THE LIMITING BEHAVIOR OF THE KOBAYASHI-ROYDEN PSEUDOMETRIC #### SHULIM KALIMAN ABSTRACT. We study the limit of the sequence of Kobayashi metrics of Riemann surfaces (when these Riemann surfaces form an analytic fibration in such a way that the total space of fibration becomes a complex surface), as the fibers approach the center fiber which is not in general smooth. We prove that if the total space is a Stein surface and the smooth part of the center fiber contains a component biholomorphic to a quotient of the disk by a Fuchsian group of first kind, then the Kobayashi metrics of the near-by fibers converge to the Kobayashi metric of this component as fibers tend to the center fiber. ## Introduction Let $\Phi\colon M\to \Delta$ be a holomorphic mapping from a complex surface M on the disc $\Delta=\{z\in C|\ |z|<1\}$. Suppose that for each $c\neq 0$ $\Gamma_c=\Phi^{-1}(c)$ is a smooth noncompact Riemann surface and Γ_0^* is a smooth part of $\Gamma_0=\Phi^{-1}(0)$. We shall investigate relations between the Kobayashi-Royden pseudometric $k_{\Gamma_0^*}$ on Γ_0^* and the limit of the Kobayashi-Royden pseudometric on nearby fibers. More precisely, we shall study the problem when the equality $$\lim_{c \to 0} k_{\Gamma_c} = k_{\Gamma_0^*}$$ holds. In general, it is not so. In [PS, §2.2] there is an example of such mapping $\Phi \colon M \to \Delta$, where M is a holomorphically convex region in C^2 , every Γ_c is a disc, but $\lim_{c\to 0} k_{\Gamma_c} \neq k_{\Gamma_0}$. Zaidenberg found certain sufficient conditions, which imply (1) [Z]. But his result does not give the answer to the question whether (1) holds, when Φ is a polynomial of two complex variables and $M = \Phi^{-1}(\Delta)$. He supposed that the answer was positive. Let G be a Fuchsian group of the first kind. The Main Theorem of this paper says that, if M is a Stein surface and Γ_0^* contains a component R, which is biholomorphically equivalent to Δ/G , then $\lim_{c\to 0} k_{\Gamma_c} = k_R$. In particular, the Zaidenberg's conjecture is true. The last fact was announced in [Ka], where it was used to classify isotrivial polynomials on C^2 . The paper is organized as follows. We present some terminology and formulate our main results in the first section. The second section contains a technical lemma about Fuchsian groups and its corollaries needed for the proof of the Main Theorem. This lemma asserts that two noncommutative nonelliptic elements of a Fuchsian group cannot move any point $z \in \Delta$ by a distance less than Received by the editors December 13, 1990 and, in revised form, June 21, 1991. 1980 Mathematics Subject Classification (1985 Revision). Primary 32H15. a certain $\varepsilon > 0$ at the same time. Next we handle the case of hyperbolic fibers $\{\Gamma_{b_j}\}$ with $b_j \to 0$. We consider universal holomorphic covering $f_j \colon \Delta \to \Gamma_{b_j}$ and find out when $\{f_j\}$ converge to an unramified mapping $f \colon D \to \Gamma_0^*$ on a certain maximal region $D \subset \Delta$. We also prove that f(D) is a component of Γ_0^* and, if $D = \Delta$, then the Kobayashi-Royden pseudometric on f(D) coincides with the limit of the Kobayashi-Royden pseudometric of nearby fibers. The result of the forth section says that D is simply connected in the case when M is a Stein surface. The last section contains the proof of the Main Theorem. It is a great pleasure to thank M. G. Zaidenberg for his question and stimulating discussions. #### 1. FORMULATION OF THE MAIN THEOREM First we fix terminology, notations and definitions that we shall use throughout the paper. Every manifold we are going to consider will be complex. If Y is a manifold, then TY is its holomorphic tangent bundle and T_yY is a tangent space at a point $y \in Y$. Put $\Delta_r = \{z \in C | |z| < r\}, \Delta = \Delta_1$, and $\Delta^* = \Delta - 0$. By a curve η in Y we mean a continuous mapping $\eta : [0, 1] \to Y$. A loop γ in Y is a curve with $\gamma(0) = \gamma(1)$. In other words, γ is a continuous mapping from $\partial \Delta$ to Y (as is frequently done, we use the symbol ∂ to denote boundaries). If $x \in \gamma(\partial \Delta)$, then we write $x \in \gamma$. Recall that a differential pseudometric on a complex manifold Y is a nonnegative homogeneous function on the tangent bundle TY, i.e., it is a function $p:TY\to \mathbf{R}$ such that $p(y, v) \ge 0$, $p(y, \lambda v) = |\lambda| p(y, v)$ for all $y \in Y$, $v \in T_{\nu}Y$, and $\lambda \in C$. When p is continuous, we call the pseudometric continuous. If Y is connected and for each piecewise smooth curve η in Y there exists the integral $P(\eta) = \int_0^1 p(\eta(t), d\eta(t)) dt$, one can define the integral pseudometric $P(x, y) = \inf_{\eta} \{P(\eta) | \eta(0) = x, \eta(1) = y\}$. Of course, the integral pseudometric exists, when a proper differential pseudometric is continuous. The Kobayashi-Royden differential pseudometric is given by the formula $$k_Y(y\,,\,v) = \inf\{1/r \mid \phi \in \operatorname{Hol}(\Delta_r\,,\,Y)\,,\,\phi(0) = y\,,\,\,d\phi(0) = v\}\,.