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HOLOMORPHIC EXTENSION AND DECOMPOSITION
FROM A TOTALLY REAL MANIFOLD

ZAIFEI YE

Abstract. This paper is to develop an elementary cohomological approach for

decomposing a function into boundary values of holomorphic functions and for

discussing the corresponding microlocal analysis and hyperfunction theory.

1. Introduction

This work can be viewed as a residue approach to the holomorphic extension

and holomorphic decomposition of functions on a totally real manifold M c
Cm.

The idea is the-following. To a compactly supported function (distribution,

analytic functional or hyperfunction) / on M, we assign a d closed (0, m-1)

form G in Cm\M by a duality formula:

(1.1) /   GAipdz= [ fixpdz
Jau Jm

where U is a neighborhood of supp(/) in Cm , \p is any holomorphic function

in Cm . Such a form G will be called a Tsuno representation form in the paper

(see §4.1). Presumably, any information about / is already hidden in G since

G is in fact a kind of potential created by /. We then investigate the form G to
obtain the decomposition of / into a sum of boundary values of holomorphic

functions in certain wedges under various smoothness requirements, and to

deal with the analytic wavefront set of /. The method is basically to view the
d closed form (7 as an element in the Dolbeault cohomology group, and to

translate G to a holomorphic cocycle in the corresponding Cech cohomology

group. The resulting cocycle will be our holomorphic decomposition in some

sense. Now, the point is to have a very concrete version of the translation from

the Dolbeault cohomology to the Cech cohomology. This can be done by solving
a sequence of d problems (so called "Weil process"). In this paper, we only

usejhe elementary part of some techniques in several complex variables such
as d solutions and the Bochner integral representation.

To deal with a curved edge instead of a straight edge, one has to replace

"suitably" the covering of Cm\Rm given by {xj > (or <)  0} . This is a matter
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which does not seem to have been well exploited previously (e.g., in the proof of

the edge-of-the-wedge theorem, Pincuk has a more difficult approach to keep the

cohomological approach of Martineau). In this setting, it is almost inevitable to

raise the question of the existence of the boundary values of holomorphic func-

tions without growth condition on a (non-real-analytic) edge, i.e. the existence

in the hyperfunction sense.

We have proved: (i) the existence of the boundary values of holomorphic

functions in wedges on a C1 totally real edge in the hyperfunction sense (§3.2);

(ii) the decomposition of any analytic functional supported on M into a sum

of boundary values of holomorphic functions in wedges (§4.2); (iii) a charac-

terization of the wave front set in terms of the d exactness of G in certain

concave wedge (§5.2); (iv) the edge-of-the-wedge theorem with a C2 totally real

edge in the hyperfunction sense (§5.3).
We give some new proofs and slight extensions of certain fundamental results

based on the above ideas. We first precise some properties of the holomorphic

decomposition of the Baouendi-Chang-Treves (C°° decomposition) as an illus-

tration of the residue approach in the paper (see §2.2). We then investigate the

relation between the holomorphic extension to wedges and some phenomenon

of monodromy of differential forms (§5.3). We also study the flabbiness prop-

erties of the sheaf of germs of hyperfunctions on a C1 totally real manifold

and d problem with partial compact support in §6.

In addition, we append an elementary proof of Pincuk's edge-of-the-wedge

theorem for distributions by using the Baouendi-Treves approximation tech-

nique, which is totally independent.

The idea in the paper can be traced back to the Cauchy integral and Plemelj's

jump formula. Namely, when considering a function / compactly supported

on a curve M in C1, we put

2ni JM z - C

It is clear that G is holomorphic in C'\supp(/) and satisfies

/   Gyt = ( fixp
JdU Jm

for any neighborhood U of supp(/) in C1 , and any entire function \p . Then,

by Plemelj's formula, we know / is the jump of G on M.

As a remark, let us note that such an idea has an impact on the holomorphic

decomposition of CR functions on hypersurfaces and higher codimensional CR

manifolds (see [HvPo] and [Am]). Therefore, the residue approach in the paper

may shed some light on the decomposition problems of CR functions.

As is well known, there is another very different method to deal with the

decomposition problem, namely, the Fourier transform method. In §5.4, we

will discuss the FBI transform of a hyperfunction. We feel that we are trying

to have a synthesis of the hyperfunction theory of Sato-Kawai-Kashiwara (and
Martineau) and the FBI transform method. The treatment of the hyperfunction

theory in Hörmander's book [HI] has been enlightening our work.

The point of view in the paper is very local except for §6. The unpleasant

part of the paper is that the smoothness requirement varies from section to

section. Here, for convenience, we list the requirements: (i) C°° for the case
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where distributions or smooth functions are involved (§§2, 6.2, and Appendix);

(ii) C2 for §§4.2 and 5 where the Stein coverings or the FBI transforms are

needed; (iii) C1 for the rest.
The plan of the paper is the following. We begin with a description of the

concrete translation from the Dolbeault cohomology to the Cech cohomology

in §2.1, and then show the reader immediately how to decompose a smooth

function into a sum of the smooth boundary values of holomorphic functions

defined in wedges in §2.2. Sections 3 and 4 are devoted to the decomposition of

a hyperfunction into the boundary values of holomorphic functions. Especially,

we introduce the Tsuno representation forms and study their behaviors in §4.1.
In §5, we study the (hypo) analytic wave front set according to the Tsuno forms

and also to the FBI transforms. In §6, we deal with the flabbiness of the sheaf

of germs of hyperfunctions, relation between distribution boundary values and

hyperfunction boundary values, decomposition of a distribution into boundary
values of holomorphic functions (a new proof of the Baouendi-Chang-Treves

theorem), and a d problem with partial compact support in some cylindrical

domains. In particular, we provide a Greiner-Kohn-Stein condition for such a

problem.

2. d Techniques and holomorphic decomposition
in the smooth sense

2.1. d techniques and results to be used. The related d problems in the

paper arises from the isomorphism (so called "Weil process") between the Dol-

beault cohomology and the Cech cohomology. Before describing this process,

we introduce some notations.

In this section, M denotes a C°° totally real manifold in Cm of real dimen-

sion m . Assume 0 e M. Let px, ... , pme C°°(fi), Í2 a neighborhood of 0

in Cm , be defining functions of M, i.e., px= ■■■ = pm = 0, dpxA- ■■Adpm ̂ 0
on M. Choose c sufficiently large, then it is easy to check that

=  f -Pj + cx,       j =l,...,m,

1    '\p-j + cX,        j = -!,... ,-m,

are strictly plurisubharmonic on Q if £2 is a small enough neighborhood of 0,

where x = IC/Li P] ■ Thus, if one takes £2 to be strongly pseudoconvex,

Uj =: {z e £2: pj(z) < 0},       j = ±l,...,±m,

axe domains of holomorphy (in fact, intersections of strongly pseudoconvex

domains). Moreover, Uj n U-j = M, and %Z = {<7/}7=±i>...j±m is a Stein

covering of the set Q\M. Note that, for the existence of such a Stein covering

of Q\M, it suffices to assume M is C2 smooth.
Weil process induces the isomorphism between the Dolbeault cohomology

group H°'m-xiQ.\M) and the Cech cohomology group Hm-x(%Z ,cf), where

cf is the sheaf of holomorphic functions on £2\M. Starting with a cocycle in

the cochain group Cm_ ' (1/, (f ), we come up with a d closed (0, m-I) form

(see, for example, [P]). As a matter of fact, the reverse process is just simple to

explain from the viewpoint of d technique.

Denote Ui}j_2...ik = Uh n Uh n • • ■ n Uik, ipe{±l, ... , ±m} , p = l, ... ,k.

Let G be a d closed (0, m - 1 ) form defined on Q\M (later it will be the
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Tsuno representation forms). Put G,■ = G\u,-, i = ±1, ... , ±m. Since £/,

is pseudoconvex, there is a (0, m - 2) form F¡ so that dF¡ = G, on U¡.

Hence, C7,; =: Fj - F¡ is a d closed (0, m - 2) form defined on <7,; which is

still pseudoconvex. Inductively, suppose we have a d closed (0, m - q) form

Gi,...iq defined on £/,,..,s, then again, there is i7,,./,, a (0, m - q - 1) form

on t/,,...,,, so that dFiv..iq = Giv..iq if q < m . It is easy to check that

is a 9 closed (0, m - </ - 1) form defined on U^...^ t , where /'p stands for

the index omitted. Finally, (?<,.../„ , |i'i| < ••• < |im|, is a holomorphic function

defined on c7,,...im . {C7!r..ira , \ix\ < ■■■ < \im\} is a cocycle in Cm_1 (W,tf).

Therefore, we need to solve d problem in the intersections of the strictly

pseudoconvex domains. To catch more precise information for the later pur-

pose, we also need the following a priori estimates for the d solutions.
Let A be an open set in Cm , and let 0 be a function on A. We denote by

L2(A, cp) the Hubert space of all functions / satisfying /A |/|2e~^ < oo, and

by L?    .(A, cp) the space of all (p, q) forms with coefficients in L2(A, <p).

Theorem 2.1.1 [H2, Theorem 2.2.3]. Let A be a bounded pseudoconvex open set

in Cm, let Ô be the diameter of A, and let <f> be a plurisubharmonic function

in A.  For every f e L2^ ?)(A, cp),  q > 0, with dfi = 0, one canfina u e

Lh ?_i)(A, cp) so that du = f and

(2.1) q I \u\2e-* < eS2 [ \fi\2e~t
Ja Ja

The next result takes care of the smoothness of the d solutions. It is a typical

case of the main theorem in [Duf].

Theorem 2.1.2. Let A be an intersection of a finite number of strictly pseudocon-

vex domains. If f is a (p, q) form, q > 0, with coefficients in C°°(A), then

there is a (p, q - 1) form u with coefficients also in C°°(A) so that du = f.

2.2. Holomorphic decomposition in the smooth sense. To see the residue

method in the paper, we begin with proving the C°° version of the Baouendi-

Chang-Treves decomposition theorem [BCT], which can still be proved by the

FBI transform method though (see [Cal]). Our proof is a generalization of

a technique developed by Amar [Am], which enables us to take care of the

smoothness of / in terms of its Tsuno representation form G in (1.1). It is

worthwhile to notice that one can use the argument below for the decomposition

of CR functions in higher codimension case as Amar did in the codimension 2

case.

Theorem 2.2.1. Let f be a smooth function on M, then there are holomorphic

functions hjv..jm defined respectively in Ujr..jm, |j'i| < ••• < \jm\, and smooth

up to the edge M so that

(2-2) /=     £     hjv..]m\M.

jp=±p
p=\ ,...,m
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Proof. (1) We first construct a Tsuno representation form G of fi. Extend /

smoothly to £2, a neighborhood of 0 as defined before, so that dfi vanishes

on M to the infinite order by Whitney's extension theorem. Choose a bounded

function Xj G C°°(Q\M) so that

Xj\Uj = 1,    Xj\U-j = 0,       j = 1, ... , m.

