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A METRIC DEFORMATION AND THE FIRST EIGENVALUE
OF LAPLACIAN ON 1-FORMS

TAKASHI OTOFUJI

Abstract. We search for a higher-dimensional analogue of Calabi's example

of a metric deformation, quoted by Cheeger, which inspired him to prove an

inequality between the first eigenvalue of the Laplacian on functions and an

isoperimetric constant. We construct an example of a metric deformation on

S", n > 5, where the first eigenvalue of the Laplacian on functions remains

bounded above from zero, and the first eigenvalue of the Laplacian on 1-forms

tends to zero. This metric deformation makes the sphere in the limit into a

manifold with a cone singularity, which is an intermediate point on a path of

deformation from an (Sn , some metric) to an (Sn~l x S1, some metric).

0. Introduction

Calabi constructed the well-known "dumbbell" example of metric deforma-

tion on a closed Riemannian manifold such that Ao, i, the first eigenvalue of the

Laplacian acting on smooth functions, goes to zero. Cheeger [Che], suggested

by that example, gave a lower bound for a0, i by an isoperimetric constant:

XQA>(l/4)h(M)2,

where M is an «-dimensional closed Riemannian manifold, and

vol„_i(dZ))
h(M) = inf I ■ D is a domain of M

yol„(D)

with smooth boundary such thatvol„(D) < (l/2)vol„(Af) >.

This result indicates that a deformation of a Riemannian metric on a closed

manifold in which Ao,i -»0 ends with a break of the manifold, i.e., the num-

ber of the connected components = rank//°(Af, R) jumps up. (Of course we

must confine ourselves to the cases under some normalizing conditions, for ex-

ample, boundedness of the diameter, etc.) We ask the question whether there

exist higher-dimensional phenomena analogous to the above, in other words,

whether metric deformations, with Xkx, the first nonzero eigenvalue of the

Laplacian on fc-forms, tending to zero, make xan\.Hk(M, R) jump up in the

limit. Dodziuk posed this question in [Cha, p. 342], conjecturing the existence
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of some higher codimensional isoperimetric constant. At present, we have lit-

tle hope that a general answer may soon be found. Therefore, we search for a

higher-dimensional version of Calabi's example.

In the present paper we construct an example of metric deformation in which

Aii, the first nonzero eigenvalue of the Laplacian acting on smooth 1-forms,

tends to zero. It is constructed on the sphere S" , n > 5, where S" converges

in the sense of Hausdorff convergence to an «-dimensional Riemannian mani-

fold with a cone singularity, and Ao, i remains bounded above from zero. The

precise statement of the spectral properties of this metric deformation is given

in §2, Theorem 2.1. Now we outline the idea of the construction. First, we

collapse {o} x Sx in 5"_1 xSx to a point p and introduce a metric on it so that

near p it is isometric to a metric cone C of Sn~2xSx. Then we remove a neigh-

borhood of p, which is a small cone homothetic to C, and attach suitably a small

Sn~2 x D2 along the boundaries. From the differentiable viewpoint, this opera-

tion is equivalent to the surgery procedure of obtaining S" from Sn~x xSx by

removing D"~x x Sx and attaching suitably S"~2 x D2. In the metric space of

metric spaces with Hausdoff distance, the limit Riemannian manifold is on both
the boundary of the set of Riemannian manifolds diffeomorphic to Sn and the

boundary of the set of Riemannian manifolds diffeomorphic to S""1 x 51.

Remark. For the relations between the convergence of manifolds and spectra,

we refer the reader to, for example, Anne [A], Colbois-Courtois [C-C 1, 2]

Chavel-Feldman [Cha-F 1, 2], and Fukaya [F]. Colbois-Courtois [C-C 1] treats
the case of p-forms and shows that Cheeger's constant does not permit to control

the first nonzero eigenvalue of the p-spectrum.

Plan. In §2, we explain the construction of the metric deformation and some of

its properties. In §3, we show, assuming Proposition 3.2, that the deformation

has the desired property of Ao, i. In §4, we prove Proposition 3.2. For the
purpose, we investigate the behavior of geodesies on general metric cones.

Acknowledgment. The author would like to thank the referee for suggesting im-

provements of the presentation and indicating many references. He is also

grateful to Professor S. Tanno and H. Muto for their enthusiastic encourage-

ment and valuable advices during the work.