$$ By Royden's theorem [R] it generates the integral pseudometric K_Y which coincides with the Kobayashi pseudometric on Y [Ko]. Throughout the paper $\Phi\colon M\to\Delta$ is a holomorphic mapping from a smooth complex surface M on Δ such that for $c\neq 0$ $\Gamma_c=\Phi^{-1}(c)$ is a smooth Riemann surface. We shall say that $\Phi\colon M\to\Delta$ is a family of Riemann surfaces. The fiber $\Gamma_0=\Phi^{-1}(0)$ can contain singular points. Denote the smooth part of Γ_0 by Γ_0^* . Let $\beta=\{b_j\}\subset\Delta^*$ be a sequence that tends to zero, let R be a component of Γ_0^* . We say that $\lim_{j\to\infty}k_{\Gamma_{b_j}}=k_R$ (or $\overline{\lim}_{j\to\infty}k_{\Gamma_{b_j}}\leq k_R$), if for each sequence $\{w_j\in T\Gamma_{b_j}\}$ that converges to $w\in TR$ in the topology of TM the equality $\lim_{j\to\infty}k_{\Gamma_{b_j}}(w_j)=k_R(w)$ (or inequality $\overline{\lim}_{j\to\infty}k_{\Gamma_{b_j}}(w_j)\leq k_R(w)$) holds. If $\lim_{j\to\infty}k_{\Gamma_{b_j}}=k_R$ for each sequence β as above, then we say $\lim_{c\to 0}k_{\Gamma_c}=k_R$. In the same meaning $\overline{\lim}_{c\to\infty}k_{\Gamma_c}\leq k_R$. The following two results belong to Zaidenberg [Z]. **Proposition 1.1.** For each component R of Γ_0^* the inequality $\overline{\lim}_{c\to\infty} k_{\Gamma_c} \leq k_R$ holds. **Theorem 1.2.** Let \overline{M} be a smooth compact surface and $\overline{\Gamma} \subset \overline{M}$ be an analytic curve in \overline{M} . Suppose that $M \subset \overline{M} - \overline{\Gamma}$, $\overline{\Gamma}_0 = \overline{\bigcap_{r>0}} \Phi^{-1}(\Delta_r)$, and $\Gamma_0 = \overline{\Gamma}_0 - \overline{\Gamma}$. If every component of Γ_0^* is hyperbolic, then $\lim_{c\to 0} k_{\Gamma_c} = k_R$. Zaidenberg conjectured that, if Φ is a polynomial on C^2 and $M=\Phi^{-1}(\Delta)$, then the assumption that all the components of Γ_0^* are hyperbolic can be omitted. We shall show that this hypothesis is correct. Recall that G is a Fuchsian group of the first kind, if the closure of the orbit $\{g(0)|g\in G\}$ in C contains $\partial\Delta$ [B]. In particular, in the polynomial case every hyperbolic component R of Γ_0^* has a representation $R\cong\Delta/G$, where G is a Fuchsian group of the first kind. **Main Theorem.** Let $\Phi: M \to \Delta$ be a family of Riemann surfaces. Suppose that M is a Stein manifold and Γ_0^* contains a component R that is biholomorphically equivalent to Δ/G , where G is a Fuchsian group of the first kind. Then $\lim_{c\to 0} k_{\Gamma_c} = k_R$. Note that, if R is nonhyperbolic, such a fact follows from Proposition 1.1. Hence we have **Corollary.** Let $\Phi: C^2 \to C$ be a polynomial. Then $\lim_{c\to 0} k_{\Gamma_c} = k_{\Gamma_c^*}$. We shall restrict ourselves to the case of connected fibers for $c \neq 0$ (in general case the proof is the same, but instead of Γ_c we have to use their components). ## 2. One property of Fuchsian groups We shall denote the Kobayashi metric on Δ by K_{Δ} . **Lemma 2.1.** For every r > 0 there exists $\varepsilon > 0$ such that for every Fuchsian group G, noncommutative elements a', $b' \in G$, and a point $z \in \Delta$ satisfying $0 < K_{\Delta}(z, a'(z)) < r$, either $K_{\Delta}(z, b'(z)) > \varepsilon$ or z is a fixed point of the mapping $b' : \Delta \to \Delta$. **Proof.** Assume, to reach a contradiction, that for a certain r>0 and each $\varepsilon>0$ there exists a Fuchsian group G_{ε} , noncommutative elements a'_{ε} , $b'_{\varepsilon}\in G_{\varepsilon}$, and a point $z_{\varepsilon}\in \Delta$ such that $0< K_{\Delta}(z_{\varepsilon},\,a'_{\varepsilon}(z_{\varepsilon}))< r$ and $0< K_{\Delta}(z_{\varepsilon},\,b'_{\varepsilon}(z))< \varepsilon$. We shall show that for a sufficiently small ε the group G_{ε} cannot be discontinuous. Without loss of generality, we set $z_{\varepsilon}=0$. Let id be the identity element of G_{ε} . Since G_{ε} is a discontinuous group, one can find elements a_{ε} and b_{ε} satisfying (2.1) $$K_{\Delta}(0, b_{\varepsilon}(0)) = \min\{K_{\Delta}(0, g(0))|g \in G_{\varepsilon}, g(0) \neq 0\},$$ (2.2) $K_{\Delta}(0, a_{\varepsilon}(0)) = \min\{K_{\Delta}(0, g(0))|g \in G_{\varepsilon}, g(0) \neq 0, [b_{\varepsilon}, g] \neq id\}.$ The mapping a_{ε} and b_{ε} can be represented in the form $$\begin{split} a_{\varepsilon}(z) &= e^{i\theta_{\varepsilon}}(z+\alpha_{\varepsilon})/(1+\overline{\alpha}_{\varepsilon}z)\,, \qquad |\theta_{\varepsilon}| \in [0\,,\,\pi]\,, \\ b_{\varepsilon}(z) &= e^{i\tau_{\varepsilon}}(z+\beta_{\varepsilon})/(1+\overline{\beta}_{\varepsilon}z)\,, \qquad |\tau_{\varepsilon}| \in [0\,,\,\pi]\,. \end{split}$$ We shall omit the index ε from now on, if it does not cause misunderstanding. Let us consider b as a function of two variables z and β . Expand b in power series of z, β , and $\overline{\beta}$. Then $b(z) = e^{i\tau}z + e^{i\tau}\beta$ up to the nonlinear terms. Hence for every natural m one can find a neighborhood of the origin in $C^2 = \{(z, \beta)\}\$ so that for all n = 1, 2, ..., m, $$b^{n}(z) = e^{in\tau}z + \sum_{l=1}^{n} e^{il\tau}\beta + O(|z|^{2} + |\beta|^{2})$$ in this neighborhood. Thus $$b^{n}(0) = \beta \sum_{l=1}^{n} e^{ilr} + O(|\beta|^{2}) = \beta e^{in\tau} (e^{in\tau} - 1)/(e^{i\tau} - 1) + O(|\beta|^{2}).