Note that Uj n U-j = M and dist(z, dUj) + dist(z, dU-j) s dist(z, M)2,
thus, we can further choose Xj so that its derivatives have polynomial growth

near M and dXj has singularities only on M. Since dfi vanishes on M,

the (0, m) current -Xidfi A dxi A • • • A dXm extends smoothly to £2. It is d

closed (top degree), and hence, there exists a smooth (0, m - 1) form G in £2

satisfying

dG = -XidfiAdx2t\---/\dXm.

Put

(2.3) G = fxidX2A---AdXm + G.

We have therefore constructed a (0, m - 1) form G which is d closed in

£2\Af (and hence, an element in Hi-0-m-x'>(rl\M)), and such that

(2.4) G - fx\dXi A • • • A dXm is smooth.

Note, (i) Although this is not needed in the proof, it should be pointed out

that, at least if we consider a compactly supported data /, the form G is a

Tsuno form for / (see Remark 2.2.2 below). Condition (2.4) is the one which

imposes the right singularity of G (as condition (b) below does later).
(ii) The next step is a common feature in our decomposition technique for

smooth function, distribution and analytic functionals, namely, trying to make

use of the Weil process. The only difference is that we need to solve out cer-

tain special d solutions for different smoothness requirements. Following the

previous notations, we are going to obtain Gjv..jm smooth up to the boundary

of Ujv..jm by induction, which will be our holomorphic decomposition of /

except for some signatures.

Let us continue to prove the theorem.

(2) Set Gj = G\Vj. Note that on Uj , xfiXi A • ■ • A dXm = 0, unless j =1,
hence Gj is smooth in view of (2.3).

(i) For ; ^1, then, there exists Fj e C^m_2](Uj) so that dFj = G¡, j+l,

by Theorem 2.1.2.
(ii) On Ux, the current Xidfi A dX3 A • ■ • A dXm is smooth, hence G -

d(fXidXs A • • • A dXm) is smooth. This allows us to find Fx so that

F\ - fiXidXi A • • • A dXm is smooth.

and dFx = Gx.
(3) Inductively, assume that we have constructed a (p-l) cochainof (0, m-

1 -p) forms Fjv..jp, jq e {±1, ... , ±m} , \jq\ < \jq+x \, q=l,...,p so that
with the following properties_

(a) Fjx...jp is smooth on UJv.jf for (jx---fi,)¿(l,...,p);

(b) Fx...p - (-l)^-x)^2fXp+idXp+2 A---AdXm is smooth on Ux...p ;

(c) dFjv..Jp = Gjr..jp on Uh...jp where GJr..Jp =Y!q=x(-l)*+xFjr..h...jp.
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Then, we obtain a d closed (0, m-p-l) form Gjr..jp+¡ on Ujr..jp+¡ defined

asabove. Note that (b) implies that Fx...p is smooth on Ux...pj unless I = p+l.

And on F,,...,P;P±1, (b) yields that Fl...p-(-l)x*-W2d(fXp+2dXP+-iA---AdXm)

is smooth since dfi vanishes to oo order along M. In this case,

GX...p+X - d((-iy{p+l)/2fiXP+2dXP+3 A--AdXm) = ¿(-ir^l-i-p+l

9=1

+ (-ir2(F,..f+1 - d((-l)^p-^2fxP+2dXp+3 A • • -AdXm))

is smooth on Ux.p+x and d closed since Gx.p+x is d closed as we have

seen in the previous section. Therefore, we see the following:

(a') when {j,,..., jp+x) ¿ {1,... ,p+l}, Gjr..jp+I eC^,,.,.,,^/,..^,),

and consequently, there is Fjr..j t e C°°(Ujl...jf+t) so that

"Fj\-jp+i ~ ^jt-jp+i ',

(b') on Ux...p+X, there is a smooth form FXy_tP+x so that

Fx...p+X - (-l)p{p+l)/2fixP+2dXP+i A • • • A dXm is smooth,

and

dF\,...,P+i — Gi,...,p+i-

(4) Finally, this leads to a (m - 2) cochain of functions (0 forms) such that

(a") Fjv..jm_x is smooth on Vjl...jm_l unless {ji,..., ;w-i} = {!,...,m-

(b")  Fx...m_x-(-l)(m-2Km-x)l2fXm is smooth on Ux,...,m_x;

(c") dFjv..jm_] = Gj,...jm_, (where G;,..-ym_, is the coboundary defined in

(c)).

Set GJr..jm = 2ZUi-l)9+'Fh-h-)m as before. Then, dGjv..jm = 0 (cobound-

ary of coboundary!), i.e.,  G¡v..jm  is holomorphic.   Furthermore,  Gjt...jm  axe

smooth up to M from (a"), (b"), and we assert

(2.5) /=(_i)(m-D«/2     £     eJr..jmGjr..jJM.

jq=±<l
q=\,... ,m

where ejv..jm = +1 if jx ■ ■ ■ jm > 0, ejv..jm = -1 if jx •■ ■ jm < 0.

Indeed, on M,

7  ;        Ej\-jm{jj,---jm

iq=±q
9=1 ,...,m

= £        E        (-^+l^j^jr..jq..,m + i-ir+i(a-ß),
Ui,~Jm)¥{l.m-\,±m)

or q^m

where a and ß denote the smooth extensions of the restrictions of Fx ... > m_ ( to

Ux...m and Ux.w_i,_« respectively. Due to (b"), a-ß = (-\)(m-i)(m-i)ß f

So, due to the obvious cancellation between

eh ■ ■ -U ■ ■ 'Jm Fj, ■ ■ -jq ■ ■ .j„      and      eh ...,-j,,...JmFjl.ZZjq ,..., jm ,

the above sum is reduced to (-i)(m-1)m/2/.
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(2.5) is the decomposition which we look for.

Note the fact that a ^ ß is the whole point. This is why one does not get 0.

Everything else cancels out essentially due to the fact that the sum of boundary
values of coboundary is 0.   G

Remark 2.2.1. Notice that the smoothness assumption in the theorem can be

weakened to Ck for sufficiently large k . In this case, all the currents involved

in the above proof make sense. Thus, Range and Siu's uniform estimate of d

solutions on the intersections of strongly pseudoconvex domains [RSi] shows

that we can obtain G¡,...jm continuous up to the edge M and the decompo-

sition relation (2.5) remains valid. Furthermore, by a regularization argument

employed in [T, Theorem 3.1, Chapter II], one can obtain the decomposition

theorem in the distribution sense, which is proved in [BCT] with FBI trans-

form. In fact, one can choose certain vector fields M¡ on M, j = I, ... , m ,

which are tangential to M and their (1,0) component are d/dzj respec-

tively. A = Yl'jLi Mj is elliptic in a sufficiently small neighborhood of 0.

Consequently, for a given distribution u defined in a neighborhood of 0, there

is a Ck function / satisfying ANf = u for a sufficiently large integer N.

Then, / = z3'=i^/Im, for some holomorphic functions hj defined in some

wedges of edge M and continuous up to M from above. Therefore, we have

the following holomorphic decomposition u = ANf = YJj=xA^hj\M, where

Az = 2~yjLi d2/dz2 . However, we prefer another way, shown in paragraph 4.3,

which makes use of Hörmander's L2 estimates of d solutions.

Remark 2.2.2. As mentioned at the end of (i), the form G is a Tsuno form in

the following meaning. Assume that X is the compact support of / in M,

then, for any neighborhood £2' c £2 of X, and for any holomorphic function
cp in £2,

(2.6) e [    GtpAdz= [ ficpdz,
Jdii1 Jx

where dz = dzx A • • • i\dzm , e = ± 1 is independent of /. Another way to say

this fact is that / is the residue of eG on X. There are two ways to check the

above equality.
(a) "By hand". The right-hand side in the above equality does not de-

pend on the choice of £2'. If we choose £2' = £2„ , n = 1, 2, ... , so that

dist(X, d£2„) —► 0, as n —» oo, then it follows from (2.4) that

e        G A <pdz = lim e /     fi(j>X\dX2 A • •• AdXm Adz.
JdQ.1 "-*00   JdCln

Note that on the intersection (denoted by S„) of d£2„ and the support of

Xidxi A • • • A dXm ,

f<t>X\dX2 A • • • A dXm Adz = d(fi<j>X\X2 A • • • A dXm A dz)

- dfcj>X\X2 A • • • A dXm Adz- /«tedXi A dxi A ■ ■ ■ A dxm A dz

= d(fct>X\X2 A • • • A dXm A dz) - dfi<j>X\X2 A • • • A dXm A dz.
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In view of the fact that dfi vanishes on M to oo order,

lim  /     f(f>XidX2A---AdXm'\dz

= lim  /    f(pX\XidXiA--- AdXmAdz

= lim  /  fcpdxz A • • • A dXm A dz,
«-*°° Js'n

where S'n = Sn n {x2 = 1} and Sn is defined above. By repeated use of Stokes'

formula and the fact that df vanishes on M, we can prove (2.6).

(b) Indirectly, one can think in the following way. The form G gives a

holomorphic cocycle {Gjv..jm} (moreover, a holomorphic decomposition of /

as in (2.5)). As we will see later (Theorem 4.2.1), any Tsuno form also gives

another holomorphic cocycle (a same kind of holomorphic decomposition of

f). Therefore, these two cocycles are cohomologuous in the Cech cohomol-

ogy; and hence, the corresponding forms are cohomologuous in the Dolbeault

cohomology. Thus, the form G itself is a Tsuno form.

3. Boundary values of holomorphic functions

3.1. Notations. We try to be a little more ambitious to extend the previous

decomposition argument to a more general case, in which we lose any kind of

smoothness and hence the usual regularization technique fails. Therefore, we

turn to consider a kind of general boundary value of holomorphic functions
without growth restrictions, both for its own right and for our later purpose.

Following Hörmander [HI], we introduce notions of Martineau's analytic func-

tionals and Sato's hyperfunctions. Denote the set of all functions holomorphic

in an open set U of Cm by A(U). Let X be a bounded set in a manifold
M c Cm , then we define the following notions.

Definition 3.1.1. u is called an analytic functional carried by X if u is a linear

functional on A(Cm) and satisfies that for every neighborhood U¿ =: {w e

Cm: dist(it;, X) < a} of X in Cm , there is a positive constant C such that

\uiv)\<C\\y,\\L~m,    VyeA(Cm).

We denote by A'(X) the set of all analytic functional carried by X.

Definition 3.1.2. A hyperfunction carried by X is an element in the quotient

space B(X) —. A'(X)/A'(dMX), where dMX is understood as the boundary of

X in the topology of M.

