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THE LIMITING BEHAVIOR OF
THE KOBAYASHI-ROYDEN PSEUDOMETRIC

SHULIM KALIMAN

ABSTRACT. We study the limit of the sequence of Kobayashi metrics of Rie-
mann surfaces (when these Riemann surfaces form an analytic fibration in such
a way that the total space of fibration becomes a complex surface), as the fibers
approach the center fiber which is not in general smooth. We prove that if
the total space is a Stein surface and the smooth part of the center fiber con-
tains a component biholomorphic to a quotient of the disk by a Fuchsian group
of first kind, then the Kobayashi metrics of the near-by fibers converge to the
Kobayashi metric of this component as fibers tend to the center fiber.

INTRODUCTION

Let ®: M — A be a holomorphic mapping from a complex surface M on
the disc A = {z € C| |z| < 1}. Suppose that for each ¢ #0 I, = ®d~!(c) isa
smooth noncompact Riemann surface and I} is a smooth part of T'p = ®~1(0).
We shall investigate relations between the Kobayashi-Royden pseudometric kra
on I'y and the limit of the Kobayashi-Royden pseudometric on nearby fibers.
More precisely, we shall study the problem when the equality

(1 lim kr, = kr;

holds. In general, it is not so. In [PS, §2.2] there is an example of such mapping
®: M — A, where M is a holomorphically convex region in C2, every I, is
a disc, but lim._,okr, # kr,. Zaidenberg found certain sufficient conditions,
which imply (1) [Z]. But his result does not give the answer to the question
whether (1) holds, when @ is a polynomial of two complex variables and M =
®~1(A). He supposed that the answer was positive. Let G be a Fuchsian
group of the first kind. The Main Theorem of this paper says that, if M is
a Stein surface and I'j contains a component R, which is biholomorphically
equivalent to A/G, then lim.,okr, = kg. In particular, the Zaidenberg’s
conjecture is true. The last fact was announced in [Ka], where it was used to
classify isotrivial polynomials on C2.

The paper is organized as follows. We present some terminology and formu-
late our main results in the first section. The second section contains a technical
lemma about Fuchsian groups and its corollaries needed for the proof of the
Main Theorem. This lemma asserts that two noncommutative nonelliptic ele-
ments of a Fuchsian group cannot move any point z € A by a distance less than
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a certain & > 0 at the same time. Next we handle the case of hyperbolic fibers
{T's;} with b; — 0. We consider universal holomorphic covering fitA—Ty
and find out when {f;} converge to an unramified mapping f: D — I'; on a
certain maximal region D C A. We also prove that f(D) is a component of I
and, if D = A, then the Kobayashi-Royden pseudometric on f(D) coincides
with the limit of the Kobayashi-Royden pseudometric of nearby fibers. The
result of the forth section says that D is simply connected in the case when M
is a Stein surface. The last section contains the proof of the Main Theorem.

It is a great pleasure to thank M. G. Zaidenberg for his question and stimu-
lating discussions.

1. FORMULATION OF THE MAIN THEOREM

First we fix terminology, notations and definitions that we shall use through-
out the paper. Every manifold we are going to consider will be complex. If
Y is a manifold, then TY is its holomorphic tangent bundle and T7,Y is
a tangent space at a point y € Y. Put A, = {z e C||z| <r}, A=A, and
A*=A-0. Byacurve 7 in Y we mean a continuous mapping n:[0, 1]—- Y.
Aloop y in Y is a curve with p(0) = y(1). In other words, y is a contin-
uous mapping from AA to Y (as is frequently done, we use the symbol &
to denote boundaries). If x € y(dA), then we write x € y. Recall that a
differential pseudometric on a complex manifold Y is a nonnegative homoge-
neous function on the tangent bundle 7Y, i.e., itis a function p: 7Y —» R
such that p(y,v) >0, p(y,Av) = |Ajp(y,v) forall ye Y, v e T,Y, and
A € C. When p is continuous, we call the pseudometric continuous. If Y
is connected and for each piecewise smooth curve 7 in Y there exists the

integral P(n) = fol p(n(t), dn(t))dt, one can define the integral pseudometric
P(x,y)=inf,{P(n)|n(0) = x, n(1) = y} . Of course, the integral pseudometric
exists, when a proper differential pseudometric is continuous. The Kobayashi-
Royden differential pseudometric is given by the formula

ky(y,v) =inf{l/r | ¢ € Hol(A,, Y), $(0) =y, d§(0) =v}.

