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THE LIMITING BEHAVIOR OF
THE KOBAYASHI-ROYDEN PSEUDOMETRIC

SHULIM KALIMAN

Abstract. We study the limit of the sequence of Kobayashi metrics of Rie-

mann surfaces (when these Riemann surfaces form an analytic fibration in such

a way that the total space of fibration becomes a complex surface), as the fibers

approach the center fiber which is not in general smooth. We prove that if

the total space is a Stein surface and the smooth part of the center fiber con-

tains a component biholomorphic to a quotient of the disk by a Fuchsian group

of first kind, then the Kobayashi metrics of the near-by fibers converge to the

Kobayashi metric of this component as fibers tend to the center fiber.

Introduction

Let í>: M —> A be a holomorphic mapping from a complex surface M on

the disc A = {z e C\ \z\ < 1} . Suppose that for each c ^ 0 Tc = <I>-1(c) is a

smooth noncompact Riemann surface and Tg is a smooth part of T0 = i>-1 (0).

We shall investigate relations between the Kobayashi-Royden pseudometric /cp.

on Tq and the limit of the Kobayashi-Royden pseudometric on nearby fibers.

More precisely, we shall study the problem when the equality

( 1 ) lim kr   = /Or.
K   ' c^O     c °

holds. In general, it is not so. In [PS, §2.2] there is an example of such mapping

O: M —► A, where M is a holomorphically convex region in C2, every Fc is

a disc, but limc_o krc # kr0 • Zaidenberg found certain sufficient conditions,

which imply (1) [Z]. But his result does not give the answer to the question

whether ( 1 ) holds, when <E> is a polynomial of two complex variables and M =

O-1 (A). He supposed that the answer was positive. Let G be a Fuchsian

group of the first kind. The Main Theorem of this paper says that, if M is

a Stein surface and Tq contains a component R, which is biholomorphically

equivalent to A/G, then limc_okrc = kg.. In particular, the Zaidenberg's

conjecture is true. The last fact was announced in [Ka], where it was used to

classify isotrivial polynomials on C2 .
The paper is organized as follows. We present some terminology and formu-

late our main results in the first section. The second section contains a technical

lemma about Fuchsian groups and its corollaries needed for the proof of the

Main Theorem. This lemma asserts that two noncommutative nonelliptic ele-

ments of a Fuchsian group cannot move any point z e A by a distance less than
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a certain e > 0 at the same time. Next we handle the case of hyperbolic fibers

{Yb } with bj: —> 0. We consider universal holomorphic covering fi: A —> Ybj

and find out when {/}} converge to an unramified mapping /: D —» Yq on a

certain maximal region D c A. We also prove that f(D) is a component of Yq

and, if D = A, then the Kobayashi-Royden pseudometric on /(D) coincides

with the limit of the Kobayashi-Royden pseudometric of nearby fibers. The

result of the forth section says that D is simply connected in the case when M

is a Stein surface. The last section contains the proof of the Main Theorem.

It is a great pleasure to thank M. G. Zaidenberg for his question and stimu-

lating discussions.

1. Formulation of the main theorem

First we fix terminology, notations and definitions that we shall use through-

out the paper. Every manifold we are going to consider will be complex. If

y is a manifold, then TY is its holomorphic tangent bundle and TyY is

a tangent space at a point y e Y. Put Ar = {z e C\ \z\ < r}, A = Ai, and
A* = A-0. By a curve n in Y we mean a continuous mapping n : [0, 1] —> Y.

A loop y in y is a curve with y(0) = y(l). In other words, y is a contin-

uous mapping from <9A to Y (as is frequently done, we use the symbol 9

to denote boundaries). If x e y(dA), then we write x e y. Recall that a
differential pseudometric on a complex manifold Y is a nonnegative homoge-

neous function on the tangent bundle TY, i.e., it is a function p : TY -> R

such that p(y, v) > 0, p(y, Xv) = \X\p(y, v) for all y e Y, v e TyY, and
X e C. When p is continuous, we call the pseudometric continuous. If Y

is connected and for each piecewise smooth curve n in Y there exists the

integral P(n) = /0 p(n(t), dn(t)) dt, one can define the integral pseudometric

P(x, y) = inf^{P(z7)|f7(0) = x, n(l) = y} . Of course, the integral pseudometric

exists, when a proper differential pseudometric is continuous. The Kobayashi-
Royden differential pseudometric is given by the formula

kY(y,v) = inf{l/r | cp e Hol(Ar, Y),<p(0)=y, d<f>(0) = v}.