In this section, we consider M to be a totally real C1-manifold c Cm of

real dimension m, 0 e M, which, with suitable coordinates, is given by

(3.1) M:CeRm^Z(0 = i: + i4>(0eCm

in a neighborhood Uo of 0, where cj> e Cx(Rm) satisfies

(3.2) 0(0) = 0,        0'(O) = O.

Let T be a cone in Rm with vertex 0, and Tp =: [y e T: \y\ < p} . Then put

Mp = {we M: |Rew\ < p),     Wp(Y) = Mp + iYp.

As usual, Wp(T) is called a wedge of edge T.
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3.2.   Boundary values of holomorphic functions without growth restriction.   Let

/ be a holomorphic function defined in WP(T) c U0, and let X be a com-

pact neighborhood of 0 <g Mp in M. We now consider the following linear
functional:

Uy(v)=: I     f(w)ip(w)dw,    Vy/eA(Cm),
Jx+iy

for y e Tp . Then, we obtain

Theorem 3.2.1. There is an analytic functional ux e A'(X), unique up to an

element of A'(ömX) , such that, for any neighborhood V of ömX in Cm , there

is ô > 0 satisfying

(3.3) ux-uxeA'(V),    VyeTs.

The above theorem says, of course, that there is a unique hyperfunction ux e

B(X) associated to a function holomorphic in U + iTp for some neighborhood

U of X in M. We call the hyperfunction ux the boundary value of / on the

edge X, denoted by Bfx . The important reason for calling the hyperfunction

Bfix the boundary value of / is that any analytic functional u in Bfx can

reproduce / in a sufficiently small neighborhood of 0. If m 6 Bf£ , we define

(3.4) uT(z)=:(u,(x/2n)m!2e-^-f),

where [z-w]2 = Y^J=x(zj-Wj)2 , x > 0 (notice that this is the Baouendi-Treves

approximation scheme). Then, it follows easily that uT -* f(z), as t -> oo

pointwise for z in a sufficiently small neighborhood of 0. Therefore, the map

/ i-> Bfix is one-to-one, and the boundary value determines the holomorphic
function conversely.

We remind the reader that the following proof is modified from an argument

in [HI]. In his book [Hl], Hörmander proved the existence of Bfx in the case

of a straight edge M by relating analytic functionals to their harmonic rep-

resentations, and using the Runge approximation for harmonic functions and

some knowledge of analytic Cauchy problems. To extend Hörmander's argu-
ment to non-real-analytic case, we can make use of the Tsuno representations

and the Runge approximation for d closed form. Rather than doing this way,

we present here a direct and elementary method, relying only on Taylor's expan-

sion, to prove the existence of the hyperfunction boundary value. As a result,

the smoothness of the edge can be minimized (to be even Lipschitz continuous).

For convenience, we assume M is Cx. It is our intention that the reader get

an intuitive understanding of hyperfunction boundary values from the proof.

Proof of Theorem 3.2.1. Without loss of generality, we consider a strictly convex

Tp. Since fi,\p are holomorphic in WP(F), it follows from Stokes' formula
that for y,y'eTp

(3.5) (ux - ux)(ip) = [ f(w)ip(w)dw,

where [y, y'] =: {ty + (1 - t)y'\ 0 < t < 1}. Let y e Tp, and let yj =
y/j, j = 1,2,.... Then, ux+i - ux is an analytic functional carried by

Ej = dufX + i[l/(j + 1), l/j]y. The trick here is to construct a sequence of
distributions supported on 8mX to approximate ux+i -ux., j = 1,2,..., in
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order to control the growth of / to obtain the analytic functional ux . Denote

y/y(z, Q = \p(£ + izy), where £ e 8mX , z eC, then

. ^d"¥r(0,C)zP        1    f kd^¥(T,C)

p=0

Note that

[ fiw)ipiw)dw= Í     [        fiiC + ity)ipiC + ity)aji(:)dtdo(Q,
JEj JdMXJ\l(j+\)

where cxj(Q e C(8mX) , do is an area measure on &mX . It follows

/ f(w)ip(w)dw = j^(     ̂ Mlaj(0[ f        f(C + ity)^dt)dcj(Q
Je, pToJdMX      dzP \Ji/u+i) Pl    J

f      fl/j        ,^r,y     ■   n f'dk+xy/y(x, Qit-x)k  ,   ,   .   ...
+ / ajiOfiiC + ity)      -Zl+\ lr\     dTdtdaiO

JdMxJ\/u+\) Jo        dzk+l k-rduXJl/(j+l)

k

p=0JdMX ÖZ

ïj2ÏjW™JlWAZ'°l

where apjiQ e CidMX). By Cauchy's estimate, for l/(j + 1) < x < l/j,

dk+x<Pyjx,Ç)

dzk+x

and consequently, there is a positive constant C7 such that

\Rk,jiV)\ < (Cjß^WvU-w,     Vip e A(Cm),k =1,2,...;

where V¡ = {w e Cm: dist(w, dMX) < j\y\] , j =1,2, ... . Notice that

p=0j°mX

is a distribution supported on d\fX. Therefore, for each j, we can find a
distribution Vj supported on d^X such that

\(u*+1 -ux- Vj)iip)\ < (l/2^)||r||L-ra,    V^ e AiCm).

Next, construct the following sequence of analytic functionals:

n

wn = tf,+J2iurj+i~u?j~vjî>        « = 2,3,....
;=i

(Note that this is the Mittag-Leffler procedure.) Then, for every \p e A(fZm),

{w„iy/)}„>2 forms a Cauchy sequence; and so, there is a linear functional ux
defined on AiCm) such that

limw„iip) = uxiw),    V<peAiCm).
n—>oo

Notice that, for any n e N,

oo

ux(y/) = ufni<p) -viiyf)-vn-x(yf) + £(«£+1 - «J - Vj)(w)-
j=n
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We can conclude that a carrier of ux is X and ux-uxn is an analytic functional

carried by the neighborhood V„ of ÖmX . From (3.5), we can see that, for any
neighborhood V of OmX , there is a Sv > 0 such that ux - ux e A'(V),

V? e T$v as desired. Uniqueness of ux is trivial,   o

Definition 3.2.1. Let « € A'(X), and let Xi c Jf be nonempty, then v e A'(XX)
(c A'(X)) is called a restriction of u to Xx if u-v e A'(X\XX).

Remark 3.2.1. The existence of restrictions for general analytic functional will

be treated in §6, which is independent of the rest of the paper. We do not speak

about the restriction of u to avoid discussing the question of uniqueness for the
time being. In fact, unless we shrink X enough, uniqueness may fail (due to the
fact that a totally real manifold is only locally polynomially convex). In our local

setting, the set X is polynomially convex, and so is its subset Xx. According to

the discussion in the proof of Corollary 6.3.1, there is a restriction of we A'(X)

to Xx, which is also unique up to an element in A'(dXx). Therefore, there is

a unique element in B(X) consisting of all restrictions of u to Xx, which will

be denoted by u\x,.
We consider the following interesting case which shows us the relation be-

tween Bf*x and Bf£ for Xx c X. It is easy to prove the following proposition

from the above theorem.

Proposition 3.2.1. Given two compact (open) sets Xx c X c Mp, if f is holo-

morphic in Wp(T), then any analytic functional in BfXl is a restriction of

analytic functionals in Bfix to Xx.

Proof. For any neighborhood V of X\XX, choose y e Tp with \y\ small

enough that for any ux e Bf/ and any wXl e Bfx',

ux -ux eA'(V),    ux> -ux> eA'(V),    uXl -ux eA'(V),

since

(uXl -ux)(\p)= i f(w)y/(w)dw.
Jx\X,+iy

Therefore,

ux _ ux, _ ^ux _ ux^ + ¡ux _ ux,^ + ,ux, _ M-ï.) e A'(V),

which shows the proposition.    D

As an example of the hyperfunction boundary value, we note that when / is

continuous up to the edge M, then XxfiW is a representative in Bfix , where

we denote by Xx the characteristic function of the set X.

4. Decomposition in more general sense

4.1. Tsuno's representation formula. Tsuno's representation formula will play

a major role in the paper. For distributions with compact support, it is actually
an absolutely immediate consequence of the Bochner-Martinelli representation

formula for holomorphic functions. As before, let X be a compact set in M, a
C°° smooth totally real manifold, and u a distribution with compact support
in X (or M is C1 and u a function with compact support). Then, for any
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neighborhood U of X in Cm , for any holomorphic function \p , we have

(u,ip) = (u, /   BM(-,w)\p(w) Adw
\     Jau i

= I   (u, BM(',w))\p(w) Adw
JdU

where

1     ET=ii-^j+\wj-Zj)dwxA---AdWjA---Adwm
BM(Z , W) = —-^-'--:-rz-

v   '    '     (2m)m \w-z\2m

is the Bochner-Martinelli kernel, and the pairing (u, \p) is so defined that, for

any function u,

(u, \p) = \ uipdz.
Jx

Then, the kernel G(w) = (u, BM(-, w)) is a representation of the distribution

u, which is a d closed (0, m-1) form in Cm\X. It needs some work to extend

this representation formula to the analytic functional case since the Bochner-

Martinelli kernel is not holomorphic unless in C1. This has been done by Tsuno

[Ts], who also gives credits to Harvey and Martineau, using Henkin's integral

representation formula and technique of solving Cousin I problem.

Theorem 4.1.1 [Ts]. Let X be a compact polynomially convex set, and let u e

A'(X), then there is a d closed (0, m - I) form G defined in Cm\X, so that,

for every bounded neighborhood U of X in Cm, and for every holomorphic

function ip,

(4.1) (u,y/)= /    G(w)ip(w) Adw.
JdU

Moreover, any two such representation forms differ by a d exact form defined in
Cm\X.

Definition 4.1.1. A d closed (0, m - 1) form G defined in Cm\X is called a
Tsuno representation form of u e A'(X) in this paper if G satisfies the relation
(4.1 ) for any holomorphic function \p .

In case that X = Kx x K2 x ■ ■ ■ x Km for some polynomially convex compact

sets Kj , j = 1, ... , m, the above theorem is proved by Harvey [Hv2], and

the form G can be given as the Cauchy transform of / in multidimension

setting. The following proof of the above theorem is essentially taken from [Ts]

for convenience of reference.

Proof of Theorem 4.1.1. The uniqueness is straightforward from the following

lemma (it will also be used to prove the existence).

Lemma 4.1.1. Let £2 be polynomially convex and have a strictly pseudoconvex

neighborhood basis. Then, a d closed (0, m- 1) form G in Cw\£2 is d exact

if and only if, for any neighborhood U of £2 and any holomorphic function y/,

(4.2) /   GA\pdw = 0.

