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Abstract. Let (R, m, k) be a local ring in which 2 is a unit. Assume that ev-

ery element of k has a square root in k . We classify the algebras Torf (R/J, k)

as J varies over all grade four almost complete intersection ideals in R . The

analogous classification has already been found when J varies over all grade

four Gorenstein ideals [21], and when J varies over all ideals of grade at most

three [5, 30]. The present paper makes use of the classification, in [21], of

the Tor-algebras of codimension four Gorenstein rings, as well as the (usually

nonminimal) DG-algebra resolution of a codimension four almost complete in-

tersection which is produced in [25 and 26].

Fix, for the time being, a regular local ring (R, m, k). For each Cohen-

Macaulay ring Ä of the form A = R/I, we consider the Tor-algebra T, =

T,(A) = Torf(v4, k). A great deal of information about A is encoded in

T,(A). Some of the classical results along these lines are: A is regular if and

only if T, = To [27]; A is Gorenstein if and only if T. is a Poincaré duality

algebra [4]; A is a complete intersection if and only if T, is the exterior algebra

on Tx [29, 1]. There are at least three types of modern applications of theorems

which classify Tor-algebras. The major impetus for studying T, is Avramov's

machine for converting questions about the local ring A into questions about
the algebra T. , provided the minimal R-fxee resolution of A is a DG-algebra.

The algebra 7". is graded-commutative, instead of commutative; nonetheless,

it is a much simpler object than the original ring A. In particular, T, is

always a finite dimensional vector space over k. Avramov's machine has been

successfully applied when the codimension of A is at most three; or A is
Gorenstein of codimension four; or A is one link from a complete intersection;

or A is Gorenstein and two links from a complete intersection. In each case

the minimal /(-resolution of A is a DG-algebra [6, 17, 19, 16, 5] and the
Tor-algebra T,(A) has been classified [21, 30, 5]. Once the key hypotheses are
established, then one is able to prove [12, 5] that the Poincaré series

oo

P?(z) = £ dim* Tor/ (M,k)zl

;=0

is a rational function for all finitely generated ^-modules M. One is also able

to prove [2] that all of these rings A satisfy the Eisenbud Conjecture [8]; that
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62 A. R. KUSTIN

is, if M is a finitely generated ^4-module whose Betti numbers are bounded,

then the minimal resolution of M is eventually periodic of period two. See [3]

for further results and problems along these lines.

Avramov's machine has been applied to Gorenstein rings of codimension

four and to rings which are a "small" number of links from other "nice" rings.

It is our hope that these techniques may also be applied to rings which are

one link from a Gorenstein ring of codimension four, in other words to almost

complete intersections of codimension four. The first step in this direction was

taken in Palmer's thesis [25, 26]. Let A be a codimension four almost complete

intersection. Palmer produced a DG-algebra resolution of A . Palmer's resolu-

tion is close to, but not always equal to, the minimal resolution of A . Palmer's

work provides evidence that the minimal resolution of A is a DG-algebra and

it is very useful in the present paper where the second step—the classification

of T.(A)—takes place. Palmer's work is summarized in §3, and is applied to
T,(A) in §4. (It is noteworthy that the present paper represents the first time

that T,(A) has been classified before the minimal resolution of A was known

to be a DG-algebra; indeed, it is likely that the present work will help complete

the project initiated in [25].)
A second application of theorems which classify Tor-algebras is to the

Buchsbaum-Eisenbud conjecture [6] about lower bounds for Betti numbers.

Charalambous, Evans, and Miller [7] have proved that if the dimension, d,

of R is at most four, and M is an i?-module of finite length, with M not

equal to R modulo a regular sequence, then the Betti numbers of M satisfy

(?) < ßiiM) for 0 < / < d, and 2d + 2d~x < EtoAW). One of the key
ingredients in their proof is the classification in [21] of T,(A) for codimension

four Gorenstein rings A . The classification of Tor-algebras contained in the

present paper should lead to further progress on establishing lower bounds for

Betti numbers.
Multiplicative operations in Tor-algebras also play some role in determining

the generating set of a residual intersection. This theme is initiated in [23].

Further results along these lines will appear in subsequent papers.

The algebra T,(A) has been classified when A is a codimension four Goren-

stein ring [21]; and when A is a codimension three ring [30, 5]. In each case,

there are at most five different families of Tor-algebras. Furthermore, each

family is discrete, in the sense that the family members are parameterized by

integers. The proofs in [21] and [5] are based on the theory of linkage. The

proof in [30] comes from invariant theory. The proofs look quite different,

but the ultimate linear algebra calculations are roughly equivalent. The linkage

theory proof is like an induction; one must know the answer before one can

prove it. For rings of codimenson three, the proof in [30] preceded proof in [5];

indeed, the authors of [5] took Weyman's answer and reproved it using their

linkage technique. Some further details may be found in [24]. The classification

in the present paper uses the linkage style of argument. Once again the answer

consists of a small number of discrete families of Tor-algebras; see Theorem

1.5.
The main result is stated in §1 and proved in §4. Palmer's DG-algebra res-

olution M of a codimension four almost complete intersection is recorded in

§3. The multiplication in M uses the multiplication on a resolution of a codi-
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mension four Gorenstein ring. In §2 we recall the classification of T.(A) for

codimension four Gorenstein rings A. In §5 we give examples and ask ques-

tions. The remainder of the present section is a discussion of the conventions
that are used throughout the paper.

In this paper "ring" means commutative noetherian ring with one. The grade
of a proper ideal / in a ring R is the length of the longest regular sequence on

R in I. The ideal I of R is called perfect if the grade of / is equal to the
projective dimension, pdÄ (R/I), of the i?-module R/I. Agrade g ideal / is

called a complete intersection if it can be generated by g generators. Complete

intersection ideals are necessarily perfect. The grade g ideal / is called an

almost complete intersection if it is a perfect ideal which is not a complete inter-
section and which can be generated by g + 1 generators. The grade g ideal /

is called Gorenstein if it is perfect and ExtgR(R/I, R) = R/I.
Let k be a fixed field. Throughout this paper, we write

(0.1) " S. is a graded k -algebra"

to mean that S, is a finite dimensional graded-commutative associative k-

algebra of the form S, = ®"=0 S¡ with S0 = k. In particular,

SjSj = (-l)ljSjSi   for all s, e S¡ and Sj e Sj

and
SjSj = 0   if 5, e S¡ and i is odd.

For example, if (R, m, k) is a local ring and / is an i?-ideal of finite projective

dimension, then Tox? (R/I, k) is a graded fc-algebra in the sense of (0.1 ). For
a more concrete example, let F be a vector space of dimension d over k. The

exterior algebra

A/ v = f\'kv = k®v © f\2v © A3 v © • • • © f\dv,
with multiplication given by exterior product, is a graded k-algebra in the sense

of (0.1). We use the usual conventions regarding grading. If M = ® A// is

a graded S.-module, then M (a) is the graded S.-module with the property

that M(a)j = Ma+j and HomSt(S.(-a), M) = M (a). In particular, there

is an isomorphism of graded A:-vector spaces from k(-l)d to the subspace

V = /\iV of A* V.
In this paper the word "trivial" is given two distinct meanings. Suppose that

5. is a graded fc-algebra and W is a positively graded S.-module. Then the
trivial extension of S, by W, S, x W, is the graded /c-algebra whose graded

vector space structure is given by S, © W and whose multiplication is given by

(S¡, Wj)(sk , Wi) = (SjSk , SiW, + (-l)jkSkWj)

for all sa e Sa and all iu¿, e Wb . On the other hand, we say that IF is a trivial

S,-module if S+ W = 0. In particular, if k is viewed as an S, -module by way

of the natural quotient map S, -» S,/S+ = k, then ®"=1 k(-i)m< is a trivial

S.-module.
Elementary results about linkage and DG-algebras may be found in [6 and

17]. In this paper, "DG-algebra" always means associative DG-algebra.