By Royden’s theorem [R] it generates the integral pseudometric Ky which co-
incides with the Kobayashi pseudometric on Y [Ko].

Throughout the paper ®: M — A is a holomorphic mapping from a smooth
complex surface M on A such that for ¢ # 0 T, = ®~!(¢) is a smooth
Riemann surface. We shall say that ®: M — A is a family of Riemann surfaces.
The fiber I'y = ®~!(0) can contain singular points. Denote the smooth part of
I'h by I';. Let B = {b;} C A* be a sequence that tends to zero, let R be a
component of I';. We say that lim;_ kl‘bj = kg (or limj_o kr, < kg), if

J
for each sequence {w; € TT},} that converges to w € TR in the topology of
TM the equality lim, .. kr, (w;) = kg(w) (or inequality limj_,o kr, (w;) <

J
kr(w)) holds. If lim;_, kl‘bj = kg for each sequence B as above, then we say
lim._okr, = kg. In the same meaning lim._. kr, < kz. The following two
results belong to Zaidenberg [Z].

Proposition 1.1. For each component R of T} the inequality lim._.o kr, < kg
holds.
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Theorem 1.2. Let M bea smooth compact surface and T c M bean analytic
curve in M . Suppose that M c M —T', Iy =(,,, P 1(Ar), and Ty =T -T.
If every component of T7 is hyperbolic, then lim,_kr, = kg .

Zaidenberg conjectured that, if @ is a polynomial on C? and M = ®~'(A),
then the assumption that all the components of I, are hyperbolic can be omit-
ted. We shall show that this hypothesis is correct. Recall that G is a Fuchsian
group of the first kind, if the closure of the orbit {g(0)|g € G} in C contains
O0A [B]. In particular, in the polynomial case every hyperbolic component R of
I'; has a representation R = A/G, where G is a Fuchsian group of the first
kind.

Main Theorem. Let ®: M — A be a family of Riemann surfaces. Suppose that
M is a Stein manifold and T contains a component R that is biholomorphi-
cally equivalent to A/G, where G is a Fuchsian group of the first kind. Then
limc_,o krc = kR .

Note that, if R is nonhyperbolic, such a fact follows from Proposition 1.1.
Hence we have

Corollary. Let ®: C2 — C be a polynomial. Then lim,_qkr, = krs .

We shall restrict ourselves to the case of connected fibers for ¢ # 0 (in general
case the proof is the same, but instead of I'. we have to use their components).

2. ONE PROPERTY OF FUCHSIAN GROUPS
We shall denote the Kobayashi metric on A by K, .

Lemma 2.1. For every r > 0 there exists ¢ > 0 such that for every Fuchsian
group G, noncommutative elements a’', b’ € G, and a point z € A satisfying
0 < Ka(z, d'(z)) < r, either Kx(z,b'(z)) > & or z is a fixed point of the
mapping b’ : A — A.

Proof. Assume, to reach a contradiction, that for a certain r > 0 and each ¢ > 0
there exists a Fuchsian group G, , noncommutative elements a, , b, € G, ,and a
point z, € A such that 0 < Ka(z,, a(z,)) <r and 0 < Kx(z, bi(z)) <e. We
shall show that for a sufficiently small & the group G, cannot be discontinuous.
Without loss of generality, we set z, = 0. Let id be the identity element of G, .
Since G, is a discontinuous group, one can find elements a, and b, satisfying

(2.1) Ka(0, b,(0)) = min{K4(0, £(0))|g € G., g(0) # 0},
(2.2) Ka(0, a.(0)) = min{Ka(0, g(0))|g € G¢, g(0) # 0, [b., g] #id}.
The mapping a, and b, can be represented in the form

a,(z) = e®(z + ;) /(1 +@,2), |6, €[0, 7],

be(z) =e"™(z+ B:)/(1+ B,2), || €0, .