The proof of the lemma will be given after the proof of the theorem. Let us

now prove the existence of Tsuno forms.
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(i) Let {Uj}JZ¡ be a strictly pseudoconvex neighborhood basis of X in Cm

such that Uj+i <g Uj, j = 1,2,..., f|^i Uj = X. For each j, there is a
Henkin-Ramirez kernel Hj(z, w) for the domain Uj+X, which is holomorphic

in z for z e Uj+X, d closed in w for w e Uj\Uj+x, and satisfies that, for
every holomorphic function ip,

ip(z) = /       Hj(z,w)ip(w) Adw.
Jduj+,

Set
Rj(w) = (u,Hj(-,w)).

Then, Rj is a d closed (0, w - 1) form in Uj\Uj+x and satisfies

(4.3) (u,ip)= Rj(z,w)ip(w) Adw.
JauJ+,

(ii) The form Rj can be extended to Cm\Uj+x in the following way by

solving a Cousin I problem. Choose a cut-off function x £ Cq°(Uj) which is

identically 1 in a neighborhood of Uj+X in Cm. Then, dxARj isa (0, m) form
defined globally in Cm . We can find subsequently a (0, m-I) form g defined

in Cm so that dg = dx A Rj . Let Gx = xRj - g, G2 = (1 - x)Rj + g ■ Then,

G\ is d closed in Cm\Uj+x, G2 is d exact in Uj since Uj is pseudoconvex,

and Rj = Gx + G2. Therefore, Gx serves as an extension of Rj , i.e., (4.3) still

holds with Gx in place of Rj . Gx will be written as coj .
(iii) Since

/    Cûjtp= ¡    o)j+xip = (u, \p)
JdU JdU

for any holomorphic function \p and any neighborhood U of Uj, we see that

coj - ojj+x satisfies the hypothesis of the above lemma with Uj in place of £2
provided j is sufficiently large. Then, there is a (0, m - 2) form y¡ on Cm

so that 03j = ojj+x + dyj, hence, coj can be extended to Uf+i and therefore

successively to Cm\X. Thus, a Tsuno form is obtained.   D

Proof of lemma. Necessity is trivial. As is well known, the condition in the

lemma is exactly the Greiner-Kohn-Stein condition for df, solvability. The

proof of the sufficiency is a Serre duality argument taken essentially from a
personal communication of H. Alexander to Rosay and Stout. Let {£2^}^, be

a strictly pseudoconvex neighborhood basis of £2, £lj+x <= £2;. Choose a C°°

function Xj so that Xj\a+, = 0, Xj\nc = I ■ Then, XjG is well defined on Cm .

d(XjG) = dXj A G is identically 0 in £2^ and £2;+i . Moreover, d(XjG) is

orthogonal to the space of holomorphic functions in £2;_i since

/     d(XjG)ip= (        d(xvG)= [    ipG = 0

for any holomorphic function \p in £27_i by the hypothesis of the lemma.

Then, Serre's duality theorem (/Y»°'m(£27_i) s [//0.°(£2,_,)]*) [Ser] yields that

there is a (0, m - 1) form c*, with compact support in Cl¡-X so that da¡ =

d(XjG). Note that XjG - aj is defined and d closed on Cm once cxj is

extended by 0. It follows that there is a (0, m - 2) form ßj defined on Cm
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so that dß = XjG - a¡■■. Therefore, G = dßj on £2J_,. By induction on

j, we can conclude G is d exact on Cw\£2. The reason is the following.

ßj+x - ßj is a d closed (0, m - 2) form on QJ_, . This is again d exact on

£2y_j basically by the same Serre duality argument as above except for using

H?'m~l(Çlj) = [H°'x(£ïj)]*. Therefore, ßj can be extended step by step up to

Cm\X.   o

We will assume that X is a very small compact neighborhood of 0 in the

manifold M so that every closed subset of X is polynomially convex from

now on. In this case, X has a strictly pseudoconvex neighborhood basis (see,

for example, [HL, Theorem 1.4.18]). Therefore, the above theorem applies.

Remark 4.1.1. It is not essential that G is defined on the whole Cm\X. In

the paper, we often use a locally defined form G, i.e., there is a pseudoconvex

neighborhood £2 of X in Cm such that G is defined in Q\X and the relation

(4.1) holds for any neighborhood U contained in £2. Such locally defined form

will still be called a Tsuno representation form of u due to the fact that any such

locally defined form can be extended to be a globally defined d closed form,

i.e., a form defined in Cm\X, modulo a d exact form defined in £2, since a

d exact form contributes nothing to the duality formula (4.1) essentially. The

way to do such an extension is to solve a simple Cousin problem in £l\X as

shown in (ii) of the above proof.

Remark 4.1.2. We know at least three ways of constructing Tsuno forms:

(a) the first one is by Bochner-Martinelli kernels as described above;
(b) the second is by hand following Amar's technique (see §2.2);

(c) the third is using a given holomorphic decomposition of an analytic func-

tional (see Remark 4.2.3 or the proof of Theorem 5.2.1).

Remark 4.1.3. Let us note the relation between the Tsuno forms of two different

representatives for the same element in B(X). Suppose that ux,u2 e A'(X)

axe equivalent, i.e. ux-u2 e A'(dX), and Gx, G2 axe Tsuno forms for ux, u2

respectively. Then, according to Tsuno's theorem, Gx - G2 is d closed in

Cm\dX since it is a Tsuno form of ux - u2 .

Remark 4.1.4. If two d closed (0, m - 1) form Gx, G2 in Cm\X coincide
in the cylinder Q\X, where £2 = X + iDm, Dm is the closed unit m-ball in

Rm, then it follows immediately from the duality formula (4.1 ) that Gx , G2

represents analytic functional in the same hyperfunction class in B(X). This

is actually an indication of a more general fact: any d closed (0, m - 1)

form g in £2\X represents a hyperfunction class ü e B(X). If we define an

analytic functional u¿ by setting (u¿, tp) = Js g A \p dw, where Sg = X +

r'{jc e Rm| |jc| — <5} and ô > 0 is a small number, then there exists a hyperfunc-

tion class ïï e B(X) so that u e ïï if and only if

(4.4) u - Ug is carried by S'3 = dX + iôDm.

This fact can be proved in the same way as Theorem 3.2.1. Therefore, the

restriction of a Tsuno form to the cylinder £2\^ is very essential in the hyper-

function sense.   D

4.2. Holomorphic decompositions in general sense. We attempt to develop a

holomorphic decomposition theorem for analytic functionals supported on a
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C2 totally real manifold M. As we have already seen in §3.2, the analytic

functionals arise naturally as the boundary values of holomorphic functions.
Now, let u e A'(X) with X a compact neighborhood of 0 in M, then there

is a d closed (0, m - 1) form G representing u in the fashion (4.1). As in

§2, G results in a holomorphic cocycle {Gjv..jm,jq = +q} e Cm~x(%',<?).

We then assert that « is a sum of the boundary values of Gj,...jm on the edge

M in the hyperfunction sense. The proof of the following theorem just makes

use of the Stokes' formula repeatedly although we need to be careful about the

orientations of the manifolds involved in the proof.

Theorem 4.2.1. With u and C7,,.../m as above, we have

(4.5) uee    E    Wiii---im)iBGil...im)$h.„lm
ip=±P

P=l ,...,m

where e = ±1 is independent of u.

Proof. Let If = [-3, ô]m , ô > 0, a small number, and let

Xô = {zeM\dist(z,X)<ô};

then

XsxIf=:{z + it\zeXs,teIf}

is a neighborhood of X in Cm . Denote

Sj = {t = (tx,...,tm)elf\tj=ô},

S-j = {t = (tx,...,tm)e If\tj = -S},       j=l,...,m.

Then, Xs x Sj is a face of the curved parallelepipeds Xsxlf . Without loss of

generality, we can assume that for all ô small, XgxSj c Uj, j = ±1, ... , ±m .

Let G be a representation (0, m - 1) form of u, then, for all holomorphic

functions \p,

u(ip)= [ G^MQAdC.
Ja(Xixi?)

If Sj is given the orientation induced as the boundary of If , we have

k(¥0 = «i      E       /       Gj(OAtp(QdC+ [ GiQAyiQdt:
;=±1.±mJx**sl JdX*xI?

where £i = ±1 arises from the orientation of the product manifold.

Note that tp >-> JdX x/m G(Q A y/(Q dÇ defines a distribution supported on

dXg x If which is in a small neighborhood of ômX . As we have seen in the

proof of Theorem 3.2.1, this analytic functional converges to 0 in the hyper-

function sense as S -+ 0. Therefore, we only need to take care of the main

term

A=:      E      /      GjiOAwiOdC.

We will show that

(4.6) A = t     E      / Giv..im(QA\p(r)dr    mod(Ä(dXgxIf)),
ip=±P       JXixSi,-:m

P=l ,...,m
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Jf'k_
bji-jk ~-

where $,...< =: S¡, n • • • n S^ carries the orientation induced as the boundary

of Sir..if inductively.
Suppose (4.6) is proved, one easily sees that XgxSir..¡m is parallel to Xg and

its orientation is sgn(z'i • • • im) • {the orientation of Xg x Sx...m} . Let S —> 0, the

conclusion of the theorem follows easily from the definition of the hyperfunction

boundary value.
Next, we prove (4.6).
From the standard orientation consideration of a simplex, it follows that

«Il-ljfc — bj,-jk°Jl---Jk '

where
0 if {ii--i*}?* Oi •••jk),

sgnf .'       k )    if {i'i •••/*} = Or" Ä}-
\Jl-Jk/

Carrying the Weil process described in 2.1 onto the integrals in A , we have

A =       E       /       dFjiQAipdc:
j=±l,...,±m  X**SJ

= ex   E   / (iv2-iv,)(í)A!KO¿C    mod^'iô*, x/?))
L/ii<iArA'xS-'i*

s«,-i      E      / dFjv..jp(C)Aip(OdC    mod(A'(dXgxIf))
\M<-<\ip\ Jx»*sh -h

= eP      E       / C7J1...yp+1(C)A^(C)¿C    mod(¿'(3*¿ x /*)).
L/ll<-<LM JX**SivJp+l

To see the final equivalence above, notice that only Fjt...j...rj  ,  contributes to

the integral over Xg x S'y,...;- , , and more precisely,

0      h"Jk'Jp+l

= *p I FJr-h-jp+i A ̂     rnod(A'(dXg x If))
J Xx XdS:       :

0 h"'Jk    Jp+i

= eP [
Jxsx

F,.    ;■     ,     AipdC

+ {the other integrals over dSjv..-k...j +1}    mod(A'(dXs x /¿?))

L
)l'"Jk"'Jp+l-

Jl'"Jk"'Jp+lV I Jl"-Jk—Jp+l        *       *
>XixSji...jp+l

+ {integrals not over Xg x Sj,...jp+,},

finally, adding all these first terms, we obtain the above recurrence relation.

