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HOLOMORPHIC EXTENSION AND DECOMPOSITION
FROM A TOTALLY REAL MANIFOLD

ZAIFEI YE

ABSTRACT. This paper is to develop an elementary cohomological approach for
decomposing a function into boundary values of holomorphic functions and for
discussing the corresponding microlocal analysis and hyperfunction theory.

1. INTRODUCTION

This work can be viewed as a residue approach to the holomorphic extension
and holomorphic decomposition of functions on a totally real manifold M C
cm.

The idea is the-following. To a compactly supported funftion (distribution,
analytic functional or hyperfunction) f on M, we assigna 8 closed (0, m—1)
form G in C™\M by a duality formula:

(L1) G/\t//a’z=/ fydz
au M

where U is a neighborhood of supp(f) in C™, y is any holomorphic function
in C™. Such a form G will be called a Tsuno representation form in the paper
(see §4.1). Presumably, any information about f is already hidden in G since
G isin fact a kind of potential created by f. We then investigate the form G to
obtain the decomposition of f into a sum of boundary values of holomorphic
functions in certain wedges under various smoothness requirements, and to
deal with the analytic wavefront set of f. The method is basically to view the
8 closed form G as an element in the Dolbeault cohomology group, and to
translate G to a holomorphic cocycle in the corresponding Cech cohomology
group. The resulting cocycle will be our holomorphic decomposition in some
sense. Now, the point is to have a very concrete version of the translation from
the Dolbeault cohomology to the Cech cohomology. This can be done by solving
a sequence of & problems (so called “Weil process”). In this paper, we only
use the elementary part of some techniques in several complex variables such
as 0 solutions and the Bochner integral representation.

To deal with a curved edge instead of a straight edge, one has to replace
“suitably” the covering of C™\R™ given by {x; > (or <) 0}. This is a matter
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which does not seem to have been well exploited previously (e.g., in the proof of
the edge-of-the-wedge theorem, Pincuk has a more difficult approach to keep the
cohomological approach of Martineau). In this setting, it is almost inevitable to
raise the question of the existence of the boundary values of holomorphic func-
tions without growth condition on a (non-real-analytic) edge, i.e. the existence
in the hyperfunction sense.

We have proved: (i) the existence of the boundary values of holomorphic
functions in wedges on a C! totally real edge in the hyperfunction sense (§3.2);
(ii) the decomposition of any analytic functional supported on M into a sum
of boundary values of holomorphic functions in wedges (§4.2); (iii) a charac-
terization of the wave front set in terms of the & exactness of G in certain
concave wedge (§5.2); (iv) the edge-of-the-wedge theorem with a C? totally real
edge in the hyperfunction sense (§5.3).

We give some new proofs and slight extensions of certain fundamental results
based on the above ideas. We first precise some properties of the holomorphic
decomposition of the Baouendi-Chang-Treves (C* decomposition) as an illus-
tration of the residue approach in the paper (see §2.2). We then investigate the
relation between the holomorphic extension to wedges and some phenomenon
of monodromy of differential forms (§5.3). We also study the flabbiness prop-
erties of the sheaf of germs of hyperfunctions on a C! totally real manifold
and & problem with partial compact support in §6.

In addition, we append an elementary proof of Pincuk’s edge-of-the-wedge
theorem for distributions by using the Baouendi-Treves approximation tech-
nique, which is totally independent.

The idea in the paper can be traced back to the Cauchy integral and Plemel;j’s
jump formula. Namely, when considering a function f compactly supported
onacurve M in C!, we put

_ 1L 1 f(2)
Ge) = 2mi /M Z—Cdz'

It is clear that G is holomorphic in C'\ supp(f) and satisfies

fov=f,

for any neighborhood U of supp(f) in C!, and any entire function y . Then,
by Plemelj’s formula, we know f is the jump of G on M.

As a remark, let us note that such an idea has an impact on the holomorphic
decomposition of CR functions on hypersurfaces and higher codimensional CR
manifolds (see [HvPo] and [Am]). Therefore, the residue approach in the paper
may shed some light on the decomposition problems of CR functions.

As is well known, there is another very different method to deal with the
decomposition problem, namely, the Fourier transform method. In §5.4, we
will discuss the FBI transform of a hyperfunction. We feel that we are trying
to have a synthesis of the hyperfunction theory of Sato-Kawai-Kashiwara (and
Martineau) and the FBI transform method. The treatment of the hyperfunction
theory in Hormander’s book [H1] has been enlightening our work.

The point of view in the paper is very local except for §6. The unpleasant
part of the paper is that the smoothness requirement varies from section to
section. Here, for convenience, we list the requirements: (i) C*> for the case




HOLOMORPHIC EXTENSION FROM A MANIFOLD 3

where distributions or smooth functions are involved (§§2, 6.2, and Appendix);
(ii) C? for §§4.2 and 5 where the Stein coverings or the FBI transforms are
needed; (iii) C! for the rest.

The plan of the paper is the following. We begin with a description of the
concrete translation from the Dolbeault cohomology to the Cech cohomology
in §2.1, and then show the reader immediately how to decompose a smooth
function into a sum of the smooth boundary values of holomorphic functions
defined in wedges in §2.2. Sections 3 and 4 are devoted to the decomposition of
a hyperfunction into the boundary values of holomorphic functions. Especially,
we introduce the Tsuno representation forms and study their behaviors in §4.1.
In §5, we study the (hypo) analytic wave front set according to the Tsuno forms
and also to the FBI transforms. In §6, we deal with the flabbiness of the sheaf
of germs of hyperfunctions, relation between distribution boundary values and
hyperfunction boundary values, decomposition of a distribution into boundary
values of holomorphic functions (a new proof of the Baouendi-Chang-Treves
theorem), and a & problem with partial compact support in some cylindrical
domains. In particular, we provide a Greiner-Kohn-Stein condition for such a
problem.

2.0 TECHNIQUES AND HOLOMORPHIC DECOMPOSITION
IN THE SMOOTH SENSE

2.1. 8 techniques and results to be used. The related & problems in the
paper arises from the isomorphism (so called “Weil process”) between the Dol-
beault cohomology and the Cech cohomology. Before describing this process,
we introduce some notations.

In this section, M denotesa C* totally real manifold in C™ of real dimen-

sion m. Assume 0 € M. Let py, ..., pm € C*(Q), Q a neighborhood of 0
in C™ , be defining functions of M ,ie,py=---=pn =0, p1A---NOPm #0
on M. Choose c¢ sufficiently large, then it is easy to check that
{_ﬁ]'l'cX) j=1a'-'3ma
Pji=29 & .
P—j+CXa J_'-la'“a_m,

are strictly plurisubharmonic on Q if Q is a small enough neighborhood of 0,
where y = Z;”:l /512. . Thus, if one takes Q to be strongly pseudoconvex,

Uj=:{z € Q: pj(z) <0}, j==x1,...,tm,

are domains of holomorphy (in fact, intersections of strongly pseudoconvex
domains). Moreover, U;NU_; = M, and Z = {U;};j=+1,..,+m is a Stein
covering of the set Q\M . Note that, for the existence of such a Stein covering
of Q\M , it suffices to assume M is C2 smooth.

Weil process induces the isomorphism between the Dolbeault cohomology
group HO™=Y(Q\M) and the Cech cohomology group H™ (% , &), where
@ is the sheaf of holomorphic functions on Q\M . Starting with a cocycle in
the cochain group C™~ (%, @), we come up witha d closed (0, m—1) form
(see, for example, [P]). As a matter of fact, the reverse process is just simple to
explain from the viewpoint of 9 technique.

Denote Uilizmik =U;, N U,’zﬂ'“ﬂUik , ip € {1, ..., +tm},p=1,..., k.
Let G bea 0 closed (0, m — 1) form defined on Q\M (later it will be the
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Tsuno representation forms). Put G; = Gly,, i = £1,...,+m. Since U;
is pseudoconvex, there is a (0, m — 2) form F; so that 0F; = G; on U;.
Hence, G;j = F;-F,; isa 8 closed (0, m —2) form defined on U;; which is
still pseudoconvex. Inductively, suppose we have a 8 closed (0, m — g) form
Gi,...;, defined on Uj,..; , then again, there is F;..;,a (0, m—q—1) form
on Uj..,, so that ?9—}7[1...iq = Gj,..;, if g <m. Itis easy to check that

g+1

Giyoigyy =t z:(—1)”_11’7,~|...;-p...,-q+l

p=1

isa 8 closed (0, m—gq— 1) form defined on Uj,..;,,, , where i, stands for
the index omitted. Finally, G;,...;,, |i1| <--- < |im|, is a holomorphic function
defined on Uj,..;,, . {Gi,...i,» |i1] <+~ <|im|} is a cocycle in C"~Y(¥%, 7).

Therefore, we need to solve & problem in the intersections of the strictly
pseudoconvex domains. To catch more precise information for the later pur-
pose, we also need the following a priori estimates for the & solutions.

Let A be an open set in C™, and let ¢ be a function on A. We denote by
L*(A, ¢) the Hilbert space of all functions f satisfying [, |f]*¢~% < oo, and
by L(zp‘ q)(A, #) the space of all (p, q) forms with coefficients in L2(A, ¢).

Theorem 2.1.1 [H2, Theorem 2.2.3]. Let A be a bounded pseudoconvex open set
in C™, let 6 be the diameter of A, and let ¢ be a plurisubharmonic function
in A. For every f € pr,q)(A,zﬁ), qg >0, with 8f =0, one can find u €

L} (A, ¢) sothat du=f and

@.1) g / luPe? < ed? / /2.
A A

The next result takes care of the smoothness of the & solutions. It is a typical
case of the main theorem in [Duf].

Theorem 2.1.2. Let A be an intersection of a finite number of strictly pseudocon-
vex domains. If f isa (p, q) form, q > 0, with coeﬂicieztts in C*®(A), then
thereis a (p, q — 1) form u with coefficients also in C=(A) so that du = f .

2.2. Holomorphic decomposition in the smooth sense. To see the residue
method in the paper, we begin with proving the C> version of the Baouendi-
Chang-Treves decomposition theorem [BCT], which can still be proved by the
FBI transform method though (see [Cal]). Our proof is a generalization of
a technique developed by Amar [Am], which enables us to take care of the
smoothness of f in terms of its Tsuno representation form G in (1.1). It is
worthwhile to notice that one can use the argument below for the decomposition
of CR functions in higher codimension case as Amar did in the codimension 2
case.