1. Notations

Here, let M denote any Riemannian manifold, g the Riemannian metric

on Af, and let dim M = n .
(1) Sobolev isoperimetric constant Sob(Af) :

Sob(M) = inf { jyjoul-i î Q is a domain of M
I{'(*^)l

with smooth boundary and with compact closure >.

where V denotes the «-dimensional measure and A the (« - 1)-dimensional

measure induced by the Riemannian metric on M.
(2) UXM = {Z, e TXM; \£\ = 1}, p: the canonical measure on UXM

induced by the Riemannian tensor gx on TXM.
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(3) Metric cones of M:

C(M) = (R+ xM,dr2 + r2g),

where r e (0, oo) the canonical coordinate of R+ . Furthermore,

Ca,b(M) = {(r,x)eC(M); a < r < b},

n: C(M) ->M:(r,x)>->x,    %: C(M) -> R+ : (r, x) *-+ r.

(4) H0X'2(M) = the completion of C0X(M) with respect to the norm ||/]| =

(Jm(I/I2 + I#12))1/2-
(5) gs„ denotes the Riemannian metric of the standard unit «-sphere. In

Sx, s denotes a unit parameter, and so we have ds2(s) = g , (s).

(6) Without particular mention, geodesies have unit speed.

(7) distA/ is the distance on Af induced by the Riemannian metric g.

(8) inj(Af) is the injectivity radius of Af.

2. AN EXAMPLE OF METRIC DEFORMATION ON  S" ,   « > 5

In this section we construct a family of Riemannian metrics ge, e > 0, on

S" , « > 5 , which is roughly described in the Introduction, and see that it has

the properties (1),(2) below. The fact that it has the property (3) will be proved

in §3.

Theorem 2.1. There exists a family of Riemannian metrics ge,  s > 0, on

Sn, « > 5, which has the following properties:

(1) When e ->■ 0, (Sn , ge) —> M in the sense of Hausdorfificonvergence where

M is the interior of an n-dimensional Riemannian manifold with a cone singu-

larity.
(2) A" ,({) -> 0 as e -+ 0, where A" ((e) is the first nonzero eigenvalue of

the Laplacian on coclosed 1-forms on (Sn , ge).

(3) We denote by AD the selfiadjoint extension of the Laplacian defined on

Cq°(M) , whose domain is included in H0X'2(M). Then,

(A) All the spectra of Ad are eigenvalues and we have:   0 = Ao <

Ai < A2 <•••—» 00.

(B) When we denote by o¡(s) the ith eigenvalue of the Laplacian on

functions on (Sn , ge), then er,(e) -*• A, as e —> 0 for each i.

From now on we denote the Riemannian manifold (Sn , g£) by Me.

Construction of M, Me. We construct Af first, and then modify it into ME.
(i) Introduce a metric g on S"~x, such that Dn~x(2) = {x e R"_1 ; ||x|| <

2} , is embedded isometrically somewhere in (S"~x, g). Let 0 be the origin of

D"~x(2), and consider it as a point on S"~x.

(ii) Next define a metric g on the product (S"~x \ {0}) x Sx by

g(X,s) = g(x) + {f(x)}2ds2,    where (x, s) e (S"-x \ {0}) x Sx,

where f(x) satisfies

f(x)eC°°(S"-x\{o}),    fi>0,

fix) = dist(S»-1>f)(o, x)    on D"-i(2) \ {0} (c Sn~x).
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We denote by M the Riemannian manifold ((Sn~x \ {o}) x Sx, g).

(iii) We see that (Dn~x(2) \ {o}) x Sx (as a Riemannian submanifold of M)

and Co,2(S"~2 x Sx) axe isometric under the following map:

(fl"-1(2) \ {o}) x Sx 9 ((r, 6),s)~(r, (9, s)) e C0,2(Sn~2 x Sx),

where (r, 6) is the polar coordinate of Dn~x(2) \ {o}, r e (0, 2),  de Sn~2.

Therfore Af is the interior of a Riemannian manifold with a cone singularity.

(iv) Construct Me by modifying Af near the singular point. First, for e > 0,

introduce a metric «£ on Sn~2 x D£ in the following way:

(1) Introduce the polar coordinate (r, s), 0 < r < s, s e Sx, on De.

(2) Take a C°°-function a(r) on [0, 1] which satisfies

f \   if 0 < r < i ,
air) = { , ~

\ r    if | < r < 1

and define ae(r) = ea(r/e).

(3) Define a metric «£ on S"~2 x DE as

he(e,(r,s)) = (ae(r))2gsrt_2(e) + dr2 + r2gsi(s).

_2
We denote the Riemannian manifold (Sn~2 x De, he) by He.   We

remark that HE is homothetic to Hx.

(v) Glue He and Af \ C0,e(Sn~2 x Sx) along their boundaries under the map:

d(Sn~2xD2) 3 (9, (e,s)) ~ (e, (6, s)) e d(M\C0,e(Sn-2 * Sx)).