Therefore, we end with

A = em^      Y,      I Gj,..jm(Ç)A<p(OdC    mod(A'(dXgxIf)),
L/il<-<l/-l Jx*xSh-tm

which is (4.6).   D
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Remark 4.2.1. The above theorem is clearly a kind of generalization of Mar-

tineau's decomposition theorem of analytic functionals (see, for example, [HI,
Theorem 9.3.7]). As a corollary of the theorem, we have that the hyperfunction

space B(X) is locally spanned by the boundary values of holomorphic functions

in certain wedges of edge X. In the case M = Rm , this fact is taken as the

definition of Sato's hyperfunctions. Therefore, the hyperfunction defined here

is a natural extension of Sato's object. We also mention the work of Harvey and

Wells [Hvl, HvWe]. In §6, we shall discuss the flabbiness of the sheaf of the
germs of hyperfunctions defined here by using the explicit Tsuno representation

formula, which should be considered as an elementary presentation of the sheaf

cohomology approach employed in [Hvl, HvWe].

Remark 4.2.2. The above theorem (and its distribution case in the next para-

graph) can be strengthened as follows. Given any Stein covering {Uj}lj=l of

£2\Af, we can decompose u as a sum of the boundary values of holomorphic

functions defined in £/¿,.../m, 1 < h < h <•••</«< /• Notice also that

Ui,.„im plays the role of convex wedges in the straight edge case. For this reason

and for convenience, t/(1...,m will be called a pseudo-wedge of edge M. Asa

matter of fact, such kind pseudo-wedge can be exhausted by the usual wedges

after possible shrinking of neighborhoods of 0, and vice versa due to the fact
that pj can be replaced by any of the convex combinations of p¡ 's.

Remark 4.2.3. When starting with a holomorphic cocycle {%,...;„} , we can ob-

tain a d closed (0, m - 1) form Gx in Cm\X following the Weil process (or

simply solving Cousin I problems). Then, the argument in the proof provides

us a way to calculate the residue of Gx, which is a sum of the boundary values

of hjv..jm modulo A'(d\fX). Therefore, if [hji...jm} is a holomorphic decom-

position of an analytic functional u (its Tsuno representation is G), then the

resulted form Gx differs from G by a d closed form in Cm\dMX. Thus, if

restricting ourselves in a smaller neighborhood Xx (c X) of 0, Gx and G
axe cohomologuous. Moreover, Gx can be taken as a Tsuno representation of

u.

5. (Hypo) analytic wave front set

5.1. Definition. Since an analytic functional is related to its Tsuno represen-

tation form by a duality formula, in principle, any information on the analytic

functional should be reflected by its Tsuno form. In this section, we will tell

how the wave front set is determined by the representation form. To define the

wave front sets of hyperfunctions in case M is C2 smooth, we follow Sato's

approach.

Definition 5.1.1. Let u e A'iX) with X a compact neighborhood of 0 in Mp .
We say that o e Rm\{0} is not in the ianalytic) wave front set of u at 0,
denoted by a £ WFoiu), if there are r > 0, cones r; c Rm with vertex 0,

and holomorphic functions hj e A(Wr(Tj)), j = 1, ... , /, such that

(i)   MrCX,

(ii) u\Mr = T!j=xiBhj)^,

(iii) for each j, there is y¡ e Tj so that a • y¡< 0, j = I, ... , I.

It is easy to see that one can replace the wedges Wr(Tj) by corresponding
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pseudo-wedges as defined in Remark 4.2.2. We thus obtain an equivalent defi-

nition in terms of pseudo-wedges. In this sense, we will not make a difference

between pseudo-wedges and wedges in the context whenever no confusion hap-

pens.
In [BRT], wave front set is defined in the distribution language. Due to an

equivalent definition in terms of FBI transforms, the notions of the wave front

sets of a distribution in the above sense and in the distribution sense turn out

to be the same.
The main purpose of this section is to present another characterization of the

wave front set in terms of d exactness of the Tsuno representation forms, and to

provide its application to holomorphic extension problem from the totally real

manifold M. One could find that the way adopted here is closely tied with the

monodromy phenomenon in C1. As a consequence, we give a hyperfunction

version of the edge-of-the-wedge theorem with a C2 totally real edge which

extends Pincuk's results for distributions (see [P] or Appendix).

5.2. d exactness for Tsuno representation forms and wave front. Let us first

exploit the relation between the wave front set of an analytic functional u e

A'(X) and its Tsuno representation form G in (4.1).

Theorem 5.2.1. Let u e A'(X), and let G be a Tsuno representation (0, m-I)

form of u, then an ^ WFq(u) if and only if there is a concave cone Y containing

(To so that oo'dY <0, and there is a smooth (0, m-2) form g in WP(T) for
some p > 0 with

(5.1) dg = G\Wp(V).

Proof. For the simplicity of notations, we only detail the dimension 2 case. The

general case will be detailed in a forthcoming paper. Also, we assume the edge

M is straight, or simply R2. When M is not straight, one can replace the

involved wedges by suitable pseudo-wedges. We first consider the "if part.
Note. We can assume that u e A'iMp) by restricting u to Mp because

a Tsuno representation for a restriction of u to Mp differs from G by a d

closed form in C2\iX\Mp), which is d exact in Mp + iDp , where Dp is the

disk of radius p and centered at 0 in R2, especially d exact in Wp{T) ; thus,

(5.1) is invariant under restriction.
Now, there is a wedge WP(TX) with Fx a strictly convex cone, cío -Tx < 0

and Fx U T = R2\{0} . In this wedge, there is a smooth function gx so that

dgx = G\Wp(V{).

Notice that Yx n Y has two components T\ and T'2, both of which are strictly

convex. Let hx = gx - g\wp(V), h2 = g - gx\wp(r), then they are holomorphic.

It therefore follows from (4.1) and the Stokes' formula (the typical residue

argument as in the proof of Theorem 4.2.1) that

(5.2) uee[iBhx)P," + iBh2)Pz],

where e = ±1, p > 0. Thus, o0 £ WFo{u). Since we only consider the

case in C2, the proof of (5.2) is much easier than that of Theorem 4.2.1. For

this reason, let us repeat the proof. Indeed, we can choose an arbitrarily small

neighborhood Ug of Mp   (= Dp in the present situation) as follows,

Ug = Dp+S + iDg.



holomorphic extension from a manifold 19

Denote yt = {(rcosi, rsini)|r > 0}, t e R. By a rotation, we can assume

that W = {yt\ - tx < t < tx), 0 < tx < n/2, is contained in Vx, and the
interior (cone) of the compliment of W is contained in F. Note that dUg =
{Dp+g + iCg} U {Cp+g + iDg) , where Cg is the boundary of Ds . We now divide

dUg into three pieces, i.e., dUg = SXUS2l)S-i, where

Sx = dUg n WpiW) = DP + iô{icost, sint)\ - tx < t < /.},

S2 = Dp + iô{icost, sint)\tx <t<2n-tx},

and S3 is the compliment of Sx U S2 in dUg. Then, Sx c IV (Tx ), S2 c

W(Y), Sx U S2 = Dp + iCs , and Sx n S2 = Lx U I2 , where I; = ^ + iôyj,
yx = (cosfi, sinii), y2 = (cos(-íi), sin(-Í!)), j = 1,2. Suppose W(T'j) is

the component of W^r) n ^(Fi) containing Zj. While 5*3 is contained in an
arbitrarily small neighborhood of dMp as ô —► 0. Give ILj the orientation as

the boundary of Sj . Note that the orientation of S7 as the boundary of Sx is

opposite to that of Zi as the boundary of S2. From Stokes' formula, it follows

that

(u,ip)= [   GiCMOAdC
JdUs

= Í dgx(Oip(OAdt.+ [ dg(CMC)*dC+ I G(CMQAdC

= I igi - g)V + I (g - g\)¥ + /    gV + I   G(Ç)ip(0 A dC
J?., Jl2 JdSi JSi

= f hxy/+ [ h2ip+ [   gip+ I  G(C)wiC)Adt:,
Ji, Ji., Jas* JSiIdSy

where the integral over dSj, is a boundary term from integrals over »Si , S2

after using Stokes' formula. Notice that u¡g\ \p (-► /z hjip converges to eu,

for some Uj e (Bhj)rp, where e = ±1 depends only on the difference between

the orientations of T.x and Mp ; and that the analytic functional defined by
the other integrals (over S3 or dS^) converges to an analytic functional in

A'(dMp). Therefore, (5.2) is proved if we let ô -» 0.
Now, we prove the "only if part. Suppose rr0 £ WF0(u). Then, there are

p > 0, and strictly convex T; together with holomorphic functions hj defined

in WpiYj), j = 1,...,/, so that

(i) MpCX,
(ii) <T0-r,<o,

(iü) «!*, = £}.,(**;)£'.
From the note made in the proof of the "if part, we see that it can be

assumed that u e A'(MP) and there are Uj e (Bhj^" so that

(5.3) « = EM>-
7=1

The proof can be further reduced to the case 1=1, i.e., we are going to prove

the following statement:
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Suppose A is a holomorphic function in W(T) and u e Bh^p,

then any Tsuno representation form  G of u is d  exact in

Wp(R2\T).

In fact, we have a more precise version of this statement given later (see

Lemma 5.3.1). Assume this statement for a moment. If u satisfies (5.3) and

Uj has a Tsuno representation Gj, then we immediately see that G = Y¡¡=\ Gj

is a Tsuno representation for u. Since Gj has been proved to be d exact

in W^(R2\r;), G is d exact in Wp(F), where T = R2\ closed convex hull of

U;=i r; • It is clear that T is concave and oq ■ dF < 0. Since the other Tsuno

forms differ from G by a d exact form, the "only if is proved.

Next, we prove the statement above.

Restricting ourselves in a slightly smaller cone, we can assume h is defined

in a larger wedge W(F'), T € F . By a rotation, we can further assume T =

{7t\ - to < t < to}, with 0 < to < n/2. Define a smooth function g in

C2\MP so that g = h on WP(T) and g vanishes on the rays M + iyt for

n/2 < t <3n/2. Here we choose a very specific g. As mentioned in Remark

4.1.4, it could be arbitrarily changed outside of the cylinder Mp + iDp as long

as it remains smooth for our purpose below. Since h is holomorphic, dg = 0

on WP(T). We then construct a Tsuno representation form G in the following

way. Define

j- 0,      on Mp + iyt for n < t < 2n,
G = s —

l dg,    otherwise.