By Royden's theorem [R] it generates the integral pseudometric KY which co-

incides with the Kobayashi pseudometric on Y [Ko].
Throughout the paper <P : M —> A is a holomorphic mapping from a smooth

complex surface M on A such that for c ^ 0 Yc = <S>~x(c) is a smooth

Riemann surface. We shall say that <P: M —* A is a family of Riemann surfaces.

The fiber To = <P~'(0) can contain singular points. Denote the smooth part of

r0 by Tq . Let ß = {b¡} c A* be a sequence that tends to zero, let R be a

component of Tq . We say that lim. j^^kr^ = kg (or lim/^oo/qy < kg), if

for each sequence {w¡ e TYb} that converges to w e TR in the topology of

TM the equality limj^tx>k\~b(Wj) = kg(w) (or inequality liin;_,00/cr,, (Wj) <

kR(w)) holds. If lim,-.oo kr.  = kg for each sequence ß as above, then we say
Dj

limc_o ÄTC = kg. In the same meaning lim,;-^ krc < kg . The following two

results belong to Zaidenberg [Z].

Proposition 1.1. For each component R of Yq the inequality lim.c_.oo kre < kg

holds.



KOBAYASHI-ROYDEN PSEUDOMETRIC 363

Theorem 1.2. Let M be a smooth compact surface and Y c yVf be an analytic

curve in M. Suppose that M c M -Y, Yq = f|r>0 <&~x (Ar), and Yq = Yq - Y.
If every component of Tq is hyperbolic, then limc_0 krc = kg .

Zaidenberg conjectured that, if i> is a polynomial on C2 and M = <P-1(A),

then the assumption that all the components of Yq axe hyperbolic can be omit-

ted. We shall show that this hypothesis is correct. Recall that G is a Fuchsian

group of the first kind, if the closure of the orbit {g(0)\g e G} in C contains

dA [B]. In particular, in the polynomial case every hyperbolic component R of

Tq has a representation R = A/G, where G is a Fuchsian group of the first
kind.

Main Theorem. Let O: M —» A be a family of Riemann surfaces. Suppose that

M is a Stein manifold and Yq contains a component R that is biholomorphi-

cally equivalent to A/G, where G is a Fuchsian group of the first kind. Then

limc_0 kTc = kg .

Note that, if R is nonhyperbolic, such a fact follows from Proposition 1.1.

Hence we have

Corollary. Let O: C2 —► C be a polynomial. Then lim^o % = ^r* •

We shall restrict ourselves to the case of connected fibers for c ^ 0 (in general

case the proof is the same, but instead of Yc we have to use their components).

2. One property of Fuchsian groups

We shall denote the Kobayashi metric on A by KA .

Lemma 2.1. For every r > 0 there exists e > 0 such that for every Fuchsian

group G, noncommutative elements a!, V e G, and a point z e A satisfying

0 < KA(z,a'(z)) < r, either KA(z, b'(z)) > e or z is a fixed point of the
mapping b' : A —* A.

Proof. Assume, to reach a contradiction, that for a certain r > 0 and each e > 0

there exists a Fuchsian group GE, noncommutative elements a'E, b'E e Ge, and a

point zE e A such that 0 < KA(zE, a'e(zE)) < r and 0 < KA(zE, b'E(z)) < e . We

shall show that for a sufficiently small e the group G\ cannot be discontinuous.

Without loss of generality, we set zE = 0. Let id be the identity element of G£.

Since GE is a discontinuous group, one can find elements a£ and bc satisfying

(2.1) _:A(0,_e(0)) = min{_rA(0,^(0))|geGe,  ¿?(0)/0},

(2.2) KA(0,ae(0)) = min{KA(0,g(0))\geG£,g(0)¿0,  [be,g]¿id}.

The mapping ae and bE can be represented in the form

ae(z) = eie'(z + aE)/(l +aEz),        \6E\ e [0, n],

be(z) = e"'(z + ße)/(l+ßez),       |t,| e [0, *].

We shall omit the index e from now on, if it does not cause misunderstanding.

