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THE CONSTRAINED LEAST GRADIENT PROBLEM IN R"

PETER STERNBERG, GRAHAM WILLIAMS, AND WILLIAM P. ZIEMER

Abstract. We consider the constrained least gradient problem

infj i \Vu\dx: ueC°'l(Q.),  |Vw| < 1 a.e., u = g on diïl

which arises as the relaxation of a nonconvex problem in optimal design. We es-

tablish the existence of a solution by an explicit construction in which each level

set is required to solve an obstacle problem. We also establish the uniqueness

of solutions and discuss their structure.

1. Introduction

Consider the following minimization problem

(1.1) inf / W{\Vu\)dx
" Jo.

where Í2 c R", u: Q —> Rl and W is a nonnegative, nonconvex function.

Models of this type arise, for example, in elasticity [BP] or in optimal design
[KSI, KS2]. The nonconvexity of W is frequently a barrier to establishing the

existence of a solution, necessitating the "relaxation" of the problem, a process

which in this context, amounts to replacing W by its convexification W** . In

any region where the solution, uo, to the relaxed problem

inf/ W**(\Vu\)dx

satisfies W**(\Vuo\) < JV(\Vuo\), W** must be linear, so that in this region u0
will satisfy a least-gradient problem; that is, |Vt/n| will minimize /|Vm| in this

region, subject to boundary conditions and additional constraints on |Vh|l°o .

In [KS1] Kohn and Strang explore this phenomenon for a problem encoun-

tered in optimal design. The relaxed problem they obtain is the constrained

least gradient problem

(1.2) infj / \Vu\dx: ueC°-l(Çi),  |Vw| < 1 a.e., u = g on do\
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where g is a continuous function on dQ satisfying the Lipschitz condition

\g{p) - g{<¡)\ < dçi(p, q) for all p, g e dQ. Here the metric, í/q , on Q is

defined by

dn(x, y) = infjlength of y}

where the infimum is taken over all rectifiable curves y lying in Q joining x

to y. One can easily establish existence of a solution to (1.2) using the direct

method in the calculus of variations. From the standpoint of understanding

(1.1), however, one is most interested in the more difficult question of charac-

terizing the solution wo to (1.2). This is because, as is generally the case in a

relaxation process, uq will be a weak limit of a minimizing sequence for the

unrelaxed problem (1.1). In the absence of a minimizer to (1.1), then, knowl-

edge of the structure of «o leads to knowledge of the structure of a minimizing

sequence for (1.1) which in turn leads to "nearly optimal designs," [KS3].

In [KS1], the authors introduce a very interesting technique for actually con-

structing a solution to (1.2), by constructing each of its level sets. Their method

is based on the observation that the level sets of the solution u to ( 1.2) without

the constraint |Vm| < 1 are minimal surfaces. It is the co-area formula that

provides the connection between functions of least gradient and minimal sur-

faces. The co-area formula (cf. [Fl], [FR]) states that whenever u: Q —> Rl is

Lipschitz, then

f\Vu\dx=f    H"-l(Qf)u-l(t))dt
/|   <j\ «/Q J—oo

= /    P(A,,Q)dt
J—oo

where H"~l denotes (tt-l)-dimensional Hausdorffmeasure, At — Qf){x: u(x)

> t}, and P(At, Q) is the perimeter of At in Q. In the work of [BDG]
the area-minimizing property of level sets of functions of least gradient was

exploited to further understand the structure of area-minimizing surfaces. In

the present work and in our study of the unconstrained least gradient problem

[SWZ1], the opposite point of view is adopted. That is, we use virtually the full

strength of codimension-1 minimal surface theory to gain a better understanding

of the structure of functions of least gradient.

With the constraint |Vm| < 1 present, it is, of course, no longer true in general

that the set u~l(t) is locally area-minimizing. Indeed, consider an arbitrary

point p e dQ, and a point x € £2 such that u(x) = t. The condition on each

competitor u in (1.2) that all difference quotients be bounded above by 1 leads

to the requirement \t — g(p)\ <dci(x,p). This implies that x must avoid the

union of all balls relative to the metric í/q , fí n {x: dn(x, p) < \g(p) - t\,
p G dQ.} and led Kohn and Strang to conjecture that the solution «0 could

be constructed by requiring the set {uq > t) to minimize perimeter among all

competitors E for which

E D {{J{x: da(x, p) < g(p) - t}, pedQ,  g(p)>t] ,

while E omits the interior of the set

{\J{x:dSi(x,p)<t-g(p)}, pedQ, g(p)<t}.
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Thus, for each t, the set {u0 > t] = Et must solve the double obstacle problem.

It was formally shown in [KS1] that this method succeeds in R2 and the first

objective of this paper is to provide a rigorous proof in R" , n > 2.
In order to show that the function u constructed in this manner is a solution

to (1.2), it is necessary to first show that u is Lipschitz with constant 1. One of

the major results of this paper is the fact that the sets dEs and dEt are suitably

separated. That is, the distance dçi(dEs, dEt) is no less than \s-t\ for all s, t.

The obstacle construction would appear to only provide this separation at the

boundary. Roughly speaking, however, the level sets will be semisolutions of

the minimal surface equation, and interior separation can intuitively be seen as

a consequence of a minimum principle for elliptic partial differential equations.

In §2, we introduce notation and basic information concerning B V func-

tions and sets of finite perimeter. Section 3 introduces the obstacles that are

employed in the construction of what will be the level sets of our solution. It

also incorporates the results of Tamanini [Tl] which allows us to establish pre-

liminary C1 ' 1/,2-regularity results for the level sets. Section 4 contains our proof

that the construction yields a solution to our problem in R" .

The proof of Theorem 4.5, which states that dEs and dEt are suitably sep-
arated, is rather long and involved. If one is willing to assume that Dirichlet

data g satisfies the stronger condition \g(p) - g(q)\ < \p - q\ where \p - q\

denotes the Euclidean distance between p and q , then the proof of this theo-

rem simplifies considerably. We present the simpler proof under this stronger

hypothesis in §5.
In §6 we construct a solution to (1.2). Then in §7, we establish the uniqueness

of solutions to (1.2). Hence, the above mentioned construction yields the only

solution to the problem. Finally, in §8, we present a reformulation of the least

gradient problem in which the constraint |Vu| < 1 is replaced by the condition

f(x) < u(x) < F(x) for suitably defined Lipschitz functions / and F. This

allows us to obtain detailed information on the structure of the solution «0 at

points x which avoid both obstacles.

The authors would like to thank Robert Kohn for suggesting this problem and

providing useful background material. They are also indebted to Bruce Solomon

who gave generous amounts of time during many interesting and helpful con-

versations related to this work.

2. Notation and preliminaries

The Lebesgue measure of a set E c R" will be denoted by \E\ and Ha(E),

a > 0, will denote a-dimensional Hausdorff measure of E. Throughout,

we almost exclusively employ Hn~x . The Euclidean distance between points

x, y e R" will be denoted by \x - y\. If Q c R" is an open set, the class of
functions u e L'(Q) whose partial derivatives in the sense of distributions are

measures with finite total variation in Q is denoted by BV(Q) and is called the

space of functions of bounded variation in Q. The space BV(Q) is endowed
with the norm

(2.1) INUK(n) = ||"lli;n + l|VM||(fl)

where ||Vw|| is the total variation of the vector-valued measure Vu defined for
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each nonnegative, continuous function / on Q with compact support by

||Vw||(/) = sup ( Í u divw dx: v = (Vl,...,v„)£ C0°°(Q ; R"),
(2.2) Un

\V(X)\ <f(x)f0TX€0\ .

The following compactness result for BV(Q) will be needed later, cf. [GI] or

[Z].

Theorem 2.1. If Q c R" is a bounded Lipschitz domain, then

BV(Q)n{u:\\u\\BV{Çl)< 1}

is compact in Ll(Q). Moreover, if u¡ —► u in Ll(Q), and U c Q is open, then

liminf||Vu,||(t/)>l|Vu||(t/).

A Borel set E c R" is said to have finite perimeter in Q provided the

characteristic function of E, xe , is a function of. bounded variation in Q.
Thus, the partial derivatives of xe are Radon measures on Q and the perimeter

of E in Q is defined as

(2.3) P(E,Q) = \\Vxe\\(Q).

A set E is said to be of locally finite perimeter if P(E, Q) < oo for every

bounded open set Q c R" .
One of the fundamental results of the theory of sets of finite perimeter is

that they possess a measure-theoretic exterior normal which is suitably general
to ensure the validity of the Gauss-Green theorem. A unit vector v is defined

as the exterior normal to E at x provided

limr-"\B(x,r)r\{y. {y - x) • u <0, y i E}\ = 0
r-»0

and

(2.4) hmr-n\B(x,r)n{y:{y-x)-v>0, yeE}\ = 0,
r-»0

where B(x, r) denotes the open ball of radius r centered at x . The measure-

theoretic normal of E at x will be denoted by u(x, E) and we define

(2.5) d*E = {x:v{x,E) exists}.

Clearly, d*E c dE, where dE denotes the topological boundary of E. Also,

the topological interior of E is denoted by E' = (Rn - dE) n E and the topo-
logical exterior by Ee = (Rn - dE) n {Rn - E).

If E c R" is a Borel set, we define the measure-theoretic boundary of E as

^={*:0<hmsup'  ,3^;/}

n < x : lim irM*En*X'ß<l
(2.6)

n i y-  lim inf-!—
|J?(jc,r)|

In other words, the measure-theoretic boundary of E is all points at which the

metric density of E is neither 1 nor 0. Clearly, d*E c di^E c dE. Moreover,

it is well known that

(2.7) E is of finite perimeter if and only if Hn~l(dME) < oo
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and that

(2.8) P(E, Q) = Hn~x{Q n dME) = //""'(Q n d*E),

cf. [F2, §4.5]. From this it easily follows that

(2.9) P(E U F, Q) + P(E n F, Q) < P(E, Q) + P{F, Q),

thus implying that sets of finite perimeter are closed under finite unions and

intersections. The Gauss-Green theorem in this context states that if E is a set

of locally finite perimeter and V: R" -» R" is a Lipschitz vector field, then

(2.10) / divV(x)dx = [    V{x)-v(x,E)dHn-l(x),
Je Jd'E

cf. [F2, §4.5.6]. This result allows us to identify sets of finite perimeter as n-

dimensional integral currents. We shall use only a few basic facts concerning

currents and refer the reader to [SI] or [F2] for further details.

