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PERIODIC SEEDED ARRAYS
AND AUTOMORPHISMS OF THE SHIFT

EZRA BROWN

Abstract. The automorphism group AutfSy of the full 2-shift is conjectured

to be generated by the shift and involutions. We approach this problem by

studying a certain family of automorphisms whose order was unknown, but

which we show to be finite and for which we find factorizations as products

of involutions. The result of this investigation is the explicit construction of

a subgroup %Z of Aut(Z2) ; %Z is generated by certain involutions g„ , and

turns out to have a number of curious properties. For example, gn and gk

commute unless n and k are consecutive integers, the order of gn+k o • • • o gk

is independent of k , and %Z contains elements of all orders. The investigation

is aided by the development of results about certain new types of arrays of O's

and l's called periodic seeded arrays, as well as the use of Boyle and Krieger's

work on return numbers and periodic points.

1. Introduction

Let Sx = {0, 1} ; let Sn be the set of «-long sequences of O's and l's. Each

element of Sn will be called an «-block, or merely a block. Let S be the set

of all doubly infinite sequences of O's and l's, indexed by the integers; we may

also view 5" as the doubly infinite product of copies of Sx.
Under the product topology, S is a metric space homeomorphic to the Can-

ton discontinuum. The shift operator a is the mapping of 5 onto itself defined

by

(o(x))n = Xn+X ,

for any sequence x e S. The pair (S, a) is called the shift dynamical system
over {0, 1} , or the 2-shift, and is often designated by £2 •

An endomorphism of L2 is any mapping from S to S that is continuous and

commutes with the shift operator; an automorphism of Z2 is an endomorphism

that is 1-1 and onto. An n-block map is a mapping from Sn to Si ; a block map

is an «-block map for some « . Every block map induces an endomorphism of

X2 as follows: if / is an «-block map, define f^: S —> S by

(foo(x))k = fi(Xk , • • • » Xk+n-X),
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where jc = (JCjt). By a theorem of Curtis, Hedlund, and Lyndon [H, Theorem

3.4], the endomorphisms of Z2 are precisely those maps of the form or o fi^ ,

where f is a block map and or denotes the rth iterate of o under composition.

Hence, one way to study the endomorphisms and automorphisms of the 2-shift

is via the properties of block maps.

A convenient way to represent block maps is by means of polynomial func-

tions; a straightforward counting argument reveals a one-to-one correspondence

between the set ZT„ of «-block maps and the set of polynomial functions (also

called Boolean polynomials) in « variables over Z2. If we define the block

maps / and g to be equal provided foo = goo , then ZTn c Z?~n+X. Now define

addition and multiplication on ZT = (J„ ZF as follows; if f eZTn and g eZTm,
then define f + g, f • g e ZTM , where M = max{«?, «} by

(/ + g)ix\ ■■■xM) = fi(xx ■■■x„) + g(xx ■■■xm),

(f ' g)(x\ ■■■xM) = fix\ ■■■xn)- g(xx ■■■xm).

Under this equality and these operations, (Z?,+, •) is a commutative ring with

identity in which (/ + g)00 = foo + goo and (/ • g)^ = foo • goo ■

We may also define composition of block maps in the following way. Suppose

/ e ZTn and g e ZTm ; if we put yk = g(xk ■ ■ ■ xk+m_x), then v = (yk) =

(giXk • ••xk+m_x)) = goo(x), where x = (xk). Thus, /œ(v) = foo° gac(x). We

now define fio g e tTm+n-\ by

fi o g(xX ■ ■ ■ Xn+m^x) = f(g(xx ■ ■ ■ Xm) , ... , g(x„---Xtt+m-l))-

It follows that (/ o g)^ = foo ° goo , where the left side is a composition of

block maps and the right side is a composition of endomorphisms of I.2. In
addition, if / is a block map, let us define fk by fx = f and fk+x = fkofi for
k > 1. Since composition of block maps is associative, it follows that powers

of / commute.

2. The problem at hand

Much is known about the structure of Aut(Z2) ; the group of automorphisms

of 1,2 . For example, Aut(Z2) is countable and contains a copy of every finite

group [H], and its center consists of the powers of the shift [R]. Several authors

[CHR, R1-R5 and Ry] have studied conditions under which endomorphisms

of the 2-shift commute, and there is an explicit construction (see [Br]) of a

subgroup of Aut(Í2) generated by infinitely many commuting involutions.