Let us consider b as a function of two variables z and ß. Expand b in

power series of z, ß , and ß . Then b(z) = elTz + enß up to the nonlinear

terms. Hence for every natural m one can find a neighborhood of the origin
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in C2 = {(z, ß)} so that for all n=l,2,... ,m,

n

bn(z) = einxz + Y,eihß + °i\z\2 + \ß\2)

i=i

in this neighborhood. Thus

n

bn(0) = ßJ2e"r + 0(\ß\2) = ßeinx(einx - l)/(eiz - 1) + 0(\ß\2).

t=\

It is easy to check that for each t0 ^ 2nk there is a neighborhood U of t0

and integer zz > 2 so that for every x e U,

(2.3) \(einx - l)/(e" - 1)| < 1.

Now one can see that xE -> 0 as e —> 0. Indeed, the preceding assumption

implies

0 < |q| < f,        0 < \ß\ < è,

where ë = (ee + 1) and f = (er - l)/(er + 1). Thus lim,,^ \ße\ = 0. Assume

ilmi_>o|Te| > l/m. Then by (2.3) we can find n < m with |6"(0)| < |6(0)|.
This contradicts (2.1). Thus be(z) —> z uniformly on compact subsets of A as

s —> 0. Let lime_>o |ae| = a0 . Since |ae| < f, at o bE o -¿"'(z) -> z as e -> 0.

In particular, for any sufficiently small e we have \a£bEa~x(0)\ < a°/2. This

implies either a0 = 0 or b and aba~x axe commutative. We shall prove that

the last case does not hold. One can represent a and b as mappings of the

upper half-plane. Then, if a is a hyperbolic element, we may put a(z) = Xz

with X > 0 and if a is a parabolic element, we may put a(z) = z + 1 [A]. In

both cases for any b(z) = (pz + q)/(tz + s) with p , q, t, s e R the direct

computation shows that [aba~x, b] = id, iff [a, b] = id. When a is an elliptic

element, one may consider a as a mapping a: A —► A given by the formula
a(z) = Xz with X" = 1 for a certain natural zz. Again it is easy to show that

[aba~x, b] = id, iff [a, b] = id for any Möbius transformation b: A —► A.

But this a contradicts (2.2). Therefore limero cxE = 0. Same arguments as

above show that 6E —> 0 as e —» 0. Hence for any sufficiently small e we have

\ew° -11 + |e!T£ -11 < 1/2 and for an arbitrarily small a the following inequality

holds
\b-la-lba(0)\ « |e" - 1| |a| + \e'e - 1| \ß\ < \a\/2 < \a(0)\

but b~xa~xba and b axe not commutative, since [a-1, ba, b] ^ id. This is a

contradiction.   D

Corollary 2.2. For every r > 0 there exists e > 0 such that for every hyperbolic

Riemann surface R, for every point x e R, and for every couple of loops y and

p that generate noncommutative elements of the fundamental group nx(R, x),

the inequalities KR(y) < e and KR(p) < r do not hold simultaneously.

The next three lemmas enable us to restate this corollary in a form which will

be convenient for our following needs.

Lemma 2.3. Let y be a noncontractible loop on a Riemann surface R. Suppose

that the corresponding element of the fundamental group nx(R) has a represen-
tation [y] = [p]n, where [p] e nx(R) and the natural number n > 2. Then y

has points of self-intersection.
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Proof. Let H be the upper half-plane, and let f:H—>R be a universal holo-

morphic covering. Then we can define the Möbius transformation b : H —► H

corresponding to [p]. If b is a hyperbolic transformation, one can choose /

so that b(z) = Xz with X > 0 [A]. Let zo be a point in the inverse image

of a point xq e y. Obviously, each curve in H that connects the points zo

and X"zq contains points z' and z" suchthat z' = Xz" . But this means that

y has the point of self-intersection f(z'). If b is parabolic, we may suppose

that b(z) = z + 1. Again each curve that connects the points zo and z0 + zz

contains points z' and z" = z' + 1. This implies the desired conclusion.   D

Lemma 2.4. Let y and p be disjoint noncontractible loops in a Riemann surface

R. Suppose that neither y nor p has points of self-intersection. Then y and p

are homotopically equivalent, iff there is a region U c R such that dU = y U p
and U is topologically an annulus.