We now assert that G is a Tsuno representation form of ±w modulo a d

closed form in C2\dMp . Note that, in Wp(R2\r), G = dgx, where gx = g on
Mp + iyt for 0 < t < n and gi = 0 on Mp + iyt for n < t < 2n. The statement

to be proved then follows from the fact that a d closed form in C2\dMp is

also d exact in D2 = Dp + iDp. To see that G is a Tsuno representation

form of u, we basically use the same argument as in the proof of (5.2). Choose

a neighborhood Ug of Mp as before, and write dUg = S U 5", where -S =

Mp + iCg , S' is the compliment of S in dUg. Let X = Mp + i(ô, 0) (c S)
be given the orientation of the boundary of S\L. Then, for any holomorphic
function \p,

f    GiOwiC) A dt\ = f G(Q<p(Q A dÇ + [ G(Qxp(Q A dÇ
Jaus Js Js'

= [   dgxip+ [ GiZMQAdZ
JS\1 Js1

= i g¥+ í        gi¥+ Í GiCMQAdZ.
Jl Jc„+iC* JS'>Cp+iCs

Letting ô —* 0, we have the analytic functional \p i-> /zh\p converges to +u,
where ± depends only on the orientation of Z, and the analytic functional

defined by the other integrals in the last line above converges to an analytic

functional in A'(dMp). Therefore, G is a Tsuno form of ±u modulo a d

closed form in C2\dMp (see Remark 4.1.3).   D
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5.3. Precise description of wave front by Tsuno forms, holomorphic extension,

and monodromy. Next, we only consider the situation in C2. We are still

lacking a good understanding of higher dimension case. We want to investigate

the case when a "cone" T is not in the wave front set (so far we just considered

a ray). In two variables, if a closed cone of aperture 9 is not in the wave front

set, it will be shown that the equation dg = G (G a Tsuno form) can be solved

on a corresponding "wedge" of aperture 6 + n . If 6 < n , the wedge is just

in the usual sense. If 6 > n, then it should be understood in the universal

covering (thus monodromy phenomenon does occur, see Corollary 5.3.1). To

demonstrate the monodromy phenomenon in C2, we introduce some notations.

Let R2 =: {(yt, t) e R3\t e R} be the universal covering of R2\{0}, where

yt = {(rcosr, rsin/)|r > 0} as before, and let p: R2 -» R2\{0} be the canonical
projection.

Definition 5.3.1. (i) A set in R2 of the form T = r(fl;Ä) =: {(yt, t)\a < t <b),
for some a < b, is called a lifted cone. Meantime, WP(Y) = {(z + iy,, t)\z e

Mp , a < t < b} is called a lifted wedge.
(ii) Let g be a smooth function on a lifted wedge WpiZF(a,b)), f°r eacn

direction yk, a < t0 < b, we define a local projection g*Q of g by setting

with t near to • A lifted cone T(a ^ is called a solvable cone for a d closed

(0,1) form G defined on C2\M, if there is a smooth function g defined on

Wp{X(a,b)) f°r some p > 0 so that, for each t e (a, b), the local projection

g* satisfies

(5-4) dg; = G

near the direction of yt.

The following lemma gives an exact description of the wave front set in terms

of the solvable cones.

Lemma 5.3.1. Let T = {yt\a < t < b} be a component of the set R2\WFo(u),
where b < a + 2n ifTj^R2- {0} or a = -co, b = oo otherwise. Set

(5.5) T* = r{ab) =: {(yt, t) e R2\a - n/2 < t < b + n/2}.

Then, T* is a maximal solvable cone T* (c R2) for the Tsuno representation

form G of u in the following sense: for any cone Fx m T* , Fx is solvable; for

any cone Fx containing T, Fx is not solvable.

As an immediate consequence of this lemma, we can visualize some interest-

ing phenomenon of holomorphic extension for analytic functionals.

Corollary 5.3.1. Let G be a Tsuno form of u e A'(X) with X as before. We

have
(i) If dg = G is solvable on a lifted wedge of aperture > 2n, in other words,

the wavefront of u is contained in a strictly convex cone T, then, u can be

holomorphically extended to the wedge WP(Y°), where r° = {a e R2\o • y > 0,

Vyei}._
(ii) If dg = G is solvable on a lifted wedge of aperture > 3n, i.e., WFQ(u) =

0, then u can be holomorphically extended to a neighborhood of 0.
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Proof of Lemma 5.3.1. For any direction yt e T, a < t < b. Then, yt £

WFo(u) implies that there is a solvable cone F, =: r(í_^/2-<5,,í+7r/2+<5,) , where

6t > 0, and a smooth function gt in WPl(Yt) satisfying (5.4). It is clear that
r, c T*. For otherwise, we could have a holomorphic decomposition of u

which contradicts to the fact that Y is a component (there would be a conic

neighborhood of the direction y¿ not in WFo(u) if t + ôt > b , ox that of ya

if t - ôt < a), by calculating the residue of G as in the proof of (5.2).

We now consider the relation between two such solvable cones.

Sublemma 5.3.1. If Ft¡, Fh are two concave solvable cones for G such that

Fh n Fh is also concave, then Ftl u Fh is also solvable for G.

Assume this sublemma for a moment, let us continue the proof of the lemma.

Consider any closed cone ?ëP. Suppose W is concave, otherwise W is

certainly solvable for G due to the convexity. W = {yt e R2\{0}|c - n/2 < t <
d + n/2} for some a < c < d < b. Now, we have the following open covering

of the interval [c, d]: {(t-ôt/2, t + ôt/2)}teic,d]. Therefore, a finite number of

these open intervals can cover [c, d], i.e., there are numbers tx < t2 < ■ ■ ■ < tq

in [c, d] so that \Jqj=x(tj -ôtj/2, tj +ôtj/2) D [c, d]. This implies that tj+x -

tj < (ôj+ôj+x)/2. Note that FtjnFtj+l = {yt\tj+x-n/2-ôtj+, < t < tj + n/2+ôtj}
has aperture n + Stj + 6tj+l - (tj+x - tj) > n . Hence, it is concave. Therefore,

a consecutive use of the sublemma above yields that W is a solvable cone for

G. The lemma is then proved.   □

Proof of Sublemma 5.3.1. Let gx, g2 be solutions of the equation dg = G

respectively in Wp(Ttl), Wp(Fh). Note that the projection of the function h =

g\ - ¿?2 is holomorphic in a concave wedge Wp(Th n Fh) by the hypothesis in

the sublemma. By Bochner's tube theorem, h is actually a lift of a holomorphic

function defined in a neighborhood of 0. Define

è=Ui, onWpl(Ftl),

\ g2 + h ,    on Wpi(Fh) for some p' > 0.

Then, g is a well-defined smooth function on Wp> (Ftt U Fh) and satisfies (5.4).

This finishes the proof of the sublemma.   □

Because there may be many components in R2\WFo(u), we can have the

same amount of maximal solvable cones associated with a Tsuno representa-

tion form G of u. Conversely, these maximal solvable cones determine all the

components of R2\WFo(u) and hence WF0(u) completely.

We now show Corollary 5.3.1.

Proof of Corollary 5.3.1. Proof of (i). WFo(u) c F implies that there is a

component of R2\WF0(u) DD R2\r. Thus, at least (R2\i)* is a solvable cone

for G from Lemma 5.3.1. Note that if F = {yt\a < t < b}, then (R^Ë)* =
{(yt, t)\b-n/2 < t < a + 5n/2} . Therefore, it is clear that the equation dg = G

is solvable in a lifted wedge of aperture > 2n if and only if the wavefront of

m is contained in a strictly convex cone. Notice that the overlapped portion of

the shadow of (R2\r)* under the canonical projection p onto R2 is exactly

r°. Let g be a smooth function on Wp((R2\r)*) satisfying the solvability

condition (5.2), and let gx, g2 be the two local projections of g on Wp(F°)
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defined respectively by

g\(z + iyt) = g(z + iyt, t),

g2(z + iyt) = g(z + iyt+2n ,t + 2n),        b - n/2 < t < a + n/2, z e Mp.

Then, f = g2- gx is obviously holomorphic on Wp(F°). By calculating the

residue of G in the way shown in the proof of (5.2), we see that u\m„ is the

boundary value of /.

The proof of (ii) is basically the same.   G

Next, we prove a hyperfunction version of the edge of the wedge theorem

in Cm to demonstrate the holomorphic extension in higher dimension spaces.

Martineau's cohomological method is used in the following proof. Another

method is using the FBI transform (see next section).

Theorem 5.3.1. Let F be a strictly convex cone in Rm with vertex 0. If fi is

holomorphic in WP(F)\JWP(-F) and BfiT " = Bf_¿! in the hyperfunction sense,

then f can be holomorphically extended to a neighborhood of 0.

Proof. Without loss of generality, we assume   WP(F) = t/i,...,#«, Wp(-F) =

U-1,..., -m by using the notion defined in §2.1. Consider the cocycle {/},.¡m } e

Cm-X'(%,cf) with

J\ ,...,m = / |i/i ,...,„ ,

fi-\,...,-m = (-l)m+ f\U-,,...,_„ ,

fji,...,jm = 0>    otherwise.

Then, {/}.,...jm} is cohomologous to 0 in a slightly smaller neighborhood of 0

from the hypothesis in the theorem. Once this is clear, the induction argument

on the dimension m in [M3] (see also [P, pp. 452-455] without deleting a cubic

neighborhood) applies to give a holomorphic extension of / to a neigborhood
of 0. Note that the case m = 2 is already proved before the statement of the

theorem since BfT " = Bf^ implies the wave front set of / is empty.   D

5.4. The FBI transform and wave front set. We now consider the wave front

set from the point of view of the FBI transform (see [BCT, BRI, BR2, BRT]).
The FBI transform of an analytic functional is defined as follows.

Definition 5.4.1. The FBI transform ofi u e A'(X) with X as before, denoted

by F(u ; w, a), is defined by

F(u;w,o) = u(eia{^-^-{,!)^-^A(w - •, o)),

where a ,w eCm ,

1/2
dd I   m ■

A(w,o) = det—(w,o),    d = o + i(a)w,    (o) =    E*7/

This definition extends the corresponding one in [BR2] if u is taken to be the

boundary value of a holomorphic function in a wedge. In fact, in view of the

Decomposition Theorem 2.3.1 and the argument in [BR2], we can still prove

the following characterization of the wave front set.
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Theorem 5.4.1. Let u be as above. Then, oo £ WF0(u) if and only if there
exist constants c, C, x > 0 so that

(5.6) \F(u; w , o)\ < Ce~clal,

for w eCm, \w\ < x, and o eW, a conic neighborhood of on in Cm\{0} .

Sketch of proof. By Theorem 4.2.1, there is a holomorphic decomposition hj e
A(Wp(Fj)), j= 1,...,/, of u so that

(i) (ToeT,, <x0.r;<0, V;>1;

(ii) u\Mp = EJ=i(5^)?" > for some sma11 P > ° •

Note that go-Tj <0, j > 1, implies that (5.4) holds for any Uj e iBhj)rp,

j > 1. Therefore, the proof is reduced to proving gq $■ w FoiiBhx)yp) if and

only if (5.4) holds for any ux e iBhx)rp. This follows from Theorem 1 in

[BR2].   D

We also mention that the edge of the wedge theorem (Theorem 5.3.1) can

also be proved in terms of FBI transform by applying Theorem 2 in [BR2].