From the expressions of the metrics by the polar coordinates it is easy to see that

the glued metric is smooth. We denote by Me the glued Riemannian manifold

HeU(M\Co,e(S"-2xSx)).
(vi) It is easy to see that AfE is diffeomorphic to S" , and that Me converges

to M in the sense of Hausdorff convergence.

We check that the family Me, e > 0, has the property (2):

Proposition 2.2.  A" , (e) -* 0 as e -» 0.

Lemma 2.3. The l-fiorm ds is closed and coclosed on the Riemannian mani-

fold (N x Sx, g + ß2g , ), where (N, g) is a Riemannian manifold and ß e

C°°(N), ß>0. (ds is the pull-back of the canonical I-form on Sx.)

Proof. It is obvious that d(ds) =0. We show d * ds =0. Let cün the volume

form of N. Then, since \ds\ = ß~x, *ds = ß(x)~xO)N ■ Therefore d(*ds) =

fs(ß(x)~x)ds /\ojn + (ß(x))-xdcoN = 0.    Q.E.D.

Proof of Proposition 2.2. There is no nonzero harmonic 1-form on Af£, since

Hx (Me, R) = 0. So, it is enough to find a 1-form cx>t on Af£, for each e > 0,

whose Rayleigh quotient F£ goes to zero when e —> 0. Let

/Y£ = {(0,(r,5))e//£;O<r<§}.

Me\H£ is isomorphic to the Riemannian manifold (S"~x \D"~'(|)) xSx with

metric g + K2(x)ds2 , where k e C°°(Sn-x \ D"_1(f )) is defined as

(fix)   ifxeS"-x\D"-x(e),

K[X)     \a(x)    ifx = (r,e)eDn-x(e)\D"-x(^).
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(/ is introduced in the construction of M, and a in the construction of He.)

On ME\HE we define coE by coe = ds. By Lemma 2.3, this form is closed and
v 2

coclosed. On He we define coe by coE = ^ds. ((r, s) is the polar coordinate

used in the construction of He.) The 1-form coe on ME has the following

properties:

o There exists a positive constant c such that for any e > 0, JM \co£\2 > e .

o  dcoe = 0 on ME.

o  dcoE = 0 on ME \ HE.

o  \dcoE\ = conste-2 on HE and vol(/7£) = e" vol(Hx), so we have

L\dcoE\2 = const(e-2)2 x e"vol(Hx]

= const e"~4 ->0   as e -> 0.

Therefore RE -* 0 as   e —* 0.

Remark. By the homothety of the //e's, the curvature of Af£ is not bounded

under the deformation. The condition n = dimAf£ > 5 is crucial in the last

step of the proof of Proposition 2.2. The author does not know whether a

similar example can be constructed in dimensions 3 and 4.

3. Convergence of the eigenvalues of the Laplacian on functions

In this section we check that ME, e > 0, have the property (3) stated in §2.

The method of showing the convergence of the heat kernels and the eigenvalues
are modeled on that used in Chavel and Feldman [1, 2].

Notations : qe(x, y, t): the Dirichlet heat kernel on Ai \ Q;£.

pe(x, y, t): the heat kernel on ME.

A,(e): the z'th Dirichlet eigenvalue of M \ C0,£ (/' = 1, 2, ... ).

cTi(e): the z'th eigenvalue of Af£ (/' = 0, 1, ... ).

Definition. We define p(x, y, t), a function on M x M x (0, oo), as

p(x, y, t) = supqE(x,y, t).

Proposition 3.1. p ,pE, qE have the following properties:

(1) [6, Lemma 3.3] For any x, y e M\ Co,E and any t, we have

qE(x, y, t) < p(x, y, t),    qe(x, y, t) < pE(x, y, t),

qE(x,y,t)<qE'(x,y,t)       (e > e').

(2) [6, Lemma 3.7, the proof of Theorem 3.6] qE(x, y, t) converges to

p(x, y, t) uniformly on any compact subset of M x M x (0, oo).

(3) [6, Theorem 3.6] p(x, y, t) is of class C°°, and is a heat kernel in the

following sense.

For each bounded continuous function «o  on M we define u:M x
[0, cxd) !-► R as

u(x, t) = \
JM p(x,y,t)uo(y)dV(y),       t>0,

uo(x), t = 0.
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Then u is continuous on M x [0, oo) and, it is on M x (0, oo), of

C2 class with respect to x, of Cx class with respect to t, and satisfies

Au + §y = 0. Moreover, p(x, y, t) > 0, p(x, y, t) = p(y, x, t), and

¡Mp(x, z, t)p(z, y, s)dV(z) =p(x,y,t + s).