Proof. Let xx e y and yx e p. Choose a curve vx: [0, 1] -> R so that

ux(0) = xx, ux(l) = yx, ux has no points of self-intersection and vx intersects

y U p at the points xx and yx only. Choose an analogous curve v2 so that v2

connects points x2 e y and y2e p, and v2 is sufficiently close to, but disjoint

from vx. Then y - (xx U x2) consists of two components yx and y2, and yx

is small enough. In the same way p - (yx U y2) = px U p2, and px is small.

Then there exists an open disc D c R with dD = vx u v2 u yx U px. One can

construct the loop n = vx U p2 U v2 U y2 . Since y and p are homotopically

equivalent, n must be contractible. By our construction n has no points of

self-intersection. This implies the existence of the disc U c R with dU = r\. If

U D D, then U - D contains the two components Ux and U2. Each of them

is a disc, dUx = y and dU2 = p. This contradicts the assumption that y and

p axe noncontractible. Hence UnD = 0 . Obviously, D U U is topologically a

closed annulus and d(UuD) = y lip. This completes the proof of the lemma.

Lemma 2.5. Let y and p be noncontractible loops on a Riemann surface R,

and neither y nor p has points of self-intersection. Suppose that R- (y U p)

does not contain components that are topologically an annulus. Then for each
e > 0 there exists r > 0 such that, if KR(y) < e and KR(p) < e, then the

distance between y and p in the Kobayashi metric is greater than r.

Proof. Let v: [0, 1] —> R be a curve that connects y and p so that KR(v)

coincides with the distance between y and p . Let u(0) = xq e y . By Corollary

2.2 it is enough to verify that y and y' = v~x opov generate noncommutative

elements [y] and [/] in nx(R,xo). Since the group nx(R,xo) is free, [y]

and [/] are commutative, iff they belong to a cyclic subgroup. This implies

that [y] = [v]n and [y1] = [u]1 for a certain [v] e nx(R, xq) . By Lemma 2.3

k = I = 1. Hence [y] = [y']. Therefore y and p must be homotopically
equivalent. But this contradicts Lemma 2.4.   D

3. Limiting behavior of hyperbolic metric

From now on by R we denote a connected hyperbolic component of Yq .

Lemma 3.1. Let a be a sequence of points in A* that tends to zero. Suppose that

for each cea the fiber Yc is a hyperbolic Riemann surface. Then for a certain
infinite subsequence ß = {bj} c a there exists a differential pseudometric aß
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on R such that aß = lim7-_>00fcr6. • Moreover, aß is a continuous pseudometric

and the equality aß(v) = 0 for a vector v e TR implies aß = 0.

Proof. Let cp: A —> R be a holomorphic embedding and <p(A) = U. It is easy

to construct holomorphic embeddings cj>¡: A —> U¡ C Ybj so that <f>j(z) -» 0(z)

as 7 —► oo (e.g., see [Z]). Let za, denote the point (z, d/dz) e TA. We set

s{ = 4>j*(vz) and jz = <p*(vz) (where cpj* and </>* are the induced mappings of

the tangent bundles). Then s{ -> sz in topology of TM. Let / : A —> r¿, be a

universal holomorphic covering. Choose a connected component V¡ of ff x(Uj)

and a holomorphic mapping g¡■: A -> A so that the restriction of g¡ o <j>~x o fi¡ to

Vj is the identity mapping. One may suppose that 0 e V¡ and gj(0) = 0. Let

§1 e TVj belong to the inverse image of the vector s{ under the mapping /}*.

Then gj*(vz) = s{. On the other hand gj*(vz) = g'j(z)vgj(Z). Hence, taking

into consideration the equalities kA(s{) = k\-, (s{) and kA(vz) = l/(l-|zl2) >we

have krb (sJz) = \gj(z)\/( 1 - |g;(z)|2). Passing to a subsequence, if necessary, we

suppose that gj(z) -* g(z) uniformly on compact subsets of A. By Hurwitz's

theorem either g'(z) / 0 for every zeAor g'(z) = 0 (in the last case g(z) =

0, since g(0) = 0).  Therefore limj^krb.(s¡) = \g'(z)\/(l - \g(z)\2).  Let

s{ = (Xj(z), tj(z)), where Xj(z) e U¡ and t¡(z) e TXj^Uj (the notation, sz =

(x(z), t(z)) has the same meaning). A sequence {vj\Vj = (x(z¡), X¡t¡(zj)) ; X e

C} converges to v = (x(z), Xt(z)) in the topology of TM, iff z¡ -* z and

Xj -*■ X. Hence lim;-_oo^r(,.(v;) = \Xg'(z)\/(l - \g(z)\2) and a proper limiting

pseudometric exists on U. Let {L77} be a cover on R and each U> be an

open disc. We can repeat the above construction of the limiting pseudometric

for each UJ instead of U. Application of the diagonal process completes the

proof of the lemma.   G

Definition. Let ß = {bj} c A* be a sequence that converges to zero, and let

every fiber Yb hyperbolic. We shall say that ß is an admissible sequence if there