$$ It is easy to check that for each $\tau_0 \neq 2\pi k$ there is a neighborhood U of τ_0 and integer $n \geq 2$ so that for every $\tau \in U$, $$|(e^{in\tau}-1)/(e^{i\tau}-1)|<1.$$ Now one can see that $\tau_\epsilon \to 0$ as $\epsilon \to 0$. Indeed, the preceding assumption implies $$0 < |\alpha| < \tilde{r}, \qquad 0 < |\beta| < \tilde{\varepsilon},$$ where $\tilde{\epsilon} = (e^{\epsilon} + 1)$ and $\tilde{r} = (e^{r} - 1)/(e^{r} + 1)$. Thus $\lim_{\epsilon \to 0} |\beta_{\epsilon}| = 0$. Assume $\overline{\lim}_{\epsilon \to 0} |\tau_{\epsilon}| > 1/m$. Then by (2.3) we can find $n \le m$ with $|b^n(0)| < |b(0)|$. This contradicts (2.1). Thus $b_{\varepsilon}(z) \to z$ uniformly on compact subsets of Δ as $\varepsilon \to 0$. Let $\overline{\lim}_{\varepsilon \to 0} |\alpha_{\varepsilon}| = \alpha^0$. Since $|\alpha_{\varepsilon}| < \tilde{r}$, $a_{\varepsilon} \circ b_{\varepsilon} \circ a_{\varepsilon}^{-1}(z) \to z$ as $\varepsilon \to 0$. In particular, for any sufficiently small ε we have $|a_{\varepsilon}b_{\varepsilon}a_{\varepsilon}^{-1}(0)| < \alpha^0/2$. This implies either $\alpha^0 = 0$ or b and aba^{-1} are commutative. We shall prove that the last case does not hold. One can represent a and b as mappings of the upper half-plane. Then, if a is a hyperbolic element, we may put $a(z) = \lambda z$ with $\lambda > 0$ and if a is a parabolic element, we may put a(z) = z + 1 [A]. In both cases for any b(z) = (pz + q)/(tz + s) with $p, q, t, s \in \mathbf{R}$ the direct computation shows that $[aba^{-1}, b] = id$, iff [a, b] = id. When a is an elliptic element, one may consider a as a mapping $a: \Delta \to \Delta$ given by the formula $a(z) = \lambda z$ with $\lambda^n = 1$ for a certain natural n. Again it is easy to show that $[aba^{-1}, b] = id$, iff [a, b] = id for any Möbius transformation $b: \Delta \to \Delta$. But this a contradicts (2.2). Therefore $\lim_{\epsilon \to 0} \alpha_{\epsilon} = 0$. Same arguments as above show that $\theta_{\varepsilon} \to 0$ as $\varepsilon \to 0$. Hence for any sufficiently small ε we have $|e^{i\theta_{\epsilon}}-1|+|e^{i\tau_{\epsilon}}-1|<1/2$ and for an arbitrarily small α the following inequality holds $$|b^{-1}a^{-1}ba(0)|\approx |e^{i\tau}-1|\,|\alpha|+|e^{i\theta}-1|\,\,|\beta|<|\alpha|/2<|a(0)|$$ but $b^{-1}a^{-1}ba$ and b are not commutative, since $[a^{-1}, ba, b] \neq id$. This is a contradiction. \square **Corollary 2.2.** For every r > 0 there exists $\varepsilon > 0$ such that for every hyperbolic Riemann surface R, for every point $x \in R$, and for every couple of loops γ and μ that generate noncommutative elements of the fundamental group $\pi_1(R, x)$, the inequalities $K_R(\gamma) < \varepsilon$ and $K_R(\mu) < r$ do not hold simultaneously. The next three lemmas enable us to restate this corollary in a form which will be convenient for our following needs. **Lemma 2.3.** Let γ be a noncontractible loop on a Riemann surface R. Suppose that the corresponding element of the fundamental group $\pi_1(R)$ has a representation $[\gamma] = [\mu]^n$, where $[\mu] \in \pi_1(R)$ and the natural number $n \geq 2$. Then γ has points of self-intersection. **Proof.** Let H be the upper half-plane, and let $f: H \to R$ be a universal holomorphic covering. Then we can define the Möbius transformation $b: H \to H$ corresponding to $[\mu]$. If b is a hyperbolic transformation, one can choose f so that $b(z) = \lambda z$ with $\lambda > 0$ [A]. Let z_0 be a point in the inverse image of a point $x_0 \in \gamma$. Obviously, each curve in H that connects the points z_0 and $\lambda^n z_0$ contains points z' and z'' such that $z' = \lambda z''$. But this means that γ has the point of self-intersection f(z'). If b is parabolic, we may suppose that b(z) = z + 1. Again each curve that connects the points z_0 and $z_0 + n$ contains points z' and z'' = z' + 1. This implies the desired conclusion. \Box **Lemma 2.4.** Let γ and μ be disjoint noncontractible loops in a Riemann surface R. Suppose that neither γ nor μ has points of self-intersection. Then γ and μ are homotopically equivalent, iff there is a region $U \subset R$ such that $\partial U = \gamma \cup \mu$ and U is topologically an annulus. *Proof.