But open questions about Aut(Z2) abound; in particular, it is now known

whether Aut(Z2) is generated by the shift operator and involutions. We began

our study of this question with an example due to Lee Neuwirth.

Let us write x to mean the complement x+1 of the variable x, and consider

the block map F5 e &¡, defined by

F5(xx ■■■x5) = x4 + x5(x3 + xxx2x4 + xxx2Xi).

According to Neuwirth [N], if / e ^ induces an automorphism of "L2, then

either foo is an involution modulo the shift, or f = F$; moreover, the order

of (^5)00 modulo the shift was unknown. Hence there was some interest in

studying F$. A fairly laborious calculation showed that

F¡ (xx ■ ■ ■ Xg) = X-] + X4X5X6X8 + X$X(,XjXg + XsX(,Xi\Xg ,
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and

F5 (x\ ■ ■•xXi) = xXq + X8X9X11X12;

it easily followed that F$(xx ■ ■ -x25) = X19, and so (F^)oo = ox%. Thus, a-3 o

(^5)00 is an automorphism of order 6, so that modulo the shift,  (^5)00 has
finite order. Unfortunately, there was no obvious factorization of <7~3 o (F5)oc

as a product of involutions.

Now F5 is part of an infinite family of inductively defined block maps

(whence the subscript 5), all of which were thought to induce automorphisms

of finite order modulo the shift [N]. However, since

Fe = Xs + Xß(F$ + xxx2x-}X4)

= X5 + X(,(X4 + Xs(X3 + XXX2X4 + XXX2X$) + X1X2X3X4) ,

and since the F„ grew steadily more complicated with « , it seemed as if the

only way to attack the problem lay in writing a computer program to do com-

position of block maps. Progress in this direction went slowly, and frustration

with pesky programs and recalcitrant compilers mounted. In desperation, we

returned to the paper-and-pencil approach, and finally proved that F(, induces

an automorphism of order 12 modulo the shift. Along the way, we obtained the

representations of Fn that are Theorems 3.1 and 3.2 of this paper, the latter

being essentially a factorization of a~{-n~T'o(Fn)oo into a product of involutions.

The key to our early progress, however, was Lemma 3.3, which says that

composing Fn with the block map X1X2 merely shifts the latter. We soon saw

the general pattern and conjectured that

p\cm(\,2,...,n-2) _ j(n-2) lcm(l ,2, ...,n-2)

where T(xiX2) = X2 satisfies Too = o . A proof of this conjecture came only

after much streamlining of notation, observing the role played by certain arrays

of O's and l's we call periodic seeded arrays, and applying some of the fine work

Boyle and Krieger did on return numbers and periodic points in shifts of finite

type (see [BK]).
The result of this investigation is the explicit construction of a subgroup ¡%Z

of Aut(S2), containing the automorphism (Fn)oo and having a number of curi-

ous properties. For example, Zfl? is generated by the shift, the complement map

c(xi) = Xi and by infinitely many involutions g„ for n = 4, 5, ... ; it turns

out that gn commutes with gk if and only if « - k ¿ ± 1 . Furthermore, for

fixed « , the order of the element g„+r o • • • o g5+r o g4+r is finite and independent

of r, while the maps coj„o--o^4 all have infinite order. Finally, Z%? contains

automorphisms of all finite orders.

3. The maps F„ and automorphisms of the shift

Definitions: For « > 1, define FneZT„~ as follows:

F\ = l,    F2 = xx,     and    Fn =x„_i +x„(F„_i +Xi •■•x„-2)    foxn>3.

Thus,

Fi= x2,

F4 = X3 + X1X2X4,

F$ = X4 + X]X2(x3X4 + x$x4)x5 + X2X3X5,    etc.

For « > 4, define f„ eS^ by
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fn = Xn-\ + XX  \\\xk\xn.

Define T, G„, and g„ by

r(xiX2) = x2,    Gn = r7-("-2> o (Fn)oo ,    and   gn = o~(n-^ o (/„)«,.