Theorem 2.2.1. Let f be a smooth function on M, then there are holomorphic
functions hj,...;, defined respectively in Uj ..., |ji| < - - < |jm|, and smooth
up to the edge M so that

(2.2) f= > hijln

Jp=2%p
p=1,...,m
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Proof. (1) We first construct a Tsuno representation form G of f. Extend f
smoothly to Q, a neighborhood of 0 as defined before, so that df vanishes
on M to the infinite order by Whitney’s extension theorem. Choose a bounded
function x; € C*(Q\M) so that

leUj=1, XjIU_j=O, j=1,..., m

Note that U;NU_; = M and dist(z, dU;) + dist(z, 0U_;) = dist(z, M)?,
thus, we can further choose x; so that its derivatives have polynomial growth
near M and 9y j has singularities only on M . Since af vanish_e_s on M,
the (0, m) current —x;0f Adx2 A--- AOxm extends smoothly to Q. Itis 9
closed (top degree), and hence, there exists a smooth (0, m—1) form G in Q
satisfying B

G = —Xlng5X2 A Agxm.
Put
(2.3) G=fx102NNOxm+G.

We have therefore constructed a (0, m — 1) form G which is & closed in
Q\M (and hence, an element in H®-m~1(Q\M)), and such that

(2.4) G- fx10x2 A A xm is smooth.

Note. (i) Although this is not needed in the proof, it should be pointed out
that, at least if we consider a compactly supported data f, the form G is a
Tsuno form for f (see Remark 2.2.2 below). Condition (2.4) is the one which
imposes the right singularity of G (as condition (b) below does later).

(ii) The next step is a common feature in our decomposition technique for
smooth function, distribution and analytic functionals, namely, trying to make
use of the Weil process. The only difference is that we need to solve out cer-
tain special 8 solutions for different smoothness requirements. Following the
previous notations, we are going to obtain Gj,...;, smooth up to the boundary
of Uj,...;, by induction, which will be our holomorphic decomposition of f
except for some signatures.

Let us continue to prove the theorem.

(2) Set G; = G|y, . Note thaton U, x;0x2A---ABxm =0, unless j =1,
hence G; is smooth in view of (2.3).

(i) For j # 1, then, there exists F; € Cg,,_,(U;) sothat 9F; = G;, j # 1,
by Theorem 2.1.2.

(ii) On U,, the current x,0f Adx3 A--- A xm is smooth, hence G —
O(fx20x3 A+ NBxm) is smooth. This allows us to find F; so that

Fi — fx20x3A--- A0 xm is smooth.

and 5F1 = Gl .
(3) Inductively, assume that we have constructed a (p—1) cochain of (0, m—
1-p) forms Fj..;,, jo € {£l,...,xm}, |js| <l|jgs1l, ¢=1,..., p sothat

with the following properties_
(a) Fj,...j, is smooth on Ujl.;jp for (jl---_j,,);é(l,... ,D); _
(b) Fi.p— (=1)=DP2 fy, 18xps2 A+ AOxm is smoothon Uj..,;

-G o SV (_)HF .
= Gj,..j, on Uj..j, where Gj..j, =3 ((=D)T'F; - . .

(c) OF;

-l
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Then, we obtaina & closed (0, m—p—1) form Gj,...;,, on Uj,...;,, defined
as above. Note that (b) implies that F.., issmoothon U,.., ; unless / = p+1.
Andon Uy, p p+1,(b)yieldsthat Fy..,—(=1)?=DP29( fx,120 xps3A- A Xm)
is smooth since df vanishes to co order along M . In this case,

p
Groopit = B 1PV [y, T gy s Ao AT ) = S (~DT Fr gy
g=1

+ (- l)1,-"2(171~~~p+1 - 5((— 1)p(p_sz)(p+25)€p+3 ARERNAN _a—Xm))

is smooth on U, ,41 and O closed since Gy _ ,4 is O closed as we have
seen in the previous section. Therefore, we see the following: .

(@') when {ji, ..., jpr} #{1,...,p+1}, Gj .., € C(%°,m_p_l)(Ujl...jp+l),

and consequently, there is Fj,...;,,, € C*(Uj,..;,,) so that

_5}7]"...]'”1 = Gjn"'jp+1 5
(b') on —(71...,,“ , there is a smooth form F; _ ,,; so that
Fiopp1 — (=1)PPO2 fy 20xps3 A+~ AD Y is smooth,
and _
OF, . p+1=G1 . ps1-
(4) Finally, this leads to a (m —2) cochain of functions (0 forms) such that
(@") Fj,...,_, issmoothon Uj,..j, _, unless {ji, ..., jm_}={1,..., m—
1};
(b") Fim-1 = (=1)m=2m=D2fx, is smooth on U\, m-1;
(¢") OF;j..j,_, = Gj..j,_, (where Gj..j, , is the coboundary defined in
(c)).
Set Gj,...j, = Z;":l(—l)q“}?jl,_,jq,,,jm as before. Then, 9Gj,...;, = 0 (cobound-
ary of coboundary!), i.e., Gj,...j, is holomorphic. Furthermore, Gj, .., are
smooth up to M from (a”), (b"”), and we assert

(2.5) f= (—-1)(""1)'"/2 Z 8]1-"ijjl"'jm|M°

Je=%q

q=1,...,

where ¢j,...j, = +1 if ji-- jm >0, €., =1 if ji---jm <O0.
Indeed, on M,

> inGireain
Jg=%q
g=1,..,m
= Z Z (—l)q+]8j1"'ij‘j|...jq...jm + (—1)’"“(0: - ﬂ) s
(Ut s wees Jm)#(1 5o ym—1,£m)
or g#m

where a and B denote the smooth extensions of the restrictions of Fy  _ n—; to
Ui..m and Uy, m—1,—m respectively. Dueto (b”), a—f = (=1)m=2im=1/2f
So, due to the obvious cancellation between

m

8j|...jq...ij

jl"‘.;q"'jm and Eji..,—]J

. ~
: : P
950 Jm J1sees =JgseesJm

the above sum is reduced to (—1)(m-Dm/2f
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(2.5) is the decomposition which we look for.

Note the fact that o # B is the whole point. This is why one does not get O.
Everything else cancels out essentially due to the fact that the sum of boundary
values of coboundary is 0. O

Remark 2.2.1. Notice that the smoothness assumption in the theorem can be
weakened to C* for sufficiently large k . In this case, all the currents involved
in the above proof make sense. Thus, Range and Siu’s uniform estimate of &
solutions on the intersections of strongly pseudoconvex domains [RSi] shows
that we can obtain Gj,...j, continuous up to the edge M and the decompo-
sition relation (2.5) remains valid. Furthermore, by a regularization argument
employed in [T, Theorem 3.1, Chapter II], one can obtain the decomposition
theorem in the distribution sense, which is proved in [BCT] with FBI trans-
form. In fact, one can choose certain vector fields M; on M, j=1,..., m,
which are tangential to M and their (1, 0) component are 9/9z; respec-
tively. A = Z;’;l sz is elliptic in a sufficiently small neighborhood of 0.
Consequently, for a given distribution u defined in a neighborhood of 0, there
is a Ck function f satisfying A¥f = u for a sufficiently large integer N .
Then, [ = Eﬂ.=l hjly , for some holomorphic functions #; defined in some
wedges of edge M and continuous up to M from above. Therefore, we have
the following holomorphic decomposition u = AN f = E§=l ANhj|y , where
A, = Z;’;l d%/0 zjz. . However, we prefer another way, shown in paragraph 4.3,
which makes use of Hormander’s L2 estimates of & solutions.

Remark 2.2.2. As mentioned at the end of (i), the form G is a Tsuno form in
the following meaning. Assume that X is the compact support of / in M,
then, for any neighborhood Q' C Q of X, and for any holomorphic function
¢ in Q,

(2.6) e G¢/\dz=/f¢dz,
X

Q!

where dz =dz A---ANdz,,, € = £1 is independent of f. Another way to say
this fact is that f is the residue of ¢G on X . There are two ways to check the
above equality.

(a) “By hand”. The right-hand side in the above equality does not de-
pend on the choice of Q. If we choose Q' = Q,, n=1,2,..., so that
dist(X, 0Q,) — 0, as n — oo, then it follows from (2.4) that

€ GA¢dz = lim s/ fox10x2 N NOym Ndz.
QY n=oo Jaq,

Note that on the intersection (denoted by S,) of 0Q, and the support of
X102 A+ AOYm,

fox:1002 A AOxmNdz=d(foxix2 A ANIxm ANdz)
—0fx1x2 N NOxm Ndz — f$x20X1 ANOX3 A+~ NDYm Adz
=d(foxixa N NOYm NdZ) =0 fdpyixa N+~ NOgm Ndz.
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In view of the fact that 8 f vanishes on M to oo order,

lim fox10x2N---NOymNdz
Q,

n—oo

=1lim [ fépix20x3A-AOxmAdz
Sn

n—oo

= lim 8 fOx3N---ANOxmAdz,
where S, = S,N{x2 =1} and S, is defined above. By repeated use of Stokes’
formula and the fact that § f vanishes on M , we can prove (2.6).

(b) Indirectly, one can think in the following way. The form G gives a
holomorphic cocycle {Gj,...;,} (moreover, a holomorphic decomposition of f
as in (2.5)). As we will see later (Theorem 4.2.1), any Tsuno form also gives
another holomorphic cocycle (a same kind of holomorphic decomposition of
f). Therefore, these two cocycles are cohomologuous in the Cech cohomol-
ogy; and hence, the corresponding forms are cohomologuous in the Dolbeault
cohomology. Thus, the form G itself is a Tsuno form.

3. BOUNDARY VALUES OF HOLOMORPHIC FUNCTIONS

3.1. Notations. We try to be a little more ambitious to extend the previous
decomposition argument to a more general case, in which we lose any kind of
smoothness and hence the usual regularization technique fails. Therefore, we
turn to consider a kind of general boundary value of holomorphic functions
without growth restrictions, both for its own right and for our later purpose.
Following Hérmander [H1], we introduce notions of Martineau’s analytic func-
tionals and Sato’s hyperfunctions. Denote the set of all functions holomorphic
in an open set U of C™ by A(U). Let X be a bounded set in a manifold
M c C™, then we define the following notions.