We shall omit the index ¢ from now on, if it does not cause misunderstanding.
Let us consider b as a function of two variables z and f. Expand b in
power series of z, B, and B. Then b(z) = ez + "B up to the nonlinear
terms. Hence for every natural m one can find a neighborhood of the origin
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in C?={(z, B)} sothatforall n=1,2,...,m,

n
b(z) ="z 4y e B+ O(21P +181)
I=1
in this neighborhood. Thus

n
b"(0) =B > e+ O(BI*) = e (" — 1)/(e" = 1) + O(|BI) -
I=1
It is easy to check that for each 7y # 2nk there is a neighborhood U of 79
and integer n > 2 so that for every 1€ U,

(2.3) ™ — 1)/(e" - )] < 1.

Now one can see that 7, — 0 as ¢ — 0. Indeed, the preceding assumption
implies
O0<|a| <F, 0<|Bl<é,

where é = (e + 1) and 7= (e" —1)/(e" +1). Thus lim,_|Be| = 0. Assume
lim,_o|te| > 1/m. Then by (2.3) we can find n < m with |b"(0)| < |b(0)|.
This contradicts (2.1). Thus b,(z) — z uniformly on compact subsets of A as
e — 0. Let lim,_o|ag| = a®. Since |a¢| < 7, azob;0a;'(z) — z as ¢ = 0.
In particular, for any sufficiently small & we have |a.b.a;!(0)| < a®/2. This
implies either a® =0 or b and aba~! are commutative. We shall prove that
the last case does not hold. One can represent a and b as mappings of the
upper half-plane. Then, if a is a hyperbolic element, we may put a(z) = Az
with A > 0 and if a is a parabolic element, we may put a(z) =z + 1 [A]. In
both cases for any b(z) = (pz +q)/(tz +s) with p, g, t, s € R the direct
computation shows that [aba~!, b] = id, iff [a, b] = id. When a is an elliptic
element, one may consider a as a mapping a: A — A given by the formula
a(z) = Az with A" =1 for a certain natural n. Again it is easy to show that
[aba~!, b] = id, iff [a, b] = id for any Mobius transformation b: A — A.
But this a contradicts (2.2). Therefore lim,_,oa, = 0. Same arguments as
above show that 8, — 0 as ¢ — 0. Hence for any sufficiently small ¢ we have
le®: —1]|+|e’™ — 1] < 1/2 and for an arbitrarily small o the following inequality
holds

1b~'a'ba(0)| = |e'™ — 1| |a| + " — 1] |B] < |al/2 < |a(0)]
but b~ 'a~!'ba and b are not commutative, since [a~!, ba, b] # id. This is a
contradiction. O

Corollary 2.2. For every r > 0 there exists ¢ > 0 such that for every hyperbolic
Riemann surface R, for every point x € R, and for every couple of loops y and
U that generate noncommutative elements of the fundamental group n(R, x),
the inequalities Kgr(y) < ¢ and Kgr(u) < r do not hold simultaneously.

The next three lemmas enable us to restate this corollary in a form which will
be convenient for our following needs.

Lemma 2.3. Let y be a noncontractible loop on a Riemann surface R. Suppose
that the corresponding element of the fundamental group mn,(R) has a represen-
tation [y] = [u]", where [u] € n(R) and the natural number n > 2. Then y
has points of self-intersection.
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Proof. Let H be the upper half-plane, and let f: H — R be a universal holo-
morphic covering. Then we can define the Mobius transformation b: H — H
corresponding to [u]. If b is a hyperbolic transformation, one can choose f
so that b(z) = Az with A > 0 [A]. Let z, be a point in the inverse image
of a point xo € y. Obviously, each curve in H that connects the points z,
and A"z, contains points z’ and z” such that z’ = Az”. But this means that
7 has the point of self-intersection f(z’). If b is parabolic, we may suppose
that b(z) = z + 1. Again each curve that connects the points zy and zy + n
contains points z’ and z” = z’ + 1. This implies the desired conclusion. O

Lemma 2.4. Let y and u be disjoint noncontractible loops in a Riemann surface
R . Suppose that neither y nor u has points of self-intersection. Then y and u
are homotopically equivalent, iff there is a region U C R such that 0U =yU u
and U is topologically an annulus.