Note that T = F3 and Taa = a; hence, Gn = (r_("_2) o LF„))oo , and Gn and

g„ are all endomorphisms of 2Z2. It turns out that the gn are all involutions,

and that

G„ = gnogn_xo---og4   for«>4;

hence, the Gn are automorphisms of Z2 . Although it is not at all obvious that

the G„ have finite order, we will show that the order o(G„) of Gn is equal

to lcm(l, 2,...,«- 2), where 1cm denotes the least common multiple. Our

strategy is to prove that lcm( 1, 2,...,«- 2) is the smallest positive power

of Fn that is equal to a power of the shift block map T. For, if f = Tkr,

and if r is the least such integer for which this is true, then (T~k of)^ is an

automorphism of 2Z2 of order r.

If a and b are integers, write a\b to mean that a is a divisor of b. Our
first result, Theorem 3.1, gives a representation of F„ which we will use to

prove that

p\cm(\,2,...,n-2) _ y(n-2)lcm(l,2,...,n-2)

From this it will follow that o(G„)\ lcm(l, 2,...,«- 2).
But first, let us simplify the notation. We will write k to stand for xk ; thus,

F4 looks like 3 + 124. To avoid confusion, we will use I to stand for the

number 1 ; thus, 4 + 1 means X4 + 1, or X4. If j and k axe integers with

j <k , define A(j, k) by

A(J,k) = j(j+l)---k + J(J+T)---k.

Note that A(k, k) = k + k = I.

Theorem 3.1. If n > 4, then

n-3

Fn = (n-1) + J2 ;'(7TT)A(j + 2, « - 1 )«.
j=i

Proof. If « = 4, then

1

F4 = 3 + 124 = 3 + 12(3 + 3)4 = 3 + Y,j(]TT)A(j + 2, 3)4,
7=1
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as claimed. Now assume that the theorem is true for 4 < k < n . Then:

Fn+x = n + (n + l)(Fn + l2--n-l)

= n+ j«^T + ̂ 7(7TT)AO + 2,«-l)«j (« + 1)+T2---«~^T(« + 1)

n-3

= « + £ j(7+7)A(J + 2, « - 1)«(« + 1)

+ «- 1(« + 1) + 12---«- 1(« + 1)

+ 23---«-l(« + l) + --- + «-l(«+l)

n-3

= " + YlJiJ + VU + 2 ■ • • " - t«(« + 1) + (j + 2) ■ ■ ■ (n - 1)«(« + 1)

+ j(j+l)...n-l(n+l))

+ («-2)«-l(«+l)

n-2

= n + Y/Ji7TT)A(j + 2,n)(n + l).
7=1

The theorem follows by induction.

Theorem 3.2 gives a representation of Fn which we will use to prove that

o(G„) is divisible by lcm(l ,2,... , n-2).

Theorem 3.2. If n>4, then

fin ° fin-\ °---of4 = r("2 H o Fn .

The proof follows from a series of technical lemmas.

Lemma 3.3. If n>4, then l2~oFn = Tn~2 o 12 = («- 1)«.

Proof. By Theorem 3.1,

12oF„ = 12oí(«-l) + "¿;(7TT)A(/ + 2,«-l)«

= ((« - 1) + 12A(3, «-!)« + 23A(4, « - 1)« + ••• + («- 3)« - 2«)

o (« + 23A(4, «)(« + 1) + 34A(5, «)(« + 1) + • • • + (« - 2)« - 1(« + 1)).

Using the fact that k • k = 0, we see that the term 12A(3, « - 1)« cancels

all terms in the second factor, and if j > 1, then ;'(; + l)A(j + 2, « - 1)«

cancels all of those terms except for j(j + l)A(j + 2, «)(« + 1). From this, the
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commutativity of multiplication and the fact that k • k = k , we find that

!2oFn = (n-l) i« + £;(7TT)A(j + 2,«)(«+l)

n-3     _

+ Y,j'iJ+ VW + 2>n~ l)nAU + 2, ")(" + O
1=2

= (n-l)lñ+Ylj(j + Í)(j + 2) ■•■n(n + l)

n-3 _      _

+ £;X7+T)(0>2)---(n-l)+J+2---n-l)
3=2

x ((j + 2) ■ ■ ■ n + j + 2- ■ -ñ)n(n + I)

= (n-l) íñ +£j(7+î)ij + 2)•••«(«+ 1)

n-3     _

+ ^2jU + l)((j + 2) • • • (« - 1))«(« + 1),    as all other terms cancel

;=2

n-3

= (n-l)ñ + Y,Ji7+Í)U + 2)---nin + l)
j=2

n-3

+ Y,j(j^)iU + 2)---n)i"+l)
j=2

= (n-l)H,

and we are done.