By definition, sets of finite perimeter are determined only up to sets of mea-

sure zero. In other words, each set determines an equivalence class of sets

of finite perimeter. In order to avoid this ambiguity, whenever a set of finite

perimeter, E, is considered, we shall employ always the measure-theoretic clo-

sure as the set to represent E. Thus, with this convention, we have

(2.11) x&E if and only if lim sup ̂ fl^*''^ > 0.
r^o       \B(x,r)\

With this convention in force, it can be shown that

(2.12) WE = dE,

where A denotes the closure of a set A, cf. [GI, Theorem 4.4].

Of particular importance to us are sets of finite perimeter whose boundaries

are area-minimizing. If E is a set of locally finite perimeter and U a bounded,
open set, let

(2.13) yt(E, U) = \\VxE\\(U)-inf{\\VXF\\(U):EAFmU}

where EAF denotes the symmetric difference of E and F. dE is said to

be area-minimizing in U if i//(E, U) = 0 and locally area-minimizing if

y/(E, U) = 0 whenever U is bounded.
The regularity of dE will play a crucial role in our development. In particu-

lar, we will employ the notion of tangent cone. Suppose dE is area-minimizing

in U and for convenience of notation, suppose 0 e U D dE. For each r > 0,

let Er = Rn n {x: rx e E}. It is known [SI, §35, MM, §2.6] that for each
sequence {r,} -> 0 there exists a subsequence (denoted by the full sequence)

such that Xeu converges in L¡oc(Rn) to xc , where C is a set of locally finite

perimeter. In fact, dC is area-minimizing and is called the tangent cone to

E at 0. Although it is not immediate, C is a cone and therefore a union of

half-lines issuing from 0. It follows from [SI, §37.6] that if C is contained in

H where H is any half-space in R" with 0 e dH, then dE is regular at 0.
That is, there exists r > 0 such that

(2.14) B(0, r) n dE is a real analytic hypersurface.
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Furthermore, if we denote by regdE the set of points of dE where dE is

regular, then

(2.15) Ha{{dE-regdE)nU) = 0,    foralla>« = 8.

We will need the following result which is a direct consequence of a maximum

principle for area-minimizing hypersurfaces recently established in [S2].

Theorem 2.2. Let E c F and suppose dF and dE are area-minimizing in an

open set U c R" . Further, suppose x e {dE) n {dF) n U. Then the components

of U n dF and U n dE that contain x are equal.

Proof. For B{x, r) c U, consider the set of all components S of B{x, r) n

regdE and recall from the proof of [S2, Corollary 1] that only a finite number

of such S can intersect B{x, r/2). Moreover, since regdE is dense in dE

[SI, §36.2], it follows that there exists a component Si whose closure contains

x . With a similar description pertaining to the components T of B{x, r) n
reg 9 F, let Ti correspondingly denote that component whose closure contains

x . Then, it follows from [S2, Corollary 1] that S\ = T\. The result now readily

follows.   D

We will need a further result related to the regularity of dE.

Lemma 2.3. Suppose dE is area-minimizing in an open set U. For xo € U-E,

let >>o € E have the property that

(2.16) \xo-y0\ = M{\xo-y\:yeË~}.

Then yo E. regdE.

Proof. Let H be the half-space defined by

H = {x:{xo-yQ) • {x -y0) < 0} .

If yo ^ reg dE, then from the fact preceding (2.14), we would conclude that the

closure of the tangent cone to E at y0 is not contained in H. For convenience

of notation, let y0 = 0. This_ would imply the existence of x $ H and a

sequence {x¡} —> x, x¡ ^ H, where x¡ is of the form x¡ = yn/rj with

r¡ —> 0+ and yr¡ g E. Because of (2.16) and since yr¡ e E, it follows that

(2.17) limsupxo-f^T <0.
i—too \yr¡ |

However, x • Xq/\xq\ > 0 and therefore lim/-_00.xo/|-><:o| ' xil\x¡\ > 0 which

implies that
y

lim inf x0 • 7—7 > 0,

a contradiction to (2.17).   D

3. Obstacles and area-minimizing hypersurfaces

We now begin the construction of the solution to the problem stated in (1.2).

Throughout the remainder of this paper, Q will be taken as a bounded, Lip-

schitz domain. Also, we may take Q to be connected, for otherwise we can

consider a distinct least gradient problem on each component. Recall the defi-

nition of the metric, í/q , given by

da{x,y) = inf {length of y}
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where the infimum is taken over all rectifiable curves y lying in Q joining x to

y. Since any such curve has a Lipschitz parameterization, an application of the
Arzela-Ascoli Compactness Theorem yields the existence of a curve (geodesic)
that attains the infimum above. Observe also that if x e Q and {x,} is a

sequence in Q converging to x, then

(3.1) lhr/"(X"f = 1.
I—»oo    \Xj — X\

We assume that the Dirichlet data g: 9Í2 —> Rl is a Lipschitz function with

constant 1 relative to the metric í/q . That is,

(3.2) \g{p)-g{Q)\<dn{p,q)   iorp,qedQ.

We will let

(3.3) [a, b] = \Ç]I' / an interval containing g(<9QH .

For each real number t e[a, b] we define obstacles Lt and Mt as follows:

(3.4) Lt = {\J{x: da(x, p) < g{p) -t}, pedQ, g{p) > t] ,

(3.5) Mt = {\J{x:da(x,p)<t-g(p)}, pedQ, g{p)<t).

Clearly, Lt and Mt are closed sets for suppose x, ->• x where í/q(x, ,/>,-) <

g{Pi) - t. Then, after passing to a suitable subsequence, p¡ —> p for some
p G dQ and therefore, í/q(x , p) < g{p) - t since g is continuous. Note that

(3.6) Ltn(Mty = 0,

for if x e Ltr\{Mt)', there would exist p, q & dQ such that í/q(x , p) < g{p)-t

and í/q(x , q) < t - g{q). Hence,

dçi{p, î) < dçi{x, p) + í/q(x , í) < g(p) - t + t - g{q) < dü{p, q).

Thus, equality holds and therefore x lies on a geodesic j oining p and q. Points

on this geodesic closer to p than x cannot be in Mt for otherwise the argument
above could be repeated with x replaced by this closer point to yield a strict

inequality, an impossibility. Thus, x £ (A/,)'. A similar argument yields

(3.7) Mt n (L,)' = 0.

We also note that

(3.8) \Qr\dLt\ = \Qf\dMt\ =0.

Letting i?(/;, r) denote the closed ball of radius r > 0, we employ the Vitali

Covering Theorem to find a sequence of closed balls {/?,} such that each B¡

is contained within some B{p, g{p) - t) and that \Lt - (Jíi(#< n Q)| = 0.

Therefore, almost all of \Qr\dLt\ is contained within (J^i 9B¡:. Finally, note

that if x e dLt, so that í/q(x , p) = g{p) - t, then it is possible to find a point

p' edQ such that

(3.9) \x - p'\ = g{p') - t

for some p' e dQ. To see this, note that if a geodesic joining x to p is
not a line segment, then there is a point p' e dQ on this geodesic such that
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í/q(x , p') = \x —p'\. The conclusion follows from the triangle inequality. Sim-

ilarly, if x G dMt, then there exists a point p' G dQ such that

(3.10) \x-p'\ = t-g(p')

for some p' G dQ.
The analysis of the following minimization problem is one of the major con-

cerns of this paper. For each t employed in (3.4) and (3.5), consider

(3.11) A, = inf{P{E,Q):QDEDLl, Fn (A/,)'= 0}

and the related problem

(3.12) pt = sup{|F| : E a solution of (3.11)}.

We begin the analysis by observing that there is a set E that attains the

infimum in (3.11), for if {F,} is a minimizing sequence, then Theorem 2.1

provides a subsequence such that xe, -» Xe a.e. with liminf^oo ||V^£,||(Q) >

||V^£||(Q). If we define F0 = E* U {L, - E) (see (2.11)) then clearly F0 D L,

and P{E, Q) = P{Eo, Q) since \Lt - E\ = 0. Reference to (3.6) shows that

Eq n {Mty = 0 and therefore Eq is a minimizer for (3.11).

We now proceed to investigate the regularity of such minimizers. For this,

we begin with the following.

Lemma 3.1. If E is a minimizer 0/(3.11) and F a competing set in (3.11),

then P{E, U) < P{F, U) whenever U is an open subset of Q and EAF m U.

Proof. We may as well assume that P{F, U) < 00, in which case P{F, Q) < 00

by (2.7). The hypotheses imply that

(3.13) \\Vxe\\{Q)<\\Vxe\\{Q)

with

(3.14) IIV^H(Q) = \\VXe\\{U) + \\VXe\\{Q - U)

and

(3.15) IIV^H(Q) = \\Vxf\\{U) + \\VXf\\{Q - U).

Now E = F in Q - EAF and therefore, by (2.2)

\\Vxe\\{V) = \\Vxf\\{V)

for every open set  F c Q - {EAF).   Hence, by the outer regularity of the

measures ||V/£|| and \\VxfII, we have

||V^||(ß-t/) = ||V^||(Q-C/).

Reference to (3.13), (3.14), and (3.15) yields

\\VXe\\{U)<\\Vxf\\{U).   D

Corollary 3.2. If Et is a minimizer of{2>.\\) and Ut c Q - {Lt n Mt) an open
set, then y/{E, Ut) = 0. That is, dEt is area-minimizing in Ut.