Proof. Let x; € y and y; € u. Choose a curve v;: [0, 1] — R so that
v1(0) = x1, u;(1) = y;, v; has no points of self-intersection and v; intersects
y U u at the points x; and y; only. Choose an analogous curve v, so that v,
connects points x; € y and y, € 4, and v, is sufficiently close to, but disjoint
from v;. Then y — (x; UXx;) consists of two components y; and y,, and 7,
is small enough. In the same way u — (yy Uy;) = 43 U up, and y; is small.
Then there exists an open disc D C R with D = vy Uv, Uy, U ;. One can
construct the loop 7 = vy Uuy Uy, Uy,. Since y and u are homotopically
equivalent, n must be contractible. By our construction n has no points of
self-intersection. This implies the existence of the disc U C R with U =n. If
U>D,then U-D contains the two components U; and U,. Each of them
is a disc, QU; = y and AU, = u. This contradicts the assumption that y and
u are noncontractible. Hence UND = @ . Obviously, DUU is topologically a
closed annulus and 8(UUD) = y U u. This completes the proof of the lemma.

Lemma 2.5. Let y and u be noncontractible loops on a Riemann surface R,
and neither y nor u has points of self-intersection. Suppose that R — (y U u)
does not contain components that are topologically an annulus. Then for each
e > 0 there exists r > 0 such that, if Kr(y) < ¢ and Kr(n) < ¢, then the
distance between y and u in the Kobayashi metric is greater than r.

Proof. Let v: [0, 1] — R be a curve that connects y and u so that Kg(v)
coincides with the distance between y and u. Let v(0) = xo € y . By Corollary
2.2 it is enough to verify that y and y’ = v~!ouov generate noncommutative
elements [y] and [y'] in 7;(R, xp). Since the group =;(R, Xo) is free, [y]
and [y'] are commutative, iff they belong to a cyclic subgroup. This implies
that [y] = [v]" and [y'] = [v] for a certain [v] € m,(R, X;). By Lemma 2.3
k =1 = 1. Hence [y] = [']. Therefore y and u must be homotopically
equivalent. But this contradicts Lemma 2.4. O

3. LIMITING BEHAVIOR OF HYPERBOLIC METRIC

From now on by R we denote a connected hyperbolic component of I .

Lemma 3.1. Let o be a sequence of points in A* that tends to zero. Suppose that
Jor each c € a the fiber T, is a hyperbolic Riemann surface. Then for a certain
infinite subsequence B = {b;} C «a there exists a differential pseudometric ag
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on R such that ag =lim;_ kr, . Moreover, ag is a continuous pseudometric
and the equality ag(v) =0 for a vector v € TR implies ag =0.

Proof. Let ¢: A — R be a holomorphic embedding and ¢(A) = U. It is easy
to construct holomorphic embeddings ¢;: A — U; C I'y, so that ¢;(z) — ¢(z2)
as j — oo (e.g., see [Z]). Let v, denote the point (z,d/dz) € TA. We set
si=¢ j+(vz) and s; = ¢.(v;) (where ¢;, and ¢, are the induced mappings of
the tangent bundles). Then s/ — s, in topology of TM . Let firA—Ty bea
universal holomorphic covering. Choose a connected component V; of fj"(U i)
and a holomorphic mapping g;: A — A so that the restriction of g; od)}f‘ ofj to
V;j is the identity mapping. One may suppose that 0 € V; and g;(0) = 0. Let
§7 € TV; belong to the inverse image of the vector s7 under the mapping fj. .
Then gj.(v;) = §}. On the other hand gj.(v;) = g}(z)vg,;). Hence, taking
into consideration the equalities k,(5]) = kl“,,j (s)) and ka(v;) = 1/(1—|z]?), we
have kl"bj () =] gi(2)|/(1-] gi(2)|?) . Passing to a subsequence, if necessary, we
suppose that g;(z) — g(z) uniformly on compact subsets of A. By Hurwitz’s
theorem either g’'(z) # 0 forevery z € A or g'(z) =0 (in the last case g(z) =
0, since g(0) = 0). Therefore lim;_ kl—bj(sé) = |g'(2)|/(1 — |g(2)|?). Let

