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SOME COMPLETE E2 SETS IN HARMONIC ANALYSIS

HOWARD BECKER, SYLVAIN KAHANE AND ALAIN LOUVEAU

Abstract. We prove that several specific pointsets are complete ~L\ (complete

PCA). For example, the class of A^-sets, which is a hereditary class of thin

sets that occurs in harmonic analysis, is a pointset in the space of compact

subsets of the unit circle; we prove that this pointset is complete lZ2. We also

consider some other aspects of descriptive set theory, such as the nonexistence of

Borel (and consistently with ZFC, the nonexistence of universally measurable)

uniformizing functions for several specific relations. For example, there is no

Borel way (and consistently, no measurable way) to choose for each A^-set, a

trigonometric series witnessing that it is an A^-set.

1. Introduction

This paper is about some connections between descriptive set theory and

three topics in analysis: Pointwise convergence of sequences of functions, in-

creasing unions of members of a given collection of compact sets, and thin sets

in harmonic analysis. The main purpose of the paper is to show that several

specific pointsets are complete £2 ■ We also discuss some other aspects of de-

scriptive set theory, such as the nonexistence of Borel-measurable uniformizing

functions for several specific relations.

In this paper, all spaces are Polish. A pointset is Sj if it is the projection

of a Borel set; it is n¿ if it is the complement of a £], set; it is £¿+1 if it is

the projection of a Hxn set. Another name for £j, n{, lZ2 , and LX\ sets is A

(analytic), CA (coanalytic), PCA and CPCA sets, respectively. These collections

of pointsets can also be viewed in terms of definability. A set P c X is E2 iff
it has a definition of the form

xeP^By Vz((x,y, z) e B),

where B is a Borel set in a product space X x Y x Z ; P is L\\ iff it has a
definition of the form

x €/><-> Vy 3z((x,y, z)eB),

for B Borel.  This subject is presented in Kuratowski [18] and Moschovakis

[20]. We tend to follow Moschovakis [20] in notation, terminology, etc.

A £2 set $ in a space X is called complete L2 if for any L2 subset Q of

the Cantor set, 2e", there is a continuous A: 2a —> X such that Q = h~x[S].
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Such an h is said to reduce Q to S. A complete L2 set is true £2, that is, it

is not n2. In §§2-4 we show that several natural examples of E2 sets are in

fact complete ~LX2.
In §§5, 6 we consider some other descriptive set theoretic facts about these

examples. In §5 we show that there can be no simply definable uniformizing

function (that is, selection or choice function) for certain natural relations asso-

ciated with the above examples, and that it is consistent with ZFC that there is

no measurable selection. It is known that ZFC, the usual set of axioms for set
theory, is not sufficient to answer many questions about £2 sets—either answer

to the question is consistent. In §6 we point out that these consistency results

are applicable to the specific examples of true £2 sets discussed in this paper,

e.g., to some classes of thin sets in harmonic analysis.
There are two technical lemmas which are used. We prove these lemmas in

§§7, 8.

2. POINTWISE CONVERGENT SUBSEQUENCES

Consider the Polish space (C[0, l])w, that is, the topological product of

countably many copies of C[0, 1 ]. In this space, consider the following two

pointsets.

Sx = {(fin)'- Some subsequence of (f„) converges pointwise},

S2 = {(fin)'- Some subsequence of (f„) converges pointwise

to a continuous limit}.

Both Sx and S2 axe S2 sets. (The classification E2 refers to the topology

of the Polish space, that is, the topology of uniform convergence, not to the

topology of pointwise convergence.)

Theorem 2.1. Sx and S2 are both complete 2,\.

For 52, this theorem was proved in Becker [3]. For »Si, the theorem was

announced in Becker [3, 4], but no proof was given. We now give another proof

for 52 and the first proof for Sx .

Lemma 2.2. Let Q c 2W be any L2 set. There exists a sequence of continuous

functions gn : 2W x 2W —> 2 such that for all w e2C0, the following are equivalent.

(a) w e Q.
(b) There is a subsequence (gn¡) of(g„) such that for every x e 2W, gn,(w , x)

Lemma 2.2 will be proved in §7. We use Lemma 2.2 to prove Theorem 2.1,

and indeed to prove all the results in this paper.