Definition 3.1.1. u is called an analytic functional carried by X if u is a linear

functional on A(C™) and satisfies that for every neighborhood U; =: {w €

C™: dist(w, X) <d} of X in C™, there is a positive constant C such that
lu(w)| < CllYllLewy), Yv € AC™).

We denote by 4’(X) the set of all analytic functionals carried by X .

Definition 3.1.2. A hyperfunction carried by X is an element in the quotient

space B(X) =: A'(X)/A'(0mX), where 9y X is understood as the boundary of
X in the topology of M .

In this section, we consider M to be a totally real C!-manifold c C™ of
real dimension m, 0 € M, which, with suitable coordinates, is given by

(3.1 M:{eR" = Z({)={+ip(l)eC”
in a neighborhood U, of 0, where ¢ € C!(R™) satisfies
(3.2) #0)=0, ¢'(0)=0.

Let I" be a cone in R™ with vertex 0, and I', =: {y €I'": |y| < p}. Then put
M,={weM:|Rew|<p}, W,I)=M,+il,.
As usual, W, (T') is called a wedge of edge I'.
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3.2. Boundary values of holomorphic functions without growth restriction. Let
S be a holomorphic function defined in W,(I') C Up, and let X be a com-
pact neighborhood of 0 € M, in M. We now consider the following linear
functional:

W)= [ Swww)dw, vy eacn,
+1y

for y e I'y. Then, we obtain

Theorem 3.2.1. There is an analytic functional u* € A'(X), unique up to an
element of A'(0pX), such that, for any neighborhood V of 0y X in C™, there
is 0 > 0 satisfying

(3.3) W —uX e 4(V), VyeTs,.

The above theorem says, of course, that there is a unique hyperfunction u* €
B(X) associated to a function holomorphic in U +iI", for some neighborhood
U of X in M. We call the hyperfunction uX the boundary value of f on the
edge X, denoted by Bfif . The important reason for calling the hyperfunction
BfX the boundary value of f is that any analytic functional « in B /& can
reproduce f in a sufficiently small neighborhood of 0. If u € BfX , we define

(3.4) ue(z) = (u, (v/2m)m2e=z="Ty

where [z—w]? = Z;.”:,(z j—w;)%, T > 0 (notice that this is the Baouendi-Treves
approximation scheme). Then, it follows easily that u, — f(z), as T — oo
pointwise for z in a sufficiently small neighborhood of 0. Therefore, the map
f ~ Bf¥ is one-to-one, and the boundary value determines the holomorphic
function conversely.

We remind the reader that the following proof is modified from an argument
in [H1]. In his book [H1], Hormander proved the existence of BfZ in the case
of a straight edge M by relating analytic functionals to their harmonic rep-
resentations, and using the Runge approximation for harmonic functions and
some knowledge of analytic Cauchy problems. To extend Hérmander’s argu-
ment to non-real-analytic case, we can make use of the Tsuno representations
and the Runge approximation for 8 closed form. Rather than doing this way,
we present here a direct and elementary method, relying only on Taylor’s expan-
sion, to prove the existence of the hyperfunction boundary value. As a result,
the smoothness of the edge can be minimized (to be even Lipschitz continuous).
For convenience, we assume M is C!. It is our intention that the reader get
an intuitive understanding of hyperfunction boundary values from the proof.

Proof of Theorem 3.2.1. Without loss of generality, we consider a strictly convex
I',. Since f, y are holomorphic in W,(I'), it follows from Stokes’ formula
that for y,y' €T,

(3.5) - ubw = [ fw)p(w)dw,

O X+ily,7']
where [y, 7] = {ty + (1 —t)y': 0 < ¢t < 1}. Let y € I,, and let y; =
v/i, j =1,2,.... Then, uj —u) is an analytic functional carried by

E; =0 X +i[1/(j+ 1), 1/jly. The trick here is to construct a sequence of
X )
Yi+1

distributions supported on 9y X to approximate u} -— u{ ,j=1,2,..., In
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order to control the growth of f to obtain the analytic functional uX . Denote
vy(z, ) =w({+izy), where { € Oy X, z € C, then

k , .
wy(z,C)=sz_p+l/ (Z_T)kak IW(TaC)dT.

P ! | k+1
pard 0z p! k'), 0z
Note that

/ fw)y(w)dw = /B ) / S i+ i)y () dido),
M [+

where a;({) € C(OuX), do is an area measure on Jdy X . It follows

k 1/j
[ rwwwydw =y [ o) ( [ f(¢+izy>§’!dz) do ()

=0 Joux - 9zr 1/(j+1)

1/j ) t 8k+1!// (r, ) (t— T)k
+/6MX //U+l)aj(5)f(c+zty)/o 322“ o drdtdo(()

—Z/ a5, 500 o0y 1 R yw),

where a,j({) € C(dmX). By Cauchy’s estimate, for 1/(j+1)<7<1/j,

ok+yy (e, O)| . _ k!
pzke | < e iy W O

and consequently, there is a positive constant C; such that
IR, ;W < (Ci/2N WLy, YweAC™), k=1,2,...;
where V; = {w € C™: dist(w, dnX) < 3|y|}, j=1, 2, ... . Notice that
Py, (0,
wHE/ 4,50 7% 0 ao(e)

p=0

is a distribution supported on Jy X . Therefore, for each j, we can find a
distribution v; supported on 9y X such that

(5, — uy = v)) (W) < (1/2)|WllL=(r), Yy € ACC™).
Next, construct the following sequence of analytic functionals:
n
wn=u;‘:+z(uﬁ+l—u;‘i—vj), n=2,3,....

Jj=1
(Note that this is the Mittag-Leffler procedure.) Then, for every y € A(C™),
{wa(w)}n>2 forms a Cauchy sequence; and so, there is a linear functional u*
defined on A(C™) such that

lim w,(y) = u¥(y), Vy e AC™).

n—oo

Notice that, for any n € N,

W) = w W) = (W) == et () + D, - = v)(w),
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We can conclude that a carrier of #* is X and u*—u; is an analytic functional
carried by the neighborhood ¥, of 83X . From (3.5), we can see that, for any
neighborhood V of 9y X, there is a dy > 0 such that uX — u;" e AV),

Vy € T'5, as desired. Uniqueness of u* is trivial. O

Definition 3.2.1. Let u € A’(X), andlet X; C X be nonempty, then v € 4’(X))
(c A'(X)) is called a restriction of u to X, if u—v e A'(X\X)).

Remark 3.2.1. The existence of restrictions for general analytic functionals will
be treated in §6, which is independent of the rest of the paper. We do not speak
about the restriction of u to avoid discussing the question of uniqueness for the
time being. In fact, unless we shrink X enough, uniqueness may fail (due to the
fact that a totally real manifold is only locally polynomially convex). In our local
setting, the set X is polynomially convex, and so is its subset X; . According to
the discussion in the proof of Corollary 6.3.1, there is a restriction of u € A'(X)
to X, which is also unique up to an element in 4’(8X;). Therefore, there is
a unique element in B(X) consisting of all restrictions of # to X, which will
be denoted by u|yx, .

We consider the following interesting case which shows us the relation be-
tween B If" and Bff for X; C X . Itiseasy to prove the following proposition
from the above theorem.

Proposition 3.2.1. Given two compact (open) sets X, C X C M,, if f is holo-
morphic in W,(I'), then any analytic functional in B li“ is a restriction of
analytic functionals in Bf¥ to X, .

Proof. For any neighborhood ¥ of X\X;, choose y € r, w1th |y] small
enough that for any uX € BfX and any u* € BfY,

uf —uX¥edW), u-uredW), uf-ufedw),
since
W -uyw) = [ fwww)d
X\ X, +iy
Therefore,
—u® =W —uf)+ (uf —uf) + (- uh) e A V),
which shows the proposition. 0O

As an example of the hyperfunction boundary value, we note that when f is
continuous up to the edge M, then xx f|j is a representative in Bf , where
we denote by yx the characteristic function of the set X .

4. DECOMPOSITION IN MORE GENERAL SENSE

4.1. Tsuno’s representation formula. Tsuno’s representation formula will play
a major role in the paper. For distributions with compact support, it is actually
an absolutely immediate consequence of the Bochner-Martinelli representation
formula for holomorphic functions. As before, let X be a compact setin M , a
C>® smooth totally real manifold, and u a distribution with compact support
in X (or M is C! and u a function with compact support). Then, for any
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neighborhood U of X in C™, for any holomorphic function v, we have
(ua '/,>=<ua/ BM(‘, w)'//(UJ)/\d’w>
aU

- / (u, BM(-, w))y(w) A dw
aU

where
1 Y ()@, - Z)dW A AT A AdTy
(2mi)m |lw — z|2m

is the Bochner-Martinelli kernel, and the pairing (u, y) is so defined that, for
any function u,

BM(z,w)=

(u, v) =/Xut//dz.

Then, the kernel G(w) = (¥, BM (-, w)) is a representation of the distribution
u,whichisa 9 closed (0, m—1) formin C™\X . It needs some work to extend
this representation formula to the analytic functional case since the Bochner-
Martinelli kernel is not holomorphic unless in C!. This has been done by Tsuno
[Ts], who also gives credits to Harvey and Martineau, using Henkin’s integral
representation formula and technique of solving Cousin I problem.

Theorem 4.1.1 [Ts). Let X be a compact polynomially convex set, and let u €
A'(X), then there is a 8 closed (0, m —1) form G defined in C™\ X, so that,
for every bounded neighborhood U of X in C™, and for every holomorphic
Sfunction vy,

(4.1) (u, ) = /au G(w)y(w) Adw.

Moreover, any two such representation forms differ by a 8 exact form defined in
Cm™M\X.

Definition 4.1.1. A 9 closed (0, m — 1) form G defined in C™\ X is called a
Tsuno representation form of u € A'(X) in this paper if G satisfies the relation
(4.1) for any holomorphic function y .

In case that X = K; x K; x --- x K, for some polynomially convex compact
sets K, j=1,..., m, the above theorem is proved by Harvey [Hv2], and
the form G can be given as the Cauchy transform of f in multidimension
setting. The following proof of the above theorem is essentially taken from [Ts]
for convenience of reference.

Proof of Theorem 4.1.1. The uniqueness is straightforward from the following
lemma (it will also be used to prove the existence).

