gives a morphism showing that cato/< m.

This establishes cato / < cat fq < cat /. Conversely, a morphism guaranteeing

that cato/ < w, precomposed with the map 7/ of diagram (3.1) (for Y), gives

a lift of /q to Em Yq by Sullivan and so we have cat fq < m . This shows that

cato / = cat fq.
The proofs of (ii) and (iii) are similar, and parts (iv), (v), and (vi) are clear

from the definitions.

Remarks. If Y is rational (so that Y ~ Yq), then for any map X —♦ Y, we

see that the cat/ = cato/. In particular, if u e [X, K(Q, n)] represents a

rational cohomology class, we have cat u = cato « • Using this fact, we easily

recover the characterization cat« = mm{n\un+x = 0} of Berstein and Ganea

for rational cohomology classes.

We now investigate some properties of dcato u when « is a cohomology class

of H*(X; Q). Suppose (Ef, d¡) is the Milnor-Moore spectral sequence for X

over Q. Then, after Toomer [To], define

eou = max{p\u can be represented in ££,}.

Toomer's invariant for X, eoX, is then just the maximum value of eou for

u in H*(X; Q). If (AW, d) is a Sullivan minimal model for X, we can

compute eou easily. Indeed, by [Fe-Ha, Proposition 9.1], eou = max{p\u has
a representative in A-p W} .

Toomer established the inequality eoX < cato X. On the other hand, it

is not always true that eou < cato« = cat«. Consider the generator u$ e

H5(S2xS3 ; Q). Since M5 = (u2 x 1)U(1 x m3) where u2 and u3 are generators

of H2(S2,<Q) and i/3(S3,Q), we see that e0u5 > 2. Moreover, since

cat(5'2 x S2) = 2, this means that eoUs = 2. But, as u\ - 0, we have

cat u = 1. However, the rational domain category of a cohomology class does

satisfy such an inequality.

Theorem 3.5. If u e H"(X ; Q), then e0u < dcat0 u.

Proof. Suppose dcato u < m . Then we have a diagram

*(AW,d)       ^— (Ai/,0)

(AW®AV,d) —^—► (AiT/A>miT,öf),

with r o i o tp ~ Ç7, and Ç7(z/) is some cocycle in AW with [(p(v)] = u. If

eoM > w, we may choose p(i/) G A-m+xW. Now, « = <p*[u] = r*i*u. But

6itp(v) = 0, so 6*i*u = 0; however, 6* is an isomorphism so we conclude

i*u = 0. This contradicts u = r*i*u unless u is zero, in which case eou = 0.

In either case, eou < m .

Remark. It is possible to have eou < dcat0 u. Let L = (CP2 v S2) Uw e7

(where œ = [a, ß] for a G ^s(CP2), ß e n2(S2) be Lemaire and Sigrist's
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space [Le]. A straightforward computation, using for example the model for

L in [Fe-Ha], shows that if Q e Hn(L) is a generator, then eo^l = 2 but

dcato ß = dcat Q = 3.
Aspace X irrationally elliptic if'both catoX and dim(7i*(X)®Q) are finite.

For these spaces, Halperin [Ha2] has shown that H*(X ; Q) is a Poincaré duality

algebra. We have the

Theorem 3.6. Suppose  H*(X;Q)   satisfies Poincaré duality,  and let  Q   g

H"(X ; Q) be the fundamental class. Then dcato ß = cato X.

Proof. Any map X -^ X which satisfies s*Q = Q is and isomorphism on

rational cohomology, and hence cato s = cato X • This shows that dcato ^ =

cato X.

Remark. Whether or not we can always attain cato X with a single cohomology

class in the case when dim(jr«(X) ® Q) = oo is open. However, in all cases

checked by the author, it has been possible. (For example, Lemaire's space L

is not rationally elliptic but dcato ß = cato L = cat L = 3 .)
If u2 = 0 for a nonzero rational cohomology class, then cato u = \ . In the

following, we show that this remains true for dcato if and only if « is a spherical

class. By this we mean that there is S" -U X so that S" -^ X -^ K(®, n)
represents a generator in H"(S" ; Q). Equivalently, u e H*(X; Q) is spherical

if eou = 1. First, we prove

Lemma 3.7. Suppose (AV, d) -^ (AV ® AW, d) is a KS extension such that

there is k > 1 with (a) e0(AV, d) < k and (b) d: W — A^*+1(K© W). 77**?«
cato i = dcato i < cat0(AF, d) < cat0(AF ® AW).