Proof of Theorem 2.1. Let ß c 2m be an arbitrary 2^ set. We reduce ß to

Sx and 52, simultaneously. In other words, for every w e 2W, we define a

sequence of functions (f¡C) from [0, 1] into R suchthat:

(a) The function A: 2W -> (C[0, l])w given by h(w) = (fl?) is continuous.

(b) If to e ß then some subsequence of (f^) converges pointwise to a

continuous limit (in fact, to 0).

(c) If to ^ ß then no subsequence of (/¡j") converges pointwise.

To do this, let (gn) satisfy Lemma 2.2 for this set ß. Let F™ : 2°> —> R be
the function F¡jf(x) = n ' gn(w, x). Identify 2W with the Cantor middle third
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set in [0, 1], and let fi*> be such that f¡¡> \ 2W = F™ and f^> is linear on each

interval of [0, 1] \ 2W. It is easy to check that (a)-(c) hold.   D

The functions f¡¡" produced in the above proof are obviously not bounded.

But by combining the proof of Theorem 2.1 with the method of Kaufman [12],

we can get the ffi's to be uniformly bounded. Thus, viewing C[0, 1] as a

Banach space, we also obtain a proof of Theorem 2.3.

Let

S3 = {(fin)'- Some subsequence of (/„) is weakly Cauchy},

&t = {(fin) '■ Some subsequence of (f„) is weakly convergent}.

Theorem 2.3.  53 and S4 are both complete L2.

In Banach spaces other than C[0, 1], the situation may be very different.

For example, if X is a separable-dual space or X is lx, then the sets of weakly

Cauchy and weakly convergent sequences are Borel sets in Xw. (For lx this

follows from Schur's Theorem; see Diestel [6].) Hence for such an X, the

analogs of 53 and 54 are £} sets. We do not know of any characterization of

which separable Banach spaces satisfy 2.3.

3. INCREASING UNIONS OF COMPACT SETS

Let X be a compact Polish space and let Z%Z(X) denote the space of non-

empty compact subsets of X with the Hausdorff metric ô :

Ô(K, K') = sup{úf(x,K),d(y,K'):xeK', y e K}.

Z%Z(X) is also compact and Polish. In §§3, 4 we will be considering the com-
plexity of pointsets in spaces of the form 3ZZ(X).

Let C c 31Z(X) be a hereditary class of compact sets, and define Ca and

C\ as follows:

C = < K e Z%Z(X) : There exists a sequence (K„) of members

of C such that K c |J K„ \ ,

C\ = < K e Z%Z(X) : There exists a sequence (K„) of members

of C such that K c[jKn and for all n, Kn c Kn+X >.

Of course if C is closed under finite unions, then C\=Ca .

If C is n[ then C is also LT{. (Proof. K e Ca iff for every compact

K' c K there is a basic open neighborhood N of X such that N n K' ^ 0
and N n K' e C.) For some interesting C's, Ca is known to be complete IT' .

For a thorough analysis of these LTj cr-ideals, see Kechris [13] and Kechris,

Louveau-Woodin [15].
If C is liX2 then C\ is also I*x2. We show below that Q is, in general, no

simpler than E2, even when C is an open set. (If C is closed then C}= C.)
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We work with the spaces 2W and Jf(2w). Let pn: 2W -> 2 denote the nth

projection function. Consider the following pointset in the space Jt(2w).

Z = {K:  Some subsequence of (p„) converges to 0 pointwise on K} .

Theorem 3.1.  Z ¿s complete £2.

Proof. Z is obviously L2. Let ß c 2W be an arbitrary S2 set. To prove

completeness, we define a continuous A : 2W —► Ji(2(°) which reduces ß to Z .

Let (gn) satisfy Lemma 2.2 for this ß. For any to e 2œ, let

Kw = {y e 2W : There is an x e 2W such that for all n , y(n) = g„(w , x)} .

Then Kw is compact and the function A : to •-► Kw is continuous. If to e Q,

then by Lemma 2.2, there is a strictly increasing («,) e œ01 such that for all

x e 2W, g„,(w, x) -> 0; hence for each y e Kw , y(n¡) -* 0, that is, (pn¡)

converges to 0 pointwise on Kw ; so Kw e Z . Conversely, if (p„,) converges to

0 pointwise on Kw , then for all x , g„,(w , x) —» 0, which shows that w e Q.

Thus A reduces ß to Z.   D

Let

Y = {K e 3í(2m) : For all m, there is an n > m such that p„

is identically 0 on K}.