57 = (xj(z), tj(z)), where x;(z) € U; and tj(z) € Ty,;)U; (the notation, s, =
(x(z), t(z)) has the same meaning). A sequence {v;|v; = (x(z;), 4;tj(z;)); A€
C} converges to v = (x(z), A#(z)) in the topology of TM , iff z; — z and
Aj — A. Hence lim;_, kl“b, (vj) = 1A8'(2)|/(1 — |g(2)|*) and a proper limiting
pseudometric exists on U. Let {U’} be a cover on R and each U’ be an
open disc. We can repeat the above construction of the limiting pseudometric
for each U/ instead of U. Application of the diagonal process completes the
proof of the lemma. O

Definition. Let f = {b;} C A* be a sequence that converges to zero, and let
every fiber I’ hyperbolic. We shall say that f isan admissible sequence if there
is a continuous differential pseudometric ag on R such that ag = lim;_. krb}
and the quality ag(v) = 0 for a vector v € TR implies ag = 0. We will denote
the corresponding integral pseudometric by A4, and throughout the rest of the
paper we will fix these notations f, agz, and Ag for the above objects.

Lemma 3.2. Suppose that the ag is a metric. Let F = {f;}, where fj: A — T}
is a holomorphic universal covering with f;j(0) — xo € R as j — oo. Then there
is a nonempty open subset D C A that contains 0 and a subsequence F; C F
that converges to a mapping f: D — R. Moreover

(i) f: D — R is an unramified covering:

(ii) F transforms the metric ka|p into the metric ag.

Proof. First assume that f exists and prove (ii). Let z € D, x = f(z), and
xj = fj(z). Then x; — x as j — oo. Choose a sequence {vj|v; € Ty, T} }
that converges to a nonzero vector v € TR in the topology of TM . Let
©; € T,A belong to the inverse image of v; under the mapping f;.. Since S
is admissible, k,(7;) = kr‘bj (v;) = ag(v). Thus for every j, ka(¥;) is less than
a certain common constant. Hence we may suppose that there is the limiting
vector ¥ for the sequence {¥;}. Clearly, ka(?) = ag(v) and fi(7) = v.
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This implies (ii). Property (ii) means that, if f exists, then it must be locally
homeomorphic. Let P be a sufficiently small neighborhood of x; such that P
is biholomorphically equivalent to a ball, and all U; = PNl and U =ToNP
are discs. For every manifold N we will denote by B(y, r, N) C N the ball of
radius r in the metric Ky with the centerat y. Let B(x, r, Ag, R) C R be the
analogous ball in the metric Az with the center at x . Since az is a metric, there
exists r > 0 such that B(xo, r, Ag, R) C U. Hence B(f;(0),r,T}) C U;,
when j is sufficiently large. The restriction of f; to Hy = B0, r,A) is a
homeomorphism between Hy and B(fj(0), r, I'y,). The family {fj| ¢ Hy —
P} is normal. Pick out a converging subsequence F; C F in this family.
Let f: Hy — B(x,r, Ag, R) be the limiting mapping. We have proved that
D > Hy, ie., D is not empty. Since f is locally homeomorphic and each
fil # is a homeomorphism, one can easily check that the limiting mapping
S 7 is also homeomorphism. Set H = B(xo, r/3, Ag, R). Suppose there is
apoint z € D— Hy with y = f(z) € H. Let H, = B(y, 2r/3, Ag, R) and
H, = B(z,2r/3,A). Clearly H, C U. Repeating the above arguments we can
choose a subsequence F, C F; so that the restriction F> to H, converges to
a homeomorphism g: P~I1 — H;. For every subsequence F3 C F — F, that
converges to a mapping h: H; — H; we have gIHnD = thnD = f|u.nD

By the uniqueness theorem 4 = g. Thus one can take F 1tself as F, and
D> Hl Since H, D H, H1 contains a disc H such that flz: FE — H is

a homeomorphism and Hy N H = @ (indeed, z ¢ Hy and the restrlction of
f to Hj is also a homeomorphism). We can consider H as a neighborhood
of xo. Of course, analogous arguments enable us to find such a neighborhood
for every point x € F(D). Hence f: D — F(D) is an unramified covering. In
particular, f(D) is an open set.