Nevertheless, we are still unable to extend the holomorphic extension result

such as Corollary 5.3.1 to higher dimension spaces by the FBI transform method

due to the lack of the convergence of the inverse FBI transform in the analytic

functional sense.

6. Some remarks about hyperfunctions, distributions,
and d problem with partial compact support

6.1. Flabbiness of the sheaf of germs of hyperfunctions. To any relatively

compact set X c M, a C1 totally real manifold, there is associated a space

BiX) (= BiX)), as in Definition 3.2.1, equipped with the induced topology
from the w*-topology in A'iX). When M is real analytic, or simply M =

Rm , X i-+ BiX) defines a flabby sheaf from the standard hyperfunction theory

(refer to [SKK] or [Sch]). This fact was generalized to a totally real manifold

by Harvey and Wells [Hvl, HvWe]. Rather than using the sheaf cohomology

technique, we can make use of the explicit duality formula (4.1 ) to show the

flabbiness of the sheaf of hyperfunctions defined here at an elementary level as

Hörmander treated in [HI]. This approach gives us additional interests such as

the convergence of a sequence of analytic functionals and some relation with

solving d problems, etc.

In this section, we assume that M satisfies the following property: any com-

pact subset of M is polynomially convex, and M is countable at infinity. Note
that, in general, a totally real manifold only has this property locally.

The following decomposition theorem of analytic functionals due to Mar-

tineau [M2] will yield the existence of the restriction map.

Theorem 6.1.1. Let u e A'iX), X <s M. If X = \Jkj=x X}■., X¡m M, then there

exist Uj e A'iXj), j = 1, ... , k, so that u = 2>i UJ• where we view Uj as

an element of A'iX) because of the obvious injection i: A'iXf) -* A'iX).

Lemma 6.1.1. Let Vq and V be two compact and polynomial convex sets with

V0 C int(K) c Cm . For any d closed (0, m - I) form K defined in Cm\V,
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and for any e, R > 0, there is a d closed (0, m-I) form KE defined in Cm\I/ó

so that

\\Ke - K\\co(Bm\V) < e,

where B% = {z e Cm\ \z\ < R} .

Proof. It suffices to consider the case int(F0) ^ 0 by exhausting successively.

The following argument is heritated from the standard proof of the Runge ap-

proximation theorem. Extend continuously the d closed form K to Cm , de-

noted by K. Then, by the integral representation formula (see, for example,

[HL]) in B™,

Kiz) = d(T(K))(z) + f dKiQABMn-xit, z)AdÇ,
Jv

where 5Mm_i(£, z) is the (m- l)th Bochner-Martinelli kernel. Therefore, it

is enough to show

spanf€K{£JI/M_i(£, •)} = span{6Ko{5Afm_1(C, •)}.

where the closure is in the topology of C°(B%\V). It is equivalent, by duality,
to show that

p(0=: [      co(z)ABMm_x(C,z) = 0,    VCeF0,
JB«\V

for some (m, 1) current co(z) implies

/      co(z)ABMm_x(C,z) = 0,    VCGK
Jb%\v

Note that
m (7 _ -7.) _

BMm-!(C, Z) = Cm-1 E(-1 );"' ¡r_     ¿rn ̂ 1 A • ■ • A ̂ Z; A • ■ ■ A dZm
j=\ '<"    z|

is real analytic, therefore, so is p(Q for Ç 6 inti^). Since int(Ivj) ^ 0,
/i(C) = 0 in int(F), which completes the proof.    D

We can now extend the convergence theorem for a sequence of analytic func-

tionals in [HI, Theorem 9.1.7] onto a totally real manifold. The proof of the

following theorem is basically the same as Hörmander's except we replace the

Runge approximation theorem for harmonic functions by Lemma 6.1.1, and

the harmonic representation by Tsuno representation.

Theorem 6.1.2. Let Xq and X be compact sets with Xo C X c M, and let

Uj e A'(Cm). Also, assume that

(i) for any compact neighborhood V of X in Cm , we have u¡ e A'(V) for

large j ;
(ii) for any compact neighborhood Vo of Xo in Cm, we have Uj-u^ eA'(V0)

for large j, k. Then, there is u e A'(X) so that, for any compact neighborhood

Vq of Xo, Uj-u e A'(Vq) for large j, and u is unique up to an element in

A'(Xo).

Definitely, one of the immediate consequences is the existence of the support

of an analytic functional carried on a totally real manifold as in [HI]. Another
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important consequence is the flabbiness of the sheaf of germs of hyperfunc-

tions on a C1 totally real manifold. The flabbiness of the sheaf of germs of

hyperfunctions plays a fundamental role in the evolution of the hyperfunction

theory.

6.2. Distribution boundary value and decomposition. This section discusses

the relation between the hyperfunction boundary value in §3 and the usual

distribution boundary values of holomorphic functions with slow growth, and

to give a different proof of the Baouendi-Chang-Treves decomposition theorem

based on the idea in the paper.
To define distribution, we assume that M is C°° smooth in this section and

restrict ourselves to a neighborhood Mp of 0. We then define the distribution

boundary value Bfr of a holomorphic function / defined in Wp(F) as follows.

(Bfr, w) =  lim   / f(w + iy)vMdw,    My e C^iMp),
yer Jm

Irl-o

if / has polynomial growth near the edge M, i.e., for any K <g Mp , there is

k elS so that

(6-lk) l/(z)l s iäüfTW'   ¥z€ír + ,r"

Now, suppose Bj}- exists and X is a compact neighborhood of 0 in Mp . Let

^ be a cutoff function in C¡f(Mp) such that x— I on X. Then, we have

Proposition 6.2.1. There is a restriction of x(Bfir) on X which belongs to Bfix

in the hyperfunction sense.

Proof. The proof is straightforward. One needs only to verify that for any

neighborhood V of K = supp(/)\X, and for any \p e AiCm),

(6.2) \ixiBfr) - ux)iip)\ < Cv\\¥\\l~(v) ,

where ux is a representative in Bff as in Theorem 3.2.1, Cy is a constant

independent of \p. (6.2) follows from the following consideration. Choose y

small so that K + iyc Vx and ux -ux eA'iVx) with dMX c Vx g V. Then,

ixBfv - ux)i\p) = iux -ux)+ i     xiw)f(w)ip(w) dw
JK+iy

+ ÍI dxA(fipdw).
JJK+i(0,y]

Obviously, the first and the second terms on the right-hand side are in A'(VX);

while it is almost standard that if / has polynomial growth near the edge M,

then \p i-+ JJK+i,0 ,dx A (fy/dw) defines a distribution with support K +

i[0, y], hence, (xBfiT -ux)eA'(Vx).   u

We now follow the analytic functional argument in §4.2 to give another proof

of the Baouendi-Chang-Treves decomposition theorem based on a certain d

regularity result cited in §2.1 in the distribution case. Let « be a distribution
with compact support X on M. Assume X is a compact neighborhood of

0 c £2. As mentioned before, G(Ç) = (u, BM(-, Q) is a Tsuno representation
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form of u. More importantly, C7(C) has polynomial growth near the edge X.

We can assume that

("k) 'GK)I s méw

In Uj, put cpj(Q = -/tln(dist((, dUj)), then C7, € L2(Uj, cpf) as defined in
2.1. Consequently, Hörmander's L2 estimate with weight cp¡ (Theorem 2.1.1 )

yields the existence of Giv..jp e L2(Uiv..jp, tpJr..jp) with tpjr..Jp = ¿Xi 9j, ■
In particular, we obtain a holomorphic cocycle {Gj¡...jm} with Gjv..jm e

L2iUjv..jm , 9j,-jm) ■ Possibly by shrinking the "wedge" Uiv..jm with the edge
fixed, one can find that G¡v..jm has polynomial growth near the edge X since

Gjv..jm is holomorphic. Then, Theorem 4.2.1 shows that

u\xee    E    s^niJ'x ■ ••Jm)iBGJvJm)uh...¡n
jp=±p

¡>=\ ,...,m

in the hyperfunction sense. Possibly by shrinking the neighborhood X to Xx,
we see that u coincides with

e      E      s&iJi • • ' Jm)iBGJi-jJuj,...j„
)p=±P

p=\ ,...,m

in the distribution sense from Proposition 6.2.1 and the density of holomorphic

functions in the space of smooth functions locally on a totally real manifold.

6.3. d problem with partial compact support in a cylinder. We study the

problem of solving d equation with partial compact support in the domain

{x e R2, \x\ < l} + i{x e R2, 0 < \x\ < 1} . In particular, a solvability criterion
of the Greiner-Kohn-Stein type is provided.

Let D2 = {x e R2, \x\ < 1}, D2 = {x e R2, 0 < \x\ < 1}.

Lemma 6.3.1. Let g be a d closed smooth (0,1) form in D2 + iD2. Then, g

is d exact if and only if

,, ., the analytic functional defined by \p >-> Js g\p is carried by S's,
1 ' '        V0 < Ô < 1,

where Sg = D2 + i{\x\ = 0}, S's = dD2 + iSD2 are defined in Remark 4.1.4.

Proof. Necessity is trivial by Stokes' theorem. We now prove the sufficiency.

Denote Tg = dD2 + Bg, where Bg = {z e C2, \z\ < ô}. This is a torus-

like neighborhood of dD2. We first construct a d closed smooth extension

gg of g to C2\(I>2 U Tg) in the sense that gg coincides with g on the set

£2,5 = (1 - Ô)D2 + iD2 . Extend g smoothly to C2\Z>2 • Notice that dg extends
smoothly to C2\7¿ , it is also a top degree form. Then, there is a (0, 1) form

gx on C2 - Tg so that dgx = dg; hence, g - gx is a d closed (0,1) form

on C2\(D2 u Tg). Since dgx = 0 in £2á, gx is exact in Qg, i.e., there is

a smooth g2 so that Jig2 = £ï in £2¿. Smoothly extend g2 to C2. Then,

gs = g - g\ + dg2 is d closed in C2\(X U Tg) and gg = g on £2¿ .
For any neighborhood U of D2 U Tg, it can be verified that the analytic

functional ug\ \p *-* jdU ggip is carried by Tg from the assumption (6.4) of the

lemma. Let Gg be a Tsuno form of Ug defined in C2\7¿ , then Gg-gg satisfies
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JdUiGg - gg)ip = 0 for any holomorphic function \p and any neighborhood U

of D2 U Tg , and hence for any neighborhood U of Pg = D2 + Bg . Hence,
it follows from Lemma 4.1.1 that Gg - gg is d exact in C2\Pg since Pg is

convex. Since Gg is d exact in £2¿, gg is d exact in Q's = £lg\Pg , and so is

the form g.
Choose a decreasing sequence of positive numbers {ôn}^=x, ôn —► 0 as n -»

oo. From the above argument, there is a smooth function /„ so that dfi„ = g

on Q's . Then, h„ = fn+x - fi„ is holomorphic in £2¿ . By Bochner's tube

theorem, h„ can be holomorphically extended to £26n for some e„ > 0, en —► 0

as n —> 0. To construct an exact solution of the equation df = g in £2\Z>2,

we use the technique of Mittag-Leffler sequence. Since £2£„ is a Runge domain,

hn can be approximated by entire functions; thus, there is an entire function

h'n so that

||A»-A;IIl-(0%)<1/2".