Proof. Let F be a set with EAF <g Ut. It is an easy matter to verify that F is

admissible in (3.11) and thus, the result follows from the previous lemma.   G

This result implies that dEt is real analytic everywhere in Q - {Lt U Mt)

except for a small singular set, see (2.14) and (2.15). In order to obtain some
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regularity of dEt near the obstacle Lt, we will invoke the following work of

Tamanini [Tl]. For each set F of finite perimeter and each open set U we
recall (2.13) and define

y/{E, U) = P{E, U) - inf{F(F, U) : FAE m F},

Vo(E, U) = P{E, U)-mf{P{F, U): FAE m U, FcF},

y/{{E, U) = P{E, U) - inf {P{F, U):FAE<g U, FcF}.

A major result proved in [Tl] is the following.

Theorem 3.3. F is locally of class Cl'a if and only if it is of class C1 and

y/{E,B{x,r))<Crn-nla

for every x G dE and every small r > 0 where C is some local constant

independent of r.

An obstacle L is said to satisfy an interior ball condition of radius R if for

each x G F, there is a ball B c L of radius r > R such that x G B. We

will prove that the obstacles defined in (3.4) and (3.5) satisfy an interior ball

condition of radius e > 0 at all points in Q that are at least a distance of 3e
from <9Q.

Lemma 3.4. For each x G Lt n {x: dist(x, dQ) > 3e} there exists a ball B{e)

such that x G B{e) c Lt. The obstacle Mt satisfies a similar condition.

Proof. Let x G Lt n {x: dist(x, dQ) > 3e}. Then there exists p e dQ such

that í/q(x , p) < g{p) - t. Let y be a geodesic in Q joining x and p, and let
x' G y satisfy

í/q(x, x') = |x -x'l = e.

Note that B{x' ,e)cQ since dist(x, dQ) > 3e . Now let y e B{x', e). Then,

\x' - y\ = í/q(x' , y) <e and

da{p,x') = da{p, x) - \x - x'\ < g{p) - t - \x -x'\ = g{p) - t - e.

Hence,

da(p, y) < da{p, x') + \x' -y\< g{p) -t-s + s = g{p) - t.

Thus, y €Lt.   D

For our purposes, the significance of the interior ball condition lies in the
following facts established in [Tl]. If an obstacle L satisfies an interior ball
condition of radius R in £ïëfl, then

(3.16) Wo{L,B{x,r))<nr"/R

whenever B{x, r) c Q'. Now, by considering complements, we see that if M
satisfies an interior ball condition of radius R in Q', then

(3.17) y/x{Rn - M, B{x, r)) < nrn/R

whenever B{x, r) c Q'.
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Theorem 3.5. If Et is a minimizer of(3.11), then dEt isa Cx'll2-hypersurface

in a neighborhood of each point in Q n dEt n {dLt U dMt).

Thus, one can represent dE, as the graph of a function f in a neighborhood

of some point x G Q n (<9F, u (9 A//), and for all small r > 0, the oscillation of

|V/| in B{x, r) is less than Crx>2 where C = C{R). In [SWZ2] the regularity
in the above theorem is improved by showing that dEt is, in fact, of class

C1 •1. Reference to Figure 4 below shows that this result is essentially optimal.

Proof. Let E, be a solution of (3.11). Then from Lemma 3.1, E, satisfies the

double obstacle problem

LtcE,cQ- {M,Y

and
P{E,,U)<P{F,U)

for all U open, Í7 g Í2 and all F such that FAF m U and L, c F c
Q - (Mí)'' . We claim

(3.18) y/{Et, U)<y/0{Lt, U) + ¥l{Q - {M,y , U)

whenever í/iíí. To this end, consider FAF, d U. Define G = (F u Lt) n

(£2 - (A/.)'). By appealing to (2.9) we have

P{{F U U) n (H - (A/,)1'), t/) + F((F U L,) U (fl - (A/,)''), [/)

< P{F UL,,U) + P(Q - {Mty , U)

and
F(F ULt,U) + P{F nL,,U)< P{F, U) + P{Lt, t/).

Thus, since G is a competitor,

P{E,,U)<P{G,U) = P{{FuLt)n{Q-{Mty),U).

Hence,

P{Et,U)-P{F,U)<P{Ll,U)-P{FnLt,U)

+ P(Q - {Mty , U) - P{F U (S - (A/,)''), t/)

<^,i') + ̂ (n-(M()i,(/)

which establishes our claim (3.18). An easy modification of the argument of

Tamanini [Tl] shows that dE¡ G C1 in a neighborhood of dEt n {dL, Li dM,).
Now reference to (3.16) and (3.17) allows us to apply Theorem 3.3 to establish

the theorem.   D

In summary we have the following result.

Theorem 3.6. If Et is a minimizer o/(3.11), then
(i) dEt is real analytic in a neighborhood of each point in iîn<9F,-(singdF,u

L, U Mt) and singdF, c Q n dEt - {L, U Mt).
(ii) dE, is C1 ' l/2-regular in a neighborhood of each point of QndE, n {dL, U

dMt).

Remark 3.7. We conclude this section by observing that there is a set F that

attains the supremum in (3.12). Indeed, if {F,} is a sequence of admissible sets

in (3.12) such that lim;_oo |F,| = p,, then Theorem 2.1 yields a set F of finite
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perimeter in Q and a subsequence such that xe¡ -* Xe almost everywhere.

Letting F0 = F U (L, n Q - E), we have \L, n Q - E\ = 0, F0 D L, n Q and
Fo" n (Af,)' = 0. Therefore

A, = liminf HV^-IK«) > HV^IKQ) > A,.
I—»oo

Thus, there is a set F0 that is an extremal element of both (3.11) and (3.12) and

therefore enjoys the regularity properties of the preceding theorem. Henceforth,

we will denote the closure of this set by F..

4. Analysis of the level sets

Now that the structure of the sets E, is known from the previous section,

we proceed to establish the separation of the sets dE, for different values of

t. This will be a crucial ingredient in the construction of our solution to (1.2).

Recall our convention regarding the definition of F. in Remark 3.7.

Lemma 4.1. If a < s < t < b, where [a, b] is defined in (3.3), then Es d E,.

Proof. Clearly Esf)E,D L, and {Es n E,) n (F,)' = 0 . Hence

(4.1) P{EsnE,,Q)>P{E,,Q).

In view of (2.9), this implies that

(4.2) P{ESUE,,Q)<P{ES,Q).

Since Es u E, is admissible for Xs in (3.11), the inequality in (4.2) cannot

be strict. On the other hand, if equality holds in (4.2), then \ES u Et\ < \ES\
because of the maximality of \ES\, (see Remark 3.7). Hence, \E, - Es\ — 0. In

light of (2.11), we conclude that E, c Es.   D

A function u G CX{W) is called a weak subsolution {supersolution) of the

minimal surface equation in W if

Mu{<p) = f    JU'*V   dx < o       (> 0)
Jw v/1 + |Vm|2

whenever (p G C¿ {W), <p > 0.

The following result will be stated in the context of R"~x because of its

applications in the subsequent development.

Lemma 4.2. Suppose W is an open subset of R"~x. If u\, u-i G Cx{W) are

respectively weak super and subsolutions of the minimal surface equation in W

and if Ui(xo) = «2(^0) for some xo G W while «i(x) > ui{x) for all x G W,
then u\{x) = u2{x) for all x in some closed ball contained in W centered at

Xo .

Proof. Define

u, = tui + {\ - t)u2   fort G [0,1],

W - Mi - «2,

Jo     ' \^l + \Vu,{x)\i)

fx y/l + |Vm,(x)|2<5¡7 - Dx¡ut{x)DXju,{x)

Jo   ' (l + |VWí(x)2|)3/2
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Since both u\ and u2 are continuously differentiable in W, for each open

set V m W containing xo there exists K > 0 such that |Vm((x)| < K for all

x eV and all t G [0, 1]. Hence,

aiJ\x)C¿j > (1+^2)3/2KI2 .    for all f G R"~x, x € V,

^2aiJ{x)2<A,    forallxGF
i,j

for some A = A{K) < oo . For <p e C0X{ W), q> > 0, we have

0 < Mu\{<p) - Mu2{<p)

'Vu,{x).V<p{x)\dtdx
yi + lvM/(x)py

= /  a'j{x)DjW{x)Dj<p{x)dx.
Jw

Thus, u> is a weak supersolution of the equation Di{a'JDjW) = 0 and since

w > 0, the weak Harnack inequality [GT, Theorem 8.18] yields

\ Up

H\      Jb
\w{x)\pdx        <C  inf io = 0

B(x0, 2r) ) B(xo •r)

whenever 1 < p < p/{n - 2) and B{x0, 4r) c W.   D

Since our objective is to construct a Lipschitz solution  u with Lipschitz

constant 1, we will need to prove that

(4.3) da{dEs,dE,)>\t-s\.

For this purpose, we introduce the following notation. For fixed s and /, let

x = {QndEs) x (OndE,),

(4.4) A = inf{dsl{x,y):{x,y)eX},

N = Xn{{x,y):dçl{x,y) = A}.

We also need to define the following 5 sets. In the definitions of S4 and S5,

the following notation will be employed. If x G Q n dEs n {dLs U dMs), then

by Theorem 3.6, dEs is a C1 ■ 1/2-hypersurface in B{x, r) for some r > 0.

Therefore, if we let n denote the orthogonal projection n: R" -* TdEs{x) where

TdEs{x) is the tangent hyperplane to dEs at x, then the restriction of n to

5(x, r) n dEs{x) is univalent. We will denote the inverse of this mapping by

«,.