1.  THE STATEMENT OF THE MAIN THEOREM

Let /c be a fixed field. In Table 1.3 we define the graded k-algebras (in
the sense of (0.1)) which appear in Theorem 1.5, the main theorem of the
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paper. Each of these algebras has the form S, = ©?=0 S¡ with So = k and

d, = dimes',. Select bases {x,} for Si, {v,} for S2, {z,} for S3, and {tu,}

for S4 . View 5*2 as the direct sum S'2®S2. Numerical information about these

algebras is collected in Table 1.4. One may combine Lemma 1.2 with Table 1.4

in order to conclude that each of the algebras of Table 1.3 represents a distinct

isomorphism class of fc-algebras, provided the parameters p , q , and r satisfy

(1.1) 0<p,    2<q<3,    and   2 < r < 5.

(If we had allowed q and r to take the value 1, then E(1) would equal E[l]

and F*1' would equal F[l].)

Lemma 1.2. If S. is one of the algebras from Table 1.3, then there is a four

dimensional subspace V of Si with the property that dimF2 = 6 if and only

if S, is not equal to C(2), C*, or C[p] for any p.

Proof. If S, is not equal to C(2), C*, or C[p] for any p, then the subspace

V of Sx spanned by xx, x2, X3 , and X4 has dim V2 = 6. On the other

hand, we now suppose that S, is equal to C(2), C*, or C[p] for some p . Let

x[, x'2, x\, x'a be a basis for V. Select a, in k with x'j £/=! aiJX' > let

A(j, j; a, b) and D(a, b, c, d) represent the following determinants:

A(i,j;a,b) =

<*ai    cxa2    aai    aa4

aia    aib     and   D(a,b,c,d)=  abx    at>2   a»3   aM
a ja   otß a d    ac2    aC3    qc4

adi    ad2   otdi    ad4

Recall that X3X4 = X3X5 = X4X5 = 0 in S, . It follows that

2     5

x'ax'b = YL Yl A(* ' j ; a ' b)x*xJ in s-
i=\ j=i+l

Observe that

A(l,2; 3,4)xix2-A(l,2; 2, 4)x|x3 + A(l, 2; 2, 3)x'xx'4 + A(l, 2; 1, 2)x'3x'4

2     5

-A(l, 2 ; 1, 3)x'2x4 + A(l, 2; 1, 4)x'2x'3 = £ £ D(l, 2, i, J)x,Xj = 0.
¡=1 j=i+l

There are two possibilities. If A(l, 2; a, b) ^ 0 for some pair (a, b), then

dim V2 < 5 . If A(l, 2; a, b) = 0 for all (a,b), then the rank of

"11     «12     C*13     "14

C*21     »22     Q23     «24

is at most one, and V is contained in U = (Xxx + px2, x3, x4, x5) for some

X and p in k . It follows that dim V2 < dim U2 < 3.   G

Key to Table 1.3.
(a) X1X2 = yx, X1X3 = y2, xxx4 = V3, X2X3 = y¡¡,, x2x$ = V5, X3X4 = y$

(a ) X1X2X3 = zx, X1X2X4 = Z2, X1X3X4 = Z3, X2X3X4 = Z4

(b) X1X2 = V/+i , X1X3 = V/+2 , XiX4 = V/+3 , X1X5 = y¡+4, X2X3 = V/+5 ,

X2X4 = V/+6 ,   X3X4 = V/+7

(b')   X1X2X3 = Z/+i ,   X1X2X4 = Z/+2 ,   X1X3X4 = Z/+3

(C) X1X2 = yi+l, X1X3 = V/+2 , X1X4 = V/+3 , X1X5 = yi+4, X2X3 = V/+5 ,

X2X4 = V/+6 ,  X2X5 = V/+7
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(c')   X1X2X3 = Zi+i ,  X1X2X4 = Z/+2 ,   X1X2X5 = Z/+3

(d) X1X2 = yi+i, X1X3 = y¡+2, X1X4 = V/+3, X1X5 = y 1+4

X2X4 = y¡+6 , X2X5 = V/+7, X3X4 = v/+g

(d')   X1X2X3 = Z¡+i ,   X1X2X4 = Z/+2

(e) X1X2 = yi+x, X1X3 = y¡+2, xix4 = v/+3, X1X5 = y/+4

X2X4 = V/+6, X2X5 = v/+7, X3X4 = v/+8, X3X5 = y/+9

(e') X1X2X3 = zM,

(f) XXX2   = y¡+X ,   X1X3   =  V/+2 ,   X1X4  =   V/+3 ,   X1X5   =  V/+4

X2X4 = V/+6 ,  X2X5 = y¡+7 ,  X3X4 = V/+8 ,  X3X5 = V/+9 ,  X4X5

(g) xxy¡ = z, for 1 < 1 < p,

(g') X\Zp+i = w¡ for 1 < i < p ,
(h) x,yi = z, for 1 < i < j,
(W) XiZj+i = wx for 1 < i < j,

(i) xxyx = zx , xxy2 = z2, x2yx = z3

(i') Xix2yi = iüi, xxx2y2 = w2,

Ü) ^1^2 = W\, y\ = w2.

*2*3  = ^/+5 .

•^2^3 = y 1+5 >

X2X3

y/+io
y¡+s,

x2y2 = z4

S.

Table 1.4. Numerical information about the algebra A-F*

dim Si S3

B[p]

C[p]

C(2)

D[p]

D<2)

E[p]
£(<?>

F[p]

F(<-)
F*

dimS2

10

10
10

dimS,3 dimSiS2-dimS3

0 0

dimS2

0

0

Theorem 1.5. Let (R, m, k) be a local ring in which 2 is a unit. Assume that

every element of k has a square root in k. Let J be a grade four almost complete

intersection ideal in R, and let T, be the graded k-algebra Torf (R/J, k).

Then there is a parameter p, q, or r which satisfies (1.1), an algebra S. from

the list A,B[p], C[p], Ö2), C*, D[p], D<2>, E[p], E<«>, F[p], F«, F*,
and a positively graded vector space W such that, T, is isomorphic (as a graded

k-algebra) to the trivial extension S,xW of S, by the trivial S.-module W.

k(-i m,Note. In the above theorem, the vector space W has the form 0(

where mx = 1 if S, = A, and mx = 0 in all other cases.

The proof of Theorem 1.5 is contained in §4. We next record a few con-
sequences of Theorem 1.5. If one is interested only in the subalgebra of T,

which is generated by Tx , then the classification of Theorem 1.5 can be made

even cleaner.
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Corollary 1.6. If the notation of Theorem 1.5 is adopted, then the subalgebra

k[Tx] of T, is isomorphic to one of the algebras Axk(-l), B[0], C[0], D[0],
E[0], F[0]. In particular, the following numerical statements hold:

(a) 6<dimT2< 10, and
(b) dim T2 + dim T¡ = 10.

Proof. It is easy to see that if T, has the form S. x W (as described in Theorem

1.5) where S. is C(2), or C* , or C[p] (for some p), then the subalgebra k[Tx]

of T, is C[0]. An analogous statement holds for all of the other algebras of
Table 1.3. The numerical assertions follow from Table 1.4.   D

The next corollary follows from Lemma 1.2 by way of a prime avoidance

argument.

Corollary 1.7. Adopt the notation of Theorem 1.5. Exactly one of the following
statements holds:

(a) the subalgebra k[Tx] of T. is C[0] ; or
(b) there is a minimal presentation

(1.8) R'íiRsto-zt'Aj

for J with the property that ax, a2, a3, «4 is a regular R-sequence and the first

six columns of d2 are

~-a2 -a-$ -Ü4     0       0 0  "

ax 0       0 -a-i -a4 0

0 ax       0 a2      0 -Ü4   .

0 0 ax       0 a2 íz3
.0 0       0       0       0 0 .

Remarks 1.9. Some of the algebras of Table 1.3 have a compact coordinate-free
representation:

(a) If V is the graded vector space k(-l)4, then A = /\* V//\4 V. In the
notation of Theorem 1.5, one can show (see, for example, [25, Proposition 3.2]

or [26, Proposition 4.2]) that T. = A k W if and only if there is a grade four
Gorenstein ideal / and a grade four complete intersection ideal K with

(1.10) K Cm/

such that J = K: I. (The significant hypothesis in the last sentence is the one

we have isolated as (1.10).)
(b) If V is the graded vector space k(-l)3, then B[p] is isomorphic to

(ù^K[ki-i)®k(-2y®k(-w]j<8>k/\'k(-i).