(4) [6, Proposition 4.5] p(x, y, t) is the kernel of the semigroup with gener-

ator A.

In order to show the convergence of the eigenvalues, we need upper estimates

of the heat kernels p ,pE,qE.

Proposition 3.2. We can estimate the Sobolev isoperimetric constant of HE U

CE>X(S"~2 x Sx), « > 5, for any e > 0 small enough from below by a positive

constant independent of e.

We prove this proposition in §4.

Proposition 3.3. Suppose e > 0 is small enough. Then, there is a constant

C(a, ß) for any a, ß e (0, oo), a < ß, independent of e, which satisfies the

following: For any x, y, t e [a, ß], and s, we have

pE(x,y,t), qE(x,y,t), p(x, y, t) < C(a, ß).

Proof. We see from Proposition 3.1 that it is enough to prove for pE(x, y, t).

According to [3, p. 198], we have the estimate

pE(x,y, t) < const{r* + tr^"+^}{Sob(Br(x)) • Sob(fir(y))}"i

for x, y e ME. Thus we only have to bound Sob B\ (x), the Sobolev isoperi-
4

metric constant of Fi (x) for each x e Me from below. We assume e < \ .

For x € He U Ce i (S"-2 xSx), Bl(x) is contained in HE u C£, x (S"-2 x Sx ), and

so, using Lemma 3.2, we can estimate Sob(Fi(x)) from below by a positive
4

constant independent of x and e. For x e M \ C0i(Sn~2 x Sx), BL(x) is

contained in Af \ C0 i (S"~2 x Sx ), and thus this case is the same as the above.

Proposition 3.4. (1) For each t > 0,

Ht:L2(M) -+ L2(Af),    f(x) ~ [ p(x, y, t)fi(y)dV(y)
Jm

is a compact selfadjoint operator.

(2) The eigenvalues of Ht are

exp(-A0i) > exp(-AiZ) > • • • (-> 0).

The eigenfunction corresponding to the eigenvalue exo(-X¡t) is a function inde-

pendent of t. We denote it by cp¡.
(3) The eigenfunction cp¡ is of class C2.

(4) The development
oo

p(x, y, t) = Y^z*v(-kt)cpi(x)cpi(y)
i=0

is uniformly convergent on any compact subset of M x M.

Proof. ( 1 ) We see that Ht is an integral operator of Hilbert-Schmidt type by

Proposition 2.3 and by the finiteness of the volume of Af.
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(2) By (1) and by the fact that Ht has semigroup property.

(3) We can see that <p¡ is continuous and bounded from the expression

exx)(-Á.jt)<Pi(x) = / p(x,y,t)tpi(x)dV(y),
Jm

and that it is of class C2 from Proposition 3.1(3).

(4) We see that p(x, y, t) is a positive kernel from the fact that H, has

semigroup property. We can claim (4) by this fact and the continuity of p

using Mercer's theorem (suitably modified to the case of a noncompact domain
with finite volume).

Proposition 3.5. (I) All the spectra of AD are eigenvalues and we have:

0 < A0 < Ai <-► +00.

The corresponding eigenfunctions are the cp¡ 's in Proposition 3.4.

(2) The constant junction 1 is an eigenfunction of Ad corresponding to the

eigenvalue 0. In particular Ao = 0.

(3) A0<Al

Proof. (1) exp(-Aoi) = Ht and Proposition 3.4(2) imply all except for 0 < Ao.

The claim 0 < Ao can be verified by the formula (Aocp, cp)Li = (dccp, dccp)ii,

since cp e Dom(Aß), where dc is the closure of the exterior differential operator
d operating on Cq°(M) .

(2) First we show 1 e H0l'2(M). We approximate 1 by elements of C^Af)
as follows. We define «£ e C0°°(Af) by

hE(x) = l, xeM\C0,s(Sn-2xSx),

hE(r,x) = <p(r/e),    (r,x)eC0,E(Sn-2xSx),re(0,e], x e S"~2 x Sx,

where cp e C°°((0, oo)) satisfies 0 < cp(r) < 1, cp = 0 on (0, j], cp = 1 on

[1, oo). Then we have hE —► 1 as e —► 0 in L2. And \dhE\ = const e_1 on

Co,e(S"-2 xSx), and vol(C0,£OS"-2 x Sx)) = const e"5 implies

/ \dhE -d-l\2= [ \dhE\2 = const en~2,
Jm Jc0,AS"-2xS')

from which we obtain dhE —► d • 1 = 0 as e —> 0 in L2 . Therefore we have

1 e H0X'2(M). And we see 1 e Dom(AD), AD1 = 0 from the fact that the

map Cq°(M) 3 cp \-> (Acp, 1)L2 (= ¡MAcp = 0) is continuous in L2.