To check the equality R = f(D) it is enough to prove that the set f(D) is
closedin R. Let x belong to the closure of f(D) in R. Let P’ be a sufficiently
small neighborhood of x. Suppose that P’ is biholomorphically equivalent to
aball, and U’ = P'nIy and {U; = P'NT}} are discs. Choose r > 0 with
B(x,r, Ag, R) c U'. Then we can find a point y € f(D)NB(x,r/3, Ag, R).
As we have seen, in this case f(D) D B(y, 2r/3, Ag, R). Hence, x € f(D),
which is the desired conclusion. O

Corollary 3.3. If the assumptions of Lemma 3.2 hold and D = A, then kg =
lim j—o00 kr‘bj .

Proof. We shall use the notation of the proof of Lemma 3.2. If D = A, then
f: D — R is a universal holomorphic covering and

jlilgo kr,,(v)) = jli{go ka(;) = ka(0) = kp(9) = kr(v). O

4. STEIN CASE

From now on M is a Stein surface, and we will use the same notations R,

= {bj},ap, fi:A— Ty, F ={f;} and f: D — R as in the preceding
section. Let a Riemann surface 4 be topologically an annulus. Denote the
minimum of lengths of noncontractible loops in 4 by /(A4).
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Proposition 4.1. To each number t > O corresponds a positive number r < 1 so
that the assumptions:

(i) L is a compact in A;

(i) Oe L;

(iii) A — L is topologically an annulus;

(iv) ([A-L)<t
imply that L C A, .
Proof. Assume that the contrary. Then for a certain ¢ and every r < 1 there is
compact L, that contains a point z, with |z,| > r and satisfies (1)-(iv). Clearly
[(L — A) is greater than 2K,(0, z,). But Kj(0, z,) — o0 K(0, z,) — oo as
r — 1, and we have a contradiction with (iv). O

According to [S] the Stein subvariety R has a tubular neighborhood V Cc M
that is biholomorphically equivalent to a neighborhood of the zero section in the
normal bundle to R in M . Thus we have a holomorphic retraction 7: V' — R.
Let Q be aregion in R with the compact closure. Then for a sufficiently small
¢ and every ¢ € A, the restriction 7 to 771(Q)NI. is a holomorphic unramified
covering, whose multiplicity over Q is equal to the multiplicity to zero of the
function ® on R.

Lemma 4.2. Let y be a loop in R without points of self-intersection. Let
{¢jld;j: A — Ty} be continuous embeddings that are holomorphic on A. Sup-
pose that y; = ¢;(0A) belong to 1'(y). Then y is contractible.

Proof. We shall consider the Stein manifold M as a closed analytic subman-
ifold in C" (e.g., see [GR]). Then each ¢, has the following coordinate rep-
resentation ¢;(z) = (@j1, ..., #j»)). Denote the restriction ¢; to A by ¢;,
and let ¢' = (q&}1 y ey d)}n) be the derivation of ¢;. As usual we shall use the
symbol [|¢;(z)|| to denote the Euclidean length of the vector ¢’(z). Suppose
that the functions ||¢}|| converges to zero uniformly on compact subsets of A.
Then there exists a sequence of points {z;} C A with |z;| — 1 that satisfies
g (z)Il = ¢/(1 - |zj|?) for a certain positive ¢. Indeed, otherwise it is easy
to show that the maximal Euclidean distance between the points of y;, tends
to zero as j — oo. But yp; is close to 7(y;). This implies that y must be
a constant mapping, and we have a contradiction. Put @; = ¢; o u;, where
uj(z) =(z+z;)/(1+ zjz). Let y; = @j|a. The loop y belongs to a ball B
in C". Hence for an arbitrary large j we have ;(8A) C B. By the Maxi-
mum Principle ;(A) C B. Therefore the family {y;} is normal. Passing to
a subsequence, if necessary, we can suppose that {y;} converge to a mapping
w:A — R. Obviously, lwj(0)|l > ¢, and, therefore, y is not constant. Ac-
cording to [Z, Lemma 2.2] y(A) C R. Using a Mobius transformation again, if
necessary, one may suppose that y(0) ¢ y. Choose an arbitrary small neigh-
borhood N of y in R so that N is topologically an annulus and y(0) ¢ N.
Then N -y consists of two components N; and N, , which are also annuli. Let
U, be the component of the boundary of N other than y. Obviously, y;(A)
must contain a component of either 7=!(N;)NT,, or 7=!(N;)NT}, . Denote this
component by L;. Passing to a subsequence, we may suppose that 7(L;) = N;
and 7|, is a s-sheeted unramified covering, where s does not exceed the mul-
tiplicity of zero of the function ® on R. Hence the Riemann surfaces {L;}
are pairwise biholomorphically equivalent, and /(L;) = l(c//j“(Lj)) does not
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depend on j. Since 0 ¢ !//j“(Lj) , we see by Proposition 4.1 that there is a
positive r < 1 such that A — y/j"(Lj) C A, . Hence u;, C w(A,). This implies
that u; is contractible, and, therefore, y is also contractible. O