(c) The algebra C[p] is isomorphic to

[[(k x k(-lf) % A* fc(-l)] * (H-2)p © k(-3)P)] % A* fc(-l).

The algebra C* is isomorphic to

[*K(*(-i)3e*(-2)2)]®tA'*(-i)2.

If /' is a grade two almost complete intersection (in other words, /' is a
determinantal ideal generated by the 2x2 minors of a 3x2 matrix), and J
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is the ideal (J', a, b) for some elements a and b of R, with a, b a regular

sequence on R/J', then Tox^(R/J, k) is isomorphic to C* . (See the proof

of case one in §4.)

(d) Let V = k(-l)2 and V = k(-l)2 be graded vector spaces and S. be

the graded k -algebra /\'(V ® V). Let S. be the graded Ac-algebra and W be

the S.-module defined by

S7 = S./(A2nS+   and   W = S./(V' + S2)S..

If W* is the S;-module Hom^W, k), then

D[0] = STx W(-l),    and

D(2) = ST k (W(-l) © W(-2) © W*(-4)).

(e) Let F be the graded vector space fc(-l)3, W be the A* ^-module

A* V/ /\2V, and W7* be the A* ̂ -module Homk(W, A:). It is not difficult to
see that

E[0] = /\'Vx W(-l)2,

E<3> = A* V x (W(-l)2 © W(-2) © W*(-4)).

(f) If F is the graded vector space A;(-l)5, then F[0] ^ f\'V/ A3V . Sup-
pose that / is an ideal from Theorem 1.5 with the property that the subalgebra

k[Tx] of T, is isomorphic to F[0]. Let (1.8) be a minimal presentation of J .

It follows that the basis for R" can be chosen so that the first 10 columns of

d2 are

-a2 -a3 -04 -as 0       0 0       0       0 0

ax 0 0       0 -a3 -Û4 -as      0       0 0
0 ax 0       0 a2       0 0 -a4 -a5 0

0 0 ax       0 0 a2 0 a3      0 -a5
0 0 0 ai 0       0 a2       0 a3 a4

Let W be the F[0]-module F[0]/F+[0]2, and let W* be the F[0]-module
Womk(W, k). It is not difficult to see that

F(5) =■ F[0] x [W(-2) © W*(-4)\.

2. The Tor-algebra of a codimension four Gorenstein ring

The classification of Tor-algebras for rings defined by grade four Gorenstein

ideals plays a crucial role in the proof of Theorem 1.5. The following result is

proved in [21] (when chaxk ^ 2) and [16]. (The results in [17, 21], and [16]
are stated for Gorenstein ideals in Gorenstein local rings; however, it is not

difficult to check that the proofs hold for Gorenstein ideals in arbitrary local

rings.) The Tor-algebra Torf (R/I, k) may be described intrinsically without
any mention of the minimal resolution

(2.1) L:0^L4^Li±L2±Lx±L0

of R/I. We have chosen to introduce L in Theorem 2.2 so that the notation in

the present section coincides with the notation in §4. We know from [17] and

[16] that L is a DG-algebra; so, the graded k-algebras L and Torf (R/I, k)
are equal. (Throughout the paper we write " to mean ®Rk and a = b to mean

a = b.)
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Theorem 2.2. Let (R, m, k) be a local ring. Assume that either every ele-

ment in k has a square root in k, or else that the characteristic of k is

equal to two. Let I be a grade four Gorenstein ideal in R, L be the min-

imal R-resolution of R/I, and L be the graded k-algebra Torf (R/I, k).
If I is not a complete intersection, then there are bases ex, ... , en for Lx ;

fi, ... , fin-i, fi{, ... , jf^-i for L2 ;_gx, ... , g„ for L3 ; and h for L4 such
that the multiplication L, x L4_, —> L4 is given by

(2.3) e,gj = âijh,       f,fjs3,jh,       ftfjs/ifjsO,

and the other productsjn_L are given by one of the following cases:
(a) All products in LXLX and LXL2 are zero.

(b) All products in LXLX and LXL2 are zero except:

(2 4) exe2 = fi ,    exe3 = f2,    e2e3 = fi,

eifi[ = e-ifi[ = gx,    -exfi[ = e3fi¡ = g2,    and   exf{ = e2f¡ = -g3.

(c) There is an integer p such that ep+xe¡ = fi, eifi/ = gp+i, and ep+xf[ =

—gi for 1 < i < p and all other products in LXLX and LXL2 are zero.

Note. It is possible to choose the basis for L so that the multiplication is correct

^on the nose" for L± ® Lj -> L2 and Lx ® L3 —» L4, and is also correct for
Li ® L2 —> L3 and L2® L2-^ L4 .

Remark 2.5. One consequence of the above classification is the well-known fact
_3

that L, = 0 when / is a grade four Gorenstein ideal which is not a complete

intersection.
The proof of Theorem 1.5 requires that we understand the multiplication

V ® L -> L, where V is an arbitrary subspace of Li . It is not difficult to guess

all of the possibilities.  For example, if the multiplication of L is described

in Theorem 2.2(c), then the distinguished element lp+x "may be taken" to be

either in V (case (iii) below) or not in V (case (iv)).  A complete proof of

Corollary 2.7 (in contrast to the above heuristic argument) has two parts. We

use linear algebra to find an appropriate basis of Lx, and then we use the fact

that L is a Poincaré duality algebra to determine the rest of the multiplication

in L. The second part of the argument is summarized in the following lemma,

which appears as [21, Lemma 2.3]. (The characteristic two version of the lemma
may be found at the end of [16].) The proof of Lemma 2.6, which is due to

Avramov, is the only place in the present paper that the square roots of elements

of k are used.

Lemma 2.6. Let L be as in Theorem 2.2. If ex, ... , en is any basis for Lx,

h is any basis for L4, and fi, ... , fim is the beginning of a basis for L2 with

m < n - 1 and fifi¡ = 0 for all i and j, then there is a basis gx, ... , gn for

L3 and an extension of fi, ... , fim to a basis fi, ... , /„_,, f[, ... , fi'n_x fior

L2 such that (2.3) holds.

Corollary 2.7. Adopt the notation and hypotheses of Theorem 2.2. // V is a

nonzero subspace of Lx of dimension t, then there are bases {e¡} for Lx,

{fi> f¡} for L2, {gi} fior L3 and h for L4 such that (2.3) holds, ~ëx, ... ,lt
is a basis for V, and the multiplication V ® Lx —> L2 and V ® L2 —> L3 is
given by one of the following cases:
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(i) The integer t is at least 3 and the only nonzero products in VLX and

VL2 are given in (2.4).

(ii) The integer t is at least 2 and all products in VLX and VL2 are zero,

except

eie2 = fi ,    exet+x = fi2,    e2e,+x = fi,

eift = gi »    -eifi = 82 »    and   exf[ = e2f{ = -gt+x.

(iii) There are integers a and b, with 0 < a < t - 1 and 0 < b, such that

the only nonzero products of basis vectors in VLX and VL2 are

e\ex+i = fi,    exf{ = -gx+i,    ex+if¡ = gx,      forl<i<a,

exet+i = fa+i,    exfi'a+i = -gt+i, fior 1 < i < b.

(iv) There is an integer j, with 2 < j < t, such that the only nonzero products

of basis vectors in VLX and VL2 are et+ie, = fi and eifi/ = gt+i for I < i < j.

Proof. If L is described in Theorem 2.2(a), then it is clear that VL is given by

(iii) with a = b = 0. We next suppose that L is described by Theorem 2.2(c).

In this case Lx decomposes as ke~®U for some e e Lx and some U ç Lx with

U2 = 0. There are two possibilities: either V C U, or else there is an element

u of U such that 1 + u e V. If V ç U, then we let et+x be the element e

of Lx. Select elements ex, ... , et of Lx such that e~x, ... ,et is a basis for

V, e~t+xe~i, ... , e~i+iëj is a basis for e~t+xV, and et+xe, = 0 for ,j + 1 < i < t.