Lemma 4.1.1. Let Q be polynomially convex and have a strictly pseudoconvex
neighborhood basis. Then, a 0 closed (0, m—1) form G in C"\Q is 0 exact
if and only if, for any neighborhood U of Q and any holomorphic function vy,

(4.2) GAydw=0.
14

The proof of the lemma will be given after the proof of the theorem. Let us
now prove the existence of Tsuno forms.
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(i) Let {U;}32, be a strictly pseudoconvex neighborhood basis of X in C”
such that Uj,, € U;, j=1,2,..., ﬂ;’;’l U;j = X. For each j, there is a
Henkin-Ramirez kernel H;(z, w) for the domain Uj,,, which is holomorphic
in z for z € Uj4;, 9 closed in w for w € Uij\Uj,1, and satisfies that, for
every holomorphic function v,

v(z)= Hi(z, w)y(w) A dw.
Uj
Set
Rj(w) = (u, H;(-, w)).

Then, R; isa 9 closed (0, m — 1) form in U;\Uj;; and satisfies

(4.3) (u, v) = Rj(z, w)y(w) Adw.
0Uj,

(ii) The form R; can be extended to C™\Uj,; in the following way by
solving a Cousin I problem. Choose a cut-off function y € C§°(U;) which is
identically 1 in a neighborhood of U;,; in C™. Then, dxAR; isa (0, m) form
defined globally in C™. We can find subsequently a (0, m—1) form g defined
in C™ sothat g =9y AR;. Let Gy = xR;— g, Gy =(1—x)R; + g. Then,
Gy is 9 closed in C™\Uj,,, G, is 9 exactin U; since U; is pseudoconvex,
and R; = G, + G, . Therefore, G, serves as an extension of R;, i.e., (4.3) still
holds with G, in place of R;. G; will be written as w; .

(iii) Since
/ ij/=/ Wiy =(u, y)
au U

for any holomorphic function y and any neighborhood U of Uj;, we see that
wj — wj, satisfies the hypothesis of the above lemma with U; in place of Q
provided j is sufficiently large. Then, there isa (0, m —2) form y; on C™
so that ®; = w4 + 97;, hence, w; can be extended to Uj,, and therefore
successively to C™\X . Thus, a Tsuno form is obtained. O

Proof of lemma. Necessity is trivial. As is well known, the condition in the
lemma is exactly the Greiner-Kohn-Stein condition for 8, solvability. The
proof of the sufficiency is a Serre duality argument taken essentially from a
personal communication of H. Alexander to Rosay and Stout. Let {Q;}%, be
a strictly pseudoconvex neighborhood basis of Q, Q;,; € Q;. Choose a C®
function x; so that xjlo,, =0, leg; = 1. Then, x;G is well defined on C™.
9(xjG) = 3x; A G is identically 0 in QS and Q;,;. Moreover, 8(x;G) is
orthogonal to the space of holomorphic functions in Q;_; since

/ 5(XjG)w=/ 5(NG)=/ yG=0
Qj_| Qj\Qj.H BQ,

for any holomorphic function y in Q;_; by the hypothesis of the lemma.
Then, Serre’s duality theorem (HY ™(Q;_,) = [H-%(Q;_)]*) [Ser] yields that
there isa (0, m — 1) form «; with compact support in Q;_; so that da j =
d(x;G). Note that x;G — a; is defined and 9 closed on C™” once «; is
extended by 0. It follows that there is a (0, m — 2) form B; defined on C™
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so that 9 = ;G — o;. Therefore, G = 88; on QS_,. By induction on
j, we can conclude G is 0 exact on C™\Q. The reason is the following.
Bi+1— Bj isa 9 closed (0, m —2) form on Q¢_, . This is again 9 exact on
95-1 basically by the same Serre duality argument as above except for using

H? ™ 1(Q;) = [H%1(Q;)]* . Therefore, B, can be extended step by step up to
c™\X. O

We will assume that X is a very small compact neighborhood of 0 in the
manifold M so that every closed subset of X is polynomially convex from
now on. In this case, X has a strictly pseudoconvex neighborhood basis (see,
for example, [HL, Theorem 1.4.18]). Therefore, the above theorem applies.

Remark 4.1.1. It is not essential that G is defined on the whole C"\X . In
the paper, we often use a locally defined form G, i.e., there is a pseudoconvex
neighborhood Q of X in C™ such that G is defined in Q\X and the relation
(4.1) holds for any neighborhood U contained in Q. Such locally defined form
will still be called a Tsuno representation form of % due to the fact that any such
locally defined form can be extended to be a globally defined d closed form,
i.e., a form defined in C™\ X, modulo a d exact form defined in Q, since a
0 exact form contributes nothing to the duality formula (4.1) essentially. The
way to do such an extension is to solve a simple Cousin problem in Q\X as
shown in (ii) of the above proof.

Remark 4.1.2. We know at least three ways of constructing Tsuno forms:

(a) the first one is by Bochner-Martinelli kernels as described above;

(b) the second is by hand following Amar’s technique (see §2.2);

(c) the third is using a given holomorphic decomposition of an analytic func-
tional (see Remark 4.2.3 or the proof of Theorem 5.2.1).

Remark 4.1.3. Let us note the relation between the Tsuno forms of two different
representatives for the same element in B(X). Suppose that u;, u; € A'(X)
are equivalent, i.e. u; —u; € A'(0X), and G,, G, are Tsuno forms for u;, u;
respectively. Then, according to Tsuno’s theorem, G; — G, is 8 closed in
C™\0X since it is a Tsuno form of u; —u;.

Remark 4.1.4. If two @ closed (0, m — 1) form G;, G, in C™\X coincide
in the cylinder Q\X, where Q = X + iD,,, Dy, is the closed unit m-ball in
R™, then it follows immediately from the duality formula (4.1) that G;, G,
represents analytic functionals in the same hyperfunction class in B(X). This
is actually an indication of a more general fact: any 9 closed (0, m — 1)
form g in Q\X represents a hyperfunction class # € B(X). If we define an
analytic functional us; by setting (us5, y) = fs; gAwydw, where S5 = X +
i{x € R™||x| =6} and J > 0 is a small number, then there exists a hyperfunc-
tion class % € B(X) so that u € # if and only if

(4.4) u — ug is carried by S5 = 8 X + idDy,.
This fact can be proved in the same way as Theorem 3.2.1. Therefore, the

restriction of a Tsuno form to the cylinder Q\ X is very essential in the hyper-
function sense. O

4.2. Holomorphic decompositions in general sense. We attempt to develop a
holomorphic decomposition theorem for analytic functionals supported on a
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C? totally real manifold M. As we have already seen in §3.2, the analytic
functionals arise naturally as the boundary values of holomorphic functions.
Now, let u € A'(X) with X a compact neighborhood of 0 in M, then there
isa 8 closed (0, m — 1) form G representing u in the fashion (4.1). As in
§2, G results in a holomorphic cocycle {Gj,..j,, jq = £q} € C" Y%, O).
We then assert that u is a sum of the boundary values of Gj,...j, on the edge
M in the hyperfunction sense. The proof of the following theorem just makes
use of the Stokes’ formula repeatedly although we need to be careful about the
orientations of the manifolds involved in the proof.

Theorem 4.2.1. With u and Gi,..;, as above, we have
(4.5) uee Y sgn(i ~ im)(BGiywin)B,

ip=%p
p=l,...m

where € = £1 is independent of u.
Proof. Let If' =[-6,6]™, 6 >0, a small number, and let

Xs ={z € M|dist(z, X) < 6};

then
Xsx I =1 {z +it|ze X5, t € Ij'}

is a neighborhood of X in C™. Denote
Si={t=(t1,...,tm) €IJ'|tj =0},

S_j={t=(t1,...,t,,,)elg"ltj=—5}, j=1,..., m.
Then, X; x S; is a face of the curved parallelepipeds X; x IJ" . Without loss of
generality, we can assume that forall 6 small, X;xS; c U;, j==+1,...,tm.

Let G be a representation (0, m — 1) form of u, then, for all holomorphic
functions v,

u(y) = / GOW(O) AdL.
O(Xsx I

If S; is given the orientation induced as the boundary of Ij”, we have

u(w) = e /X GOAvDd+ [ GO nw

j:!:l

where &, = +1 arises from the orientation of the product manifold.
Note that y — [, Xyx I G(&) A w({)d¢ defines a distribution supported on
]

dX;s x If" which is in a small neighborhood of 9y X . As we have seen in the
proof of Theorem 3.2.1, this analytic functional converges to O in the hyper-
function sense as 6 — 0. Therefore, we only need to take care of the main

term
A= Z /X OAw()dC

j=%1, 5%S;
We will show that

(46) Ad=e 3 / Girvoin (O AW()dC mod(4'(9Xs x I)),
zp—ip
p=1,.

stll “im
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where S;,..;, =:S;, N---NS;, carries the orientation induced as the boundary
of S;,..;, inductively.

Suppose (4.6) is proved, one easily sees that X;xS;,...;, is parallel to X and
its orientation is sgn(i; - - - i,y) - {the orientation of X; x S;...,}. Let § — 0, the
conclusion of the theorem follows easily from the definition of the hyperfunction
boundary value.

Next, we prove (4.6).

From the standard orientation consideration of a simplex, it follows that

P — ‘l ik
Sll"'lk_ Ji ijh “Jk

where

iy lk —
JieJk

{0 if {iy---ie} # {0k}

PR /2 N . .
sen (11777 ) ikl = G
Carrying the Weil process described in 2.1 onto the integrals in 4, we have

4= Z / 6FJ YAy dl
j==%1,
=& Z (Fj, = Fi)(O) Aw(£)dl  mod(4'(0.Xs x I}))

Lirl<ljal ¥ X6XSirin

¢y Y /X&xs B3F).;,(0) Aw(()d{ mod(4'(dXs x IT"))

Ll <<l v

=g ) Gjyjpus () ANW(0)dL  mod(4'(8Xs x If)).
isl<ere<lpat] ¥ X8>S
To see the final equivalence above, notice that only F contributes to

TG dpn
the integral over X; x Sn Jper ? and more precisely,

sp_/x N OF; .., Nwdl
LEolF NS MRSy Y

o [ Ey o AW AC mod(A(0 X5 x 1))
,;X3S

v diedpe

sp/X N Fj ey NV A
8 XSy gk dpa

+ {the other integrals over 8.5;

pedegpn ) MOA(4'(0 X5 x IT))

— k+1 .
=& /x (-DFE 5 Avde
L]

xsjl"'jp+l

+ {integrals not over X5 x Sj...j,..}>

finally, adding all these first terms, we obtain the above recurrence relation.
Therefore, we end with

Azens ¥ [ Guu@AW©dl mod(a(0X; x 7)),

ljil<+<ljm|
which is (4.6). O
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Remark 4.2.1. The above theorem is clearly a kind of generalization of Mar-
tineau’s decomposition theorem of analytic functionals (see, for example, [H1,
Theorem 9.3.7]). As a corollary of the theorem, we have that the hyperfunction
space B(X) islocally spanned by the boundary values of holomorphic functions
in certain wedges of edge X . In the case M = R™, this fact is taken as the
definition of Sato’s hyperfunctions. Therefore, the hyperfunction defined here
is a natural extension of Sato’s object. We also mention the work of Harvey and
Wells [Hvl, HvWe]. In §6, we shall discuss the flabbiness of the sheaf of the
germs of hyperfunctions defined here by using the explicit Tsuno representation
formula, which should be considered as an elementary presentation of the sheaf
cohomology approach employed in [Hvl, HvWe].