* Let $x_1 \in \gamma$ and $y_1 \in \mu$. Choose a curve $\nu_1 \colon [0, 1] \to R$ so that $\nu_1(0) = x_1$, $u_1(1) = y_1$, ν_1 has no points of self-intersection and ν_1 intersects $\gamma \cup \mu$ at the points x_1 and y_1 only. Choose an analogous curve ν_2 so that ν_2 connects points $x_2 \in \gamma$ and $y_2 \in \mu$, and ν_2 is sufficiently close to, but disjoint from ν_1 . Then $\gamma - (x_1 \cup x_2)$ consists of two components γ_1 and γ_2 , and γ_1 is small enough. In the same way $\mu - (y_1 \cup y_2) = \mu_1 \cup \mu_2$, and μ_1 is small. Then there exists an open disc $D \subset R$ with $\partial D = \nu_1 \cup \nu_2 \cup \gamma_1 \cup \mu_1$. One can construct the loop $\eta = \nu_1 \cup \mu_2 \cup \nu_2 \cup \gamma_2$. Since γ and μ are homotopically equivalent, η must be contractible. By our construction η has no points of self-intersection. This implies the existence of the disc $U \subset R$ with $\partial U = \eta$. If $U \supset D$, then $U - \overline{D}$ contains the two components U_1 and U_2 . Each of them is a disc, $\partial U_1 = \gamma$ and $\partial U_2 = \mu$. This contradicts the assumption that γ and μ are noncontractible. Hence $U \cap D = \emptyset$. Obviously, $\overline{D} \cup \overline{U}$ is topologically a closed annulus and $\partial (\overline{U} \cup \overline{D}) = \gamma \cup \mu$. This completes the proof of the lemma. **Lemma 2.5.** Let γ and μ be noncontractible loops on a Riemann surface R, and neither γ nor μ has points of self-intersection. Suppose that $R - (\gamma \cup \mu)$ does not contain components that are topologically an annulus. Then for each $\varepsilon > 0$ there exists r > 0 such that, if $K_R(\gamma) < \varepsilon$ and $K_R(\mu) < \varepsilon$, then the distance between γ and μ in the Kobayashi metric is greater than r. *Proof.* Let $\nu:[0,1]\to R$ be a curve that connects γ and μ so that $K_R(\nu)$ coincides with the distance between γ and μ . Let $\nu(0)=x_0\in\gamma$. By Corollary 2.2 it is enough to verify that γ and $\gamma'=\nu^{-1}\circ\mu\circ\nu$ generate noncommutative elements $[\gamma]$ and $[\gamma']$ in $\pi_1(R,x_0)$. Since the group $\pi_1(R,x_0)$ is free, $[\gamma]$ and $[\gamma']$ are commutative, iff they belong to a cyclic subgroup. This implies that $[\gamma]=[\nu]^n$ and $[\gamma']=[\nu]^l$ for a certain $[\nu]\in\pi_1(R,x_0)$. By Lemma 2.3 k=l=1. Hence $[\gamma]=[\gamma']$. Therefore γ and μ must be homotopically equivalent. But this contradicts Lemma 2.4. \square # 3. Limiting behavior of hyperbolic metric From now on by R we denote a connected hyperbolic component of Γ_0^* . **Lemma 3.1.** Let α be a sequence of points in Δ^* that tends to zero. Suppose that for each $c \in \alpha$ the fiber Γ_c is a hyperbolic Riemann surface. Then for a certain infinite subsequence $\beta = \{b_j\} \subset \alpha$ there exists a differential pseudometric α_{β} on R such that $\alpha_{\beta} = \lim_{j \to \infty} k_{\Gamma_{b_j}}$. Moreover, α_{β} is a continuous pseudometric and the equality $\alpha_{\beta}(v) = 0$ for a vector $v \in TR$ implies $\alpha_{\beta} \equiv 0$. *Proof.* Let $\phi: \Delta \to R$ be a holomorphic embedding and $\phi(\Delta) = U$. It is easy to construct holomorphic embeddings $\phi_i : \Delta \to U_i \subset \Gamma_{b_i}$ so that $\phi_i(z) \to \phi(z)$ as $j \to \infty$ (e.g., see [Z]). Let ν_z denote the point $(z, d/dz) \in T\Delta$. We set $s_z^j = \phi_{j*}(\nu_z)$ and $s_z = \phi_*(\nu_z)$ (where ϕ_{j*} and ϕ_* are the induced mappings of the tangent bundles). Then $s_z^j \to s_z$ in topology of TM. Let $f_j : \Delta \to \Gamma_{b_i}$ be a universal holomorphic covering. Choose a connected component V_j of $f_i^{-1}(U_j)$ and a holomorphic mapping $g_j: \Delta \to \Delta$ so that the restriction of $g_j \circ \phi_j^{-1} \circ f_j$ to V_j is the identity mapping. One may suppose that $0 \in V_j$ and $g_j(0) = 0$. Let $\tilde{s}_z^j \in TV_i$ belong to the inverse image of the vector s_z^j under the mapping f_{i*} . Then $g_{j*}(\nu_z) = \tilde{s}_z^j$. On the other hand $g_{j*}(\nu_z) = g_j'(z)\nu_{g_j(z)}$. Hence, taking into consideration the equalities $k_{\Delta}(\tilde{s}_z^j) = k_{\Gamma_{b_i}}(s_z^j)$ and $k_{\Delta}(\nu_z) = 1/(1-|z|^2)$, we have $k_{\Gamma_{b_i}}(s_z^j) = |g_j'(z)|/(1-|g_j(z)|^2)$. Passing to a subsequence, if necessary, we suppose that $g_j(z) \to g(z)$ uniformly on compact subsets of Δ . By Hurwitz's theorem either $g'(z) \neq 0$ for every $z \in \Delta$ or $g'(z) \equiv 0$ (in the last case $g(z) \equiv$ 0, since g(0) = 0. Therefore $\lim_{j \to \infty} k_{\Gamma_{b_i}}(s_z^j) = |g'(z)|/(1 - |g(z)|^2)$. Let $s_z^j = (x_j(z), t_j(z))$, where $x_j(z) \in U_j$ and $t_j(z) \in T_{x_j(z)}U_j$ (the notation, $s_z =$ (x(z), t(z)) has the same meaning). A sequence $\{v_i | v_i = (x(z_i), \lambda_i t_i(z_i)); \lambda \in \{v_i | v_i = (x(z_i), \lambda_i t_i(z_i))\}$ C} converges to $v = (x(z), \lambda t(z))$ in the topology of TM, iff $z_j \to z$ and $\lambda_j \to \lambda$. Hence $\lim_{j \to \infty} k_{\Gamma_{b_i}}(v_j) = |\lambda g'(z)|/(1-|g(z)|^2)$ and a proper limiting pseudometric exists on U. Let $\{U^j\}$ be a cover on R and each U^j be an open disc. We can repeat the above construction of the limiting pseudometric for each U^{j} instead of U. Application of the diagonal process completes the proof of the lemma. **Definition.