Define fi = et+xei in L2 for 1 < i < j. Observe that (fi, ... , ff)2 = 0.
Complete the basis for L using Lemma 2.6. Observe that the multiplication

VL is described in (iv) (if 2 < j) or (iii) (with a = 0 and b = j if 0 < j < 1).
If e~ + u e V, then let ex e Lx be a preimage of this element. Observe that
Li = këi © U. Select e2, ... , e„ eL, such that e2, ... ,ë„ e U, e~x... ,et
is a basis for V, ex, ... , en is a basis for Lx , exe2, ... , e~xe~a+x is a basis for

e~iV, e~iê~2, ... , e~xe~a+x, exet+x, ... , exet+¡, is a basis for 1XLX, and exe, = 0
whenever a + 2 < i < t or t + b+l < i < n . Define the elements fi, ... , fa+¡,

in L2 in the obvious manner and proceed, as in the case V ç U, to show that

VL is described by (iii).
Finally, suppose that L is described in Theorem 2.2(b). In other words,

we are given a decomposition Lx = E © U with dimis = dim is2 = 3 and

U • Lx = 0. Consider the map it: V -» E which is the composition

V^LX=E®UP-^E.

Let r be the rank of n . It is clear that the kernel of n is V n U ; consequently,

we may select ex, ... , et in Lx such that ë~x, ... ,et is a basis for V, and

e~r+x, ... ,e~t is a basis for V n U. It follows that 7r(i?i), ... , n(e~r) is a basis

for im7r. Let s = 3 — r and let el+x, ... , et+s be elements of Lx such that

e~t+i, ... , e~t+s axe in E, and n(e~x), ... , n(e~r), e~l+x, ... , e~t+s is a basis for

E. If E' is the subspace (e~x, ... , e~r, e~t+x, ... , e~t+s) of Lx, then it is clear

that dim is' = dim(E')2 = 3 and that E' © U = Li . It follows that we can

find et+s+x, ... ,e„ in Lx such that e~t+s+i, ... ,e„ are in U, and ex, ... , en

is a basis of Lx. This basis has been chosen so that ex, ... ,ër e E' n V,

e~r+i, ... ,e~t e V n U, ët+x, ... , ët+s e E'\V, ët+s+x, ... ,ë„ e U\V. Com-
plete the basis for L by using the technique of the preceding paragraph. It is
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now clear that VL is described by (i), if r = 3 ; by (ii), if r = 2 ; by (iii) with
a = 0 and b = 2, if r = 1 ; and by (iii) with a = ¿ = 0,ifr = 0.   D

3. A DG-resolution of almost complete intersections

Let / be a grade four almost complete intersection in the local ring (R,m, k)

In this section we describe Palmer's DG-algebra resolution M of R/J. This
resolution, in general, is not the minimal resolution of R/J ; nonetheless, we

are able to use it in §4 to compute the multiplication in Torf (R/J, k).

Let K be a grade four complete intersection ideal with K ç J and p(J/K) =

1. (We use p(M) to mean the minimal number of generators of the i?-module

M.) The ideal I = K : J is known to be a grade four Gorenstein ideal. It is

shown in [ 17] and [ 16] (the results in these references hold for Gorenstein ideals

in arbitrary local rings) that the minimal resolution L of R/I is a DG-algebra.

Let K be a Koszul complex which is the minimal resolution of R/K and let

a.:K->L

(3.1)

0

0

K4

L4

K3 K2

a2 1.

L2

h Kx
». I

U

Ko
"o Í

Lo

be a map of DG-algebras which extends the identity map ao : R —► R. Fix

orientation isomorphisms [ ]: A4 -» R and []:L4->Ä. A routine mapping
cone argument establishes the following result.

Proposition 3.2. Let J be a grade four almost complete intersection in the local

ring (R, m, k) and let K be a grade four complete intersection ideal with K ç J

and p(J/K) = 1. Let K be the minimal resolution of R/K, L be the minimal

resolution of R/I for I = K : J, and a. : K —> L, as in (3.1), be a map of

oriented DG-algebras. If ß, : Li -» K¿ is the map defined by

(3.3) [ßj(Vi)U4-i] = [Vi04-i(U4-i)]

for all Uj e Kj and all v¡ e L¡, then

= M(a.):     0^Af4 ZU. m3 ^ M2 ^ Mx
m.

is a resolution of R/J, where M0 = R,  Mx = Kx

M3 = K3®L2, M4 = L3, mx= [kx    ß0],

m2 =
k2

0

-ßi

h
7«3 = o

ßi
h

and   m4 =

y Mo

M2 =

h

K2® Lx,

Note. The definition of ßi makes use of the well-known perfect pairings A, ®

K4-Í —> R and L, ® £4-, —► R, which are given by u¡ ® «4_, h-> [u¡U4-¡] and

V, ® V4-Í k-> [U/U4-/] • The orientation on the left side of (3.3) is the orientation
on K, whereas the orientation on the right side of (3.3) is the orientation on
L.

The next result asserts that M has the structure of a DG-algebra, provided

2 is a unit in R. A small amount of notation is needed in order to describe

the multiplication in M. Let h be the element of L4 with [h] = 1 and let
ßi, e2, e3, £4 be a basis for Ki with [ei A s2 A £3 A e4] = 1. The result claims

the existence of an JR-module homomorphism P: A5 Lx —> ¿2 which satisfies
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a long list of properties. Two homomorphisms, p: Lx

are defined in terms of P by

L2 and q: L2 —> L3

(3.4) p(Vi) = P(vi A ai(ei) A ai(e2) A ax(e3) A ax(e4)),

and vxq(v2) = v2p(vx) for all v¡ e L¡.

Theorem 3.5 [25]. Adopt the notation of the preceding paragraph together with

the notation and hypotheses of Proposition 3.2. If 2 is a unit in R, then there

is a map P: A Lx
a DG-algebra:

MX®MX-*M2:

L2 such that the following maps give M the structure of

Mx ® M2

Mx ®M3

M2 x M2

Mx

M4

Mi

"1

vo

"1

vo

"1

vo

"2

V\

v0

u2

"3

v2

uxu\

v0ax(ux) - Voax(u\)

uxu2

vQa2(u2) + ax(ux)vx + v0p(vx)

= - [uxUi]U(h) - v0a3(u3) + ax(ux)v2 - v0q(v2) .

= - [u2u'2]U(h) + a2(u2)v[ + vxa2(u2)

+ vxp(v[) + v[p(vx)

for all Ui, u\ e Ki and v¡, v'¡ e L¡. Furthermore, the map P also has the

property that

vxv[P(vx Av{ A_): A3-Li -♦ L4

is the zero map for all vx, v[ e Lx.

Note. There are two parts to the proof in [25, 26]. In the first part, a long list

of properties for P is compiled such that whenever a map P satisfies all of

these properties, then the above indicated multiplication gives M the structure

of a DG-algbra. The one property for P that is highlighted in Theorem 3.5
is just one of the many properties from this list; however, it happens to be the

only property of P that we use explicitly in §4. The second, and much more

difficult, part of the proof in [25, 26] is to prove that the desired P (a "higher

order multiplication" on the resolution L of a codimension four Gorenstein

ring) does exist.

4. The proof of the main theorem

Fix the notation and hypotheses of Theorem 1.5. If K is a grade four com-

plete intersection ideal with K ç J and p(J/K) = 1, then we say that the

grade four Gorenstein ideal I = K : J is (directly) linked to J by K . For each

such K, let

In other words, t(K) is the cardinality of the largest subset of K which begins

a minimal generating set for the ideal K : J It is clear that 0 < t(K) < 4. Our

proof of Theorem 1.5 is divided into three cases:

Case 1. The ideal / is directly linked to a complete intersection.
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Case 2. The ideal / is not directly linked to a complete intersection; and there

exists a grade four complete intersection ideal K with K ç J, p(J/K) = 1,

and t(K) < 3.

Case 3. The ideal J is not directly linked to a complete intersection; and

t(K) = 4 for every grade four complete intersection ideal K with K ç J

and p(J/K) = 1.