Remark 4.2.2. The above theorem (and its distribution case in the next para-
graph) can be strengthened as follows. Given any Stein covering {U; }§=1 of
Q\M , we can decompose u as a sum of the boundary values of holomorphic
functions defined in Uj,...;,, 1 < i} < i < --- < i, <. Notice also that
Ui,...i,, plays the role of convex wedges in the straight edge case. For this reason
and for convenience, Uj,..;, will be called a pseudo-wedge of edge M. As a
matter of fact, such kind pseudo-wedge can be exhausted by the usual wedges
after possible shrinking of neighborhoods of 0, and vice versa due to the fact
that p; can be replaced by any of the convex combinations of p;’s.

Remark 4.2.3. When starting with a holomorphic cocycle {#j,...;,} , we can ob-
taina 8 closed (0, m —1) form G, in C™\X following the Weil process (or
simply solving Cousin I problems). Then, the argument in the proof provides
us a way to calculate the residue of G, which is a sum of the boundary values
of hj,...;, modulo A4'(8yX). Therefore, if {Aj...;,} is a holomorphic decom-
position of an analytic functional u (its Tsuno representation is G), then the
resulted form G, differs from G by a 8 closed form in C™\dy X . Thus, if
restricting ourselves in a smaller neighborhood X; (C X) of 0, Gy and G
are cohomologuous. Moreover, G, can be taken as a Tsuno representation of
u.

5. (HYPO) ANALYTIC WAVE FRONT SET

5.1. Definition. Since an analytic functional is related to its Tsuno represen-
tation form by a duality formula, in principle, any information on the analytic
functional should be reflected by its Tsuno form. In this section, we will tell
how the wave front set is determined by the representation form. To define the
wave front sets of hyperfunctions in case M is C? smooth, we follow Sato’s
approach.

Definition 5.1.1. Let u € A'(X) with X a compact neighborhood of 0 in M, .
We say that ¢ € R™\{0} is not in the (analytic) wave front set of u at 0,
denoted by o ¢ WFy(u), if there are r > 0, cones I'; C R” with vertex 0,

and holomorphic functions h; € A(W,(T'})), j=1,..., [, such that
(i) M,cX,
(ii) lm, = Tjui (BRI,
(1ii) for each j, thereis y; €I’ sothat -y, <0, j=1,...,1.

It is easy to see that one can replace the wedges W;(I';) by corresponding
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pseudo-wedges as defined in Remark 4.2.2. We thus obtain an equivalent defi-
nition in terms of pseudo-wedges. In this sense, we will not make a difference
between pseudo-wedges and wedges in the context whenever no confusion hap-
pens.

In [BRT], wave front set is defined in the distribution language. Due to an
equivalent definition in terms of FBI transforms, the notions of the wave front
sets of a distribution in the above sense and in the distribution sense turn out
to be the same.

The main purpose of this section is to present another characterization of the
wave front set in terms of 8 exactness of the Tsuno representation forms, and to
provide its application to holomorphic extension problem from the totally real
manifold M . One could find that the way adopted here is closely tied with the
monodromy phenomenon in C!. As a consequence, we give a hyperfunction
version of the edge-of-the-wedge theorem with a C? totally real edge which
extends Pincuk’s results for distributions (see [P] or Appendix).

5.2. 0 exactness for Tsuno representation forms and wave front. Let us first
exploit the relation between the wave front set of an analytic functional u €
A'(X) and its Tsuno representation form G in (4.1).

Theorem 5.2.1. Let u € A'(X), and let G be a Tsuno representation (0, m—1)
Jormof u, then oy ¢ W Fy(u) if and only if there is a concave cone I containing
gy So that oy-0T <0, and there is a smooth (0, m —2) form g in W,(I') for
some p > 0 with

(51) ag = GlW,,(I')-
Proof. For the simplicity of notations, we only detail the dimension 2 case. The
general case will be detailed in a forthcoming paper. Also, we assume the edge
M is straight, or simply R?. When M is not straight, one can replace the
involved wedges by suitable pseudo-wedges. We first consider the “if” part.
Note. We can assume that u € A’(M,) by restricting u to M, because
a Tsuno representation for a restriction of u to M, differs from G by a ]
closed form in C2\(X\M,), which is 0 exact in M, + iD,, where D, is the
disk of radius p and centered at 0 in R?, especially § exact in W,(T); thus,
(5.1) is invariant under restriction.
Now, there is a wedge W,(I';) with TI'| a strictly convex cone, go-I'y < 0
and T'; UT = R?\{0} . In this wedge, there is a smooth function g; so that

9g1 = Glw,r,)-
Notice that I'y NT" has two components I"; and I', both of which are strictly
convex. Let h; = g, — g|Wp(pl) ,hh=g—-g& IW,,(r;) , then they are holomorphic.

It therefore follows from (4.1) and the Stokes’ formula (the typical residue
argument as in the proof of Theorem 4.2.1) that

(5.2) u € el(Bh)ry + (Bha)p!),

where ¢ = 1, p > 0. Thus, g9 ¢ WFy(u). Since we only consider the
case in C?, the proof of (5.2) is much easier than that of Theorem 4.2.1. For
this reason, let us repeat the proof. Indeed, we can choose an arbitrarily small
neighborhood Us of M, (=D, in the present situation) as follows,

Us=D,.s + iDy.




HOLOMORPHIC EXTENSION FROM A MANIFOLD 19

Denote y, = {(rcost, rsint)[r > 0}, ¢t € R. By a rotation, we can assume
that € = {y| -t <t < t}, 0 < t; < m/2, is contained in I';, and the
interior (cone) of the compliment of # is contained in I'. Note that dU; =
{Dp+s+iCs}U{Cpis+iDs} , where Cj; is the boundary of D;. We now divide
dU; into three pieces, i.e., dUs; = S, US; US;, where

S1 =0Us N W)(¥) = D, + id{(cost, sint)| —t; <t < t;},

Sy =D, +id{(cost, sint)|t <t <2m -1},

and S3 is the compliment of S; US, in dU;s;. Then, S, c W), S, C
W), S8, =D, +iCs,and §; NS, =X, ULy, where Z; = M, + idy;,
y1 = (costy, sinty), y2 = (cos(—t;), sin(—t;)), j =1, 2. Suppose W(F}) is
the component of W(I')n W(I';) containing X;. While S3 is contained in an
arbitrarily small neighborhood of 0M, as  — 0. Give Z; the orientation as
the boundary of S;. Note that the orientation of X; as the boundary of S, is
opposite to that of X; as the boundary of S,. From Stokes’ formula, it follows
that

w,vy=[ GOWO AL
oU;
/agl(c w(0) Adc+/ sl Adc+/ GOW(L) Ade
=/(gn—g)w+/(g—g|)w+/ gu+ [ GOWO AdL
% bY) LAY S3

- h1V/+/h2'//+ gw+/ GO A dC,
R X, 88, S3

where the integral over 93 is a boundary term from integrals over S|, S,
after using Stokes’ formula. Notice that u;s: y — fzj hjy converges to &u;

for some u; € (Bh ,-)g” , where ¢ = =1 depends only on the difference between
J

the orientations of X; and M, ; and that the analytic functional defined by
the other integrals (over S3; or 8S3) converges to an analytic functional in
A'(0M,) . Therefore, (5.2) is proved if we let 6 — 0.

Now, we prove the “only if” part. Suppose gy ¢ W Fy(u). Then, there are
p > 0, and strictly convex I'; together with holomorphic functions #; defined
in W,(I';),j=1,...,1,so that

(i) M,C X,

(il) go-T'; <0,

(iil) u|ly, = 2] 1Bh)

From the note made m the proof of the “if” part we see that it can be
assumed that u € A'(M,) and there are u; € (Bh;) j” so that

!
(5.3) u= Z U
j=1

The proof can be further reduced to the case / =1, i.e., we are going to prove
the following statement:
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Suppose & is a holomorphic function in W(I') and u € Bh,@",

then any Tsuno representation form G of u is 8 exact in
W,(RAL).

In fact, we have a more precise version of this statement given later (see
Lemma 5.3.1). Assume this statement for a moment. If u satisfies (5.3) and

u; has a Tsuno representation G;, then we immediately see that G = Z§=l G;

is a Tsuno representation for u. Since G, has been proved to be 0 exact
in W,(R\T)), G is & exactin W,(I'), where I = R?\ closed convex hull of
U§=1 I'; . It is clear that I" is concave and oo - 9" < 0. Since the other Tsuno
forms differ from G by a 8 exact form, the “only if” is proved.

Next, we prove the statement above.

Restricting ourselves in a slightly smaller cone, we can assume # is defined
in a larger wedge W(I"), I' € I . By a rotation, we can further assume I' =
{rl =t <t < to}, with 0 < tp < m/2. Define a smooth function g in
C\M,, so that g = h on W,(I') and g vanishes on the rays M + iy, for
n/2 <t <3mn/2. Here we choose a very specific g. As mentioned in Remark
4.1.4, it could be arbitrarily changed outside of the cylinder M, +iD, as long
as it remains smooth for our purpose below. Since # is holomorphic, g = 0
on W,(I'). We then construct a Tsuno representation form G in the following
way. Define

G {0, on M, + iy forn <t<2m,

dg, otherwise.