(4.5)
Si = N n {(x, y) : a geodesic from x to y intersects dQ),

S2 = N n {(x, y) : x ^ y, there exists q\ G dQ such that

xedB{qx, \g{q{) - s\) &nà x = qx +T{y-qx)

for some t g (0, 1)},

5*3 = N n {(x, y) : x ¿ y, there exists q2 G 9Q such that

y G ôfi(02, \g{Qi) - t\) and y = q2 + t(x - q2)

for some t g (0, 1)}.
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The next result is the final bit of preparation needed for the main results to

follow. Let E, be a solution of (3.11) and let x G Q n dE, - M, be a point
at which dE, is C1, '^-regular. Then, with the notation introduced in the

paragraph preceding (4.5), dE, can be represented as the graph of a function

u, where

u,{w) = v{x, Et) • (üt{w) - x)

for all w G B{x, r) n TgEl{x) and where v{x, E,) is the unit exterior normal

to E, at x. Thus, since u, is at least of class C1 near x,

H"-x{B{x,r)ndE,)= [ Jl + \Vu,{w)\2dH"-x{w)
Jn{B(x,r)ndE,)

for all small r > 0. Let Wx be an open set relative to Tqe,(x) sucn that

Wx c n{B{x, r)ndE,). Let <p e C0X{WX). Because x £ M, by assumption,

for all sufficiently small r > 0 the set

Fi,e = (F(-ß(x,r))U(Gi,£nß(x,r)),

is admissible in (3.11), where G,tC is the set under the graph of u, + eq>, where

"under the graph" is defined relative to the coordinate system induced by TaEl(X)

and v{x, E,). Therefore, with /(e) defined by

0<f{e) = P{E,,e,Q)-P{E,,Q)

= [   J\ + \Vu,{w) + eV<p{w)\2 -Jl + \Vut{w)\2dH"-x{w),
Jwx

it follows that

os/*«»./ ^aa|¿r'W
Jwx vl + \Vu,{w)\2

for all test functions <p such that <p e CX{WX), sptç? c Wx , and (p > 0. That

is, w, is a weak supersolution of the minimal surface equation in Wx , relative

to the coordinate system defined in terms of TaEt(X) and v{x, E,).

Similarly, if x G Qr\dE,-L,, then u, is a weak supersolution of the minimal

surface equation relative to the coordinate frame determined by TqE,(X) and

-v{x, dE,). In summary, we have the following.

Lemma 4.3. If x G Q(~)dEt - M, and dE, is Cx • xl2-regular at x, then in some

neighborhood of x, ut is a weak supersolution of the minimal surface equation

relative to the coordinate frame determined by TdEtM and v{x, E,). Also, if

x G Q n dE, - L, and dE, is Cx •xI2-regular at x, then in some neighborhood

of x, u, is a weak subsolution of the minimal surface equation relative to the

coordinate frame determined by T9E^X) and v{x, E,).

We now are able to establish a result fundamental to this paper.

Theorem 4.4. With the notation of (4.4) and (4.5)

(4.6) JVnijJSfU0.

Proof. Define

Q = {xeQndEs:{x,y)eN for some y G Q n dE,},

C, = {y G Q n dE, : {x, y) e N for some x G QndEs}
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and observe that both sets are closed in R". The proof is divided into four

parts and is by contradiction. Thus we assume that

(4.7) Nnl[jsA=0.

With this assumption, we will prove that Cs and C, are relatively open in

Q n dEs and Q n dE, respectively. We will assume without loss of generality,

that s <t.

Part 1. Under assumption (4.7), Cs is relatively open in dEs. That is, for

each point Xo G Cs there exists an open ball B{xq , r) such that

(4.8) B{x0,r)ndEscQ.

We begin by selecting xo G Cs. Then there exists y o G Ct such that |xo -

yo| = A; that is (xo, yo) G N. We now examine the various possibilities that
can occur when (xo, yo) G N. There are 7 possible configurations and we

examine each one in light of assumption (4.7).

Case 1. Assume x0 £ dLsUdMs, y0 f dL,UdM, and A > 0. Since
Si n N = 0 by assumption, the geodesic joining Xo to yo is a straight line

segment. Corollary 3.2 states that dEs is area-minimizing in Q - {Ls U Ms)

and similarly for dEt. Consequently, Xo G reg dEs and y0 G reg d F, by
Lemma 2.3. Moreover, the respective tangent hyperplanes at xo and yo must

be parallel. Thus, the functions us and u, whose graphs locally describe dEs

and dEt are solutions to the minimal surface equation as described in Lemma

4.3 and may be assumed to share the same domain of definition. We may now

invoke Lemma 4.2 to establish the claim (4.8) in this case.

Case 2. Assume x0 £ dLs U dMs, y0 £ dL, u dM, and A = 0. Refer to
Lemma 4.1 to conclude that E, c Es and then use Theorem 2.2 to establish

(4.8).

Case 3. Assume Xo G Q n {dLs U dMs), so that there exists q\ g dQ such that

da{xo, q\) = \g{q\) —s\ and A > 0. By virtue of (3.9) and (3.10), there exists

q* G dQ such that |x0 - q*\ = \g{q*) - s\. Therefore, we may take q* = q\

and assume |xo - q\\ — \g{q\) - s\. Note that Xo ^ dMs for otherwise the

assumption N n (Si U S2) - 0 would imply |yo - <7i| < |xo - <?i| < s - g{q\) ■
Hence, y0 G Ms, an impossibility since yo G E, and E, n Ms = 0. Thus,

Xo G Qr\dEsndLs -Ms and Theorem 3.6 along with Lemma 4.3 yield that us,

whose graph locally describes dEs in a coordinate system defined by TdEs(Xo)

and (yo - Xo)/|yo - xq\ = -v{xq, Es) is a weak subsolution of the minimal

surface equation. Furthermore, the assumption N f) S2 = 0 implies that the

points q\, y0 and Xo are colinear and are aligned in the order stated. We now

claim that dE, is either unconstrained at yo or yo G dM,. To this end, we

assume by contradiction that yo G dL,. In view of Theorem 3.6, there exists a

tangent plane to dEt at yo. Because N nSi = 0 by assumption, we have that
the geodesic joining xo to yo is a line segment. Hence, the tangent planes at

the points in question are parallel. By the assumption N n S3 = 0 and Lemma

3.4 there exists a point p e dQ such that

(4.9) \p - yo\ = g{p) -1
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and such that yo, xo and p lie in this order on a line segment joining y0 to p .

We then have the colinear ordering q\, yo, xo, and p . By (4.9), it follows that

the entire line segment joining yo to p lies in L,. However, xo G dLs implies

the line segment joining x0 to p has nonempty intersection with Rn-Ls. This

contradicts the containment L, c Ls. We have thus established our claim that

yo £ dL,. Regardless of whether dE, is unconstrained at yo or y0 G dM,, the
set dE, is locally representable near yo as a graph, u,, of a Cx • x¡2 function

through an appeal to Lemma 2.3 in the first case and Theorem 3.6 in the second.

In either case, u, will be a weak supersolution of the minimal surface equation

relative to the coordinates determined by TaE,{y0) and (yo - xo)/|yo - xo| =

-^(yo, Et). Since the respective hyperplanes at xo and yo are parallel, we

may redefine ut so that us and ut are defined on some open set of TgEs,

with us{xo) = W/(xo) = 0, and ut > us near xo. Now apply Lemma 4.2 to

conclude that the two functions are equal near xo, thus showing that for each

x G Q n dEs near xo , there exists y G Q n dE, such that |x - y| = A.

Case 4. Assume that yo G Q n {dL, U dM,). The treatment here is similar to

the previous case in view of the assumption N n S3 = 0 , which implies that

xo - rq2 + {I - T)yo f°r some t g (0, 1 ).

Case 5. Assume Xo = yo where dEs is constrained at xo while dE, is not

constrained. Thus there exists q\ G dQ suchthat í/q(xo, q\) = \g{q\)-s\, with

A = 0. By (3.9) and (3.10), we may as well assume that |xo -q\\ = \g{q\) -s\.

If g{Qi) < s. then |x0 - q\\ < t - g{q\). This implies that x G (A/,)', but
{Mt)' n E¡ = 0, thus precluding Xo G dE,. Thus, we must have g{q\) > s, so

that x0 G dLs. Therefore v{xq , Es) = (x0 - q\)/\xo - q\ \. Note that xo £ Ms

for otherwise Xo G B{q\, 5 - #(#1)), a contradiction since x0 = y0 e E,,

and E, n Ms = 0. Hence, xo G Q n dEs - Ms, which implies that us is a

weak supersolution of the minimal surface equation relative to the coordinates

induced by Ta£j(Xo) and (xo - <?i)/|xo - q\ \ = ^(x0, dEs), by Lemma 4.3. Now
we employ the hypothesis that xo £ dL,l)dM, to show that dE, is also regular
at Xo . For this purpose, first observe that dEs has a tangent hyperplane at x0 .

This implies that for each e > 0, there exists r > 0 such that

(4.10) Fin5(x0,r)c{x: \X ~ *°] • [qi ~ X°] > -e\ C)B{x0, r).
I      |x - Xol     |<7i -Xo| J

However, if y0 G sing dE,, then any tangent cone of dE, at yo could not be

contained in

H=ix:\X-Xo].\qi-X0}>0\,
{      |x-x0|     |^l -xol        J

by (2.14). Hence, there is an element x* of a tangent cone such that x* ^

H. Taking xo = 0 for simplicity ofnotation, this implies the existence of a

sequence {x,} -» x*, where x, ^ H, x, = y,/r,, r, —» 0+, and y, G F(.

Hence,

lim *'     gl   = X*     Ql
i-oo|X/| ' |<7i|       |x*|    |^i I '

If we set

k*l  kil
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then

lim sup ~ • f^-r < s.
¿-.oc  |y¡l   l^il

But E, c Es (Lemma 4.1) and (4.10) imply that

liminf p-r A >-«.
<"-°° \y¡\  kil

a contradiction. Thus, yo G regdE, and therefore u, is a weak solution (in

fact, a strong solution) of the minimal surface equation near yo. Now the

containment E, c Es implies ut < us near xo and therefore u, = us there by

Lemma 4.2.