Then Y is a hereditary G g and Z = Y \ , so sets of this form can be complete

L2 . But Y is not open.

Theorem 3.2. There is a hereditary open C c ^Z(2W) such that C] is complete
Tf

Proo/. Let

C = {K : There is an n such that p„ is identically 0 on AT}.

Clearly C is hereditary and open and C] = Z U C. So it will suffice to show

that there is a continuous h:3?(2w) -► ̂ '(2<u) which reduces Z to Z U C.

Let

Z7 = {x € 2W : There is at most one n such that x(n) = 1} .

Let A(tf) =JfUF.   G

If C C ^(A") is a hereditary 5^ set, then (C\) } is again 2^. We do not

know whether or not there exists a compact Polish space X and a hereditary

Borel Ccl(I) for which (Q) } is true E2.

4. Thin sets in harmonic analysis

Let SI denote the set of all strictly increasing sequences of natural numbers.
Let T = R/2nZ be the unit circle. Consider the following four classes of closed
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subsets of T, that is, the following four pointsets in the space ^T(T).

For some (n¡) e SI, the sequence (sin«,i)

converges to 0 uniformly on K},

For some («,) 6 SI, the series

y^ sin n¡t converges absolutely on K > ,

1=0 J

For some («,) e SI, the sequence (n,t)

converges to 0 pointwise on K},

For some («,) 6 SI and some interval / of

T, for all i, niKnl = 0}.

These four hereditary classes of closed sets constitute four types of excep-
tional sets, or thin sets, which occur in harmonic analysis and which have been

studied extensively. TVo-sets were introduced by Salem, in an attempt to simplify

the definition of a class of thin sets called N-sets. ^4-sets were introduced by

Arbault [1], who proved that .4-sets, yV-sets, and /Vo-sets are different notions.

The letter A stands for Arbault, and N stands for Nemytzkii [2]. //-sets were

introduced by Rajchman [22]; H is for Hardy-Littlewood. We do not know

where the concept of a D-set originates. D is for Dirichlet, who proved that
finite sets are D-sets. Information on these (and many other) classes of thin sets

can be found in the following references: Bary [21], Kahane [8], Kahane-Salem

[9], Körner [17], and Lindahl-Poulsen [19]. Increasing unions of such classes,

e.g., D Î, are studied in Kahane [10, 11].
There has been a considerable amount of work done on connections between

descriptive set theory and various types of thin sets in harmonic analysis. See

Kechris-Louveau [14] for details. In particular, several important classes of thin

sets have been proved to be complete 11}. In this paper we are concerned with

classes of thin sets which, from the point of view of definability, are much more
complicated: complete S2.

It is easy to see that

(4.1) DîcNqCAcHÎ .

It is also easy to see that (when considered as pointsets in the space ^(T))  Nq

and A axe ~L2 and D and H axe Borel, hence D } and H } axe E2.

Theorem 4.2.  D], N0, A, and H î are all complete T.x2.

To prove Theorem 4.2 we need another lemma.

Lemma 4.3. There is a continuous A: Ji(2w) -> ^(T) such that for all K e
Jf^) :

(a) If KeZ then h(K) eD\.
(b) IfiK i Z then h(K) i H].

Lemma 4.3 will be proved in §8. Note that Theorem 4.2 follows immediately
from Theorem 3.1, (4.1), and Lemma 4.3.

D = {K:

Nq=\k:

A = {K:

H = {K:
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A set K is an TV-set if for some sequence (a„) of positive numbers with

¿~^dn = oo, the series ^a,,sinnt converges absolutely on K. Although the

concept of an Arj-set was originally thought to be simpler than that of an vV-set,

it is actually more complicated. Using work of Björk and Kaufman (see Lindahl

and Poulsen [19]), it can be shown that N is a G^-set in ZzZÇT), whereas /V0

is complete L2.
Let X be the space of all probability measures on T with the weak*- topol-

ogy. If Cc J(T), let Cx denote those measures which annihilate all sets in

C. Kechris and Lyons [16] and Kaufman [12] have shown that D-1 and //x

(hence (D î)1- and (H î)x) are both true 11} sets in the space X. Since Nq

and A axe true L2, yVq- and A1- may seem, at first glance, to be good candi-

dates for true IT^ sets—but they are not. In fact, Dx c A1- ; this follows from

Egorov's theorem that a pointwise convergent sequence converges uniformly on

a set of positive measure. Hence AL = N¿ = D-1, and it is a ITj set. We

thank Robert Kaufman for his helpful comments on these matters.