is a continuous differential pseudometric aß on R such that aß = lim;_>00 zqy

and the quality ap(v) = 0 for a vector v e TR implies aß = 0. We will denote

the corresponding integral pseudometric by Aß , and throughout the rest of the

paper we will fix these notations ß , aß , and Aß for the above objects.

Lemma 3.2. Suppose that the aß is a metric. Let F = {fi}, where fi■: A —> Yb.

is a holomorphic universal covering with /(0) —> xq e R as j —* oo. Then there

is a nonempty open subset D c A that contains 0 and a subsequence Fx c F

that converges to a mapping f:D—>R. Moreover

(i) f.D^R is an unramified covering:

(ii) F transforms the metric kA\¡) into the metric aß .

Proof. First assume that / exists and prove (ii). Let z e D, x = f(z), and

Xj = fj(z). Then x¡ —> x as j —> oo. Choose a sequence {Vj\v¡ e TxYb.}

that converges to a nonzero vector v e TXR in the topology of TM. Let

Vj e TZA belong to the inverse image of Vj under the mapping /*. Since ß

is admissible, kA(Vj) = krb(v¡) -> aß(v). Thus for every j, kA(í)j) is less than

a certain common constant. Hence we may suppose that there is the limiting

vector v  for the sequence {Vj}.   Clearly,  kA(v) = üß(v)  and f»(v) = v .
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This implies (ii). Property (ii) means that, if / exists, then it must be locally

homeomorphic. Let P be a sufficiently small neighborhood of Xo such that P

is biholomorphically equivalent to a ball, and all U}■■ = P n Yb. and U = Y0 n P
axe discs. For every manifold yV we will denote by B(y, r, N) c yV the ball of

radius r in the metric Kn with the center at y. Let B(x, r, Aß , R) c R be the

analogous ball in the metric Aß with the center at x . Since üß is a metric, there

exists r > 0 such that B(x0, r, Aß, R) c U. Hence B(fi(0), r, Ybj) c U¡,

when ; is sufficiently large. The restriction of fi to H0 = 5(0, r, A) is a

homeomorphism between Ho and B(fi(0), r, Ybj). The family {fj\jj '■ Hq —►

P} is normal. Pick out a converging subsequence Fx c F in this family.

Let /: H0 —> 5(x, r, Aß, R) be the limiting mapping. We have proved that

D D Ho, i.e., D is not empty. Since / is locally homeomorphic and each

fj\~ is a homeomorphism, one can easily check that the limiting mapping

f\~ is also homeomorphism. Set H = B(xq, r/3, Aß , R). Suppose there is

a point z e D - Hq with y = f(z) e H. Let //. = _?(y, 2r/3, Aß , R) and

//i = B(z, 2r/3, A). Clearly Hx c U . Repeating the above arguments we can

choose a subsequence F2 c Fx so that the restriction F2 to Hx converges to

a homeomorphism g : Hx —* Hx. For every subsequence F?, c Fx - F2 that

converges to a mapping h: Hx -* Hx we have g\-q¡nD = Ä|^n0 = fi\jj¡nD-

By the uniqueness theorem h = g. Thus one can take Fx itself as P2 and

D d Hx. Since Hx d H, Hx contains a disc H such that f\~: H -> // is

a homeomorphism and H0r\ H = 0 (indeed, z ^ Hq and the restriction of

/ to //o is also a homeomorphism). We can consider H as a neighborhood

of Xq . Of course, analogous arguments enable us to find such a neighborhood

for every point x e F(D). Hence /:/)—> F(D) is an unramified covering. In

particular, f(D) is an open set.