Case 6. Assume xo = yo where dE, is constrained at xo while dEs is not

constrained. This case is completely analogous to the previous one, and its

proof is omitted.

Case 7. Assume that Xo = yo where both dEs and dEt are constrained. Then

there exist qx, q2 G dQ suchthat í/q(x0, q\) = \g{qx)-s\, \xQ-q2\ = \g{q2)-t\,

and A = 0. As in Case 5, we conclude that xo G Qc\dEs-Ms so that xo G dLs.

Therefore, dEs is Cl'1/,2-regular at xo and us is a weak subsolution of the

minimal surface equation relative to the coordinates determined by Ta£j(Xo),

and (<7i - xo)/|?i - xo| = -v{xq, Es) (Lemma 4.3). Similarly, yo G Q n dE, -
L, and therefore ut is a weak supersolution of the minimal surface equation

relative to the coordinates described above. Moreover, the containment E, c Es

implies that ut > us near xo with u,{xo) = us{xq) . Hence, u, = us near

■*o = yo by Lemma 4.2.
This concludes Part 1 of the proof, as we have shown that Cs is relatively

open in Q n dEs. Let C be a component of Cs. In our attempt to contradict

(4.7), we have thus far shown through the analysis of the sets in (4.5), that

C-sing<9 Fs is C1,1/2-regular at each of its points. Thus, except for singdFj, C

would be a compact {n - l)-manifold (without boundary). If it were true that

sing 9 Fs = 0, we would be able to conclude that C is the boundary of a set

contained in either Es or its complement, from which it would be an easy

matter to reach a contradiction, thus finally proving (4.6).

Our next step then is to show that this argument is essentially correct, even

in the presence of sing9Fs.

Part 2.   There exists an open set V c R" such that Fcfi and dV d C.
For this purpose we first find an open set U such that

(i) dU is an [n - l)-manifold with finitely many components,

(ii) dUf)dEs = 0,

(4.11)       (iii) UndEs = C,

(iv) FcQ,

(v) U is connected.

To find such a set consider a smooth approximation, d, to the function d{x) =

dist(x, C). That is, let d G C0°°(i?„ - C) be such that K~xd{x) < d{x) <
Kd{x) for all x G R" , cf. [Z, Lemma 3.6.1]. Since C is relatively open in

Q n dEs, it follows that d{x: d{x) < t} n dEs = 0 for all small values of t.
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Moreover, by Sard's theorem and the Implicit Function Theorem, d (?) is a

smooth {n - l)-manifold for almost all values of t and for each t that is not

a critical value of d, d (t) = d{x: d{x) < t} . For any such value of t, let U

be that component of {x: d{x) < t} that contains C to produce a set satisfying

all conditions of (4.11) except possibly (iv). By choosing t sufficiently small,

this too will be satisfied because Cs n dQ = 0 .

Using only the fact that dll isa compact («-1 )-manifold, we invoke Alexan-

der Duality of algebraic topology to conclude that R" -dU consists of finitely

many components, one more than the number of components of d U, [GH,

Theorem 27.10]. Moreover, each component of dU is the boundary of pre-

cisely one bounded, open set. Note that d (Too is connected where Uoo denotes

the unbounded component of R" - dU. Indeed, since U is connected, it is

one of the components of R" -dU. Thus, there is a one-to-one correspondence

between the bounded components of R" - dU and the components of dU,

which implies that d Uoo is connected.

Since dUoo is connected, either dUoo C {Es)' or dt/«, c {Es)e because

dUoo n dEs = 0 . In case dt/«, n {Esy = 0 , define V by V = {U^Y n {Esy .
Since {UooY D U and U n dEs = C, it follows that

dV = {dUx>n (£,)') u ((t/«,)' n dEs) d c.

Similarly, if {Es)e f)dUoo = 0, define V by V = {U^Y n {Es)e , so that

dV = {dUocn{Es)e)u((f/oef ndEs) dC

Thus, we have established the existence of an open set V that is either a

subset of {Esy or a subset of {Es)e and satisfies V c Q, dV D C. To finish

the proof of (4.6), we will now show that this leads to a contradiction.

Part 3.   If V c {Es)1, then Es is not a minimizer of (3.11).
We claim that Vr\Ls = 0 . If not, there exists x G Ví~)Ls and q G dQ such

that x G B{q, \g{q) - s|). Since V <zQ, there must exist t g (0, 1) such that

i0 + (l-i);r G dV c 9F^. Thus, xg {Ls)'ndEs, which is a contradiction to the

containment F^ D F¿. Thus, V nLs = 0 and this implies that the closed set

Fs defined by Fs = Es - V is admissible in the minimization problem (3.11).

If we can show that

(4.12) H"-x{QndEs)>Hn-x{QndFs) + H"-x{dV)

the desired conclusion is reached since then, H"~x{Qr\dEs) > Hn~x{QndFs),

contradicting the minimality of H"~X{Q n dEs). To establish (4.12) it is suffi-
cient to prove

(4.13) dFsndV = 0,

since

Q n dEs d [{Q n dFs) - {dFs) n {d V)] u[dV].

Because dV = {U^Y n dEs it follows that for all sufficiently small r > 0,

B{x, r)ndV = B{x, r)f)dEs.

Furthermore, for all small r > 0, B{x, r) n V = B{x, r) fl Es. It follows

immediately that x $ dFs. Thus {dFs) n{dV) = 0 and therefore (4.13) is
established.



420 PETER STERNBERG, GRAHAM WILLIAMS, AND W. P. ZIEMER

Part 4. If V c {Es)e, then Es is not a minimizer of (3.11). An argument

similar to the one above shows that V n{Ms)' = 0 , thus allowing Gs - Es u V

as an admissible competitor in (3.11). Now repeat the argument of Part 3 with

Fs replaced by Gs to contradict the minimality of dEs.   D

We now pursue the consequences of (4.6).

Theorem 4.5. Suppose s, t G [a, b] with s < t where [a, b] is defined by (3.3).

Then_
i/n(QndEs, QndE,) >t-s.

Proof. With the notation of (4.4) and (4.5), select (x, y) G JV and employ
Theorem 4.4 to analyze the three cases corresponding to

tfniUs,) ¿a.

Case 1. ATlSi ^ 0. With (x, y) G N and either x or y in dQ, it follows

from the construction that í/q(x , y) > t - s. For example, if x G dQ, then

g{x) = s because otherwise we would have x G (Ls)' U (Ms)', thus precluding

x G dEs. If neither x nor y are in dQ, then there exists a point q e dQ

lying on a geodesic joining x to y such that

dn{x, y) = dQ{x, q) + da{q ,y)>\s- g{q)\ + \t- g{q)\ >\t-s\.

Case 2. N n S2 / 0. First, consider the possibility g{q\) < s . We may take

da{x, y) = |x -y| since otherwise Case 1 applies. Then

I* -y\ = \q\ -y\- \Q\ -x\> \g{i\) -1\ + \s - g(Qi)\ >\t-s\.

We will show that the other possibility, g{q¡) > s, leads to a contradiction.

Under this assumption, {x' : í/q(x' , ii) < g{qi) - s} c Es, and therefore

(4.14) v{x,es) = ?^-v

(Note that v{x, Es) exists because dEs is regular at x, Theorem 3.6.) Lemma

4.1 implies that y G Es. Now y £ dEs for otherwise dist(i! n dEs, Q n dE,)
= 0 < A, contradicting the fact that (x, y) G N. On the other hand, if

y G {Esy , then (4.14) implies that there exists t g (0, 1) such that xt +

(1 - r)y G dEs, again contradicting that (x, y) G N.

Case 3.  N n S3 ̂  0 . If £(#2) > ¿, then

|JC -y\ > \x - ft I - l<?2 - y| > (g(£>) - s) - {g{q2) -t) = t-s.

As in the previous case, we will show that the other possibility, g{q2) < t, leads

to a contradiction. In this situation, {x': í/q(x' , q2) < t-g{q2)}C\E, = 0 , thus

implying that v{y, E,) = (y - x)/|y - x|. Because of this and the regularity of

dE, at y , it follows that

//•[(0, 1) n {t: xx + (1 - r)y G E,}] > 0.

On the other hand note that

Hx[{0, l)n{t: TX + (l-T)yGF(}]< 1
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for otherwise, since E, c Es (Lemma 4.1), x g dE, and this would contradict

(x, y) G N. Hence, there exists x G (0, 1 ) such that z = xx + {I - x)y e dE,.

But then, |x - z\ < A, a contradiction.   D

5. A SIMPLER PROOF USING THE EUCLIDEAN METRIC

In this section we present a simpler proof that level sets are sufficiently sep-

arated provided the Dirichlet data g in (1.2) satisfies a Lipschitz condition

\g{p) - g{4)\ < \P - q\ rather than \g{p) - g{q)\ < da{p, q) for all p, q G dQ.
While utilizing the same notation for the obstacles as in (3.4) and (3.5), in this

section only we define them in terms of the Euclidean metric

(5.1) L, = {\jB{p, g{p) -ty.pedQ, g{p) > t) ,

(5.2) M, = {{jB{p,t- g{p)): p G dQ, g{p) < t} .

We will first consider the following alternative formulation of problems (3.11)

and (3.12)

(5.3) inf^F,*"):^ cF, Ë~ n{M,y = 0, E-Q = L,-Q}

and

(5.4) sup{|F| : F a solution of the above}.

The equivalence of this formulation with (3.11) follows from the fact that if F

is admissible in (5.3), then

P{E, Rn) = Hn~x{d*E) = Hn~x{d*En Q) + H"-x{d*L, - Q).

We shall denote the solution of (5.4) by ^ . It is thus related to E,, the solution

to (3.12), by g',nQ = E,.