5. ON THE COMPLEXITY OF UNIFORMIZING FUNCTIONS

Let R c X x Y be a relation in some product space with the property

that for every x e X there exists a y e Y such that (x, y) e R . A function

/: X —> Y is called a uniformizing function for R if for all x e X , (x, f(x)) e
R. Obviously a uniformizing function exists. But there may be no "nice"

uniformizing function.

All the theorems of §§2-4 can be turned into theorems about the nonexistence

of nice uniformizing functions. We will explicitly state these nonuniformization

theorems for the case of yVo-sets. Similar theorems hold for the other complete

£2 sets of §§2-4.
Let W c (X(Y) x co") be the following relation:

W = \ (K, («,)): (n,-) e SI and the series

OO ^

^sintt/i converges absolutely on K > .

;=o J
(Thus W is a ITj set whose projection is the £2 set Nq. The pair (K, («,))

is in W if («,) is a witness that K is an /Vrj-set.) Let £ be a subset of Nq

which is closed in SiZifl) ; then WE denotes W n (E x cow). Clearly E x cow

is Polish and WE is a ITj set in E x caw .

Since E c Nq, for every K e E there exists an («,-) in of such that

(K, (w,)) e WE. So uniformizing functions for WE exist. But, in general,

there does not exist a Borel uniformizing function. In fact a much stronger

nonuniformization theorem holds.

Theorem 5.1. Let Z? be a family of functions (with domain and range various

Polish spaces) with the following closure property: If f e ZF, b is a Borel
function, and A is a homeomorphism then b°foh is in Zf. Suppose that there

exists a ITJ set P c 2W x 2m such that for all x e 2°> there is a y e 2W with

(x, y) e P, but there is no uniformizing function for P in ZF. Then there is an

uncountable closed E c Nq such that there is no uniformizing function for WE

in 9~.
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What Theorem 5.1 says is that uniformizing the WE,s is no simpler than uni-

formizing an arbitrary ITj relation. So all the nj nonuniformization theorems

of descriptive set theory are applicable to relations of the form WE . There is
a IT} P c 2W x 2W with no Borel uniformization. So taking Z? to be the

Borel functions, Theorem 5.1 implies that for some E, WE has no Borel uni-

formization. (This E can be taken to be hereditary; if not, take its hereditary

closure.) Similarly, if ¿9~ is the family of C-measurable functions (see Burgess

[5]), or one of the other classical families of measurable functions, again there

is an E such that WE has no uniformization in Z?. Kondo's Theorem states

that WE always has a A2 uniformization. Theorem 5.1 actually says that A2

is best possible for uniformizing relations of the form WE . Or in the language

of effective descriptive set theory, A2 is the best possible basis for picking a
witness that a given set is an /Vn-set. For information about uniformization

and basis theorems, and about nonuniformization and nonbasis theorems, see

Moschovakis [20].
Instead of considering the existence of simply definable uniformizing func-

tions, one could consider functions which are nice in a different sense: measur-

able. This leads us to a question which cannot be answered in ZFC.

Theorem 5.2. // ZFC is consistent, then so is each of the following two theories.

(a) ZFC + there is a universally measurable f: Jf(T) -* cow such that for

all KeNo, (K,fi(K))e W.
(b) ZFC + there exists an uncountable closed E c Nq such that: If f is

any uniformizing function for WE and p is any nonzero measure on E which

gives points measure 0, then f is not measurable with respect to p.

Part (a) of Theorem 5.2 follows trivially from the fact that it is relatively

consistent with ZFC that every L2 relation has a universally measurable uni-

formization. Part (b) of Theorem 5.2 follows from Theorem 5.1, by taking !?

to be the family of functions which are measurable with respect to some such

p ; it is consistent that there is a LT}P c 2m x 2m which is the graph of a func-

tion that is not measurable with respect to any such p (see Moschovakis [20]).