Lemma 4.3. The pseudometric ag generated by an admissible sequence B is a
metric on R in the case when R is different from A, A*, or an annulus.

Proof. Let y;, ..., 7 be disjoint noncontractible loops in R without points
of self-intersection such that they are not pairwise homotopically equivalent,
for each i the set R — y; is not connected, and every y; is a component of
the boundary of a compact L C R. Let L; be a component of t=!(L) N Ty, .
One may suppose that 7|, : L; — L is a s-sheeted unramified covering for
all j. Let {yfj|1 =1,...,l;j < s} be the components of 7=!(y;)NL;. If R
has a positive genus, we can suppose that L contains a loop x without points
of self-intersection so that L — u is connected and u N Uf=l 7 = @. In this
case we denote one of the components of y~!(u) N Iy, by uj. Assume, to
reach a contradiction, that ag = 0. Then Krbj(y{j), Kr, (1) —» 0 as j — oo
and the distance between each pair of these loops in the Kobayashi metric on
', also tends to zero. By Lemma 2.5 all of these loops must be homotopically
equivalent. Since 7|.,: Lj — L is an unramified covering, L;—u; is connected.
Hence by Lemma 2.4 u; cannot be homotopically equivalent to any component
of the boundary of L;, or in other words, to any yf ;- Therefore it remains to
consider the case when R is biholomorphically equivalent to a region in C.
Then under the assumptions of the lemma one may suppose that k > 3. Thus
we have, at least, three loops y;, 7>, and y3. By Lemma 2.5 there is a region
U;j C Ty, such that dU; = y};Uy,; and U; is topologically an annulus. Note
that U; does not belong to L; (otherwise, using Lemmas 2.3 and 2.4 it is easy
to show that y; and p, are homotopically equivalent). Moreover, since the
component of I, — L; whose boundary contains y;; is different from a disc
according to Lemma 4.2, U; does not contain L;. Hence U; is a component
of Iy, — L;. Taking y;; instead of p;; we can construct a component V; of
Iy, — Lj so that 9V, = " ;U 7} ; and Vj is topologically an annulus. Since
dV;ndU;=y|;, V;=U;. Then U; = 8V}, and this leads to a contradiction.
Therefore ag is not trivial. By Lemma 3.1 ag(v) # 0 for each v € TR. This
completes the proof of the lemma. 0O

Lemma 4.4. Let M be a Stein surface and let D be the same as in Lemma 3.2.
Then D is simply connected.

Proof. Assume that D is not simply connected. Then there is a couple of discs
d and d’ suchthat d CA, d' cd, d does notbelongto D,and d—d' c D.
We again consider M as a submanifold in C”. The set f(d —d’) belongs to
a certain ball in C". Same arguments as in Lemma 4.2 show that the family
{fila} is normal. Let f:d — R be a limiting mapping. This mapping is
unique, since it coincides with f on d — d’. In particular, it is nonconstant.
The set f(d) does not contain singular points of Iy, because otherwise f;(d)
must intersect I'g for an arbitrary large j [Z]. Hence f(d) c R,ie., d CD.
But this contradicts our assumption. O
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Corollary 4.5. Lemma 4.2 holds without the condition that y has no point of
self-intersection.

5. PROOF OF THE MAIN THEOREM

We keep the same notation R, f, agz, F = {f;}, f: D — R as in the
preceding section. By Lemmas 3.2, 4.3, and 4.4 we suppose that the family F
converges to the mapping f: D — R on a nonempty simply connected region
D c A with 0 € D, and f is an unramified covering, which transforms the
metric ka|p into the metric ag. Let G; be the Fuchsian group such that
fi(z) = fj(2') iff 2/ = g(z) for a certain g € G;. We say that a Mobius
transformation h is limiting for {G;}, if there is a sequence {gj|g; € G;} that
converges to # uniformly on compact subsets of A. Let G be the group of
holomorphic one-to-one mappings D to D such that f(z) = f(Z'), if 2/ =
g(z) for a certain g€ G.