Lemma 5.1. Ifa<s<t<b where [a, b] is defined in (3.3) and n g Rn with
\n\<t-s, then W, + n c J% where %t + n = {x + n: x G %,}.

Proof. Define L't = L, + n, M[ = M, + n, gt' = ^ + n, and Q' = Q + n .
Then, &t' is a solution to

(5.5) inf{F(F,iî"):F;cF, F n (Af/)''= 0, E-Q1 = L',-Q'}

and further maximizes |F| among all such minimizers. Note that L't C Ls,

Ms c M',, and (Ms)' c (A//)'. For example, to prove the first inclusion, note

that if x G L\ then x = y + n, y g L,. This implies that y G B{p, g{p) - t)

for some p £ dQ, g{p) >t> s. Thus, x G B{p, g{p) - t + \r¡\), g{p) > s ,

p G 9Í2. That is, x G B{p, g{p) - s), g{p) >s,pe dQ, or x e Ls.
Now consider % = Ws n^'. Then L\ c % since L\ c Ls c ^ and L\ c W¡ .

Also, L't - Q' c W - Q' C W{ - Q' = L\ - Q' which implies that F - Q' = L[ - Q'.
Since r/ n (A//)' = 0 it follows that r n (A//)' = 0 . Therefore Ws ng¡' is a
competitor for (5.3) and since ^' is a minimizer, we have

(5.6) P{% n %', R") > P&, Rn) ■

For the next step of the proof, let F = Ws Hi?/ . Then Ls c F since Ls c^ .

Moreover, since (A/*)' c (A//)' and gj' n (A//)' = 0 , we have ^' n (A/,)' = 0

and therefore F n {Ms)' - 0 . We wish to show that F - Q = Ls - Q. Since
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Ls c F we have that Ls - Q c F - Q and also F - Q = (gj - Q) U {%¡ - Q) =
{Ls -Q)U (#7 - Q). So we need only show that %,' -Qc Ls-Q. Suppose
x G B',' - Q. Then x £ Q and x = y + rç with y ë l¡. If y ^ Í2, then
yGf?-Q = F,-Q and therefore x e L'¡ c Ls. If y G Q, then there exists
y' G dí2 with y' - y + yn, 0 < y < 1 since x g Q. If g{y') > t > s then

\x - y'\ < t - s < g {y') - s which implies that x e Ls, our desired conclusion.

On the other hand, if g {y') < t, then since y G £J, y $ (A/,)' and thus
|y - y'| > í - ¿-(y'). Consequently, g {y') > t - \y - y'\ > t - {t - s) = s and

\x - y'\ < {t - s) -\y - y'\ < g{y') - s which implies x g Ls . This shows that

%¡ - Q C Ls - Q and therefore that F - Q = Ls - Q. Hence ^SU^' is a

competitor with %s in problem (5.3) thus showing that

(5.7) P(g'sög'tl,Rn)>P{g's,Rn).

Now appeal to (2.9) to conclude that equality holds in both (5.6) and (5.7).
Because |<§^| has maximal measure among solutions to (5.3), we have |^| =

\%sU%1\. Note that |(F/-Ws)nQ| = 0 because %SV>W¡-Q = %s-Q = Ls-Q.
Due to (2.11), ij' n Q c £s n Q. We already have seen that

0f     —   12   C   Li $   —   ifi   =:   &S   —   "

and thus gj' c ÏÏS •   D

Corollary 5.2. Suppose a <s < t < b where [a, b] is defined in (3.3). Then

dist(<3^ ,dWt)>t-s.

Proof. Assume dist(9fj, dWt) < t - s. Choose x G d<£,. There exists y £ ë?s

such that \x - y\ = t - s. Set r\ = y - x . Then y = x + n g W¡ . But y ^ <gj

contradicting ^' c ?5.   D

Remark 5.3. If 9Q is taken to be C1 , then the above proof may be modified

to show that there is a function y: Rx —» Rx with y{t) —> 1 as í —» 0 such that

dy{d) > t - s, where i/ = î/q(Q n öF5, Q n 9Ft). This is a weaker result than

Theorem 4.5 but may still be used to prove the result that our solution u, (see

(6.1)) is Lipschitz and |Vw| < 1 almost everywhere.

6. Construction of the solution

We now are prepared to define the solution u to our problem.   For this

purpose we let A, = E,. Then define u by

(6.1) u{x) = sup{i: x G A,}

whenever x G Q. In order to show that u satisfies the desired properties we

define

B, = f]As,     C, = {jAs   and   D, = B,-C,.
s<t s>t

Lemma 6.1. Each point of Q n dD, is a limit point of {(J(^ n dAs) : s =¿ t} for
t€Rx.

Proof. For xefifl d D, consider only those r > 0 for which B{x, r) c Q.

Then each B{x, r) contains y G D, and z G Q - D,. This implies that either

yef]As,    and   ze\J{Q-As)
s<t s<t
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or

yeÇ]{Q-As),    and   ze{JAs.
s>t s>t

With the help of Lemma 4.1 the first possibility implies that for each r > 0,

B{x, r) contains an element of dAs for all 5 < t sufficiently close to t whereas

the second implies that a similar conclusion for all 5 > í sufficiently close to

t.   U

Lemma 6.2. For each t G Rx we have the following:

(i) u = g on dQ,
(ii) Dt is a closed set,

(iii) Dt = Qn{x: u{x) = t},
(iv) u-x{t)DQndA,,

(v) At C {x: u{x) > t} = B,,

(vi) u is Lipschitz on Q with Lipschitz constant 1.

Proof, (i) If q G dQ with g{q) = t, then q G Ls c As for each s < t. Hence,
u{q) > t. A similar argument shows that q $ As for each s > t. Thus,

u{q) = t. _

(ii) Let x G Q n dDt. We wish to prove that x G Dt. First note that x is a

limit of points x, G D, c B,. Thus x e B, since Bt is closed. We now wish to

prove that x £ C, to establish that x e D,. We proceed by contradiction and

assume x G C,. Then there exists so> t such that x G ASo. First consider the

possibility that there exists r > 0 such that

(6.2) B{x,r)f)Q = B{x,r)nD,.

Because our convention (2.11) is in force, we have that \B{x, r)nQf)ASo\> 0

for all r > 0. But (6.2) implies B{x, r) n Q n C, = 5(x, r) n Q n (Ui>( A) = 0
for all small r > 0, a contradiction. Hence, x £ C, and therefore x G D,.

If, on the other hand, (6.2) is not true, then for all r > 0, there would exist

z G B{x, r) n Q - Dt and y G B{x, r) n Q n A . This implies that either

(6.3) yGp|^,     and   zg\J{Q-As)
S<t S<1

or

(6.4) yef\{Q-As),    and   zg(J^.

Assuming that r > 0 is chosen small enough that B{x, r) f)Q is connected,

Lemma 4.1 implies that (6.3) yields bs G B{x, r)ni!n dAs for all s < t
sufficiently close to t. Thus, there exists a sequence {bs.} -» x with èi; G dAs.

and 5, -» r~ . Now either x G (A0)' or x g dASo. If x G {ASq)' then x G (C()',

making x G do, impossible. Finally, if x G dASo, then

</n(*, K) > da{QndAs,, QndASo) >s0-s,<> 0

by Lemma 4.5, and we reach a contradiction by letting i-> oo. The same

contradiction is reached if (6.4) holds rather than (6.3).

(iii) If x G D,, then x G Bt and therefore u{x) > t. Similarly, x ^ Ct
implies u(x) < t and therefore w(x) = t.

Conversely, if u{x) = t, then x G Bt. Moreover, u{x) < s for each s > t

which implies x ^ As. Thus, x f Ct and therefore x G Dt.
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(iv) If x G dAt, then x G A, c B,. Moreover, x ^ ASo, So > t for

otherwise, x G dASQ and dist(í2 n dA,, Q n dASo) — 0, a contradiction to

Lemma 4.5.
(v) It follows immediately from the definition of u that A, c {x : w(x) > t}.

On the other hand, u{x) > t if and only if x G f]s<t As = B,.
(vi) Consider x, y G Q such that w(x) = 5 and u{y) = t. By (iii), x G Ds

and y G Dt. If x G (Ds)', then there exists x' G dDs on a geodesic joining x

to y. Similarly, if y G (A)' , then there exists y' g dD, on this geodesic. By

Lemma 6.1 there exists a sequence {x,} —► x' such that x, G cMs, with s¡ '-* s.

Likewise, there exists a sequence {y,} —► y' such that y, G dEt¡ with í, —> í.

By Theorem 4.5, we obtain the desired Lipschitz condition in Q,

dsi{x, y) > í/q(x' , y') = lim í/q(x, , y¡) > lim |í¿ - s¡\ = \t - s\.
/—>oo í—>oo

Next, observe that u is continuous at each x e dQ. To_see this, suppose

u{x) — t. Then g{x) = t by (i) and therefore, with s < /, Q n {y : î/q(x , y) <

#(x) - s} c As. This implies

(6.5) liminf u{y) > u{x).

yea

On the other hand, Q n {y : î/q(x , y) < s - g{x)} c AF, for ail s > t = g{x),

which implies

(6.6) limsupw(y) < u{x).
y->x
yeSï

Now it is obvious that u satisfies the desired Lipschitz condition on Q,   D

Theorem 6.3. With u defined by (6.1), a solution to the problem

(6.7) infj í |Víí|í/x: ue C°-X{Q),  |V«| < 1 a.e., u = g on do\

is given by (6.1).

Proof. Lemma 6.2 states that u has Lipschitz constant 1 on Q (hence |Vw| < 1

a.e. on Q by Rademacher's theorem) and that u = g on dQ.