Large cardinal axioms imply that it is true (as opposed to merely consistent)
that E2 relations have measurable uniformizations; hence these axioms imply

that the WE,s do. For information on consistency proofs, large cardinals, etc.,

and their relationship to descriptive set theory, see Jech [7] and Moschovakis

[20].
As previously mentioned, similar theorems hold for the other complete L2

sets of §§2-4. For example, for Sx : There is no simply definable function (and

consistently, no measurable function) f:E—> (C[0, l])w, for E c Sx , such

that f((fn)) is a pointwise convergent subsequence of (fn). For D f: There is

no nice function /: E -> (3¡Z(T))W such that f(K) is an increasing sequence of
Z)-sets whose union covers K. This situation for increasing countable unions is

different from the case of arbitrary countable unions. If C c Z%Z(X) is heredi-

tary and Borel then the Cantor-Bendixson derivation (see Kechris and Louveau

[14]) gives a function /: C -» C°> such that for all K e C , \Jf(K) = K ;
moreover, this function is A} (on its domain). This means that in the case of

increasing countable unions, there is nothing similar to the Cantor-Bendixson

analysis of countable unions. For other, more combinatorial, differences be-

tween the two operations, see Kahane [11].
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Theorem 5.1 can be proved by the same method used to prove that jVo is

complete E2, so we merely note the changes necessary and leave the details to

the reader. Saying yV0 is complete £2 means:

(5.3) For any 1\ set ß c 2°> there is a continuous A : 2°> -> X(T) such that
for all to e 2W , the following two conditions are satisfied.

(a) If to e Q then there exists an («,) such that (A(to), («,)) e W.

(b) If there exists an (n¡) such that (h(w), («,)) e W, then w e Q.

There is a stronger version of (5.3) which can be proved, namely

Theorem 5.4. For any ITj set P c 2W x 2W, there is a one-to-one continuous

A : 2W -» 3T(T) and a Borel function b : cûw -> 2W, such that for all w e 2W, the

following two conditions are satisfied.

(a) If there exists a y e 2W such that (w, y) e P, then there exists an (n¡)

such that (h(w), (n,-)) e W.
(b) For all (n¡) eco01, if (h(w), («,)) 6 W, then (w, b((n¡))) e P.

Note that (5.3) follows immediately from Theorem 5.4, by taking P to be

a ITj set whose projection is ß. The proof of Theorem 5.4 is implicit in the
proof of (5.3) given in this paper. The various reducing functions defined in

this paper are in fact not one-to-one. But by minor changes in the definition,

we can make them one-to-one without harming anything else. The one place

where this is not obvious is in the proof of Lemma 4.3. In §8, after proving

Lemma 4.3, we indicate the modification needed to get a one-to-one reducing

function.
We now prove Theorem 5.1 from Theorem 5.4. Let P c 2W x 2W be a nj

relation with no uniformization in F such that for all x there is a y with

(x, y) e P. Let A and b satisfy Theorem 5.4 and let E be the image of A .
Then there can be no uniformizing function / for WE which is in ZF ; for if

such an / existed, then bo f oh would uniformize P.

6. Set theory and Atj-sets

There are various types of pathological pointsets, e.g., nonmeasurable, which

can be produced using the axiom of choice. It is consistent with ZFC that

these pathologies occur at the level of ~L2 sets (see Moschovakis [20]). It is also
consistent that counterexamples to the continuum hypothesis (CH) occur at the

level of ~L\ sets (see Jech [7]).

Theorem 6.1. If ZFC is consistent, then so is each of the following two theories.

(a) ZFC + there exists an uncountable closed E c Z%Z(T) such that the
pointset (Nq n E) :

(i) does not have the property ofBaire (with respect to the space E) ;

(ii) is not measurable with respect to any nonzero measure on E which gives

points measure 0.

(b) ZFC +^CH + there is a closed E c ^(T) such that caxd(N0nE) = Xx.

Note that (a)(ii) of Theorem 6.1 implies that in the space 3SZIZY), N0 is not
a universally measurable set. Theorem 6.1 follows from the fact that yV0 is

complete T,2 via one-to-one reduction functions (see Theorem 5.4ff); therefore

the existence of £2 subsets of 2<M satisfying Theorem 6.1(a), (b), implies that

£2 sets of the form NqC\E satisfy it. It is also consistent that no £2 set exhibits
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the pathologies of Theorem 6.1, and large cardinal axioms imply that 22 sets

truly do not.
This method of proof also gives the next theorem, which set theorists may find

amusing. There is a fixed uncountable closed set Eq c 3?(T), with recursive

code which can be explicitly defined, for which the following is provable in

ZFC.