Lemma 3.4. (a) If j < m < k, then (n - l)mA(j ,k) = Q.
(b) If j <k < m < n, then A(j, m)A(k, n) = A(j, n).

(c)If2<k<n-l, then Í2---koF„ = (n-l)ñA(n+l, n + k-1).

Proof, (a)

(m - l)mA(j, k) = (n - l)m(j ■■■(m - l)m-h j ■ ■ -m - lm- ■ ■) = 0,

since (m-l)-m-l = m-m = 0.

(b)

AC/, m)A(k, n) = (j(j + 1) ■ ■ • k ■ ■ ■ m +j(j + 1) • ■ k ■ ■ ■ m)

• (k(k+ l)---m---n + k(k+ 1) ■■■m-ñ)

= (JiJ+l)---n + j(j+l)---n)

= A(7, n),

since all the other terms cancel.
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(c) Using Lemma 3.3 and parts (a) and (b), we find that

12 3 o Fn = (n - 1)«(« + 1 + 34A(5, « + 1)(« + 2)

+ ••• + («- 2)« - 1A(«, « + 1)(« + 2) + (n - 1)«(« + 2))

= (« - 1)«(« +! + («- 1)«(« + 2))

= (« - 1)«(« + 1 + (« + 2)) = (n - 1)«(A(« + 1, « + 2)) ;

assuming that 12 • • • k - 1 o F„ = (« - 1 )«A(« + 1, « + k - 2), we have that

12-■-k - Ik oFn = (n-I)«A(« + 1, « + k - 2)

n+k-4

« + /C-2+  J2 j(I+~ï)A(j + 2,n + k-2)(n + k-l)
j=k

= (n- 1)«A(« +l,n + k- 2)(« + k - 2 + (n + k - 1))

= (« - 1)«A(« + 1, « + k - 1),     all other terms cancelling.

Lemma 3.5. fn+x o Fn = T"~x o Fn+X.

Proof.

fn+xoF„ = (n + l2---n-l(n + l))oFn

= T"-X l(„-l) + ̂ ;(7TT)A0 + 2,«-l)«

+ (« - 1)«A(« + l,2n-2)-Tno (Fn)

=  j (2« - 2) + Y,in+J - 1)«T/A(« +/+1,2«- 2)(2« - 1)

+ («- 1)«A(« + 1, 2«-2)

x j (2«- 1) + 5^(n + j)n + j + 1A(« + j + 2, 2«- 1)2«

But by previous results, the last summand collapses to

(«-l)«A(« + l,2«-2)(2«-l).

Hence

n-3 _

fn+x o Fn = (2« - 2) + £((/! + j - 1)«TJA(« + 7 + 1,2«- 2)(2« - 1)
7 = 1

+ (« - 1)«A(« + 1,2«- 2)(2« - 1))

n-2

= (2« - 2) + £(« + ; - l)ñT7A(« + 7 + 1,2«- 2)(2« - 1)
7=1

= T"-2oF„+x,

and we are done.
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Proof of Theorem 3.2. First, the theorem holds for « = 4, since fi4 = F4 =

3+124 and (n~2) - 1 = 1-1=0. Assume the theorem holds for some

n — k > 4. Since T^ = o, T commutes with every block map. Then by

Lemma 3.5,

fn+\ °fn°---°A = fn+l ° ^"2 'l°F„

= Tin->2)-xoT»-2oFn+x = T("-i2)-xoFn+x,

and the proof follows by induction.

Corollary 3.6. Let « > 4. Then G„ = gno gn_x o • • • o g4 .

Proof. Note that

gn o ■ ■ ■ o g4 = ff-(n-2+„-3+...+2) 0 (/„ 0 . . . 0 f^

= <r-((^'H)o(/no...o/4)00

= ff-MVHo(/„o...o/4)œ

= a-«"-2* o (Fn)oo = Gn .