Lemma 5.1. The set H of limiting Mébius transformations is a subgroup of G
of finite index.

Proof. By construction, H is a group and for each pair z, z’ € D the equality
h(z) = z’ for an element & € H implies f(z) = f(z'). Hence H C G.
As in the preceding section 7: V' — R is a holomorphic retraction of a Stein
neighborhood V' of R. Consider all the loops {y: A — R} such that y(1) =
f(0) and for an arbitrary large j there is a loop y; in Iy, with y;(1) =
fi(0) and y = toy;. These loops generate a subsgroup H; of finite index in
m1(R, f(0)). This index does not exceed the multiplicity of zero of the function
® on R. Since 7m; = G, one can consider H; as a subgroup in G as well. Let y
be aloopin R with [y] € H; and {y; € I, } be the corresponding loops, which
converge to y uniformly. Consider the mappings v;: R - A and v: R — D
such that fjov;(t) = y;(e*™), fov(t) = y(e**"), and v(0) = v;(0) = 0. Since
y; — v and f; — f, one can see that v; — v uniformly. By y; and y we
will denote the elements of the Fuchsian groups G; and G that correspond
[7;] and [y] respectively. Clearly, 'ﬁ‘(t) =v;(t+k) and *(t) = v(¢t + k) for
each integer k. This means y; — 7 as j — oo. Hence H; C H and H isa
subgroup of G of finite index. O

Let R — R be an unramified covering that corresponds to the subgroup H C
71 (R). Then, since D is S1mp1y connected, the mapping f D—D/H= Risa
universal holomorphic covering. Recall that by the hypotheses of Main Theorem
G is isomorphic to a Fuchsian group of the first kind G’, acting on A. More
precisely, there is a biholomorphic mapping ¢: A — D such that ¢ generates
isomorphism between G and G’'. Therefore H is isomorphic to a subgroup
H' of finite order in G’ . Hence H' is a Fuchsian group of the first kind as well.
According to [G, §3, Lemma 3] it is easy to check now that, since the closure of
the orbits {h’(0)|h’ € H'} coincides with A, the closure of orbits {4(0)|h € H)
must coincide with 8D . Assume that z is a point of 9D NA. Choose an
arbitrary small neighborhood U of z and element ¥, 7 € H so that #(0) and
flov(0) e UND. Let i, € H be noncommutative elements. Then #, 7!,
yo~!, jior~! cannot belong to a cyclic subgroup of H . Hence one of the pairs
fiand 7!, 7 and $or~! or # and jio~! are not commutative. Consider the
corresponding noncommutative pair of elements in G; for a sufficiently large
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Jj. Put z/ =(0). Application of Lemma 2.1 to the above pair and the point z’
leads to a contradiction. Thus D = A and by Corollary 3.3 kg = lim;_,« krbj .

This implies immediately that for every sequence {b;} C A* with hyperbolic
fibers {[';,} and b; -0 kg =1lim;_ kaj . The last thing we need to confirm

is that if there exists a sequence {b;} — O with nonhyperbolic fibers {I'; }
then R cannot be hyperbolic. Assume that such a sequence exists. Then I',
is biholomorphically equivalent to C or C*. Hence R has no handle, for
if it had, then all of the fibers I',, would have handles as well for sufficiently
large j. Since a Fuchsian group of the first kind corresponds to the Riemann
surface R, R is different from A, A* or an annulus. Thus 7;(R) has, at
least, two generators [y;] and [y;]. One may suppose that the loops y; and
y, have no points of self-intersection. Note that the proof of Lemma 4.2 does
not use the assumption that {Fbj} are hyperbolic, i.e., it remains true without
this assumption. Thus, since I',, is biholomorphically equivalent to C or C*

either y{‘ or yf must be approximated by contractible loops in {I', } for a
certain integer k. This contradicts Lemma 4.2. Hence there is no sequence
{b;} — 0 with nonhyperbolic fibers {I'; } . The main theorem is proved.
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