** Let $\beta = \{b_j\} \subset \Delta^*$ be a sequence that converges to zero, and let every fiber Γ_{b_j} hyperbolic. We shall say that β is an admissible sequence if there is a continuous differential pseudometric a_β on R such that $a_\beta = \lim_{j \to \infty} k_{\Gamma_{b_j}}$ and the quality $a_\beta(v) = 0$ for a vector $v \in TR$ implies $a_\beta \equiv 0$. We will denote the corresponding integral pseudometric by A_β , and throughout the rest of the paper we will fix these notations β , a_β , and a_β for the above objects. **Lemma 3.2.** Suppose that the a_{β} is a metric. Let $F = \{f_j\}$, where $f_j \colon \Delta \to \Gamma_{b_j}$ is a holomorphic universal covering with $f_j(0) \to x_0 \in R$ as $j \to \infty$. Then there is a nonempty open subset $D \subset \Delta$ that contains 0 and a subsequence $F_1 \subset F$ that converges to a mapping $f \colon D \to R$. Moreover - (i) $f: D \to R$ is an unramified covering: - (ii) F transforms the metric $k_{\Delta}|_{D}$ into the metric a_{β} . *Proof.* First assume that f exists and prove (ii). Let $z \in D$, x = f(z), and $x_j = f_j(z)$. Then $x_j \to x$ as $j \to \infty$. Choose a sequence $\{v_j | v_j \in T_{x_j} \Gamma_{b_j}\}$ that converges to a nonzero vector $v \in T_x R$ in the topology of TM. Let $\tilde{v}_j \in T_z \Delta$ belong to the inverse image of v_j under the mapping f_{j*} . Since β is admissible, $k_{\Delta}(\tilde{v}_j) = k_{\Gamma_{b_j}}(v_j) \to a_{\beta}(v)$. Thus for every j, $k_{\Delta}(\tilde{v}_j)$ is less than a certain common constant. Hence we may suppose that there is the limiting vector \tilde{v} for the sequence $\{\tilde{v}_j\}$. Clearly, $k_{\Delta}(\tilde{v}) = a_{\beta}(v)$ and $f_*(\tilde{v}) = v$. This implies (ii). Property (ii) means that, if f exists, then it must be locally homeomorphic. Let P be a sufficiently small neighborhood of x_0 such that P is biholomorphically equivalent to a ball, and all $U_j = P \cap \Gamma_{b_j}$ and $U = \Gamma_0 \cap P$ are discs. For every manifold N we will denote by $B(y, r, N) \subset N$ the ball of radius r in the metric K_N with the center at y. Let $B(x, r, A_\beta, R) \subset R$ be the analogous ball in the metric A_{β} with the center at x. Since a_{β} is a metric, there exists r > 0 such that $\overline{B(x_0, r, A_\beta, R)} \subset U$. Hence $\overline{B(f_j(0), r, \Gamma_{b_j})} \subset U_j$, when j is sufficiently large. The restriction of f_j to $H_0 = B(0, r, \Delta)$ is a homeomorphism between H_0 and $B(f_j(0), r, \Gamma_{b_i})$. The family $\{f_j|_{\widetilde{H}_0} : \widetilde{H}_0 \to \Gamma_{b_i}\}$ P} is normal. Pick out a converging subsequence $F_1 \subset F$ in this family. Let $f: \widetilde{H}_0 \to B(x, r, A_\beta, R)$ be the limiting mapping. We have proved that $D\supset\widetilde{H}_0$, i.e., D is not empty. Since f is locally homeomorphic and each $f_j|_{\widetilde{H}_0}$ is a homeomorphism, one can easily check that the limiting mapping $f|_{\widetilde{H}_0}$ is also homeomorphism. Set $H=B(x_0\,,\,r/3\,,\,A_\beta\,,\,R)$. Suppose there is a point $z \in D - \widetilde{H}_0$ with $y = f(z) \in H$. Let $H_1 = B(y, 2r/3, A_\beta, R)$ and $\widetilde{H}_1 = B(z, 2r/3, \Delta)$. Clearly $H_1 \subset U$. Repeating the above arguments we can choose a subsequence $F_2 \subset F_1$ so that the restriction F_2 to \widetilde{H}_1 converges to a homeomorphism $g: \widetilde{H}_1 \to H_1$. For every subsequence $F_3 \subset F_1 - F_2$ that converges to a mapping $h: \widetilde{H}_1 \to H_1$ we have $g|_{\widetilde{H}_1 \cap D} = h|_{\widetilde{H}_1 \cap D} = f|_{\widetilde{H}_1 \cap D}$. By the uniqueness theorem h = g. Thus one can take F_1 itself as F_2 and $D \supset \widetilde{H}_1$. Since $H_1 \supset H$, \widetilde{H}_1 contains a disc \widetilde{H} such that $f|_{\widetilde{H}}: \widetilde{H} \to H$ is a homeomorphism and $\widetilde{H}_0\cap\widetilde{H}=\varnothing$ (indeed, $z\notin\widetilde{H}_0$ and the restriction of f to \widetilde{H}_0 is also a homeomorphism). We can consider H as a neighborhood of x_0 . Of course, analogous arguments enable us to find such a neighborhood for every point $x \in F(D)$. Hence $f: D \to F(D)$ is an unramified covering. In particular, f(D) is an open set. To check the equality R=f(D) it is enough to prove that the set f(D) is closed in R. Let x belong to the closure of f(D) in R. Let P' be a sufficiently small neighborhood of x. Suppose that P' is biholomorphically equivalent to a ball, and $U'=P'\cap\Gamma_0$ and $\{U'_j=P'\cap\Gamma_{b_j}\}$ are discs. Choose r>0 with $\overline{B(x,r,A_\beta,R)}\subset U'$. Then we can find a point $y\in f(D)\cap B(x,r/3,A_\beta,R)$. As we have seen, in this case $f(D)\supset B(y,2r/3,A_\beta,R)$. Hence, $x\in f(D)$, which is the desired conclusion. \square **Corollary 3.3.** If the assumptions of Lemma 3.2 hold and $D = \Delta$, then $k_R = \lim_{j\to\infty} k_{\Gamma_{b_i}}$. *Proof.