Theorem 6.2. Let K e Eq. Then K is an No-set iff K is constructible.

Constructible means in the smallest transitive model of ZFC containing all

ordinals; see Jech [7] or Moschovakis [20].

We have, as in §5, stated the theorems for the case of /Vn-sets. But again,

similar theorems hold for the other complete £2 sets of §§2-4.

7. Proof of Lemma 2.2

Our proof of Lemma 2.2 is based on some ideas in Becker [3].

We first establish some notation. X<0} is the set of all finite sequences from

X. Finite sequences are denoted by lowercase Greek letters, o -< x means

that a is an initial segment of x, and similarly if x is an infinite sequence,

a -< x means that a is an initial segment of x. A tree T on X is a subset

of X<co such that if a < x and x e T then a e T. The proof of Lemma 2.2

will involve trees on X = (2 x 2 x 2) ; we identify a sequence in (2 x 2 x 2)<w

of length n with three length n sequences in 2<co , and similarly for infinite

sequences. Let T be a tree on (2x2x2); then [T] denotes the set of infinite

branches through T, that is,

[T] = {(to, y, z) € 2W x 2W x 2W : For all n e co,  (w \n, y\n,  z\n)eT}.

Lemma 7.1. Let S c 2°> x 2<° be £{. There is a tree T on 2 x 2 x 2 such

that for all (to , y) e 2W x 2W, (to , y) e 5 iff. There is a z e 2W which is not
eventually 0 and (to , y, z) e [T].

The usual representation theorem for £} (see Moschovakis [20]) gives a tree

V on 2 x 2 x co such that 5 is the projection of [T']. This is another way of

saying that 5 is the projection of a closed set in 2m x 2W x cow. Lemma 7.1

follows from this by identifying x e com with O^-l^O^^l^O^2^^ ■■■ e
2W.

Fix a family {yVCT : o e (2 x 2 x co x 2)<w} of clopen subsets of 20} with the

following properties.

(i) If a < x then NT c Na .

(ii) If a and x are incompatible then Na n yVT = 0 .

Let n h-> x„ be an enumeration of 2<b) such that if xn -< xm then n < m.

Let t„ be the length of xn .
Let o = (a,ß,y,o)e(2x2xwx 2)<w be a sequence, let k + 1 be its

length, and let n e co. Call a n-good if all three of the following conditions
hold.

(i) y e co<0} is strictly increasing and y(k) = t„.
(ii) ß(k) = ö(k)=l.
(iii) If p = card{m: S(m) = 1} then a \ p = x„ \ p .

Lemma 7.2. Forany n, there are only finitely many sequences in (2x2xcox2)<<0
which are n-good.
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Now to prove Lemma 2.2, let ß c 2W be an arbitrary L2 set. Let P c

2œ x 2W be II} such that to e ß iff there exists a y such that (to , y) e P. By

Lemma 7.1, fix a tree T on 2 x 2 x 2 such that (to , y) £ P iff:

,_ ,, There is a z e 2m which is not eventually 0 and (to , y, z) e
[     ' [T].

We define, for each n , a function gn: 2W x 2W ̂ > 2 as follows.

' 1    if there exists a k e co and there exists an «-good

o = (a, ß, y, ô) e (2 x 2 x co x 2)<w of length k + 1

K   '   ' such that x e yVCT and (w; \k+l,a,ß)e T,

w 0   otherwise.

By Lemma 7.2, there are only finitely many yVCT's on which gn is 1. So gn is

continuous.

We show below that these g„'s satisfy Lemma 2.2 for the given ß. Before

giving a formal proof, let us point out the idea behind the definition of gn. By

(7.3) to ^ ß iff for all y there is a z not eventually 0 with (to, y, z) e [T].

The idea behind the definition of g„ is this: The fact that gn,(w , x) = 1 for
(n¡) e SI corresponds to the existence of such a branch (to , y, z). For each

n¡, the fact that gnfw, x) = 1 determines a finite approximation (a, ß) e

(2 x 2)<w to (y, z). The y controls the length of (a, ß). The (a, /J)'s are

not initial segments of (y, z), but they converge to (y, z) as «, —> oo ; the ô

controls the rate of convergence.