We now assert that G is a Tsuno representation form of +u modulo a F)
closed form in C2\@ M, . Note that, in W,(R*\I'), G =39g,, where g = g on
M,+iy, for 0<t<m and g =0 on M,+iy, for n <t < 2n. The statement
to be proved then follows from the fact that a & closed form in C\o M, is
also 9 exact in D2 = D, + iD,. To see that G is a Tsuno representation
form of u, we basically use the same argument as in the proof of (5.2). Choose
a neighborhood U; of M, as before, and write dUs; = SUS’, where S =
M, +iCs, S’ is the compliment of S in dUs;. Let T=M,+i(d,0) (CS)
be given the orientation of the boundary of S\X. Then, for any holomorphic
function vy,

[ GOW() A dl = / GOW(O) N + / G(Ow() AL
aUs ) S

- / Ta+ / GOW(0) Ade
S\E s

= [ov+ [ av+ [ GOw@nac

Letting 6 — 0, we have the analytic functional y — [ Ay converges to +u,
where + depends only on the orientation of X, and the analytic functional
defined by the other integrals in the last line above converges to an analytic
functional in A’(8M,). Therefore, G is a Tsuno form of +u modulo a F]
closed form in C>\0 M, (see Remark 4.1.3). O
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5.3. Precise description of wave front by Tsuno forms, holomorphic extension,
and monodromy. Next, we only consider the situation in C2. We are still
lacking a good understanding of higher dimension case. We want to investigate
the case when a “cone” I is not in the wave front set (so far we just considered
a ray). In two variables, if a closed cone of aperture @ is not in the wave front
set, it will be shown that the equation dg = G (G a Tsuno form) can be solved
on a corresponding “wedge” of aperture 8 + n. If 6 < m, the wedge is just
in the usual sense. If 6 > &, then it should be understood in the universal
covering (thus monodromy phenomenon does occur, see Corollary 5.3.1). To
demonstrate the monodromy phenomenon in C?, we introduce some notations.

Let R? = {(y:,t) € R3t € R} be the universal covering of R?\{0}, where

y: = {(rcost, rsint)|r > 0} as before, and let p: R2 — R?\{0} be the canonical
projection.

Definition 5.3.1. (i) A set in R? of the form I' =T, p) =: {(7:, )la <t < b},
for some a < b, is called a lifted cone. Meantime, W,(I') = {(z + iy, )|z €
M,, a <t < b} iscalled a lifted wedge.

(ii) Let g be a smooth function on a lifted wedge W,(I', ), for each
direction y,,, a < fp < b, we define a local projection g; of g by setting

8z + i) =g(z+1ip, 1)

with ¢ near tp. A lifted cone I, 4 is called a solvable cone for a 8 closed
(0, 1) form G defined on C*\M , if there is a smooth function g defined on
W,(T'(a,p)) for some p > 0 so that, for each ¢ € (a, b), the local projection
g/ satisfies

(5.4) 9g' =G

near the direction of y,.
The following lemma gives an exact description of the wave front set in terms
of the solvable cones.

Lemma 5.3.1. Let T = {yJa < t < b} be a component of the set R2\WFy(u),
where b<a+2n if T#R?2—{0} or a=—occ0, b =00 otherwise. Set

(5.5) I =Tf, 4 ={(n, ) eRja—n/2<t<b+m/2}.

Then, T™* is a maximal solvable cone T* (C l@) Jor the Tsuno representation
form G of u in the following sense: for any cone 'y € I'*, T'y is solvable; for
any cone TI'y; containing T', T'y is not solvable.

As an immediate consequence of this lemma, we can visualize some interest-
ing phenomenon of holomorphic extension for analytic functionals.

Corollary 5.3.1. Let G be a Tsuno form of u € A'(X) with X as before. We
have

(i) If 8g = G is solvable on a lifted wedge of aperture > 2m, in other words,
the wavefront of u is contained in a strictly convex cone TI', then, u can be
holomorphically extended to the wedge W,(I'?), where T® = {¢ € R*}|6 -y >0,
vy eT}.

(ii) If 8g = G is solvable on a lifted wedge of aperture > 3n, i.e., WFy(u) =
@, then u can be holomorphically extended to a neighborhood of 0.
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Proof of Lemma 5.3.1. For any direction y, € I', a <t < b. Then, y, ¢
W Fy(u) implies that there is a solvable cone I'y =: I';_n/2-5,, 1+n/2+5, » Where
d; > 0, and a smooth function g; in W, (I',) satisfying (5.4). It is clear that
I' ¢ I'*. For otherwise, we could have a holomorphic decomposition of u
which contradicts to the fact that I" is a component (there would be a conic
neighborhood of the direction y, not in W Fy(u) if ¢+ J; > b, or that of y,
if t—d; < a), by calculating the residue of G as in the proof of (5.2).
We now consider the relation between two such solvable cones.

Sublemma 5.3.1. If I';,, T, are two concave solvable cones for G such that
Ty, NTy, is also concave, then T, UT, is also solvable for G .

Assume this sublemma for a moment, let us continue the proof of the lemma.

Consider any closed cone % € I'*. Suppose % is concave, otherwise % is
certainly solvable for G due to the convexity. & = {y, € R?\{0}jc —n/2 <t <
d +n/2} for some a < ¢ <d < b. Now, we have the following open covering
of the interval [c, d]: {(t—:/2, t4+6:/2)}ic|c,4) - Therefore, a finite number of
these open intervals can cover [c, d], i.e., there are numbers ¢} <, <--- <,
in [c, d] so that U%_,(¢; - d,,/2, t; +J,,/2) D [c, d]. This implies that ¢, —
;< (5j+6j+1)/2 . Note that I",jnl",m = {)’t'tj+l"7t/2—6tj+| <t< l'j+71'/2+5,j}
has aperture 7 + J;, + ;,, — (¢j+1 — ;) > m. Hence, it is concave. Therefore,
a consecutive use of the sublemma above yields that % is a solvable cone for
G . The lemma is then proved. O

Proof of Sublemma 5.3.1. Let g, g, be solutions of the equation 9g = G
respectively in W,(I',,), W,(I';,) . Note that the projection of the function 4 =
&1 — & is holomorphic in a concave wedge W,(I';, NT',) by the hypothesis in
the sublemma. By Bochner’s tube theorem, # is actually a lift of a holomorphic
function defined in a neighborhood of 0. Define

~={gl, on Wp'(rtl)’
& +h, on W, (I},) for some p’ > 0.

Then, g is a well-defined smooth function on W, (I';, UT;,) and satisfies (5.4).
This finishes the proof of the sublemma. O

Because there may be many components in R?\WFy(u), we can have the
same amount of maximal solvable cones associated with a Tsuno representa-
tion form G of u. Conversely, these maximal solvable cones determine all the
components of R?\WFy(u) and hence WFy(u) completely.

We now show Corollary 5.3.1.

Proof of Corollary 5.3.1. Proof of (i). WFy(u) C T" implies that there is a
component of R2\WFy(u) >> RA\T'. Thus, at least (R?\I')* is a solvable cone
for G from Lemma 5.3.1. Note that if T = {y;Ja < t < b}, then (R}\I)* =
{(7:, )|b—n/2 < t < a+5n/2} . Therefore, it is clear that the equation 6g = G
is solvable in a lifted wedge of aperture > 2z if and only if the wavefront of
u is contained in a strictly convex cone. Notice that the overlapped portion of
the shadow of (R2\I')* under the canonical projection p onto R? is exactly
I°. Let g be a smooth function on W,((R?\I')*) satisfying the solvability
condition (5.2), and let g;, g be the two local projections of g on W,(I')
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defined respectively by
gl(z + lyt) = g(Z + i)"la t)$
S(z+iy)=g(z+ iy, t+27), b-mn/2<t<a+mn/2,zeM,.

Then, f = g — g is obviously holomorphic on W,(I'%). By calculating the
residue of G in the way shown in the proof of (5.2), we see that u[y, is the
boundary value of f.

The proof of (ii) is basically the same. O

Next, we prove a hyperfunction version of the edge of the wedge theorem
in C™ to demonstrate the holomorphic extension in higher dimension spaces.
Martineau’s cohomological method is used in the following proof. Another
method is using the FBI transform (see next section).

Theorem 5.3.1. Let I" be a strictly convex cone in R™ with vertex 0. If f is
holomorphic in Wy(I'YUW,(-T') and B 15” ’=Bf fff in the hyperfunction sense,
then f can be holomorphically extended to a neighborhood of 0.

Proof. Without loss of generality, we assume W,(I') = U;,  m, W,(-T') =
U_i1,..,-m by using the notion defined in §2.1. Consider the cocycle {f;, .. .} €
cn-Y% , @) with

fl,...,m = flul'...,m ’
ot em = GO o, s
fir,sim =0, otherwise.

Then, {f},,...;.} is cohomologous to O in a slightly smaller neighborhood of 0
from the hypothesis in the theorem. Once this is clear, the induction argument
on the dimension m in [M3] (see also [P, pp. 452-455] without deleting a cubic
neighborhood) applies to give a holomorphic extension of f to a neigborhood
of 0. Note that the case m = 2 is already proved before the statement of the

theorem since B flf”” =Bf f{i’ implies the wave front set of f is empty. O

5.4. The FBI transform and wave front set. We now consider the wave front
set from the point of view of the FBI transform (see [BCT, BR1, BR2, BRT])).
The FBI transform of an analytic functional is defined as follows.

Definition 5.4.1. The FBI transform of u € A'(X) with X as before, denoted
by F(u;w, g), is defined by

Flu;w, o) = u(e""(’”")"(‘”(“’")zA(w —.,0)),

where o, w € C™,

12
_ 4ot 29 i 2
Aw, 0) =det —(w,0), 6=0+i(o)w, (a)—(;aj) .

This definition extends the corresponding one in [BR2] if u is taken to be the
boundary value of a holomorphic function in a wedge. In fact, in view of the
Decomposition Theorem 2.3.1 and the argument in [BR2], we can still prove
the following characterization of the wave front set.
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Theorem 5.4.1. Let u be as above. Then, oy, ¢ WFy(u) if and only if there
exist constants ¢, C, 1> 0 so that

(5.6) |F(u; w, o)] < Cecldl,

fJor we C™", lw| <1, and o €%, a conic neighborhood of o, in C™\{0}.
Sketch of proof. By Theorem 4.2.1, there is a holomorphic decomposition 4; €
AW,([T), j=1,...,1,0of u so that

(l) O’()EF], O'o'rj<0, Vi>1;

(i) u|p, = Zj.zl(th)g” , for some small p > 0.