* We shall use the notation of the proof of Lemma 3.2. If $D = \Delta$, then $f: D \to R$ is a universal holomorphic covering and $$\lim_{j\to\infty} k_{\Gamma_{b_j}}(v_j) = \lim_{j\to\infty} k_{\Delta}(\tilde{v}_j) = k_{\Delta}(\tilde{v}) = k_D(\tilde{v}) = k_R(v). \quad \Box$$ ### 4. STEIN CASE From now on M is a Stein surface, and we will use the same notations R, $\beta = \{b_j\}$, a_β , $f_j : \Delta \to \Gamma_{b_j}$, $F = \{f_j\}$ and $f : D \to R$ as in the preceding section. Let a Riemann surface A be topologically an annulus. Denote the minimum of lengths of noncontractible loops in A by l(A). **Proposition 4.1.** To each number t > 0 corresponds a positive number r < 1 so that the assumptions: - (i) L is a compact in Δ ; - (ii) $0 \in L$; - (iii) ΔL is topologically an annulus; - (iv) $l(\Delta L) < t$ imply that $L \subset \Delta_r$. **Proof.** Assume that the contrary. Then for a certain t and every r < 1 there is compact L_r that contains a point z_r with $|z_r| > r$ and satisfies (i)-(iv). Clearly $l(L - \Delta)$ is greater than $2K_{\Delta}(0, z_r)$. But $K_{\Delta}(0, z_r) \to \infty$ $K_{\Delta}(0, z_r) \to \infty$ as $r \to 1$, and we have a contradiction with (iv). \square According to [S] the Stein subvariety R has a tubular neighborhood $V \subset M$ that is biholomorphically equivalent to a neighborhood of the zero section in the normal bundle to R in M. Thus we have a holomorphic retraction $\tau \colon V \to R$. Let Q be a region in R with the compact closure. Then for a sufficiently small ε and every $c \in \Delta_{\varepsilon}$ the restriction τ to $\tau^{-1}(Q) \cap \Gamma_c$ is a holomorphic unramified covering, whose multiplicity over Q is equal to the multiplicity to zero of the function Φ on R. **Lemma 4.2.** Let γ be a loop in R without points of self-intersection. Let $\{\bar{\phi}_j|\bar{\phi}_j\colon \bar{\Delta}\to \Gamma_{b_j}\}$ be continuous embeddings that are holomorphic on Δ . Suppose that $\gamma_j=\bar{\phi}_j(\partial\Delta)$ belong to $\tau^{-1}(\gamma)$. Then γ is contractible. *Proof.* We shall consider the Stein manifold M as a closed analytic submanifold in C^n (e.g., see [GR]). Then each $\bar{\phi}_i$ has the following coordinate representation $\phi_j(z) = (\bar{\phi}_{j1}, \ldots, \bar{\phi}_{jn})$. Denote the restriction $\bar{\phi}_j$ to Δ by ϕ_j , and let $\phi' = (\phi'_{j1}, \ldots, \phi'_{jn})$ be the derivation of ϕ_j . As usual we shall use the symbol $\|\phi_i'(z)\|$ to denote the Euclidean length of the vector $\phi_i'(z)$. Suppose that the functions $\|\phi_i'\|$ converges to zero uniformly on compact subsets of Δ . Then there exists a sequence of points $\{z_i\} \subset \Delta$ with $|z_i| \to 1$ that satisfies $\|\phi_i'(z_i)\| \ge t/(1-|z_i|^2)$ for a certain positive t. Indeed, otherwise it is easy to show that the maximal Euclidean distance between the points of γ_i , tends to zero as $j \to \infty$. But γ_i is close to $\tau(\gamma_i)$. This implies that γ must be a constant mapping, and we have a contradiction. Put $\bar{\psi}_j = \phi_j \circ \mu_j$, where $\mu_i(z) = (z + z_i)/(1 + \bar{z}_i z)$. Let $\psi_j = \bar{\psi}_j|_{\Delta}$. The loop γ belongs to a ball Bin C^n . Hence for an arbitrary large j we have $\bar{\psi}_j(\partial \Delta) \subset B$. By the Maximum Principle $\bar{\psi}_i(\Delta) \subset B$. Therefore the family $\{\psi_i\}$ is normal. Passing to a subsequence, if necessary, we can suppose that $\{\psi_i\}$ converge to a mapping $\psi: \Delta \to \overline{R}$. Obviously, $\|\psi'(0)\| \ge t$, and, therefore, ψ is not constant. According to [Z, Lemma 2.2] $\psi(\Delta) \subset R$. Using a Möbius transformation again, if necessary, one may suppose that $\psi(0) \notin \gamma$. Choose an arbitrary small neighborhood N of γ in R so that N is topologically an annulus and $\psi(0) \notin N$. Then $N-\gamma$ consists of two components N_1 and N_2 , which are also annuli. Let μ_k be the component of the boundary of N_k other than γ . Obviously, $\psi_i(\Delta)$ must contain a component of either $\tau^{-1}(N_1) \cap \Gamma_{b_i}$ or $\tau^{-1}(N_2) \cap T_{b_i}$. Denote this component by L_j . Passing to a subsequence, we may suppose that $\tau(L_j) = N_1$ and $\tau|_{L_i}$ is a s-sheeted unramified covering, where s does not exceed the multiplicity of zero of the function Φ on R. Hence the Riemann surfaces $\{L_i\}$ are pairwise biholomorphically equivalent, and $l(L_i) = l(\psi_i^{-1}(L_i))$ does not depend on j. Since $0 \notin \psi_j^{-1}(L_j)$, we see by Proposition 4.1 that there is a positive r < 1 such that $\Delta - \psi_j^{-1}(L_j) \subset \Delta_r$. Hence $\mu_1 \subset \psi(\Delta_r)$. This implies that μ_1 is contractible, and, therefore, γ is also contractible. \square **Lemma 4.3.** The pseudometric a_{β} generated by an admissible sequence β is a metric on R in the case when R is different from Δ , Δ^* , or an annulus. *Proof.