The proof of Theorem 1.5 in Case 1. According to the hypothesis, there are

complete intersection ideals I and K with K ç J, p(J/K) = 1, and I
linked to J by K. Let t = t(K) and s = 4-t. It is known (see, for example,

[5, Theorem 3.2]) that there are matrices aiXJ, biX(, and Xsxs with entries

in m such that J = J' + Ix (b) and the entries bx,... ,bt of b form a regular

sequence on both R and R/J' where J' = Ix(aX) + IS(X). (If Af is a matrix
with entries in R, then we use I¡ (M) to denote the ideal in R generated by

the / x / minors of M.) Let L' be the minimal resolution of R/J' and K be

the Koszul complex which is the minimal resolution of R/Ix (b). Both of these

resolutions are DG-algebras. (See [5, Proposition 4.4] for the multiplication

on V.) It follows that the resolution L' ®r K of R/J is a DG-algebra; and

therefore,

T. =■ Torf (R/J', k) ®fc Torf (R/Ix (b), Ac).

We know that Torf (R/Ix(b), Ac) is the exterior algebra A' k(-l)'. Proposition

4.4 of [5] shows that

Torf (R/J' ,k)^S.xW   where V = k(-1 )s, S. = A* V/ N3 V,

and W is the trivial S,-module

The hypothesis that / is a proper ideal which is not a complete intersection

ensures that 0 < t < 2. It is now clear that

(C*, ift = 2,

T. = ¡ B[3],        ifi=l,

I A « W,    if t = 0.
The proof of Theorem 1.5 in Case 1 is complete.

For each choice of a grade four complete intersection ideal K with K ç J

and J/K cyclic, we are able to use the information of §§2 and 3 in order to

calculate part of the multiplication in T, . To prove Theorem 1.5 in Cases 2

and 3, we piece together this incomplete information in order to produce the

entire multiplication table for T. . For the time being, let A be a fixed grade

four complete intersection with K ç J and J/K cyclic. Let t denote t(K),

and let / be the Gorestein ideal K : J. (We are finished with Case 1; so we

may assume that the ideal I is not a complete intersection.) Define K, L,

and a, as in (3.1); ßt and M = M(q.) as in Proposition 3.2; and an algebra

structure on M as in Theorem 3.5. We calculate multiplication in T, by using

the fact that T, is equal to the homology algebra H,(M). A quick look at

Proposition 3.2 shows that T, = ®^=0 T¡, where T0 = k , Tx = Kx® L0,

(4.1)        T2 = -^- ®LX,        T3 = -^=- © ker/?2,    and   T4 = ker/?3.
im/?2 im/?3
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Much of the multiplication on M becomes zero in M. The resolution L is

minimal; and therefore, U = 0. We know from Remark 2.5 that L\ ç mL3 ;

thus,

ima3 = (imai)3 ç L3 ç mL3   and   Lx • (ima2) CmL3.

It follows that the multiplication of Theorem 3.5 induces the following multi-

plication on T. :

(4.2)

TX®TX ^T2:

TX®T2^T3:

U\

Vo

üx

Vo

«1

«0

u2 (modim/?2)

vx

«3 (mod im ^3)

v2

üxu\(modimß2)

v0râi(Û1)-Voâl(ûJl)

üxü2 (mod im ^3)

v0ä2(ü2) + äx(üx)vx + VoP(vx)

= ax(ux)v2-v0q(v2),

u2 (modim/?2)

vx

u'2 (modim/?2)
= vxp(v[) + v[p(vx

for Ui, u\ e Ki and v¡, v¡ e L¡.

Apply Corollary 2.7 to the subspace im Si of Lx in the Tor-algebra L =

Torf (R/I, Ac) in order to find bases ex, ... , e„ for Li ; fi , ... , fn-X, f[, ... ,
f'n_x for L2 ; g\, ... , gtt for L3 ; and h for L4 such that lx, ... , e~t is a basis

for im a, and the multiplication (imäi) -L is described by one of (i)-(iv). In
particular, there are five possibilities for the multiplication (imäi) • (imäi) :

(A) all products are zero; or

(B) ëxë2 = Jx;ox

(C) êxë2 = fi_x, and exej = f2;ox

(D) êxê2 = /,, ë.ë3 = ¿2, and ë2ë3 = /3 ; or

(E) ëxë2 = fix, ëxë3 = fi2, and exe4 = fis ■

For each possibility we have listed the nonzero products; all other products of

basis vectors are zero. In Case 2 of our proof of Theorem 1.5, we have t < 3 , so

possibility (E) does not occur in this case. Furthermore, Lemma 4.14(b) shows

that in Case 3 the multiplication (imäi)2 is described by (A); consequently

there is no loss of generality if we set up our notation under the hypthesis that

(4.3) the multiplication (imäi)2 is described by one of (A)-(D).

Choose a basis £1, £2, £3, £4 for Kx such that

ax(e¿) = e¡   fox I <i<t,        a1(£,) = 0   for t + 1 < /' < 4,     and

[£i A £2 A £3 A £4] = 1.
(4.4)

(Notice that the definition of p in (3.4) appears to use a particular basis for

Kx ; however, every basis £1, £2, £3, £4 of Kx which satisfies (4.4) gives rise to
the exact same function p .) Now that the basis for Kx is set, we give names

to the corresponding basis elements of K2 and K} :

ix=exe2,    cp2 = exe3,    <Pi = e2e3,    cpx=e3e4..

y.=£2£3£4,     )'2 = -ei£3e4,     73 = £ie2£4,

tp'2 = -e2E4,      9>3 = £l£4,

and   y4 = -zxt2z3.
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Let d = rank a2. It is clear that 0 < d < (2). The notation has been set up,

thanks to (4.3), so that

(*2(<Pi) = fi   for 1 < i < d,        and

a2(tpi) = a2(cp'j) = 0   for d + 1 < i < 3 and 1 < j < 3.

A straightforward application of (3.3) yields

A(ft)s\0,     ift+l<i<n,

and ß2(fi) = 0 for 1 < i < n - 1. Thus,

ker^3 = (g(+1,...,fjçl3,

(4.5) ker £2 = (fd+x, ... ,f„_x,fx, ... ,fn_x) CL3,

imß3 = (yx,...,yt)cK3,    and    imß2 = (cp\, ..., cp'd) cK2.

Label the following elements of T, :

B(n = ¡V'i,    ifl<i<d,
pnJ'>    \0,     if d+1 <*<»-!,

x, = xs = eT,

y¡ =
cp\ (modim/?2)

0 y*+i
cp¡ (modim;ff2)

0

for 1 < i < 4 ;

ye+j
-Jl

eT2

for 1 < i < 3 and 1 < j < n ;

z, =
y i (mod im ß3)

0
Z4+j = zn-d+M

0_

n e^3

for 1 < i < 4, 1 <j<n- 1, and d + 1 < / < n - 1 ; and

w¡ = gt+i e r4   for 1 < i < n — t.

(Notice that the above labeling depends on the choice of K.) We see from (4.1 )

and (4.5) that yx = ■■■ = yd = 0, Z\ = ■ • ■ = zt = 0. Furthermore,

(4.6)
xi, ... , X5 is a basis for Tx;   yd+x, ... , y^+n is a basis for T2;

Zt+\ , ■■■ , Z2n+2-d

is a basis for T3 ; and wx, ... , w„-t is a basis for T4 .

It is easy to see, using (4.2), that the multiplication Tx ® Tx -> T2 is given by

X\x2 = y4,    xix3=y5,    x2x3=y6,    x3x4 = yi,    x2x4 = -y2,

(4.7) ¡y6+i,    fox I <i<t,
xix4 = y3,    and   x,x5 = i

[0,        for t + 1 < 1 < 4;

and that the multiplication 7] ® Tx ® T[ -»• 7/3 is given by

X2X3X4 = ZX ,      X1X3X4

(4.8)

(z5,   ifi<d, r

XxX2X> = \o,    ifd = 0,      XxX^-{

X2X3X5

22 ,       X1X2X4 = Z3 ,       X1X2X3 = —Z4 ,

z6,    if 2 < d,

0,     if d < 1,

z7,    if 3 < d,

ifd<2,
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and X/X4X5 = 0 for all i.  Furthermore, all of the products of basis vectors

from

(4.9) (xi, ... ,x4)-(y,+7, ... ,yn+6)   and   (x. , ... , x4) • T3

are zero except

x\yt+i = ¿6,    x2yt+1 = z7,    and   xiz„+4 = x2zn+5 = -wx

when the multiplication (imäi) • L is described by Corollary 2.7(h);