Note that go-I'; <0, j > 1, implies that (5.4) holds for any u; € (th)l{f" ,
J > 1. Therefore, the proof is reduced to proving gy ¢ WFO((Bhl)?{") if and

only if (5.4) holds for any u, € (Bh.)f-f . This follows from Theorem 1 in
[BR2]. O

We also mention that the edge of the wedge theorem (Theorem 5.3.1) can
also be proved in terms of FBI transform by applying Theorem 2 in [BR2].
Nevertheless, we are still unable to extend the holomorphic extension result
such as Corollary 5.3.1 to higher dimension spaces by the FBI transform method
due to the lack of the convergence of the inverse FBI transform in the analytic
functional sense.

6. SOME REMARKS ABOUT HYPERFUNCTIONS, DISTRIBUTIONS,
AND 0 PROBLEM WITH PARTIAL COMPACT SUPPORT

6.1. Flabbiness of the sheaf of germs of hyperfunctions. To any relatively
compact set X C M, a C! totally real manifold, there is associated a space
B(X) (= B(X)), as in Definition 3.2.1, equipped with the induced topology
from the w*-topology in 4’(X). When M is real analytic, or simply M =
R™, X — B(X) defines a flabby sheaf from the standard hyperfunction theory
(refer to [SKK] or [Sch]). This fact was generalized to a totally real manifold
by Harvey and Wells [Hvl, HvWe]. Rather than using the sheaf cohomology
technique, we can make use of the explicit duality formula (4.1) to show the
flabbiness of the sheaf of hyperfunctions defined here at an elementary level as
Hormander treated in [H1]. This approach gives us additional interests such as
the convergence of a sequence of analytic functionals and some relation with
solving & problems, etc.

In this section, we assume that M satisfies the following property: any com-
pact subset of M is polynomially convex, and M is countable at infinity. Note
that, in general, a totally real manifold only has this property locally.

The following decomposition theorem of analytic functionals due to Mar-
tineau [M2] will yield the existence of the restriction map.

Theorem 6.1.1. Let u€ A'(X), X e M. If X =US_ X;, X; € M, then there
exist uj € A'(X;), j=1,...,k, sothat u= Ej;l u;, where we view u;j as
an element of A'(X) because of the obvious injection i: A'(X;) — A'(X).

Lemma 6.1.1. Let Vo and V _be two compact and polynomial convex sets with
Vo C int(V) c C™. For any 9 closed (0, m — 1) form K defined in C™\V ,
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and forany ¢, R > 0, thereisa 0 closed (0, m—1) form K, defined in C™\V,
so that

IKe — Kllcop\v) < €,
where Bf = {z € C"||z|] < R}.
Proof. 1t suffices to consider the case int(}y) # @ by exhausting successively.
The following argument is heritated from the standard proof of the Runge ap-
proximation theorem. Extend continuously the d closed form K to C™, de-

noted by K. Then, by the integral representation formula (see, for example,
[HL)) in BY,

R(z)=3(T(R))(2) + /V FR(O) ABMp_1({, 2) AL,

where BM,,_({, z) is the (m — 1)th Bochner-Martinelli kernel. Therefore, it
is enough to show

span;cy {BMy—1(C, -)} = spangey, {BMm—1(C, )},

where the closure is in the topology of CO(B¥\V). It is equivalent, by duality,
to show that

WO = [ o) ABMuoi(2) =0, Ve K,
BM\V
for some (m, 1) current w(z) implies
| 0@ ABMu ¢, ) =0, W,
BP\V

Note that
- c z)) =
BMpi({, 2) = Cm- E: “ T gpm AT A AAE A N2

is real analytic, therefore, so is u(¢) for ¢ € int(V). Since int(}p) # @,
#($) =0 in int(¥), which completes the proof. O

We can now extend the convergence theorem for a sequence of analytic func-
tionals in [H1, Theorem 9.1.7] onto a totally real manifold. The proof of the
following theorem is basically the same as Hormander’s except we replace the
Runge approximation theorem for harmonic functions by Lemma 6.1.1, and
the harmonic representation by Tsuno representation.

Theorem 6.1.2. Let Xy and X be compact sets with Xo C X C M, and let
u; € A'(C™). Also, assume that

(i) for any compact neighborhood V of X in C™, we have uj € A'(V) for
large j;

(ii) for any compact neighborhood Vy of Xy in C™, we have uj—u; € A'(Vp)
for large j, k. Then, there is u € A'(X) so that, for any compact neighborhood
Vo of Xo, uj —u € A'(Vy) for large j, and u is unique up to an element in
A'(Xo) .

Definitely, one of the immediate consequences is the existence of the support
of an analytic functional carried on a totally real manifold as in [H1]. Another
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important consequence is the flabbiness of the sheaf of germs of hyperfunc-
tions on a C! totally real manifold. The flabbiness of the sheaf of germs of
hyperfunctions plays a fundamental role in the evolution of the hyperfunction
theory.

6.2. Distribution boundary value and decomposition. This section discusses
the relation between the hyperfunction boundary value in §3 and the usual
distribution boundary values of holomorphic functions with slow growth, and
to give a different proof of the Baouendi-Chang-Treves decomposition theorem
based on the idea in the paper.

To define distribution, we assume that M is C>™ smooth in this section and
restrict ourselves to a neighborhood M, of 0. We then define the distribution
boundary value B fr of a holomorphic function f definedin W, (T") as follows.

Bfeov) = lim [ fwimwwydu, vy eCRM,),
[7[—0

if f has polynomial growth near the edge M, i.e., for any K € M, , there is
k € N so that
C
< - 7
S e Ve
Now, suppose B fr exists and X is a compact neighborhood of 0 in M, . Let
x be a cutoff function in C§°(M,) such that x =1 on X . Then, we have

(6.1K) Vz e K +iT,.

Proposition 6.2.1. There is a restriction of x(Bfr) on X which belongs to B fX
in the hyperfunction sense.

Proof. The proof is straightforward. One needs only to verify that for any
neighborhood V' of K = supp(x)\X, and for any y € A(C™),

(6.2) |(x(Bfr) = u) (W) < Crll¥ll=w),

where uX is a representative in B frx as in Theorem 3.2.1, Cy is a constant
independent of . (6.2) follows from the following consideration. Choose y
small so that K + iy C ¥} and u)f —u¥ € A'(V}) with 9y X C V; € V. Then,

(B =)W = @~ )+ [ p(w)fwip(w)du
K+iy

+// x A (fywdw).
K+i(0,7]

Obviously, the first and the second terms on the right-hand side are in A'(V));
while it is almost standard that if f has polynomial growth near the edge M,
then v — [[; 4+i(0,79X N (fwdw) defines a distribution with support K +
i[0, y], hence, (xBfr—ux) € A'(V3). O

We now follow the analytic functional argument in §4.2 to give another proof
of the Baouendi-Chang-Treves decomposition theorem based on a certain &
regularity result cited in §2.1 in the distribution case. Let u be a distribution
with compact support X on M. Assume X is a compact neighborhood of
0 c Q. As mentioned before, G({) = (u, BM(-, {)) is a Tsuno representation
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form of u. More importantly, G({) has polynomial growth near the edge X .
We can assume that

(6.3K) G| < —<

[dist(C, X)IF°

In U;, put 9;({) = —kIn(dist({, dU;)), then G; € LX(U;, p;) as defined in
2.1. Consequently, Hérmander’s L2 estimate with weight ¢; (Theorem 2.1.1)
yields the existence of Gj,...;, € L2(Uj,...j,, ¢j,..;,) with ¢;..; =3P ¢, .
In particular, we obtain a holomorphic cocycle {Gj..;,} with Gj..;, €
LX(Uj,...jn, > @j,--jn) - Possibly by shrinking the “wedge” Uj,...;, with the edge
fixed, one can find that G;,...;, has polynomial growth near the edge X since
Gj,...j, is holomorphic. Then, Theorem 4.2.1 shows that

uxee > sgn(ji < jm)(BGjyju),
Jp=%p
p=1,....m
in the hyperfunction sense. Possibly by shrinking the neighborhood X to X,
we see that u coincides with

8 Z sgn(.]l ‘Hjm)(BGjr"jm)Ujl...jm
Jp=%p
p=1,...m
in the distribution sense from Proposition 6.2.1 and the density of holomorphic
functions in the space of smooth functions locally on a totally real manifold.

6.3. 3 problem with partial compact support in a cylinder. We study the
problem of solving & equation with partial compact support in the domain
{x eR?, |x| < 1}+i{x € R?, 0 < |x| < 1}. In particular, a solvability criterion
of the Grelner-Kohn-Stem type is provided.

Let D, = {x e R?, |x| < 1}, Dz_{xeR2 0<|x| <1}.

Lemma 6.3.1. Let g bea 8 closed smooth (0, 1) form in Dy +1iD,. Then, g
is 8 exact if and only if

(6.4) the analytic functional defined by y — fs,; g is carried by S5,
VO<d<,

where S5 = D, + i{|x| =6}, S5=0D,+ i0D, are defined in Remark 4.1.4.
Proof. Necessity is trivial by Stokes’ theorem. We now prove the sufficiency.
Denote T; = 0D, + Bs, where B; = {z € C?,|z| < 6}. This is a torus-
like neighborhood of dD,. We first construct a & closed smooth extension
g of g to C2\(D,U Ty) in the sense that gs coincides with g on the set
Qs = (1-96)D, +iD,. Extend g smoothly to C>\D,. Notice that g extends
smoothly to C2\Tj}, it is also a top degree form. Then, there is a (0, 1) form
g on C?—Tj sothat 6g; = dg; hence, g — g isa d closed (0, 1) form
on C2\(D,UTy). Since dg; = 0 in Qs, g is exact in Q;, i.e., there is
a smooth g, so that 8g; = g in Qs. Smoothly extend g to C2 Then,
8 =8—-8 +0g is 8 closed in C2\(XUT;) and gs =g on Q;.

For any neighborhood U of D, U Ty, it can be verified that the analytic
functional us: w — [, gsv is carried by T; from the assumption (6.4) of the
lemma. Let G; be a Tsuno form of u; defined in C?\Ty, then G5—g; satisfies
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Jou(Gs — &)y = 0 for any holomorphic function y and any neighborhood U
of D, U Ty, and hence for any neighborhood U of Ps =D+ 35 Hence,
it follows from Lemma 4.1.1 that G; — g5 is 0 exact in C2\P; since P is
convex. Since G5 is 0 exact in Q;, g5 is § exact in Q5 = Q;\P;s, and so is
the form g.