(a) =>• (b). Let to e Q. ß is the projection of P, so choose a y e 2W such
that (w, y) e P. Let (n¡) e SI be such that x„, = y Í /. We show that for all
x e 2œ , gn,(w, x) —► 0, and thus prove that (b) holds.

Suppose this is not so. Then there is an x e 2W and a subsequence (mf)

of («,) such that for all j, gmj(w, x) = 1. Consider the definition of

gmj. Clearly for each j there is an m;-good finite sequence a¡ which causes

gmj(w , x) to be 1. Since x e Na¡, the of s must all be compatible. So there is

a (y', z, u, v) e 2m x 2a x com x 2U , and for each j there is an /; e co such

that Oj = (y' \ lj + I, z \ I j + 1, u \ I j + I, v \ I j + I). By definition of w;-good
and of the function gmj, this means:

(i) u \ lj + 1 is strictly increasing and u(lj) = tm .

(ii)   Z(lj)=v(lj) = l.

(iii) If pj = card{w < lj-. v(m) = 1} then y' \p¡ = xm¡ \p,.

(iv) (w\lj + l,y'\lj+l,z\lj + l)eT.
By definition of the sequence («,), length(T„() = /' ; as (mj) is a subsequence

of («,), tm¡ = length(rm.) > j ; hence (i) implies that /, -> co . So (ii) implies

that neither z nor v is eventually 0. Therefore pj —> oc ; so by (iii) and the

definition of («,), y' = y. But then, by (iv), (w, y, z) e [T] and z is not

eventually 0. So by (7.3) (to, y) £ P. But y was originally chosen so that

(to,y)eP.
(b) => (a). Let w e 2W \Q, and fix («,•) € SI. We show that there is an

x e 2W such that the sequence (gn,(w, x)) does not converge to 0. By passing

to a subsequence if necessary, we may assume that t„t = length(T„,) is strictly
increasing and that (t„.) converges to some y e 2m .
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Since ß is the projection of P and w £ Q, clearly (to, y) £ P. By (7.3)
there is a z e 2W not eventually 0 such that (w , y, z) e [T]. Define u e cow

by u(i) = tn,. Define v : co —> 2 by induction.

(1     if z(i) = 1 and if we set p = 1 + card{w < i: v(m) = 1},

then for all ;' > i, y \p = xn¡ \p,

0    otherwise.

Note that v is not eventually 0. For let z'0 be such that v(i0) = I (ox i0 = -I),

and let p = 1 +card{w < io: v(m) = 1} . Since xn, —► y, there is a least y0 > io

so that if j > jo then r„y T p = y I" p . And since z is not eventually 0, there

is a least ix > jo with z(ix) = 1.  But then v(i) = 0 for z0 < z < z'i, and
t>(ii) = l.

Let x € fli-^: a ^ (y, z, w, ti)}. To finish the proof it will suffice to

show that for any ;' with v(j) = 1, gnj(w, x) = 1. Fix such a j. Let

Oj = (y \ J' + I > z \ J + 1 > u \ j + l,v \ j + I). The following three facts are
direct consequences of the definitions of u and v .

(i) u \ j + 1 is strictly increasing and u(j) = t„ .

(ii) z(j) = v(j) = l.

(iii) If p = card{m < j: v(m) = 1} then y \p = xn¡ \ p .
Now (i)-(iii) mean that o¡ is «;-good. Clearly x e Na.. Since (to, y, z) e

[T], clearly (w \ j + 1, y \ j + 1, z \ j + 1) e T. So by definition of gn¡,
gnj(w,x)=l.    D

8. Proof of Lemma 4.3

We can view points t in T = R/2nZ as being members of 2W , by writing

the real number t/2n in base 2. Formally, let /: 2œ -> T be the function

oo

/(x) = 27r.5>(/).2-«+I>.
i=0

Thus multiplication by 2, in T, corresponds to the operation of removing the

first coordinate, in 2U . We use the following lemma, which is elementary.

Lemma 8.1. Let / c T be an interval of length 2n/s, and let m be a positive

integer. Let p be the integer part of log2(m) and let q be the integer part of

log2(s). For any o: p -* 2 there exists a x: (p + q + 3) -* 2 such that o <x,

and such that for any y e 2W, if x -< y then m • f(y) e I.

Fix a sequence [a(n), b(n)] of intervals in co such that:

(i) a(n + 1) > b(n).

(8.2) (ii) b(n) - a(n) ^ oo.