(3) Let cp be an eigenfunction corresponding to the eigenvalue 0. Since

0 = (Aocp, cp) = (dccp, dccp), we have dccp = 0. But cp is of C2 class, and

thus we have dcp = dccp. Thus we have dtp = 0, which implies that cp is

constant by the connectedness of M.

Proposition 3.6. ( 1 ) For each x e M, and each t > 0, we have

[ p(x,y,t)dV(y) = l.
Jm

(2) For each x e M, and each t>0, we have

f qE(x,y,t)dV(y)^ [ p(x, y, t)dV(y) = 1.
Jm Jm
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Proof. ( 1 ) The constant function 1 is the eigenfunction of Ht corresponding

to the eigenvalue exp(-0 • t) = 1 (Proposition 3.5(2)).

(2) We can see the convergence by Proposition 3.1 (2) and the uniform bound-

edness of p and qE.

Proposition 3.7.

(1) lim/ qe(x,x, t)dV(x)= [ p(x, x, t)dV(x).
e^JM^JSn-ixS1) JM

(2) lim/   pE(z,z,t)dV(z)= I p(x,x,t)dV(x).
£-*° Jm, Jm

Proof. (1) Because, as e —> 0, qE(x, y, t) increases monotonically and con-
verges to p(x, y, t).

(2) Since we have

/ pe(z,z,t)dV(z) - f p(x, x, t)dV(x)
Jmc Jm

= {pe(x,x,t)-p(x,x,t)}dV(x)
Jmc\hc

+ [ Pe(z,z,t)dV(z)- f p(x,x,t)dV(x),
Jh, ^Co,£(S»-2x5')

it suffices to show that each term of the above formula converges to 0 as e —►

0. For the second and the third terms, we can verify the convergence by the
facts that pe and p are bounded uniformly with respect to e and that the

volumes of the domains of integral converge to 0 as s —> 0. For the first

term, it is enough to show that pE(x, x, t) converges to p(x, x, t) for each

x e M, since, because pE and p axe bounded uniformly with respect to e

and vol(M) < oo, we can verify the convergence of the term using Lebesgue's

convergence theorem. And it needs only to show qE(x, y, t) -* pE(x, y, t) —> 0

as e —► 0,   since we have qe(x, y, t) —> p(x,y,t).  For the purpose, it is

sufficient to show lim£^0 SMMeix ' y ' ^ ~ q£ix ' y > WfW dviy) = ° for any

/ e C^(M). But we have

1/{pE(x,y,t)-qe(x,y,t)}f(y)dV(y)
'Me

< sup |/0)| / {pE(x,y,t)-qE(x,y,t)}dV(y)
y€M Jmc

= sup 1/0)1 jl- / qE(x,y,t)dV(y)\,
y€M I       Jm )

which converges to 0 as e —► 0 by Proposition 3.6(2).

Proposition 3.8. For each i = 0, 1, ... ,

A,+i(e) —> A,,    <j7(e) -^ A,-   as e —> 0.
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Proof. We have
,. oo

p(x,x,t)dV(x)= ^exp(-A,i),
/

/Ja

M «=o
oc

pE(z,z,t)dV(z)= 5^exp(-ff,(e)i),
M< ;=0

Jm

oo

qE(x, x, t)dV(x) = Y]exp(-A,+i(e)i).
lM\Co,t(S"-ixS¡) *-¿

Therefore, by Proposition 3.7, we have

(1) limVexp(-Ai+i(e)/)= Vexp(-A/£),
i=0 ;=0

oo oo

(2) limJ]exp(-(j;(e)/)= ^exp(-A,i),
C_>   ¡=0 r'=0

but on the other hand, by min-max principle,

(3) ex >e2=*>A/(ei)>A/(e2),

(4) A,+1(e)>A,-,

(5) A/+i(e) >Oi(e),

for all / = 0, 1, ... . By (3), (4), we have lim£_oA/+i(e) = A, for each i =
0,1,..., since, if there existed a k such that lim£_o h+\ (e) > A¿ , ( 1 ) would

not hold. And by this result and (5) we see that limsupE^0 °"i(e) ̂  A,, for all

i = 0, 1,... . But we have also liminf£_0 ff/(e) > A, for all z = 0, 1, ... . To
see this, we show that if there exists a k such that lim inf£^0 <fy(e) < Afc, this
contradicts (2). Take a sequence {e/}^ c R+ such that e¡ -* 0, <j¡ciei) -*

liminf£_o <7fc(e) < At as / —> 0. Then we have

Vexpt-Aíí) = lim Vexp(-ff/(e/)í)
■^T /—»oo ~"

;=0

xp(-Afci) + J^exp (- | lim sup 07(e/) | M

(=0 j=0

> e

;¥*

> exn(-Àkt) + y^exp(-Ajt)

j*k
00

= ^exp(-A/i)-
;=0

Therefore we have lim£_0 o¡(e) = X¡ for all i = 0, 1, ... .