(4.10) Xiyc+t+i = Z4+d+i   and   Xiz„+3+, = -w¡       for 1 < i < b

when the multiplication (imai) • L is described by Corollary 2.7(iii); and

(4.11) xiyt+1 = -Z4+i   and   x,z„+3+1■ = wx       for 1 < i < j

when the multiplication (imäi) ■ L is described by Corollary 2.7(iv). It is not

possible to determine

(4.12) x5<(yt+1,... ,y„+6),    x5-r3,

at the present level of generality.

or   T2 • T2

The proof of Theorem 1.5 in Case 2. Fix a complete intersection ideal K with

K ç J, p(J/K) = 1, and t(K) < 3. Use K to calculate multiplication in T,
as described in (4.1) and (4.2). The map p of (3.4) satisfies p = 0 because
rankäi = t < 3. The map q is defined in terms of p; hence, q = 0. It

follows that all of the products of (4.12) are zero. Combine the basis for T,
given in (4.6) with the multiplication from (4.7), (4.8), and (4.9) in order to see

that Table 4.13 is correct and complete, where T, = S. x W for some trivial

S.-module W. Recall that the algebras A-F* are defined in Table 1.3. If the
multiplication (imäi) • L~ is described in part (iii) of Corollary 2.7, then the
parameter a must equal d . The multiplications in part (ii) and part (iv) each

require that 2 < t ; but (ii) must have d = 1, whereas (iv) requires d = 0.

Table 4.13. The conclusion of the proof of Theorem 1.5 in Case 2

(imäi)-L k[Tx]

(imai) = 0

(iii) with a = 0 and b > 0

(iii) with a = 0 and b > 0

(iv) with 7 = 2

(ii)
(iii) with a = 1 and b > 0

(iii) with a = 0 and b > 0

(iv) with 2 < j < 3

(ii)
(iii) with a = 1 and b > 0

(iii) with a = 2 and b > 0

Ö)

AxAc(-l)

B[0]

D[0]

D[0]

C[0]

C[0]

E[0]

E[0]

D[0]

D[0]

B[0]

AkAc(-I)

B[b]

V[b]

D<2>

C<2)

C[b]
E[b]

EW

D<2)

D[b]

B[b]
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The proof of Theorem 1.5 in Case 2 is complete.

Without any further ado, we are able to identify the subalgebra k[Tx] of

T. in Case 3 of Theorem 1.5. Part (b) of the following lemma appears to be

technical; but, in particular, it yields a complete description of the minimal

resolution of R/J.

Lemma 4.14. If the notation and hyptheses fior Case 3 (from the beginning of
the present section) are adopted, then the following statements hold:

(a) The algebra k[Tx] is isomorphic to F[0].

(b) Let K be any grade four complete intersection ideal with K ç J and

p(J/K) = 1. If M from Proposition 3.2 is the corresponding resolution of

R/J, then ß2 = 0, a2 = 0, and imß3 = K3.

Proof. We first prove that dim^ T2 = 10. Let a = {ax, ... , as} be a minimal

generating set of / with the property that every four element subset of a is a

regular sequence; and let x'¡ be the image of a, under the natural isomorphism

(4.15)

It suffices to show that

J/mJ ^Toxf (R/J, k).

(4.16) dimk(T2/(x'x,...,x'i,...,x'5)2) = 4

for i = 1, ... , 5. We establish (4.16) for / = 5 ; the other four cases follow

from the symmetry of the situation. Let K be the complete intersection ideal

(a\, ... ,a¿Z). Consider T, as described in (4.1). If e\, ..., £4 is a basis for

Kx with aci (e'i) = a¡, then it follows that

x' = for 1 < i < 4.

Let

x5 =

It is not necessarily true that X5 = X5 ; but we do know that X5 = Xx$ + x' for
some unit X e k and some x' € (x[,
be read from (4.2):

, x4). The multiplication in T, can

x\x) =
e'¡e'j (modim/?2)

0
and   x,'x5 =

, ai(e4)

X<\2

0_

fox l < i, j < 4. The hypothesis ensures that t = 4; so ax(e[), ...

is the beginning of a basis for Li. We have established that x[x'5

X3X5, and X4X5 generate a four dimensional subspace of T2/(x[, ..

therefore, (4.16) holds and dimT2 = 10.

Furthermore, now that we know that dim T2 = 10, we may read the preced-

ing paragraph from bottom to top in order to conclude that im ß2 = 0 for every

resolution M from Proposition 3.2. It is clear that rankä2 = rank/?2 = 0, and

that ranky?3 = rankäi = t = 4 ; consequently, (b) has been established.

To finish the proof of (a) we must show that T? = 0. Once again, we use

(4.2) to see that

0
X;X ;Xi —

eJCj-fi; (modim/?3)
0

and •A' ■' *\ j *A* S   ^^

"lie'?))
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for 1 < i, j, I <4. The product x\x'jX\ is equal to 0 because ß3 is surjective;

and x,'xjx5 = 0 because ä2 = 0.   G

We now subdivide Case 3 into two subcases:

Case 3A. There is a nonzero element x e Tx such that x72 = 0 and x73 = 0.

Case 3B. If x e Tx with x ^ 0, then either xT2 ¿ 0 or xT3 ¿ 0.

The proof of Theorem 1.5 in Case 3 A. Let a be an element of J with the
property that ä is sent to x under the isomorphism of (4.15), and K be

a grade four complete intersection ideal such that J = (K, a). Adopt the

notation of the paragraph preceding (4.1) and apply Corollary 2.7 in order to

pick a basis for L so that the multiplication in (im äi ) • L is described by one

of the cases (i)-(iv). Recall from part (b) of Lemma 4.14 that a2 = 0 ; hence,

the multiplication (imäi) -L is actually described by either (iii) with a = 0 or
(iv). Label the elements x,, y,, z,, and w, of T, exactly as was done in (4.6).

(Keep in mind that t = 4 and d = 0.) Notice that x5 = Xx + x' for some unit

X e k and some xZ € (x\,... , x4). We will know all of the multiplication in

T, once we show that T2 • T2 = 0. According to (4.2) it suffices to prove that

v[p(vx) = 0 for all vx, v[ e Lx ; and therefore, by Remark 2.5, it suffices to
_ _2

show that p(vx) e Lx. Since x e (xx, ... , x4), there is an element e e Kx

such that

x' = in T\

Recall that xT2 = 0. Use (4.2) to compute that

0
ax(s)vx

0
vx

0
vx

= X
0

0
P(v\)

0
= x$   -

Vl

■T2

We conclude that p(vx) = âx(ë)vx e L, and T2 =0.
Combine Lemma 4.14(a), together with the hypothesis xT2 = xT3 = 0 and

the fact T2 = 0, in order to see that T, = S. x W for some trivial S.-module

W where

J E[b]   with 0 < b, if (4.9) is described by (4.10), and

t F^>     with 2 < j < 4,    if (4.9) is described by (4.11 ).
S.

The proof of Theorem 1.5 in Case 3A is complete.
Case 3B is the most interesting case. In Lemma 4.17 we record_the conse-

quences in T, of the observation that the multiplication (imäi • L) must be

described by part (iv) of Corollary 2.7. This result gives many incomplete multi-

plication tables for T. . In Lemma 4.18 we paste the incomplete multiplication

tables of Lemma 4.17 together to learn all of the multiplication in T, , except

the multiplication T2 . The proof of Lemma 4.20 is where the hard work takes

place in Case 3B with T\ ^ 0.

Lemma 4.17. Adopt the notation and hypotheses of Case 3B. If Xx is a four

dimensional subspace of Tx, then there are elements yx e T2 and wx e T4, and

there are subspaces Yx c T2, Zx cT3, and Z[ ç T3 such that T2 = kyx © Yx,

r3 = Zi © Z{, and
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(a) dim(y, -A,) = 4,
(b) A,-y, =0,
(c) Ai • 73 ç kwx,
(d) the multiplication map XX®ZX -^ kwx is a perfect pairing,

(e) X\>Z[ = 0, and
(f) Xx.T2ç Z[.