To check the equality R = f(D) it is enough to prove that the set f(D) is

closed in R. Let x belong to the closure of fi(D) in R. Let P' be a sufficiently

small neighborhood of x . Suppose that P' is biholomorphically equivalent to
a ball, and U' = P' n Y0 and {£/■ = P' n Ybj} axe discs. Choose r > 0 with

B(x, r, Aß, R) c C/'. Then we can find a point y e fi(D)r\B(x, rfih, Aß,R).
As we have seen, in this case f(D) D B(y, 2r/3, Aß, R). Hence, x e f(D),

which is the desired conclusion.   D

Corollary 3.3. If the assumptions of Lemma 3.2 hold and D = A, then kg =
lirn/_>00&Iy .

Proof. We shall use the notation of the proof of Lemma 3.2. If D = A, then

f:D^>R is a universal holomorphic covering and

lim kT (vj) = lim kA(vj) = kA(v) = kD(v) = kg(v).   D
j—>oo        i j—>oo

4. Stein case

From now on M is a Stein surface, and we will use the same notations R,

ß = {bj}, aß, fi•: A -> Ybj, F = {fi} and /: D -> R as in the preceding
section. Let a Riemann surface A be topologically an annulus. Denote the

minimum of lengths of noncontractible loops in A by 1(A).
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Proposition 4.1. To each number t > 0 corresponds a positive number r < 1 so

that the assumptions:
(i) L is a compact in A ;

(ii) OeL;
(iii) A - L is topologically an annulus;

(iv) /(A - L) < t
imply that L c Ar.

Proof. Assume that the contrary. Then for a certain t and every r < 1 there is

compact Lr that contains a point zr with \zr\ > r and satisfies (i)-(iv). Clearly

l(L -A) is greater than 2KA(0, zr). But KA(0, zr) -> oo KA(Q, zr) -»oo as

r —» 1, and we have a contradiction with (iv).   D

According to [S] the Stein subvariety R has a tubular neighborhood V c M

that is biholomorphically equivalent to a neighborhood of the zero section in the

normal bundle to R in M. Thus we have a holomorphic retraction x : V —> R.

Let Q be a region in R with the compact closure. Then for a sufficiently small

e and every c e AE the restriction x to T-1(0nrc is a holomorphic unramified

covering, whose multiplicity over Q is equal to the multiplicity to zero of the

function 3> on R.

Lemma 4.2. Let y be a loop in R without points of self-intersection. Let

{4>j\4>j~. A —> Yb} be continuous embeddings that are holomorphic on A. Sup-

pose that yj = cf>j(dA) belong to x~x(y). Then y is contractible.

Proof. We shall consider the Stein manifold M as a closed analytic subman-

ifold in C" (e.g., see [GR]). Then each 4>j has the following coordinate rep-

resentation (f)j(z) = (<j>j\, ... , <f>jn)) ■ Denote the restriction 4>¡ to A by <pj,

and let cp' = (cp'^ , ... , <j)'jn) be the derivation of cf>j. As usual we shall use the

symbol ||</>y(z)|| to denote the Euclidean length of the vector <t>'j(z). Suppose

that the functions ||0'-|| converges to zero uniformly on compact subsets of A.

Then there exists a sequence of points {zj} c A with \zj\ —» 1 that satisfies

||0;(Z/)|| > t/(l - \zj\2) for a certain positive t. Indeed, otherwise it is easy

to show that the maximal Euclidean distance between the points of y¡, tends

to zero as j —► oo. But y¡ is close to x(yf). This implies that y must be

a constant mapping, and we have a contradiction. Put ipj = cj)j o pj, where

Pj(z) = (z + Zj)l(l + Zjz) . Let y/j = y/j\A . The loop y belongs to a ball B
in C". Hence for an arbitrary large j we have y/j(dA) c B. By the Maxi-

mum Principle iPj(A) c B. Therefore the family {ipj} is normal. Passing to

a subsequence, if necessary, we can suppose that {y//} converge to a mapping

tp: A —y R. Obviously, ||^j(0)|| > t, and, therefore, \p is not constant. Ac-

cording to [Z, Lemma 2.2] ^(A) c R . Using a Möbius transformation again, if

necessary, one may suppose that ^(0) ^ y . Choose an arbitrary small neigh-

borhood yV of y in R so that N is topologically an annulus and ^(0) ^ yV.