Choose a decreasing sequence of positive numbers {5,}52,, 5, — 0 as n —
oo . From the above argument, there is a smooth function f, so that df, = g
on Qj . Then, hy, = fus1 — fu is holomorphic in Qj . By Bochner’s tube
theorem, h, can be holomorphically extended to €, for someée, >0, e, — 0
as n — 0. To construct an exact solution of the equation 81 = g in Q\D;,
we use the technique of Mittag-Leffler sequence. Since €, is a Runge domain,
h, can be approximated by entire functions; thus, there is an entire function
h;, so that

o = hplliL=q,,) < 1/2".

Set -
f=0+) (far1 = fa—hy).

n=1
Note that [ = fj —h} —---—hj_; + Z;’f;j(f,,ﬂ — fu—hy,). It is in fact well
defined on Q\D, and solves the equation 0f = g. O

As we know, Greiner-Kohn-Stein condition (4.2) is closely tied to the problem
of solving & equation with compact support. As an analog, condition (6.4) is
related to solving a & equation with partial compact support in Q; = D, +iR?.
Namely, given a smooth (0, 2) form G in Q; with compact support in radial
direction (G = 0 outside of Qg = D, + iRD, for some large R > 0), when
can one find a smooth (0, 1)g also with compact support in radial direction
so that 9g = G?

Proposition 6.3.1. The above problem has a solution if and only if the analytic
functional defined by y — [ Gy is carried by Egr = 8D, + iRD, for some
R>0.

Proof. First, we can always find a smooth g, so that dg; = G. Notice that G
can be solved with compact support in radial direction if and only if g; is &
exact in radial direction. By Lemma 6.3.1, g, is 8 exact outside of Qp for
some R > 0 if and only if the analytic functional y — fs,, g1y is carried by S
with X = Qg . Then, Stokes’ formula implies the conclusion of the lemma. O

Finally, we remark that any 0 closed smooth form in D, + iD, can be
extended to C2\D, as a d closed form. This shows that the Tsuno forms
discussed in §4.1 is basically equivalent to the 4 closed form defined in a
cylindrical domain.

APPENDIX. AN ELEMENTARY PROOF (AND EXTENSION) OF PINCUK’S
EDGE-OF-THE-WEDGE THEOREM FOR DISTRIBUTIONS

A.l. An estimate for the Baouendi-Treves approximation. In this section, we
give a pointwise estimate for the Baouendi-Treves approximation scheme [BT,
T] on a totally real manifold, which will be used to prove Pin¢uk’s edge-of-the-
wedge theorem in the next section. An extension of Pincuk’s theorem is also
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provided. M is assumed to be C> smooth. We also inherit the notations
from §6.2. Let f be a holomorphic function defined in W,(I') and satisfies
(6.1k). And let x € Cg°(M,) be a cut-off function which is identically 1 in a
neigborhood of 0 and satisfies

sup |¢'(x)| < 1/2.
XESsupp x

Then, we define the Baouendi-Treves approximation scheme
T.f(z) = (Bf, (t/2m)"2e~1= Ty ().
The following is our estimates.

Proposition A.1.1. Under the above assumption, there are positive constants ¢ ,
¢y, C and a neighborhood U of 0, which are independent of f, t, such that
vze W,(I)NU,

(1) |T.f(2)| < Cldist(z,, M)]*;

(2)

IT/(2) = f(2)] < € max |f(z) - fIZ(E) +i(y - 9(x)))]

Ce—c.& T
* [dist(z, M

where x =Rez,y=Imz, O, ; isthe 6-ball in R™ with center x .

+ Ce™ 2"

The proof of the proposition is basically a standard approximation estimate
with the help of the following well-known lemma and the technique of integra-
tion by parts.

Lemma A.1.1. If f is a function satisfying (6.2k) and |0f] < C in W,(I),
then there is a bounded holomorphic function F(f) in W,(T') satisfying

6k+lF(f)/aZk+1 f

The proofs will be omitted. As an easy consequence, we see that 7;f con-
verges to f pointwise in W,(I").

A.2. Proof of Pincuk’s theorem. As we know, the edge-of-the-wedge theorem
for distributions can be proved either by a cohomology method [P] or by FBI
transform [BCT, BR1]. Here, we give a much more elementary proof based on
Baouendi-Treves approximation technique.

Theorem A.2.1. If f is holomorphic in W,(I'\UW,(-T') and B fr = Bf_r inthe
distribution sense, then f can be holomorphically extendéd to a neighborhood

of 0.

Proof. We actually prove the following statement:

T.f — f uniformly in a neighborhood of 0 as t — +oco with
S coincided with f on W,(I')u W,(-T).

Then, we see that f serves as a holomorphic extension of f to a neighbor-
hood of 0. To prove the above statement, we need a family of polynomial
disks designed by Rosay [Ro]. Choose Xy € TyM = R™  where ToM is the
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tangent space of M at 0, such that there are real numbers @ and b satisfying
aXo+ b(iXp) € W,(I') . Define

0%: 2z € Al v 9 (2) = 2(eXo) +a(8)z(22+ Dy B(a)—z—(%_—l) —w(z - 1),

where a(e), B(e) are so chosen that eXy+ a(e) e M, —eXo + B(e) € M and
a(e) =o(e), Be) =o0(e) as e - 0, w e C", |w| < 1. Then, ¢ enjoys the
following properties.

Lemma A.2.1. (a) For all 6 € (0, 7), s, (') € W,(I'), and for all 6 €
(-7, 0), 95, (e) € Wp(-T), ¢5,(1), pi(-1)eM.

(b) 9%,(0) = e*w.

(c) dist(@s (e’?), E) > Ce|sinf)|,
where C > 0 is independent of ¢, w (e small, |lw|<1).

The proof of the lemma will be given later. Let us continue the proof of the
theorem. Let z € Al . The main trick in our proof is to introduce

TEv f(z) =: (22 = D' T f (95, (2)),

which suppresses the growth of T,f near the edge, while it keeps the center
of the disk invariant (except for a signature). Suppose that ¢ is small enough
that ¢¢(z) € U, Vz € A!, |w| < 1. Then, from Proposition A.1.1 and Lemma
A.2.1, it is elementary to show the following statement. On the boundary bA!
of Al, T¢"f(z) converges to (z2 — 1)k*!f(g(z)) uniformly for z € bA!,
|lw| <1 as T — +oo. Here, ¢ is a fixed small positive number.

Since T?'" f(z) is uniformly convergent for z € bA!, |w| < 1 and holo-
morphic in the unit disk, it follows that

f"f"”f(z) — some function f;(z)
uniformly for z € Al, |w| <1 as 7 — +oo. As a consequence,
T f(e*w) = T.f(9%,(0)) = (-D)**' T £(0) — (= 1)** f5(0)
uniformly for |w| < 1. Note that T;f(z) — f(z) pointwise for z € W,(I') U
W,(-T) by Proposition A.1.1. Therefore, in the ¢2-ball of C™, T;f(z) — f(z)

uniformly which coincides with f(z), for all z € W,(I') U W,(-T") . We finish
the proof of the theorem. 0O

Proof of Lemmma A.2.1. (a) and (b) were proved in Rosay [Ro]. Since the
proof is simple, for convenience of reference, we copy it down here. In fact,
one notices that there exists » > 0 so that forall e € M, le|]<r, X € C",
|X —Xo| <r,and A€ C, |argi| < /3, one has

(A.1) e+A(iX) e W,(IN), e —A(iX) e W,(-T).

Obviously, ¢¢ (1), ¢%(-1)e M. For 6 € [-n/2, n/2],

4 ¢ 0 _
oo =g+ [ Boaz=gnn)+ eiko+aue) (1)
[1,e] z l

where |0y, (e)| = o(e), Vjw| < 1. Note that |arg((e’® — 1)/i)] < n/4. For
small ¢ (independent of the choice of w), (A.1) yields ¢, (e??) € W,(I), if
6 € (0, n/2], and @5 (e'f) € W,(-T), if 6 € [-n/2, 0). For the other 6, we
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choose ¢f (—1) instead of ¢Z (1) as our starting point. We show part (c) next.
Note that
& (,if . .
% — ie®®(eXo) + (&) X, (0) = ee® (iXo + @Xw(o)) ,

where |X,| < C uniformly for |w| < 1. Hence, when ¢Z,(e?) intersects with
M,ie., 6 =0, rn, the tangent direction is in a very small conic neighborhood
of iXo, which means the curve ¢Z (e’?) is almost perpendiculay to the edge
M, for small ¢, |w| < 1. Therefore, the distance between ¢Z,(¢?) and M is
almost the distance between ¢¢,(¢’?) and its intersection with M , which means
that there is a constant C > 0 independent of ¢, w such that

dist(pf, (), M) > C - dist(p,(e"), {#5,(1), 95(=D}).
For 0 € [-n/2, /2],

ei® — 1)(e' +2)
2

105, (€) — 95, (1)] = (e — 1)(eXo) + ae)

+ B =D (e e 41|

=egle® — 1]+ |Xo + o(1)],

where, 0(1) — 0 uniformly as ¢ — 0. When ¢ is small, |Xy+ o(1)] > |Xo|/2.
Therefore,

dist(pg,(e”), M) > Clof, () - ¢7,(1)] 2 Cele” — 1] > Ce|sin9)|.

For other 6, by considering ¢%(—1) instead of ¢¢ (1), we can obtain the
estimate in the same way. 0O

It is worth noticing that when M 1is only C! smooth, while f still has
polynomial growth near the edge, the hyperfunction boundary value B f¥ serves
as a natural extension of the distribution boundary value. More importantly,
following the above proof (we use the approximation scheme u, defined in (3.4)
instead of T f ; then, Proposition A.1.1 is trivial for %, and the argument in the
above proof of PinCuk’s theorem can still be used), we can generalize Pin¢uk’s
edge-of-the-wedge theorem to the case of a C! edge. Namely, we have the
following proposition.

Proposition A.2.1. Suppose that M is C' smooth, and f is holomorphic in
W,(T)UW,(-T") and has polynomial growth near the edge M . If BfX = B f*X.
Jfor some neighborhood X of 0, then f can be holomorphically extended to a
neighborhood of 0.

This proposition also serves as a trivial generalization of the continuous ver-
sion of the edge-of-the-wedge theorem with C! edge in [Ro]. One could have
noticed that there is still a gap between the above generalization and the hyper-
function version of the edge-of-the-wedge theorem given in §5.3.
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