Proof. Select a grade four complete intersection K with the property that the

image of K under (4.15) is Ai . Use K to calculate multiplication in T, as

described in (4.1) and (4.2). Observe that the elements xx, ... , X4, which are

defined above (4.6), form a basis for Ai . We know from Lemma 4.14(a) that

Ai • T2 = 0 ; consequently, all of the multiplication in Ai • T2 and Ai • T3 is
given in (4.9). Recall the hypothesis that if x is a nonzero element of Ai,

then either xT2 ^ 0 or xT3 ^ 0. It follows that the multiplication in A[ • T2
and Ai • T3 is described by (4.11 ) with j = 4. There is no difficulty seeing
that the multiplication of (4.11), with j = 4, is the same as the coordinate-free

description which is given in the statement of the result.   D

Lemma 4.18. If the notation and hypotheses of Case 3B are adopted, then there

are elements y e T2 and w e T4, and there are subspaces Y ç T2, Z ç T3,
and Z' ç T3 such that T2 = ky®Y, T3 = Z ® Z', and

(a) dim(yr,) = 5,
(b) T,-7 = 0,
(c) Tx-T3Ckw,
(d) the multiplication map Tx®Z^kw is a perfect pairing,

(e) Tx -Z' = 0, and
(f) TX-T2CZ'.

Before proving the above result, we notice that Lemmas 4.14 and 4.18 com-

plete the proof in Case 3B when T2 = 0.

Corollary 4.19. If the notation and hypotheses of Case 3B are adopted and T2 =

0, then T, has the form F(5) x W for some trivial F(5) -module W.

Proof of Lemma 4.18. Let Ai and A2 be four dimensional subspaces of Tx
with Ai = A2 . Apply Lemma 4.17 to find y, e T2, w¡ e T4, Y, Ç T2,
Z¡ C T3, and Z[ ç T3 with dim(y, • Xt) = 4, X,■■ Y,: = 0, A, • T3 ç kw¡, the
multiplication map A, ® Z, —> kw¡ a perfect pairing, and A, • Z[ = 0, for i = 1

and i = 2. Let y = yx, w = wx, and Y = YX .
(b) Let x be a nonzero element of A^Aî and let (x)3- = {yo e 72|xyo = 0} .

It is clear that Yx = (x)x = Y2. Furthermore, we know that Aj + A2 = Tx ;

therefore, Y • Tx = 0.

(a) It suffices to show that dim(y • A) = 4 for every four dimensional sub-

space A of Tx. The choice of A2 is independent of our definition of y ; conse-
quently, it suffices to show that dim(y • A2) = 4. But, this fact follows from the

following observations which we have already established: ky ®Y = ky2 © Y,

dim(y2 • A2) = 4 and Y ■ X2 = 0.

(c) Take x from the proof of (b). The hypothesis ensures that x • T3 is a

nonzero subspace of (wx)n(w2). It follows that the one dimensional subspaces

(wx) and (w2) of T4 axe equal. Use A) + A2 = 7"i in order to conclude that

Tx - Ti ç (w).
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(d) and (e) Let cp be the name of the map T3 —> Homk(Tx, kw) which is in-

duced by the multiplication map Tx ® T3 —> kw , let xi, ... , X5 be a fixed basis
kw).

Tx in

for Tx and let jcj,..., x¡ be the corresponding dual basis for Homk(Tx

Apply parts (d) and (e) of Lemma 4.17 to the subspace (xi

order to find a basis for T3 for which the matrix of cp is

0

x4) of

A1 ■ ■ ■ X4 As•••A»

for some A,- e k. If A5 = • • • = A„ = 0, then x • T3 = 0 for x = X5 - £jLi A,x,
and this contradicts Lemma 4.17(d). Thus, A, ̂  0 for some i with 5 < i < n
and a basis z\,..., zn for 7/3 may be found for which the matrix of cp is

[/   0]. Let Z = (zi, ... , z5) and Z' = (z6, ... , zn).

(f) It is immediate from Lemma 4.17(f) that 7^1 • Tx • T2 = 0 ; hence, TX-T2C

Z'.   a

Lemma 4.20. Adopt the notation and hypotheses of Case 3B with T2 ^ 0. Let
K be any complete intersection ideal with K ç J and J/K cyclic, L be the

minimal resolution of R/(K : J) which is shown in (2.1), and p: Lx —> L2 be

the map of (3.4). Then there exists an integer b, with b > 6, and there exists

bases ex,...,en for Lx; fi , ... , f„-X, f{, ... , fi'n_x for L2; gx..., gn for

L3 ; and h for L4 such that
(a) K = (U(ex),...,lx(e4)),
(b) (2.3) holds,
(c) all products of basis vectors in Lx-Lx and Lx-L2 are zero except ebe, = fi,

e¡f¡ = gb, and ebf¡ = -g¡ for 1 < i < b - 1, and
(d) p(eb) = f¡ and p(e¡) = 0 for all i ¿ 5.

Proof. Let h be any generator for L4 . We have two ways to view the mul-
tiplication in r.. On the one hand, we can use the multiplication in L to
compute r, ■ T, as described in (4.1) and (4.2). On the other hand, Lemma
4.18 gives a complete description of all of the multiplication in T,, except the

multiplication T2-T2. In the present proof we use the interplay between these

two descriptions of T, • T, in order to learn about the multiplication in L.

Let ex, ... ,e4 be elements in Li with (lx(ex), ... , lx(e4)) = K. The hy-

pothesis t = 4, ensures that ex, ... , e4 is the beginning of a basis for Li. Let

£1, ... , £4 be the basis for Ai which is defined by ai(fi,) = e¡ for 1 < / < 4,
and let Xi, ... , x5 be the basis for Tx which is given above (4.6). According

to Lemma 4.18, we may decompose T2 into ky ®Y with

(4.21) dim(y-Tx) = 5   and   Tx • Y = 0.

We know from Lemma 4.14(a) that T2 ç Y ; consequently,

0
6 Y   and e Y

for all cp e K2 and for all / with 1 < / < 4. It follows that we may modify y

in order to assume that

0
y = eQ
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for some eo e Lx. It also follows that Lx decomposes into Reo © E where

(ex, ... , e\t) ç E and E has the property that

'°]eY
e\

for all e e E. When the products of (4.21) are interpreted using (4.2), we see

that eoex, ... , eoe4, p(eo) is the beginning of a basis for L2, (e~x, ... , e~i)-E =
0, and p(e) = 0 for all e e E.

—2
We next show that E • E = 0. We have observed that dimL, > 4 ; con-

sequently, a quick look at Theorem 2.2 shows that the multiplication in L

is given in multiplication table (c). In other words, there is a decomposition

Lx = kv © V with V2 = 0. The fact that dime0-Lx > 4 ensures that e~0 $ V ;
and therefore, Lx = ke~o @ V. It is easy to select a nonzero element ë of

(ëi, ... , ë4) n V. Indeed, if we write e~¡ = X¡e~o + v¡ with A, e k and v,■ e V,
then either Ai = 0 (in which case we take ë = e~x) or Ai ^ 0 (in which case

we take ë = Xxë2 - X2ëx). Let e' = Xëo + v be an arbitrary element of E.

We know that (ëx, ... , ë4) • E = 0, V2 = 0 and dimë0(^i, ■ ■ ■ , ë4) = 4. It
follows from

0 = e'ë = (Xëo + v)ë = Xëoë,

that A = 0 ; thus Ë ç V and E ■ E = 0.
We may decompose E as (ex, ... , e4)®E'®E" , where

(4.22) dimë0((ëi, ... , ë4) © Ë1) = dim((ëi, ... , ë4) ® Ë1)

and eoE" = 0. Let b - 1 denote the dimension of the vector spaces on line

(4.22). Rename eo by calling it eb . Pick any basis eb+x, ... ,e„ for E" .