Proof. We construct (AV ® AW, d) -^+ (AV, d) extending the identity on

(AV, d) as follows. Let {wa\a el} be a KS basis for W. Then if 0 is

the first element of /, we have dw0 G A-k+xV. But since e0(AV, d) < k,

dwo is already a boundary in AV, say dw0 — db for b e AV. Define
tpwo = b. Then tp commutes with the differential. Now assume tp has been

defined on AV ® AW<a . To define <p(wa) note that dwa e A^k+x(V e W)

and so <p(dwa) e A-k+xV, which allows us to define (p(wa) so as to satisfy

dtp(wa) = (p(dwa). Now define AV ® AW -^-» AV ® AW7 by s = / o p.

Then s o i = i o q> o i = i since Ç7 extends idAl/. This shows that dcato ' <

cato s < min{catoi, cato?»} < cato(AF, í/) . Moreover, since idAK = <p ° i,

cat0(idAK) = cat0(AF, d) < cat0 <p < cat0(AF ® AW).

Now the promised

Theorem 3.8. Suppose u e Hn(X; Q) is nonzero. Then dcato« = 1 <$ u is

spherical u2 = 0.

Proof. If dcato u = 1, then cato " = 1 and so u2 - 0. Moreover, by Theorem

3.5, eou = 1. Thus, u is spherical.

Now suppose u is spherical and u2 = 1. Let (Av, 0) -^-> (AW, d) be a

Sullivan representative for u with deg« = « and [çw] = u. As w is spherical,

tpv = <y + b with O/fflÉlT and b e A-2^. Consider the case when n

is even: since m2 = 0, there is c e AW with dc = (a> + b)2 ; in particular

c = cx + c2 with 0 ^ cx e W and c2 e A^2W since d: W -> A^2W. Define
a CGDA (A(i/, x), d) by du = 0 and ¿x = i^2 (this is the Sullivan model
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of S" if n is even) and extend tp to a map O: (A(v , x), d) —> (AW, d) by

setting O(x) = c. Now let

A(v,x)   -^-+ (A(v, x) ® AU, d)

(AFF.d)^

be a Sullivan minimal model for O. Since <I> is injective on homotopy, d: U ->

A-2((i/, x) © t/) ■ Apply Lemma 3.7 with k = 1 to $'. This shows that
dcato O' = 1 ■ But since (A(v, x) ® AU, d) is also minimal, the map 6 above

is actually an isomorphism, so dcato O — dcato $' = 1 • But #7 factors as

Q>o j where (A(i/, 0)) M (A(i/, x), rf). Thus dcat0 <p < dcat0 O = 1. Thus
dcato u = \. The case n odd is handled similarly, but we do not need x, as

eo(A(v, 0)) = 1 in that case.

We may generalize this to

Theorem 3.9. Suppose f: X —► \faS"a  induces a surjective map on rational

homotopy groups. Then dcato / < 1 •
if

Proof. Let (AW, rf) <— (AZ , rf) be a Sullivan representative of /. Now sup-
pose

A(Z,d)  —-Í—► (AZ®AF,i/)

'I   ^^
(AJF,ö?r

is a Sullivan minimal model of tp. Since 7t»/ ® Q is onto, the derivative

in (AZ ® AY, d) satisfies d: Y - A^2(Z © F). Moreover, cat^Va-S"") =
eo(VQ 5'"a) = 1, so we may apply Lemma 3.7 with k = 1 to obtain dcato i < 1.

But / is also a Sullivan representative of /, because (AZ ® AY, d) is minimal,

thus we may conclude that dcato / < 1.
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