(iii) a(n + 1 ) - b(n) -> oo.

For x e 2W, let

Ex = {ye20): For all n , if x(n) = 0 then for all c e [a(n), b(n)], y(c) = 0}.

For K e JT^), let K = \J{EX: x e K} .
To prove Lemma 4.3, let A: 3f(2w) -> 3?(T) be the following function:

h(K) = fi[K]. It is easy to see that h(K) is compact and A is continuous.
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Proof of Lemma 4.3(a). Let K e Z . Then there is a sequence (pn¡) of pro-

jection functions which converges to 0 pointwise on K. For j e co, let

Lj = {y e 2m : For all i > j and all c e [a(n¡), b(n¡)], y(c) = 0}, let
Mj = f[Lj] and let M = [J7 Mj ■ If x e K then there is a j such that for

all i > j, Pn,(x) = 0 ; hence if y e K, there is a j such that y e L¡. That

is, h(K) CM. So to prove Lemma 4.3(a), all that remains to be shown is that

MeD].
Clearly Mj c T is compact and Mj c M¡+ x . Fix j . We show that M¡ is a

D-set. By definition of Lj , if t e Mj then for i > j :

\2a(-nif\ < 2-(è("/)-a('!')).

Hence by (8.2)(ii), the sequence (sin2a<-ni)t) converges to 0 uniformly on Mj.

Proof of Lemma 4.3(b). Let K e 3¡Z(2W) \Z and let Me//|. We show
that h(K) ¿ M. Suppose M = U;M, where M¡ e 3TCT) is an //-set and
M¡ c Mi+X. Also suppose that /, is an interval of T and v¡ is a strictly

increasing sequence of positive integers such that /, and v¡ witness that M, is

an //-set; that is, for all ; , v,(j) • M-, nl¡ = 0 . To show that h(K) ¿ M, it will
suffice to prove the following fact: There is a t e h(K) such that for infinitely

many z's there is some m, = v,(jj) for which m¡t e I,.

Let p(i,j) be the integer part of log2(t>,(;')) and let q(i) be the integer

part of log2(s,), where 2n/s¡ is the length of /, • We inductively define strictly

increasing functions i i-> j, and i •-► n, such that the intervals

// = \p(i, Ji), P(i, Ji) + 9(0 + 2]

satisfy the following two properties.

(8 3) (i) max(y,)<min(/,+i).

(ii) Jic[b(ni-X)+I, a(n,+x)-I].

That is, /, intersects at most one of the intervals of (8.2), namely [«(«,), b(n¡)].

This is clearly possible by (8.2)(iii) and the fact that limJ_>00p(z, j) = oo. Let

mi = viiJi) ■ By Lemma 8.1, if o, e 2<w is defined on numbers less than

min(/,), then there is a x, e 2<w extending a, and defined on numbers less

than or equal to max( J¡), such that for any y e2C0 with t, -< y, m,.f(y) e I,.

Hence for any B c co there is a y e 2W with the following property. For all

z e B, m¡. fi(y) e /,, and for all c £ [}{J¡ : i e B}, y(c) = 0.
Since K £ Z , there is an x e K such that B = {i: x(n¡) = 1} is infinite.

Fix such an x and B. Choose a y with the above property, for this particular

B . Let t = f(y). Then for infinitely many z, m,t e I,. So to complete the

proof of Lemma 4.3, all we need to show is that teh(K). If c £ {J{J¡: i e B} ,
then y(c) = 0. By (8.3), if n £ {«,: i e B} then for all c e [a(n), b(n)],

y(c) = 0. This ensures that y e Ex . Hence y e K and t e h(K).   a

The function A in the above proof is not one-to-one. In order to prove

Theorem 5.4 we need to modify the proof of Lemma 4.3 to get a one-to-one



SOME COMPLETE Ej  SETS IN HARMONIC ANALYSIS 335

A'. This can be done as follows. Let hx : Jf(2w) -> ^([0, n]) be the function

hx(K) = h(K) n [0, n]. As is clear from the proof of Lemma 4.3(a), there

is an F c (n, 2n) such that F is homeomorphic to 2e0 and the sequence

(sin2a(")i) converges to 0 on F. Jf(2(") is also homeomorphic to 2W. Let

A2: 3¡Z(2a) —► F be a homeomorphism. Then let

h'(K) = hx(K)U{h2(K)}.
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