The hypothesis T2 ^ 0 guarantees that there are elements vx and v[ in Li

with vxp(v[) ,¿ 0. We have seen that L] = këb ® kexp; thus, vxp(ëb) is a

nonzero element of L3 for some vx e Lx . The multiplication Li ® L3 -+ L4
_2

is a perfect pairing; consequently, p(eb) • Lx ^0. On the other hand, we have

seen that Li = ë^Z-i. Thus, p(ëb)ëb is a nonzero element of L3. The very
last assertion in Theorem 3.5 shows that p(ëb)ëb(ëx, ... , £4) = 0. Thus, we

may select a basis e$, ... , eb_x for E' with p(eb)ebes = h and p(ëb)ëbëj = 0
for 6 < / < b - 1 . Select the basis gx, ... , g„ for L3 with the property
Cigj = àijh . Observe that p(ëb)ëb = -~g5. Label fi = ebe¡ for 1 < i < b - 1

and Ts' = p(eb) in L2. Observe that (fi, ... , fib-X)2 = 0 and fifí, = ôi5h
for 1 < i < b — 1. The proof of Lemma 2.6 (see [21] for details) allows us to

extend fi,... , fib_x, f¡ to be a basis fi, ... , fib-X, fi[, ... , fi'b_x of L2 which
satisfies (2.3). It is now clear that the basis we have constructed for L satisfies

conditions (a)-(d).   D

Corollary 4.23. If the notation and hypotheses of Case 3B are adopted and T2 ^

0, then T» has the form F* x W for some trivial F* -module W.

Proof. Let K be any grade four complete intersection with K ç J and J/K

cyclic. Let L be the minimal resolution of R/(K : J). Fix a basis for L

as described in Lemma 4.20. Compute multiplication in T, as described in
(4.1) and (4.2). Consider the basis for T, which is given in (4.6). We know

from Lemma 4.14 that dimT,2 = 10 and T? = 0; furthermore, the individual
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products in T2 are given in (4.7). Use (4.2) and Lemma 4.20 to compute that

all products in Tx • T2 are zero except

Xiyb+6 = -Z4+i   for 1 < i < 4      and      x5yb+6 = z„+8.

The map q: L2 -* L3 is defined below (3.4). It follows from Lemma 4.20(d)

that q(fs) = gb , but q(fi) = q(fj) = 0 for all i ^ 5 and all ; . It is now clear
that all products in Tx • T3 are zero except

x,z„+3+¡ = -wb_4   for 1 < /' < 4      and      X5Z9 = -tu¿_4.

Finally, we use (4.2) and Lemma 4.20(d) once again to see that all products in

T2 • T2 axe zero except

ynyb+6 = u>b-4  and yb+(,yb+(, = -i'W\-

Recall that 2 is a unit in k . There is no difficulty in verifying that T, = F* x W

for some trivial F*-module W.   D

The proof of Theorem 1.5 is complete.

5. Examples and questions

We begin this section by commenting on the hypotheses of Theorem 1.5.

The hypothesis that k have square roots is used only in the proof of Lemma

2.6 and it is not a particularly annoying hypothesis. Indeed, if (R! ,m',k') is

an arbitrary local ring, then the technique of residue field inflation (see, for

example, [9, 0m 10.3.1]) yields a faithfully flat extension (R, m, k) of R' for
which Ac is closed under the square root operation. Many of the consequences

of Theorem 1.5, applied to R, will descend back to R' ; however, we do not

know if the conclusion of Theorem 1.5 will descend to R'. The hypothesis that

2 is a unit in R is also used only sporadically. There is a very trivial division

by 2 at the end of the proof of Corollary 4.23; however, if the characteristic of

Ac had been two, then we would have calculated the second divided power y(2'

of each element y of T2 and in particular, we would have written yb2j6 = -wx

instead of y¿+6 = -2wx, thereby avoiding the division by 2. The more serious

use of Charit ^ 2 occurs when we appeal to Theorem 3.5. The proof of this

result in [25] and [26] involves many divisions by 2. We presume (but have not

proved) that these divisions can be circumvented.

We next consider the question of the existence of grade four almost complete

intersection ideals with predescribed Tor-algebras.

Question 5.1. Let S. be a graded Ac-algebra from the list in Theorem 1.5. Does

there exist a grade four almost complete intersection ideal J such that

(5.2) Torf (i?//, ac)sS. x W

for some trivial S.-module W ?

We are able to answer most of Question 5.1. All of the potential Tor-algebras
which are listed in Theorem 2.2 for grade four Gorenstein ideals actually do

exist (see [14] for Gorenstein rings whose Tor-algebras are described in Theorem

2.2(c)); consequently, the proof in Cases 1 and 2 (especially Table 4.13) can be

read as an algorithm for producing an ideal J for which (5.2) holds, provided

S. is from the list A, B\p], C[p], C&   C* , D[p], D<2>, E[p], E<2>, and E<3'
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with 0 < p . In Examples 5.6, 5.7, and 5.8 we exhibit ideals J for which (5.2)
holds with S. = F[0], F[l], F[2], F[3], F<2>, F4), and F*.

A more complete classification of Tor-algebras remains elusive.

Question 5.3. Let S, be a graded Ac-algebra from the list in Theorem 1.5. What

are necessary and sufficient conditions on the vector space dimensions dim W,

in order that (5.2) hold with W = 04=o W¡ for some grade four almost complete

intersection Jl

For example, the proof of Theorem 1.5 shows that if (5.2) holds with S. = C*
for some grade four almost complete intersection J, then W = 0. (In fact,

the entire resolution of R/J is known in this case.) On the other hand, every

example that we have considered for which

(5.4) Torf (R/J, Ac)SF* x W,

also has W = 0. We wonder if (5.4) implies that W = 0 ; we also wonder if a

structure theorem exists for the minimal resolution of R/J for those J which

satisfy (5.4).
Finally, the variable of linkage class should also be thrown into the question

about the classification of Tor-algebras. A number of years ago, Matthew Miller

and the present author knew many Gorenstein rings of projective dimension

four with T2 = 0. None of these rings were in the linkage class of a com-
plete intersection (licci). We conjectured that if A is a licci Gorenstein ring

of projective dimension four, then T2 ^ 0, and we deduced a number of con-

sequences assuming that the conjecture held. Most of the consequences of the

conjecture [20] have since been proved [11]; furthermore, various attempts to

gather evidence for the conjecture have netted results which are interesting in

their own right [22]. In the meantime, we have shown that the conjecture itself

is false. The following question remains unanswered.

Question 5.5. Suppose T, is the Tor-algebra of some Cohen-Macaulay ring.

Does there exist a licci ring A with T,(A) = T, ?

Example 5.6. Let Tix5 be a generic matrix, A5x5 be a generic alternating ma-
trix, and R be the local ring Ac [A, Y\x,y) ■ Huneke and Ulrich [10, Proposi-
tion 5.8] introduced the grade four almost complete intersection J = IX(YX).

One can compute that Torf (R/J, k) = F* . The Huneke-Ulrich almost com-

plete intersection ideals are closely related to the Huneke-Ulrich deviation two

Gorenstein ideals which have been studied rather extensively; see [15, 13, 28].

Example 5.7. Let Yix4 and A4x3 be generic matrices and v be an indetermi-

nate. Consider the local ring R = k[X, Y, v\x,y,v) ■ Let I = (ax, ... , a7)

be the grade four Gorenstein ideal with a¡ = Z¡4=1y/x;7 for 1 < j < 3 and

a4+j = Cj + vyj for 1 < j < 4, where Cj is equal to (-l)j+x times the determi-

nant of A with row j removed. (The ideal / is known as a Herzog ideal; see,

for example, [19], [5, §3], or [23, Example 7.16].) If / = (ax, a4, a5, a6): I,
then (5.2) holds with S. = F[2] and W equal to ac(-2) © Ac(-3)8 © Ac(-4).
If / = (yia3 + a4,a5,af>,a1):I, then (5.2) holds with S. = F[0] and W =

k(-2f ®k(-3)x2 ®k(-4f.

Example 5.8. Let I = (ax, ... ,a<f) be the grade four Gorenstein ideal defined

in [18] with x = 5, Xn = 1, and X21 = X31 = X41 = X51 = xx2 = xx3 = 0. If
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J = (a¡,aj,ak, a¡): I, then

Torf (R/J, k) = F[l] x (k(-2)3 ® Ac(-3)12 © ac(-4)3) ,

if{/,j,Âc,/} = {3,5,6,7},

= F[3] x (Ac(-2)' © ac(-3)8 © k(-4)x),

if{i,j,k,l} = {l,5,6,7},

= F<2> x (k(-2)3 © Ac(-3)10 © Ac(-4)3),

if{i,j,k,l} = {3,5,6,9},

= F<4) x (Ac(-2)3 © Àc(-3)6 © Ac(-4)3),

if{/,;,Ac,/} = {2,3,6,9}.
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