The function f{t) = \A,\ is nonincreasing and is therefore continuous for all

but countably many t > 0. Consequently,

(6.8) 15,-^,1 = 0

for all such t. Let A, — Qn {x: u{x) > t} and invoke the co-area formula

(1.3) to conclude

/» y»oo pb

\Vu\du=        P{At,Q)dt=      P{A,,Q)dt
Jil J—oo Ja

where the last equality is obtained from (6.8) and Lemma 6.2(v). If v is any

competitor in (6.7), it is clear from the co-area formula that A\ = {x: v{x) > t}

is a set of finite perimeter for almost all t G Rx . It is readily verified that for

all such t, A't is a competitor for (3.11). Consequently,

/ |Vw| dx = f P{A, ,Q)dt< f    P{A't ,Q)dt= f |Vv| dx,
Ja Ja J-oo Jn
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thus showing that « is a minimizer of (6.7).    □

We conclude this section with an example in R2 (easily modified to hold in

R") which illustrates the possibility of nonuniqueness in (3.11) and thus shows

the need for taking the supremum in (3.12).' The example also illustrates that

a portion of the boundary of the solution of (3.12) does not coincide with the

boundary of the obstacles. That is, this portion of the boundary of the solution

will satisfy (in R") the minimal surface equation. See Figures 1-4. Note that

at point P in Figure 4, the level set is not C2.

graph of g

Figure 1. The obstacles L0 and M0 for the bound-

ary function g which is taken to be saw-toothed where

pictured and zero elsewhere on dQ.

Figure 2.   The shaded region denotes a solution to

(3.11) for t = 0, but not the solution to (3.12).

Figure 3.   The set F0  that solves (3.12) and corre-

sponds to {u{x) > 0} in the solution to (1.2).
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Figure 4. The set D0 = {u{x) = 0}. In the optimal
design setting of [KSI], Do corresponds to a hole in the

optimal construction.

7. Uniqueness

In this section we show that the solution constructed in §6 is the unique

solution to (1.2).

Theorem 7.1. The solution to the constrained least gradient problem (1.2) is

unique.

Proof. By considering a component of Q we may as well assume that Q is con-

nected. We will proceed by contradiction and assume that there exist solutions

«i and u2 and a point xo such that

íí,(x0) = a < ß = u2{xo).

In light of (1.3), note that any solution u to (1.2) has the property that {u > t}

solves (3.11) and that \Q n {u = t}\ = 0 for almost all values of t. Thus we

may choose s and t with a < s < t < ß such that A = {x: u\{x) > s} and

B = {x: u2{x) > t} solve (3.11) with the associated obstacles, while

(7.1) |Qn{Ki=j}| = 0 = |On{«2 = f}|-

We will now proceed to show that dA — d{AuB), which will be accomplished

by establishing that dA n d{A U B) is both open and closed relative to both dA
and d{A u B). This readily leads to a contradiction. The argument relies on

the fact that A and A U B both solve (3.11) at the level 5, while B and A n B
both solve (3.11) at the level t. This is an easy consequence of (2.9).

We first observe that

(7.2) B-A<ëQ.

Indeed, if x e B - A, then {u2 - Wi)(x) > t - s > 0, while u2 - u\ = 0 on

dQ, so that dist(x, 9Q) > 0 follows by the continuity of u2-U\ .
We now proceed to show that dAnd{AllB) is both open and closed relative

to both dA and d{Al¡B). Since dA and d{AuB) are closed sets, it suffices
to only prove that dA n d{A U B) is open relative to both dA and d{A U B).

First observe that if Xi G dA then Xi £ {Ls)' and therefore xi ^ L,. Now

if Xi ^ B , then there exists a neighborhood U of Xi with U n B — 0 . Hence,

A n U = {A U 5) n U and therefore C/ n dA = [/ n <9(/l U 5). Thus, in case
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Xi £ B we arrive at our desired conclusion, so we will therefore assume that

Xi GdB. This implies Xi £ (A/,)' and therefore that xi f Ms. Under the
assumption that Xi G dA n dB, the remainder of the proof is divided into 3

cases.

Case 1.  Xi £ Ls.

In this case there is a neighborhood U of xi such that A and A u B do

not intersect (Fs u AFJ n U. Since /4 U B solves the same obstacle problem as

does A , it follows that both dA and d{AliB) are area-minimizing in U. In

view of the fact that Xi G dA n d{A U B) we may apply Theorem 2.2 to find
that dA and d{A UB) agree in a neighborhood of Xj .

Case 2. xi g (Ls n A/,).
Since both ^ and ^Ufi intersect an obstacle, we apply Theorem 3.6 to

conclude that both dA and d{All B) are CX'XI2 in a neighborhood of Xi.

Similarly, dB and d{A n B) are C11/2 in a neighborhood of X\. Now

ö(^4 n B), dA, dB, and d{Au B) all possess the same tangent plane at Xj
and therefore in a neighborhood of Xi they all can be represented as graphs of

real-valued functions. Moreover, the functions that represent dA and d(Al\B)

are supersolutions of the minimal surface equation whereas the functions that

represent dB and d{A n B) are subsolutions. Recall that dB and d{AnB)

solve the same obstacle problem. Referring to Lemma 4.2, we find that the

functions that represent d{A n B) and d{Ali B) agree in a neighborhood of

Xi, thus showing that the remaining functions also agree in this neighborhood.

Case 3. Xi G dLs - dM,.
Observe that dA and d{A u B) are C1, '^-regular in a neighborhood of

Xi since each intersects an obstacle. On the other hand, dB n {L, u AF) = 0

and 9(.4 n F) n {Lt U A/,) = 0 in a neighborhood of xi and therefore dB
and d{A <1 B) are area-minimizing there. Since B c Ali B it follows that

the tangent cone to B at Xi lies in the half-space determined by the tangent

plane to d{A U B). Hence, dB is regular at Xi . Similarly, d{A(~)B) is
regular at Xi. As in the previous case, dA, dB, d{AC\B), and d{AöB) can
all be represented as graphs over their common tangent plane. The graph of

d{A U B) is a supersolution while that of dB is a solution of the minimal

surface equation. Hence, by Lemma 4.2 they agree in a neighborhood of Xi.

Also, the graphs of dB and d{A n B) are classical solutions of the minimal

surface equation and by appealing once again to Lemma 4.2, they agree near

Xi. This implies that d{A n B) = d{A U B) near Xi. Finally, the graph of dA
lies between those of d{A n B) and d{A U B), so that dA = d{A U B).

Having established that dA n â{A U B) is both open and closed relative

to dA and d{A U B) we will now proceed to show that dA = d{A U B).
For this, we note that any component of dA which intersects d{A U B) is

contained within d{A u B). Indeed, let C be a component of dA such that

Cr\d{AuB) ¿ 0. There exist open sets Ux and U2 such that [/, ndA = C

and U2 n dA = C n d{A U B). Since C n ö(^ U F) ^ 0, it will follow that
Cnd{AöB) = C if C n d(A U F) is open relative to C. Let V = UinU2.
We will show that V nC = C f)d{AU B), thus proving that Cnô(^Ufi) is
open relative to C. First, V nC c U2ndA = C nd{AU B). For the reverse
inclusion, note that
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Cnd{AöB) = [U2 n dA] n [üx n dA n d{A u B)]

cVndA = u2nC

= <y2nCn[/i   (since C = Cn CA)

= vnC.

Thus, FflC = 9(^UF)nC.
We now can show that dA c d{A U F). From what has just been proved, it

is sufficient to show that each component of dA intersects d{AüB). However,

reference to (7.2) shows that it is sufficient to prove that dA has no component

C such that C n dQ = 0. But this follows from the same argument used in

Parts 2 and 3 in the proof of Theorem 4.4.
Similarly, to show that d{A U B) c dA it is necessary to only show that

each component of d{AuB) intersects dA. Since d{Al)B) is also a solution
to problem (3.11), we can again apply (7.2) and the aforementioned argument

from §6 to arrive at the desired conclusion.
Thus, we now have shown that dA = d{A U B). To finish the proof of the

theorem, let S be a component of B' - A . Then Sëfi and dS cd Ali dB.
However, it is not possible that dS c dA, for if this were true, it would

follow that U\ — s on dS and therefore that u\ = s on S. This would

contradict (7.1). Thus, there is a point x* G dS C\{dB - dA) and an open set

U containing x* such that Un A = 0 . This implies {AuB)f)U = Br\U and
therefore d{A U B) n U = U n dB. Hence, x* G d{A U B), which contradicts

dA = d{AöB).   D

8. A REFORMULATION OF THE PROBLEM

We conclude with another formulation of (1.2), by introducing the following

functions, which will serve as constraints

F(x) = inf{g{p) + í/q(x , p) : p g dQ},

f{x) = sup{g{p) - í/q(x,p):pedQ}.

Theorem 8.1. (i) IfpedQ, then f{p) = g{p) = F{p).
(ii) Both F and f are Lipschitz functions relative to í/q with Lipschitz

constant 1.
(iii) M, = {x: F(x) < t} and L, = {x: f{x) > t}.
(iv) Problem (1.2) is equivalent to

infj / \Du\dx: ueC°>x(Q), f<u<Fono\,

and so u defined by (6.1) is a solution to both.

(v) The function u is a solution of the problem

infj Í \Dv\dx:v eC°'x(Q), v = u on dü\

where D = Q n {x: f{x) < u{x) < F{x)}.

Proof, (i) Clearly, F{p) < g{p) whenever p G dQ. However,

g{p) = g{q) + g{p) - g{q)

< g{q) + dn{P, Q)   for all q e dQ,

which shows that g{p) < F{p).
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(ii) Let x, y G Q. Then

F(x) = inf{g{p) + í/q(x , p) : p G dQ}

< inf{g{p) + da{y, p) + í/q(x , y) : p G dQ}

= dçl{x,y) + F{y).

That is, F(x) - F(y) < î/q(x , y) and interchanging x and y gives |F(x) -
F(y)| < î/q(x , y). The proof involving / is similar.

(iii)      F(x) < t <$ there exists p G dQ with g{p) + î/q(x , p) < t

The proof involving F, is similar.