4. A LOWER BOUND FOR THE SOBOLEV ISOPERIMETRIC CONSTANT

of HeuCEtX(S"-2xSx)

In this section we prove:

Proposition 3.2. For e > 0 small enough we can bound from below the Sobolev

constant of HEliCeyX(Sn~2 x Sx) with a positive constant independent of e.
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In  1  we study the behavior of geodesies on metric cones.  In 2 we prove

Proposition 3.2.

1. On the behavior of geodesies on metric cones. First using coordinates we

express the equation of geodesies on a metric cone C(N) where N is an «-

dimensional Riemannian manifold (N, g). Let U be a coordinate neighbor-

hood of A, (xx, ... , xn) coordinates of U, (g¡j) the coordinate expression

of metric g, Ykj the Christoffel symbol of (g¡j), and (x°) the standard coor-

dinate of R+. Then we have U x R+ as a coordinate neighborhood in C(N)

with coordinates (x°, ... , x"). Let (gaß) be the expression of the metric g

of C(N), and r£» the Christoffel symbol of (gaß) ■ Then we can express gaß

as
(1, a = ß = 0,

&»/> = < 0, a = 0,  j^Oora^O,  ß = 0,

I (x°)2gafi,        1 <a,  ß<n,

and Tyaß as:

fkj = rkj       (l<i,j,k<n),

rV-*°gl7,   Ttj = ix°)-lsi,   ftj = r§o = r&, = o.

Using the coordinate expression above we can easily see that the equation of a

geodesic y(t) = (y°(t) = ñ o y(t), ... , y"(t)) in C(A) is expressed with the

coordinates (x°, ... , x") as

^(0-y°(0 ¿ ft^oy(0)^(O^W = o,
',7=1

^(0+tr4(..^<M
i,J=l

+2(y°(0)-1^(0^(0 = 0   forl<fc<».

Lemma 4.1. Let y(t) be a geodesic in C(N). Then n o y(t) is a geodesic in

N whose parameter is not affine. In particular, if we change the parameter t

for s(t) = Co // (ñ o y(t))~2dt,  with a nonzero constant Co, then s is an affine

parameter of noy. And, if weset Co = noy (t0) Jl-\-¡j¡ñ oy(t0)\2, then noy(s)

has speed 1.

Proof.   Let t —► s = s(t) be any parameter change. Putting

dya . .     dya . . ..ds . ,

d2ya,,     d2ya, . ^(ds, Z\     dya . , ^d2s . .

in the equation of geodesies, we obtain
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2

ds2

and we have

(ds\    d£dh     A   kd_f_d_yf_ (dsV        0)
\dt)      ds dt2 + L>    ,J ds ds \dt)  +   {7 '

1,7=1

dy° dyk ds

dt   ds dt
0

ds
dt

d2yk

ds2   '   ¿-* * li ds ds
'.7=1

yTkdrdr, dyk\ (d2s

ds

dy° ds

dt2 + 2(7 )     dt dt }-

for 1 < k < n.  Therefore, if we take a parameter change t -» s(t) which

satisfies

(1)
dt2+   (7)     dtdt      U'

then we have for 1 < k < «

d2yk

ds2
+ Erf,

i,j=i
dy' dy
ds ds

0,

that is, noy(s) is a geodesic with affine parameter s. The differential equation

(1) has a general solution s(t) = Co ¡{ (ft o y(t))~2dt. In order for n o y (s) to

have speed 1, Co must be chosen to be Co = ñ o y(t0)Jl - \j¡ñ o y(to)\2.

Lemma 4.2. The length L(cp) of the curve cp in C(N) from xx = (rx,px) to

x2 = (r2, p2), rx <r2, satisfies L(cp) >r2-rx.

Proof. Let cp be parametrized so as to satisfy cp(Q) = xx, cp(so) = xq , cp(s) = 1.

Then L(cp) = so , and

so
r\)

Jo ds
cp(s)

r° d
ds >       —ñotp(s)ds = r2-rx.