Then yV-y consists of two components Ni and N2, which are also annuli. Let

Pk be the component of the boundary of /Vfc other than y. Obviously, y/j(A)

must contain a component of either x~' (Nx )r\Yb. or x~' (yV2)n Tbj. Denote this

component by L,. Passing to a subsequence, we may suppose that t(L/) = Nx

and x\ij is a i-sheeted unramified covering, where 5 does not exceed the mul-

tiplicity of zero of the function 3> on R . Hence the Riemann surfaces {L,}

are pairwise biholomorphically equivalent, and l(Lj) = l(ip~x(Lj)) does not
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depend on j . Since 0 ^ y/j (Lj), we see by Proposition 4.1 that there is a

positive r < 1 such that A - y/fx(Lj) c Ar. Hence px c ip(Ar). This implies

that px is contractible, and, therefore, y is also contractible.   D

Lemma 4.3. The pseudometric üß generated by an admissible sequence ß is a

metric on R in the case when R is different from A, A*, or an annulus.

Proof. Let yx, ... , y*. be disjoint noncontractible loops in R without points

of self-intersection such that they are not pairwise homotopically equivalent,
for each i the set R - y, is not connected, and every y, is a component of

the boundary of a compact L c R. Let L, be a component of t_1(L) n Yb .

One may suppose that x\lj'. Lj —» L is a s-sheeted unramified covering for

all j. Let {y¡j\l = 1, ... , U¡ < s} be the components of T-1(y,) n Lj. If R

has a positive genus, we can suppose that L contains a loop p without points

of self-intersection so that L - p is connected and p n (J,=, y¡■ = 0. In this

case we denote one of the components of y~x(p) n ry by p¡. Assume, to

reach a contradiction, that aß = 0. Then Kr¡¡ (y\¡), Kr¡¡(pj) —>■ 0 as j —> oo

and the distance between each pair of these loops in the Kobayashi metric on
Ybj also tends to zero. By Lemma 2.5 all of these loops must be homotopically

equivalent. Since t|¿;: Lj -* L is an unramified covering, Lj-pj is connected.

Hence by Lemma 2.4 p¡ cannot be homotopically equivalent to any component

of the boundary of L¡, or in other words, to any y\- . Therefore it remains to

consider the case when R is biholomorphically equivalent to a region in C.

Then under the assumptions of the lemma one may suppose that k > 3. Thus

we have, at least, three loops yx, y2, and y-¡. By Lemma 2.5 there is a region

Uj C Yb. such that d Uj = yXj U y\¡ and U¡ is topologically an annulus. Note

that Uj does not belong to Lj (otherwise, using Lemmas 2.3 and 2.4 it is easy

to show that yx and y2 are homotopically equivalent). Moreover, since the

component of Yb. - Lj whose boundary contains y\¡ is different from a disc

according to Lemma 4.2, Uj does not contain Lj. Hence Uj is a component

of T^ - Lj. Taking yL instead of y|/ we can construct a component Vj of

r^ - Lj so that dVj = yh u y]y and Vj is topologically an annulus. Since

dVj ndUj = y\j, Vj = Uj. Then dU¡ = d V¡, and this leads to a contradiction.

Therefore aß is not trivial. By Lemma 3.1 üß(v) / 0 for each v e TR. This
completes the proof of the lemma.   D

Lemma 4.4. Let M be a Stein surface and let D be the same as in Lemma 3.2.

Then D is simply connected.

Proof. Assume that D is not simply connected. Then there is a couple of discs

d and d' such that d c A, d' c d, d does not belong to D, and d-d' c D.
We again consider M as a submanifold in C" . The set f(d - d') belongs to

a certain ball in C". Same arguments as in Lemma 4.2 show that the family

{fij\d} is normal. Let /: d —> R be a limiting mapping. This mapping is

unique, since it coincides with /on d - d'. In particular, it is nonconstant.

The set fi(d) does not contain singular points of r0, because otherwise fi(d)

must intersect To for an arbitrary large j [Z]. Hence f(d) c R, i.e., d c D.

But this contradicts our assumption.   G
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Corollary 4.5. Lemma 4.2 holds without the condition that y has no point of

self-intersection.

5. Proof of the main theorem

We keep the same notation R, ß, aß, F = {fi}, f:D—>R as in the

preceding section. By Lemmas 3.2, 4.3, and 4.4 we suppose that the family F

converges to the mapping f:D—*R on a nonempty simply connected region

D c A with 0 e D, and / is an unramified covering, which transforms the

metric kA\p into the metric üß. Let Gj be the Fuchsian group such that
fij(z) = fj(z') iff z' = g(z) for a certain g e G}■. We say that a Möbius

transformation h is limiting for {Gj} , if there is a sequence {gj\gj e Gj} that

converges to h uniformly on compact subsets of A. Let G be the group of

holomorphic one-to-one mappings D to D such that f(z) = f(z'), if z' =

g(z) for a certain g e G.