* Let $\gamma_1, \ldots, \gamma_k$ be disjoint noncontractible loops in R without points of self-intersection such that they are not pairwise homotopically equivalent, for each i the set $R - \gamma_i$ is not connected, and every γ_i is a component of the boundary of a compact $L \subset R$. Let L_j be a component of $\tau^{-1}(L) \cap \Gamma_{b_j}$. One may suppose that $\tau|_{L_j}: L_j \to L$ is a s-sheeted unramified covering for all j. Let $\{\gamma_{ij}^l|l=1,\ldots,l_{ij}\leq s\}$ be the components of $\tau^{-1}(\gamma_i)\cap L_j$. If R has a positive genus, we can suppose that L contains a loop μ without points of self-intersection so that $L-\mu$ is connected and $\mu \cap \bigcup_{i=1}^k \gamma_i = \emptyset$. In this case we denote one of the components of $\gamma^{-1}(\mu) \cap \Gamma_{b_j}$ by μ_j . Assume, to reach a contradiction, that $a_{\beta}\equiv 0$. Then $K_{\Gamma_{b_i}}(\gamma_{ij}^l)$, $K_{\Gamma_{b_i}}(\mu_j)\to 0$ as $j\to\infty$ and the distance between each pair of these loops in the Kobayashi metric on Γ_{b_i} also tends to zero. By Lemma 2.5 all of these loops must be homotopically equivalent. Since $\tau|_{L_i}: L_i \to L$ is an unramified covering, $L_i - \mu_i$ is connected. Hence by Lemma 2.4 μ_i cannot be homotopically equivalent to any component of the boundary of L_j , or in other words, to any γ_{ij}^l . Therefore it remains to consider the case when R is biholomorphically equivalent to a region in C. Then under the assumptions of the lemma one may suppose that $k \geq 3$. Thus we have, at least, three loops γ_1 , γ_2 , and γ_3 . By Lemma 2.5 there is a region $U_j \subset \Gamma_{b_j}$ such that $\partial U_j = \gamma_{1j}^1 \cup \gamma_{2j}^1$ and U_j is topologically an annulus. Note that U_i does not belong to L_i (otherwise, using Lemmas 2.3 and 2.4 it is easy to show that γ_1 and γ_2 are homotopically equivalent). Moreover, since the component of $\Gamma_{b_i} - L_j$ whose boundary contains γ_{3j}^1 is different from a disc according to Lemma 4.2, U_j does not contain L_j . Hence U_j is a component of $\Gamma_{b_i} - L_j$. Taking γ_{3j}^1 instead of γ_{2j}^1 we can construct a component V_j of $\Gamma_{b_j} - L_j$ so that $\partial V_j = \gamma_{1j}^1 \cup \gamma_{3j}^1$ and V_j is topologically an annulus. Since $\partial V_j \cap \partial U_j = \gamma_{1j}^1$, $V_j = U_j$. Then $\partial U_j = \partial V_j$, and this leads to a contradiction. Therefore a_{β} is not trivial. By Lemma 3.1 $a_{\beta}(v) \neq 0$ for each $v \in TR$. This completes the proof of the lemma. \Box **Lemma 4.4.** Let M be a Stein surface and let D be the same as in Lemma 3.2. Then D is simply connected. **Proof.** Assume that D is not simply connected. Then there is a couple of discs d and d' such that $\bar{d} \subset \Delta$, $d' \subset d$, d does not belong to D, and $\bar{d} - d' \subset D$. We again consider M as a submanifold in C^n . The set $f(\bar{d} - d')$ belongs to a certain ball in C^n . Same arguments as in Lemma 4.2 show that the family $\{f_j|_d\}$ is normal. Let $\tilde{f}: d \to \bar{R}$ be a limiting mapping. This mapping is unique, since it coincides with f on d - d'. In particular, it is nonconstant. The set f(d) does not contain singular points of Γ_0 , because otherwise $f_j(d)$ must intersect Γ_0 for an arbitrary large j [Z]. Hence $\tilde{f}(d) \subset R$, i.e., $d \subset D$. But this contradicts our assumption. \square **Corollary 4.5.** Lemma 4.2 holds without the condition that γ has no point of self-intersection. ## 5. Proof of the main theorem We keep the same notation R, β , a_{β} , $F = \{f_j\}$, $f : D \to R$ as in the preceding section. By Lemmas 3.2, 4.3, and 4.4 we suppose that the family F converges to the mapping $f : D \to R$ on a nonempty simply connected region $D \subset \Delta$ with $0 \in D$, and f is an unramified covering, which transforms the metric $k_{\Delta}|_{D}$ into the metric a_{β} . Let G_j be the Fuchsian group such that $f_j(z) = f_j(z')$ iff z' = g(z) for a certain $g \in G_j$. We say that a Möbius transformation h is limiting for $\{G_j\}$, if there is a sequence $\{g_j|g_j \in G_j\}$ that converges to h uniformly on compact subsets of Δ . Let G be the group of holomorphic one-to-one mappings D to D such that f(z) = f(z'), if z' = g(z) for a certain $g \in G$. **Lemma 5.1.** The set H of limiting Möbius transformations is a subgroup of G of finite index. *Proof.* By construction, H is a group and for each pair $z, z' \in D$ the equality h(z) = z' for an element $h \in H$ implies f(z) = f(z'). Hence $H \subset G$. As in the preceding section $\tau \colon V \to R$ is a holomorphic retraction of a Stein neighborhood V of R. Consider all the loops $\{\gamma: \partial \Delta \to R\}$ such that $\gamma(1) =$ f(0) and for an arbitrary large j there is a loop γ_j in Γ_{b_i} with $\gamma_i(1) =$ $f_i(0)$ and $\gamma = \tau \circ \gamma_i$. These loops generate a subsgroup H_1 of finite index in $\pi_1(R, f(0))$. This index does not exceed the multiplicity of zero of the function Φ on R. Since $\pi_1 \cong G$, one can consider H_1 as a subgroup in G as well. Let γ be a loop in R with $[\gamma] \in H_1$ and $\{\gamma_j \in \Gamma_{b_j}\}$ be the corresponding loops, which converge to γ uniformly. Consider the mappings $\nu_i \colon \mathbf{R} \to \Delta$ and $\nu \colon \mathbf{R} \to D$ such that $f_j \circ \nu_j(t) = \gamma_j(e^{2\pi it})$, $f \circ \nu(t) = \gamma(e^{2\pi it})$, and $\nu(0) = \nu_j(0) = 0$. Since $\gamma_j \to \gamma$ and $f_j \to f$, one can see that $\nu_j \to \nu$ uniformly. By $\widetilde{\gamma}_j$ and $\widetilde{\gamma}$ we will denote the elements of the Fuchsian groups G_j and G that correspond $[\gamma_j]$ and $[\gamma]$ respectively. Clearly, $\tilde{\gamma}_j^k(t) = \nu_j(t+k)$ and $\tilde{\gamma}^k(t) = \nu(t+k)$ for each integer k. This means $\tilde{\gamma}_i \to \tilde{\gamma}$ as $j \to \infty$. Hence $H_1 \subset H$ and H is a subgroup of G of finite index. \square Let $\widetilde{R} \to R$ be an unramified covering that corresponds to the subgroup $H \subset \pi_1(R)$. Then, since D is simply connected, the mapping $\widetilde{f}\colon D \to D/H \cong \widetilde{R}$ is a universal holomorphic covering. Recall that by the hypotheses of Main Theorem G is isomorphic to a Fuchsian group of the first kind G', acting on Δ . More precisely, there is a biholomorphic mapping $\varphi\colon \Delta \to D$ such that φ generates isomorphism between G and G'. Therefore H is isomorphic to a subgroup H' of finite order in G'. Hence H' is a Fuchsian group of the first kind as well. According to $[G,\S 3$, Lemma 3] it is easy to check now that, since the closure of the orbits $\{h'(0)|h'\in H'\}$ coincides with $\partial\Delta$, the closure of orbits $\{h(0)|h\in H)$ must coincide with ∂D . Assume that z is a point of $\partial D\cap\Delta$. Choose an arbitrary small neighborhood U of z and element \tilde{v} , $\tilde{\eta}\in H$ so that $\tilde{\nu}(0)$ and $\tilde{\eta}\circ\tilde{\nu}(0)\in U\cap D$. Let $\tilde{\mu}$, $\tilde{\gamma}\in H$ be noncommutative elements. Then $\tilde{\eta}$, $\tilde{\nu}^{-1}$, $\tilde{\gamma}\circ\tilde{\nu}^{-1}$ cannot belong to a cyclic subgroup of H. Hence one of the pairs $\tilde{\eta}$ and $\tilde{\nu}^{-1}$, $\tilde{\eta}$ and $\tilde{\nu}\circ\tilde{\nu}^{-1}$ or $\tilde{\eta}$ and $\tilde{\mu}\circ\tilde{\nu}^{-1}$ are not commutative. Consider the corresponding noncommutative pair of elements in G_i for a sufficiently large j. Put $z' = \tilde{\nu}(0)$. Application of Lemma 2.1 to the above pair and the point z'leads to a contradiction. Thus $D = \Delta$ and by Corollary 3.3 $k_R = \lim_{j \to \infty} k_{\Gamma_{h_j}}$. This implies immediately that for every sequence $\{b_j\}\subset \Delta^*$ with hyperbolic fibers $\{\Gamma_{b_j}\}$ and $b_j \to 0$ $k_R = \lim_{j \to \infty} k_{\Gamma_{b_j}}$. The last thing we need to confirm is that if there exists a sequence $\{b_j\} \rightarrow 0$ with nonhyperbolic fibers $\{\Gamma_{b_i}\}$ then R cannot be hyperbolic. Assume that such a sequence exists. Then Γ_{b_i} is biholomorphically equivalent to C or C^* . Hence R has no handle, for if it had, then all of the fibers Γ_{b_i} would have handles as well for sufficiently large j. Since a Fuchsian group of the first kind corresponds to the Riemann surface R, R is different from Δ , Δ^* or an annulus. Thus $\pi_1(R)$ has, at least, two generators $[\gamma_1]$ and $[\gamma_2]$. One may suppose that the loops γ_1 and γ_2 have no points of self-intersection. Note that the proof of Lemma 4.2 does not use the assumption that $\{\Gamma_{b_i}\}$ are hyperbolic, i.e., it remains true without this assumption. Thus, since Γ_{b_i} is biholomorphically equivalent to C or C^* either γ_1^k or γ_2^k must be approximated by contractible loops in $\{\Gamma_{b_i}\}$ for a certain integer k. This contradicts Lemma 4.2. Hence there is no sequence $\{b_j\} \to 0$ with nonhyperbolic fibers $\{\Gamma_{b_i}\}$. The main theorem is proved. ## REFERENCES - [A] W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Math., vol. 820, Springer-Verlag, Berlin and New York, 1980. - [B] L. Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300. - [G] G. M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, R.I., 1969. - [GR] R. G. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965. - [Ka] Sh. Kaliman, Polynomials on C^2 with isomorphic generic fibers, Soviet Math. Dokl. 33 (1986), 600-603. - [Ko] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970. - [PS] E. A. Poletsky and B. V. Shabat, *Invariant metrics*, Itogi Nauki i Tekhniki (Modern Problems of Mathematics, Fundamental Directions), VINITI, Moscow, 1986, pp. 73-125. (Russian) - [R] H. Royden, Remarks on Kobayashi metric, Several Complex Variables II (Proc. Internat. Conf., College Park, Md., 1970), Lecture Notes in Math., vol. 185, Springer-Verlag, 1971, pp. 125-137. - [S] Y.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 - [Z] M. G. Zaidenberg, On hyperbolic embeddings of complements of divisors and the limiting behavior of the Kobayashi-Royden metric, Math. USSR-Sb. 55 (1986), 55-70. DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202 Current address: Department of Mathematics & Computer Science, University of Miami, Coral Gables, Florida 33124