Jo   "s\C{N) JO

Lemma 4.3. If two geodesies cp,y in C(N) satisfy

ñ o <p(0) = ñ o y(0),

j-ñ o (p(0) > —ñ o y(0)     (resp. j-ñ o <p(Q) = —ñ o y(0)

then they satisfy ñ o cp(t) > ño y(t) (resp. ñ o cp(t) = ñ o y(t)) for t > 0.

Proof. We have

i?* ' '«>- (s* ° 'w)"'('- iii* °'<")2)=°-

From this we can see

ZZ{(*o yf)(t) = 2* o y{,) ZZi„ ,(,) + 2Íji. /(!))

= 2.

+ 2
£*"»)'
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We have the same formulas with y replaced by cp . Therefore we have

£-{(ñ o cp)2}(t) - ^{(ñ o y)2}(t) = ^{(ñ o <p)2}(0) - ^-{(ñ o y)2}(0).

On the other hand,

±{(ñotp)2}(0)-^{(ñoy)2}(0)

= 2 í A o <p(0) -j-ñ o <p(0) -ño y(0) —ñ o y(0)

/ A A
= ño y(0) (=-(ño <p(0) -=-ño y(0)

we have, for each t > 0,

^((ñ o cp)2)(t) - ^((ñ o y)2)(t) = 2ñ o y(0) (J-ñ o <p(0) - ^ñ o y(0)

From the assumption (ñ o cp(t))2 = (ño y(t))2, we have for each t > 0

(ñ o cp(t))2 - (ñ o y(t))2 = tx2ño y(0) (jñ o <p(0) - jU o y(0)

From this formula we can easily see that the statements of the lemma hold.

2. Proof of Proposition 3.2. Here we show that there exists a positive constant

c which satisfies {A(dD)}n/{Vol(D)}n~x > c for any domain D with smooth

boundary in HE U CE>x(Sn~2 x Sx) and for any e > 0.

In the following argument, we restrict e as small as we need.   We fix a

constant E, E > 2.

Notations.

Dx=Dn(HeUCe,EE(S"-2xSx)),

D2 = DnCEE,x(S"-2xSx),

yx=dDn(HEuCE,EE(S"-2xSx)),

y2 = dDnCEE,x(S"-2xSx),

TE = {(e,x)eC(Sn-2xSx); x e Sx}   (=dHE),

yE = DnrE,

He = HeuCEiEe(S"-2xSx).

Case 1.  Vol(L>i)>Vol(D2).
In this case, since we have

A(dD) = A(yx) + A(y2) > A(yx) + A(yEE)   (because D2 c CEE,x(Sn~2 x Sx))

= A(dDx) > {Sob(HE)}1n{V(Dx)}^ = {Sob(Hx)}1n{V(Dx)}!^

(because HE and Hx are homothetic)
n-\

>Q) "   {Sob(Hx)}Hv(D)}"-ï ,

we can estimate  {A(dD)}n/{Vol(D)}n~x   from below by a positive constant

independent of e and D.

Case 2.  Nol(D2) > Vol(Dx).
First we give a definition and a lemma.
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Definition. For x e D we define

Ix = {ÇeUxMe:y((t)edD,

7íl[0,í) is included in D, and a minimizing geodesic in Af£},

cox = p(Ix)/p(UxME)   (p is the standard measure of UXME).

Lemma 4.4 [Cro, p. 425]. Let the notations be as above. Then we have

{A(dD)}n (    ' ^"+1
$*«n){m)Laxdv{x)}  '

{V(D)Y

where c(n) is a positive constant depending only on the dimension «.

In the Case 2, using Lemma 4.4, we have

¿cM{vm Lz>dV{x)T

Therefore we need only to estimate cox, x e D2 from below.
We express x e D2 (c C(S"-2 x Sx)) as (r0,p0),r0eR+,p0e Sn~2 x Sx.

And we define an embedding z : R+ ^-> C(Sn~2 x Sx) by r *-> (r, po). Let y

be the geodesic in ME which satisfies y(r0) = x, y(ro) = Ç. Now we verify the

following claims in order:

Claim 1. Let Z(Ç, i*(Jp)) be the angle at which Z\ and t*($-r) meet. If

Z(Ç, i*(-§})) < f holds, then y$ reaches Ti before getting out of CEe x(Sn~2x
Sx).

Claim 2. Let tx (> ro) be the time y$ reaches Ti, and xx be the point

(1, px) - (1, n o y(tx)). If Z(£, i*(jf)) is small enough, then we have

distJV(Fo,7i°y(0)<min{inj(lS"-2xS1), 1}

for each t,  ro < t < tx . In particular, n o y(t),  r0 < t < tx,  is minimizing in
S"'2 x Sx .

Claim 3. If y satisfies the conclusion of Claim 2, then y|tro,f|] is minimizing.