Lemma 5.1. The set H of limiting Möbius transformations is a subgroup of G

of finite index.

Proof. By construction, H is a group and for each pair z, z' e D the equality

h(z) = z' for an element h e H implies f(z) = f(z'). Hence H c G.
As in the preceding section x : V —> R is a holomorphic retraction of a Stein

neighborhood V of R. Consider all the loops {y : dA —► R} such that y(l) =
/(0) and for an arbitrary large j there is a loop y¡ in Yb with y ¡(I) =

fj(0) and y = t o y;. These loops generate a subsgroup Hx of finite index in

7Ti (R, /(0)). This index does not exceed the multiplicity of zero of the function

Oonfi. Since nx = G, one can consider Hx as a subgroup in G as well. Let y

be a loop in R with [y] e Hx and {y, e Yb } be the corresponding loops, which

converge to y uniformly. Consider the mappings v}■ : R —> A and z> : R —► D

such that fjoujit) = y^e2*"), fou(t) = y(e2nit), and i/(0) = z//(0) = 0. Since

y7 —► y and fi-*f, one can see that i// —> v uniformly. By yj and y we

will denote the elements of the Fuchsian groups Gj and G that correspond

[yj] and [y] respectively. Clearly, y'f(t) = Vj(t + k) and y*(i) = z/(i + Ar) for

each integer Ar. This means yj —> y as 7 —» 00. Hence Hx c H and // is a

subgroup of G of finite index.   G

Let R -» R be an unramified covering that corresponds to the subgroup H c

nx(R). Then, since Z) is simply connected, the mapping /:/)—> D/H = R is a

universal holomorphic covering. Recall that by the hypotheses of Main Theorem

G is isomorphic to a Fuchsian group of the first kind G', acting on A. More

precisely, there is a biholomorphic mapping tp: A —> D such that cp generates

isomorphism between G and G'. Therefore H is isomorphic to a subgroup

//' of finite order in G'. Hence //' is a Fuchsian group of the first kind as well.

According to [G, §3, Lemma 3] it is easy to check now that, since the closure of

the orbits {h'(0)\h' e //'} coincides with d A, the closure of orbits {h(0)\h e H)

must coincide with dD. Assume that z is a point of dD n A. Choose an
arbitrary small neighborhood U of z and element v , fj e H so that z>(0) and

fjoù(0) e UnD. Let p, y e H be noncommutative elements. Then fj, v~x,

yoü~x, ftov~x cannot belong to a cyclic subgroup of H. Hence one of the pairs

fj and v~x, fj and yoi>_1 or fj and ftoi>-x are not commutative. Consider the

corresponding noncommutative pair of elements in G¡ for a sufficiently large
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7 . Put z' = z>(0). Application of Lemma 2.1 to the above pair and the point z'

leads to a contradiction. Thus D = A and by Corollary 3.3 kg = lim,_oo Arr. .

This implies immediately that for every sequence {bj} c A* with hyperbolic

fibers {iy} and bj —> 0 kg = lini/-_00 Arry . The last thing we need to confirm

is that if there exists a sequence {bj} -> 0 with nonhyperbolic fibers {Ybj}

then R cannot be hyperbolic. Assume that such a sequence exists. Then iy

is biholomorphically equivalent to C or C*. Hence R has no handle, for

if it had, then all of the fibers Yb. would have handles as well for sufficiently

large j. Since a Fuchsian group of the first kind corresponds to the Riemann

surface R, R is different from A, A* or an annulus. Thus nx(R) has, at

least, two generators [yx] and [y2]. One may suppose that the loops yx and

y2 have no points of self-intersection. Note that the proof of Lemma 4.2 does

not use the assumption that {Yb } axe hyperbolic, i.e., it remains true without

this assumption. Thus, since Yb. is biholomorphically equivalent to C or C*

either yf or y\ must be approximated by contractible loops in {Yb } for a

certain integer Ar. This contradicts Lemma 4.2. Hence there is no sequence

{bj} -> 0 with nonhyperbolic fibers {Yb }. The main theorem is proved.
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