(iv) This follows from (iii) and the proof of Theorem 6.3.

(v) This follows from (iv).   D

This reformulation of (1.2) allows us to gain further insight into the structure

of the solution in the unconstrained region, D = Qn{x: f{x) < u{x) < F{x)}.
By analogy with the case of gradient constraints for regular elliptic problems

such as elastic-plastic torsion problems, one might expect that in D, we would

have either |Vm(x)| < 1 or at least \u{x) - u{y)\ < da{x, y). However, recall

the example of §4. See Figure 5.
We see that there is a region where the surfaces dEt do not coincide with

dMt or dL, but are parallel, and the distance from dEt to dEs is \t - s\.

In this region even though u does not coincide with either / or F, it is

differentiable and |V«(x)| = 1. Indeed, u is linear in this region. We now

show that this situation is typical.

Theorem 8.2. The set D can be decomposed into D = D\ U D2 such that D\ is

open and

(i) If x eD\ then \u{x) - u{y)\ < da{x,y) for all y eQ.
(ii) D2 is a union of cylinders C. On each cylinder u is a linear function

a- x + b, a g Rn, |a| = l, and b e Rx . Choosing a coordinate system such

that a — en, where e„ is the nth coordinate vector, we can write C — U x /

with U c F"-1 open and I an interval.

(iii) If x = (x', y') G dU x I, then either u{x) — F{x) or u{x) = f{x),

{i.e. x G dD). If u{x) - F(x) then there is p = {p', d') G dQ such that

fW = g{p) + \x - p\, p' = x' and F{y) = g{p) + \y - p\ = u{y) for all
y = {p', x) with x € I. There is an analogous characterization if u{x) = f{x).

Í2

_|_,_1        I        I_,_

Figure 5. The subset of D in which |V«(x)| = 1.
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Proof. Suppose xo G D and yo G Q are such that u{yo) - u(xo) + î/q(xo , yo) •

Since the difference quotient of u is bounded above by 1, this implies that

\u{x) - u{y)\ — da{x, y) for all x, y on a geodesic joining xo and yo . We

show that Xo must belong to a cylinder of the form given above. First note

that if there is a point x' on this geodesic which is also in dQ, then w(x') =

/(x') = F(x'). But, /(xo) > f{x') - í/q(x', Xo) = m(x0) which contradicts

xo G D. Hence, the geodesic lies in Q and thus is a line segment. Now

suppose u{xo) = s and u{yo) - t with s < t and set n = xo - yo so that

\n\ - t - s = \xo - yo\ and xo = yo + n . By Lemma 6.1 and the continuity of
m , we may as well assume also that xo G dEs and yo G 9 F,.

Now let

E - {x eQ: x -n eQ, u{x) < F{x), u{x - n) > f{x - n),

a geodesic from x to x - n lies in Q}

and note that since Xo G D, we have xo ^ {LS(JMS) so that Xo G Q, Xo - n =

yo G Q, and u{xo) < F(xo). Furthermore, in light of Theorem 8.1, (ii), we

have

w(x0 - n) = u{y0) = u{xQ) + \n\ > f{x0) + \n\ > f{x0 - n),

so that x0 G dEs n {dEt + n)nE.
We show that this set is both open and closed in dEsilE. Since it is obviously

closed, we need only show that it is open. Suppose z e dEs n {dEt + n)f\E.

Since z G dEs and z -n G dEt are distance \n\ apart while dist(ôFs, dE,) >

t-s = \n\, we have dist(z, z—n) = dist^F^, dE,). Now appeal to Lemma 2.3

to conclude that the sets dEs and dE, + n are regular at z. Furthermore, since

u{z) < F{z) and u{z -r¡)> f{z -rj), it follows that dEs n d Ms C\N = 0 and
{dEt + t])n{dLt + n)r\N = 0 for some open set A^ containing z. Thus, near z,
dEs may be represented by the graph of a supersolution of the minimal surface

equation, us, and in the same coordinate system, dEt + t] may be represented

by the graph of a subsolution u,. Further, since E, + n c Es, we have u, < us

while the graphs coincide at z . Then, by Lemma 4.2, ut and us locally agree,

so that dEs and dEt + n coincide in a neighborhood of z.

Now let S be the component of dEs n F containing xo. Then S must

also be a component of {dE, + n) n F. For each point z in S, the points

z G dEs and z - n e dE, are closest points on the corresponding sets. Thus,

S is regular at all of its points z (cf. Lemma 2.3) and the single vector rj is

normal to S at all of its points. Consequently, S must be the intersection of

a hyperplane with normal n and F because S is both open and closed in the

intersection of the hyperplane with F .

Let the cylinder C = {x-y?7:xGS, 0 < y < 1} . If x G S, u{x) = s and

u{x - tj) — t with t - s = \r¡\. Since, \u{x) - u{y)\ < \x - y\ for all x and y ,

u must be a linear function on C with u{x - yn) = s + y\rj\. We now show

that C c D.
If z G C and u{z) = F{z), then z = x - yn for some x G S and some y

with 0 < y < 1. Then

F(x - n) < F{z) + \x-n-z\ = F{z) + (1 - y)\n\

= u{z) + {l - y)\n\ = u{x - n).
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Hence, F and u agree at x - n and at z. Thus, they are both linear with

slope 1 along the line from x - n to z and they agree there. Now let p e dQ

be such that F{z) — g{p) + da{z, p). Then,

F(x -n)< g{p) + í/q(x - n, p)

<g{p) + dçi{z,p) + \n\{l-y)

= F{z) + \n\{l-y) = F{x-n).

Consequently, z and x-n lie on a geodesic from p to x - n. Thus, x

must also be on this geodesic and u{x) = F(x). This contradicts x G S c F.

Similarly, we cannot have u{z) = f{z), and so C c D. The union of all such

cylinders C constitute the set D2 thus establishing (ii).

Finally, if x G S n dE, then either u{x) = F{x) or u{x - r¡) — f{x - n)

or a geodesic from x to x - n touches dQ. In the first case, suppose u{x) =

F(x) = s. Then u{x - n) = t = s + \n\ = F{x) + \n\ > F(x - n). Hence,

u{x-n) = F{x-n) and F must increase linearly with slope 1 from x to x-n,

as must u. Therefore, the two functions must coincide along that line segment.

Also, if a geodesic touches dQ, then as above u{x) = F(x) or f{x) everywhere

along the line from x to x-n . Furthermore, in either case, as above x must

lie along the geodesic from p to x-n where F(x- n) = g{p) + î/q(x-n, p).

By taking p as the closest such point on dQ, we may assume the geodesic is

a straight line. Thus, equality holds and so x - p and n are colinear, proving

(iii).    D

REFERENCES

[BDG] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent.

Math. 7(1969), 255-267.

[BP]    P. Bauman and D. Phillips, A nonconvex variational problem related to change of phase, Appl.

Math. Optim. 21 (1990), 113-138.

[C]      L.CafFarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1978),

155-184.

[CR]   L. Caffarelli and N. Riviere, Smoothness and analyticity of free boundaries in variational
inequalities, Ann. Scuola Norm. Sup. Pisa 3 (1976), 289-310.

[FI]    H. Fédérer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

[F2]    _, Geometric measure theory, Springer-Verlag, New York and Heidelberg, 1969.

[FR]   W. H. Fleming and R. Rishel, An integral formula for total gradient variation, Arch. Math.

11 (1960), 218-222.

[GT]   D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed.,

Springer-Verlag, New York, 1983.

[GI]    E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, 1985.

[GH]  J. M. Greenberg and J. R. Harper, Algebraic topology, Benjamin-Cummings, 1981.

[KIST] D. Kinderlehrer and G Stampacchia, An introduction to variational inequalities and their

applications, Academic Press, 1980.

[KS1] R. V. Kohn and G Strang, The constrained least gradient problem, Non-classical Continuum

Mechanics (R. Rnops and A. Lacy, eds.), Cambridge Univ. Press, 1987, pp. 226-243.

[KS2] _, Fibered structures in optimal design, Theory of Ordinary and Partial Differential

Equations (B. D. Sleeman and R. J. Jarvis, eds.), Longman, 1988.

[KS3] _, Optimal design and relaxation of variational problems. I—III, Comm. Pure Appl. Math.

39 (1986), 113-137, 139-182, 337-353.



432 PETER STERNBERG, GRAHAM WILLIAMS, AND W. P. ZIEMER

[MM] U. Massari and M. Miranda, Minimal surfaces of codimension one, Mathematics Studies,

no. 91, North-Holland, 1984.

[PZ]   H. Parks and W. Ziemer, Jacobi fields and functions of least gradient, Ann. Scuola Norm.

Sup. Pisa 11 (1984), 505-527.

[S]      S. Saks, Theory of the integral, PWN, Warsaw, 1937.

[SI]     L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Anal. Austral. Nat.

Univ. 3(1983).

[S2]    _, A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom.

26(1987), 327-335.

[SWZ1] P. Sternberg, G. Williams, and W. Ziemer, Existence, uniqueness, and regularity for func-

tions of least gradient, J. Reine Angew. Math. 430 (1992), 35-60.

[SWZ2] _, C1 -x-regularity ofconstrained area-minimizing hypersurfaces, J. Differential Equa-

tions 94 (1991), 83-94.

[Tl]    I. Tamanini, Boundaries of Caccioppoli sets with Holder-continuous normal vector, J. Reine

Angew. Math. 334 (1982), 27-39.

[T2]    _, II problema della capillarita su domini non regolari, Rend. Sem. Mat. Univ. Padova

56(1977), 169-191.

[Z]      W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Math., no. 120, Springer-

Verlag, 1989.

(P. Sternberg and W. P. Ziemer) Department of Mathematics, Indiana University, Bloom-

ington, Indiana 47405

(Graham Williams) Department of Mathematics, Wollongong University, Australia