Proof of Claim 1. This claim can be verified from jpñ o y > 0.

Proof of Claim 2. Using Lemma 4.1, we can express the length s(t) of n o

y\[r0,t), t<r0, as

s(t) = r0\ 1
d l2
u*°yiro)\  j (ñoy(t))~2dt.
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Now we take Ç e UXM so that it satisfies Z(£, u(j-r)) < §• Then we have

jptñ o y(rQ) > j , and from the fact that -¿¡jñ o y > 0, we see j¡ñ o y(t) > ± for

t > r0 . So, with the fact that ftñoy(t) < 1, we get \ < ño y(t) < t for t > r0 .

= s(t)

<r0]

Therefore we have

length of 7toy|[ro>i]

= 4r.

<4t  1

= 4A/l-cos2Z   i,z,

= 4 sin Z ( t\, u

From this we see that the conclusion of Claim 2 holds if t\ e UXM satisfies

¿it,h
d_
dr

< arcsin ( -min{inj(5'" 2 xSx),l)

Proof of Claim 3. Since ME is a closed Riemannian manifold, there exists a

minimizing geodesic from x = (ro, Po) to xx = ( 1, px ), cp : [0, t2] —> ME, <p(0)

= x, cp(t2) = xx. We show that cp and y coincide.

Lemma 4.5. If two points x^ = (r3 , p3), x4 = (1, p$), in CE<x(Sn~2xSx) satisfy

dist5n-2x5i03, P4) < 1, then we have distMc(Xi, X4) < 1.

Proof.

distMe(Xi, x4) < distMe((r3, Pi), (r3, p4)) + distME((r3, F4), (1, Pa))

< r3 dists„-2xSi03, p4) + distA/t((r3,p4),(l, pA))

<r3 + (l -r3)

= 1.

Lemma 4.6.  cp is contained in CEt2(Sn~2 x Sx).

Proof. First we show that no t e [0, t2] satisfies cp(t) e HE. Suppose there

exists a t e [0, t2] which satisfies <p(t) e HE. Let i3, t4 be

h = inf{te[0,t2]; <p(t) e HE},    u = sup{t e[0, t2]; cp(t)eHE}.

Then we have L(tp\[o,t2]) > L(^|[o,Í3]) + L(^|[Í4;(2]), and from this inequality

with Lemma 4.2 we obtain

L(9\[0,t2\) > (r0 - e) + (1 - e) > Ee - 2e + 1 > I.

On the other hand, we see from Claim 2 and Lemma 4.5 (letting x3 = x, x4 =

Xi) that x and JCi satisfy the inequality distA/c(x, xx) < 1 . But this contradicts
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the fact that cp is minimizing. In the same way as above, we can see that no
t e [0, t2] satisfies cp(t) i HE u CEy2(Sn~2 x Sx).

From Lemma 4.6, we see that n o cp(t), t e [0, t2] can be defined. This is a

geodesic (not affinely parametrized), passing from p0 to px. Now we have

fh d f'2 d
/   -rñoydt =   /    -rñocpdt = 1
Jro dt Jo   dt

since y, cp are both curves which passes from x to xx. From the fact that cp

is minimizing and that t2 < tx - r0, we obtain -ftñ o y(r0) < j¡ñ o ç>(0). And,

using Lemma 4.3, we have the inequality

ro,

L(7T o h) ) = ñocp(0)\ I £-tño<p(0)

2  r'l
2dt

<ño<p(0)\ 1 -
d .     .  ,
Tnoy(ro)

f\ñocp(t)y
Jo

2    fr0+l2

/        (ñoy(t))-2dt
JrQ

d -        i    S
Tnoy(ro)

2    ,f,

/    (Ä
Jr0

o y(t))-2dt<ñoy(r0)dl-

= L(K°y\[r0,tl]),

which is really an equality, by the fact that n o y|rr0)íl] is minimizing in Sn~2 x

Sx (Claim 2). Therefore we have j-tñ o y(r0) = £¡ñ o <p(0), ñ o y(r0 + t) =

ñ o cp(t), t > 0, from which we can see n o y(/Q + t) = no cp(t), that is, y and

cp coincide.
Now we complete the proof of Case 2 of Proposition 3.2. Any minimizing

geodesic which starts from x e D2 and reaches Fx necessarily passes 3D. So,

from the Claims 2 and 3, we see, for Z, e UXME,

¿U,U (j-\\ < arcsin Qmin{inj(S"-2 x Sx), 1}W £ 6 Ix.

This gives a lower estimate of cox = (p(Ix)/p(UxME)) independent of e, D.
We conclude the proof of Proposition 3.2.
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