Set

/ = /i+E(/-+i-/«-Ai).
n=l

Note that f = fj-h[-A}., + EZjifn+i ~ fin - K). It is in fact well

defined on £l\D2 and solves the equation df=g.   O

As we know, Greiner-Kohn-Stein condition (4.2) is closely tied to the problem

of solving d equation with compact support. As an analog, condition (6.4) is

related to solving a d equation with partial compact support in £2i = D2 + /R2.

Namely, given a smooth (0, 2) form G in £2i with compact support in radial

direction (G = 0 outside of QR = D2 + iRD2 for some large R > 0), when
can one find a smooth (0, l)g also with compact support in radial direction

so that dg = Gl

Proposition 6.3.1. The above problem has a solution if and only if the analytic

functional defined by \p i-> / Gip is carried by ER = dD2 + iRD2 for some
R>0.

Proof. First, we can always find a smooth gx so that dgx = G. Notice that G

can be solved with compact support in radial direction if and only if gx is d

exact in radial direction. By Lemma 6.3.1, gi is d exact outside of £2« for

some R > 0 if and only if the analytic functional ip i-> js gx\p is carried by S'&

with X = Qr . Then, Stokes' formula implies the conclusion of the lemma.   D

Finally, we remark that any d closed smooth form in D2 + iD2 can be

extended to C2\Z>2 as a d closed form. This shows that the Tsuno forms

discussed in §4.1 is basically equivalent to the d closed form defined in a

cylindrical domain.

APPENDIX. AN ELEMENTARY PROOF (AND EXTENSION) OF PlNCUK'S

EDGE-OF-THE-WEDGE THEOREM FOR DISTRIBUTIONS

A.l. An estimate for the Baouendi-Treves approximation. In this section, we

give a pointwise estimate for the Baouendi-Treves approximation scheme [BT,
T] on a totally real manifold, which will be used to prove Pincuk's edge-of-the-

wedge theorem in the next section. An extension of Pincuk's theorem is also
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provided. M is assumed to be C°° smooth. We also inherit the notations

from §6.2. Let / be a holomorphic function defined in WP(F) and satisfies

(6.1k). And let x € Cfj°(Mp) be a cut-off function which is identically 1 in a
neigborhood of 0 and satisfies

sup   \(j>'(x)\ < 1/2.
xesupp*

Then, we define the Baouendi-Treves approximation scheme

Tj(z) = (Bfi, (x/2n)ml2e-^-?x(-)).

The following is our estimates.

Proposition A.l.l. Under the above assumption, there are positive constants cx,

c2, C and a neighborhood U of 0, which are independent of fi, x, such that
Vze ¡Vp(F)nU,

(1) \TTf(z)\<C[dist(z,M)]-k;

(2)

\TJ(z) - f(z)\ < C max \f(z) - f(Z(Q + i(y - <p(x)))\
CeoxJ

fe-CiS2t
+___+ Ce~C2T

[dist(z, M)]k '

where x = Re z, y = Im z, Ox ¿ is the ô-ball in Rm with center x.

The proof of the proposition is basically a standard approximation estimate

with the help of the following well-known lemma and the technique of integra-

tion by parts.

Lemma A.l.l. If f is a function satisfying (6.2k) and \df\ < C in WP(F),
then there is a bounded holomorphic function F(f) in WP(F) satisfying

dk+xF(fi)/dzk+x=f.

The proofs will be omitted. As an easy consequence, we see that TTf con-

verges to / pointwise in WP(T).

A.2. Proof of Pincuk's theorem. As we know, the edge-of-the-wedge theorem

for distributions can be proved either by a cohomology method [P] or by FBI

transform [BCT, BRI]. Here, we give a much more elementary proof based on

Baouendi-Treves approximation technique.

Theorem A.2.1. /// is holomorphic in Wp(F)uWp(-F) and Bfir = Bf_r in the
distribution sense, then fi can be holomorphically extended to a neighborhood

ofiO.

Proof. We actually prove the following statement:

Txf -» / uniformly in a neighborhood of 0 as x -> +00 with

/ coincided with / on WP(F) u Wp(-T).

Then, we see that / serves as a holomorphic extension of / to a neighbor-

hood of 0. To prove the above statement, we need a family of polynomial
disks designed by Rosay [Ro]. Choose Xq e TqM = Rm , where TqM is the
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tangent space of M at 0, such that there are real numbers a and b satisfying

aXo + b(iX0) e Wp(F). Define

rf,: zêA'h <p°w(z) = z(eXo) + a(e)^y^ + ß(s)^r^-e2w(z2 - 1),

where a(e), ß(e) axe so chosen that eX0 + a(e) e M, -eX0 + ß(e) e M and
a(e) = o(e), ß(e) = o(e) as e -> 0, w e Cm , \w\ < 1. Then, <pew enjoys the

following properties.

Lemma A.2.1. (a) For all 6 e (0,n), <pew(ew) e WP(F), and for all 6 e

(-n,0), Kieie)eWp(-r), p«,(l), tp*w(-l) e M.

(b) <p*w(0) = e2w.

(c) dist(tpew(ew), E) > Ce\ sin6\,

where C > 0 is independent of e, w  (e small, \w\ < 1).

The proof of the lemma will be given later. Let us continue the proof of the

theorem. Let z e A1. The main trick in our proof is to introduce

TÏ>wf(z)=:(z2-l)k+xTTf(tpew(z)),

which suppresses the growth of TTf near the edge, while it keeps the center

of the disk invariant (except for a signature). Suppose that e is small enough

that tpl¡(z) e U, Vz e A1, \w\ < 1. Then, from Proposition A.l.l and Lemma

A.2.1, it is elementary to show the following statement. On the boundary bAx

of A1, f^wf(z) converges to (z2 - l)k+xf(tp£w(z)) uniformly for z e bAx,

\w\ < 1 as t -» +00 . Here, e is a fixed small positive number.

Since fx'wf(z) is uniformly convergent for z 6 bAx, \w\ < 1 and holo-

morphic in the unit disk, it follows that

T{'wf(z) -+ some function f¿(z)

uniformly for z G A1 , |tf| < 1 as x —y +oo . As a consequence,

TTf(e2w) = TTf(9'w(0)) = (-l)k+xf^wfi(0) -» (-l)k+lfl(0)

uniformly for |to| < 1. Note that Txf(z) —> f(z) pointwise for z e Wp(F) U

Wp(-F) by Proposition A. 1.1. Therefore, in the e2-ballof Cm , TJ(z) -> f(z)
uniformly which coincides with fi(z), for all z e WP(F) U Wp(-F). We finish
the proof of the theorem.   D

Proof of Lemmma A.2.1. (a) and (b) were proved in Rosay [Ro]. Since the

proof is simple, for convenience of reference, we copy it down here. In fact,

one notices that there exists r > 0 so that for all e e M, \e\ < r, X e Cm ,

\X - X0\< r, and A e C, | argA| < n/3 , one has

(A.1) e + X(iX) e WP(F),       e-A(iX) e Wp(-F).

Obviously, cpew(l), cpew(-l)eM. For 6 e [-n/2, n/2],

<?ewie'e) = <,(!)+/       ^fdz = cplil) + ieiXo + M<0) i^1) -

where |crw(e)| = o(e), V|w| < 1. Note that |arg((e'e - 1)//')| < n/4. For

small e (independent of the choice of w), (A.l) yields cpl,(eie) e WP(F), if

0€(O, n/2], and <pew(ew) e Wp(-T) , if 6 e [-n/2, 0). For the other 6, we
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choose cp^(-l) instead of cpEw(l) as our starting point. We show part (c) next.

Note that

d<PewJeie) _ ,-W,.v x , „,„* v ,m _    ,0 (;V   , o(e)

dd
ieie(eX0) + o(e)Xw(6) = ee'e (iX0 + ^-Xw(d)\

where \XW\ < C uniformly for |tf| < 1. Hence, when cp£w(el6) intersects with

M, i.e., 6 = 0, n, the tangent direction is in a very small conic neighborhood

of iXo, which means the curve cpew(el6) is almost perpendicular to the edge

M, for small e, |iu| < 1. Therefore, the distance between cpEw(el6) and M is

almost the distance between cpEw(eie) and its intersection with M, which means

that there is a constant C > 0 independent of e, w such that

dist(cpl,(eie),M) >C-dist(cp°w(e>e), {<,(!), g>'w(-l)}).

For de [-n/2, n/2],

\<pew(eie)-<pew(l)\ = (e»-l)(eXo) + a(£r-lf'e + V

pie ipie _ i\
+ ß(e)—^- - e2wieW ~ 1 )(<?''* + 1)

= e|e/e-l|- \Xo + o(l)|,

where, o(l) —» 0 uniformly as e -» 0. When e is small, |X0 + o(l)| > |^"ol/2 .

Therefore,

disticp%,ieie), M) > C\q>lieie) - g>l(l)\ > Cs\eie - l\ > Ce|sinö|.

For other 6, by considering ^(-1) instead of cpewil), we can obtain the

estimate in the same way.   G

It is worth noticing that when M is only C1 smooth, while / still has

polynomial growth near the edge, the hyperfunction boundary value Bfx serves

as a natural extension of the distribution boundary value. More importantly,

following the above proof (we use the approximation scheme ux defined in (3.4)
instead of Txf ; then, Proposition A. 1.1 is trivial for ux and the argument in the

above proof of Pincuk's theorem can still be used), we can generalize Pincuk's

edge-of-the-wedge theorem to the case of a Cx edge. Namely, we have the

following proposition.

Proposition A.2.1. Suppose that M is Cx smooth, and fi is holomorphic in

Wp(T) u Wpi-F) and has polynomial growth near the edge M. If Bfi£ = BfxT
for some neighborhood X of 0, then fi can be holomorphically extended to a

neighborhood of 0.

This proposition also serves as a trivial generalization of the continuous ver-

sion of the edge-of-the-wedge theorem with C1 edge in [Ro]. One could have

noticed that there is still a gap between the above generalization and the hyper-

function version of the edge-of-the-wedge theorem given in §5.3.
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