4. Powers of Fn

Computing powers of F„ under composition of block maps requires some

more notation. For j < m < « , define

[;', m,n] = j(j+ !)■■■ m(m+ l)---n;

thus,

[j,m,n]= TJ~X o[l,m-j+l,n-j+l],

and

n-3     _

FH = in - 1) + £;(7TT)A(; + 2, « - 1)«
7 = 1

n-3

= (« - 1) + J^ilJ ,j+l,n] + [j,n-l,n]).
7=1

Let us compute F2 = F„ o F„ ; we find that

F2 = T"-2oF„+ r£([j,j+l,n] + [j,n-l,n])\ oF„

n-3

= r2c-2) + Y, T"-2 o (U, j +1, n] + ¡J, n - 1, «])

7=1

n-3

+ 52(D'» J +l,n] + [j,n-l,n])oF„.
7=1

The following theorem describes how [ 1, k, r] composes with Fn , and will

allow us to calculate powers of F„ easily.
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Theorem 4.1. If' 2<k<r <n, then

r-C-2> o[l,k,r]oFn = [l,k+l,r], ifik + Kr,

= [l,2,r], ifk+1 =r = n,

= [l,2,r] + [l,2,r+l] + [l,r,r+l],

ifk + I = r < n .

Proof. Using Lemma 3.4(c), we see that

[I, k, k + l]oFn = 12-■ k(k + 1) oF„

= (n- l)nA(n+l,n + k-l)-(k+l)oFn

= (n - 1)«A(« + 1, n + k-1)

( n-3 _

x l(n + k-l) + Y,U + k)(j + k+l)

xA(j + k + 2,n + k- 1)(« + k)nr? ) .

First, suppose /c<«-2.If/c<«-3, then (« - 1)« cancels the term

(;' + k)(j + k + l)A(j + k + 2,n + k- 1)(« + k)

for j = 1,..., n — k — 2 or j = « - k, and A(« + 1, « + k - 1 ) cancels this
term for j > « - k + 1. If k = n - 2, then (« - 1)« cancels this term for

y' = 2, and A(« + 1, 2« - 3) cancels this term for j > 3. Hence if k + 1 < n ,

then

[l,k,k + l]oFn = (n- 1)«A(«+ 1, n + k- 1)

x((n + k-l) + (n- 1)«A(« + 1, n + k - l)(n + k))

= (« - 1)«A(« + 1, « + k - 1)((« + k-l + (n + k))

= (n- 1)«((« + 1) •••(« + k - l))((n + k-l) + (n + k))(n + k)

+ («TT) • • • (n + k- 1)(« + k)

= T"-2 o ([1, 2, k + 1] + [1, 2, k + 2] + [1, k + 1, k + 2]).

Thus, if k + 2<r < « , then

[ 1, k, r ] o Fn = ( [ 1, k, k + 1 ] o Fn ) ■ ( ( k + 2 ) ■ ■ ■ r ) o F„

= Tn~2 o(n- 1)«A(« + 1, n + k-1)

x((n + k-l) + (n + k))((k + 2)---r)oF„.

Now

n-3 _

(/c + 2)o^„ = (n + /c) + 5](; + A:+l)(; + rC + 2)A(; + /c + 3,« + A:)(« + /c+l);

7=1

when we multiply this expression by ((« + k - 1) + (« + k)), all of the terms

inside the summation either are cancelled or appear twice. Hence,

((n + k-l) + (n + k))-((k + 2)oFn) = ((n + k-l) + (n + k))(n + k).
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A straightforward induction argument shows that

((n + k-l) + (n + k))-((k + 2)---r)oFn

= ((n + k-l) + (n + k))((n + k)(n +k + l)---(n + r-2)),

and so,

r-2

[l,k,r]oFn = (n- 1)«A(« + 1, n + k - l)((n + k-l) + (n + k)) ]J(n + s)
s=k

= (« - 1)«(« + 1) • • • (« + k - 1)(« + k) ■ ■ ■ (n + r - 2)

(as all other terms cancel)

= T"-2o[l,k + l,r],

as claimed.
Finally, we consider the case k + 1 = r = n ; by Lemma 3.4(c), we have that

[1, n - I, n] o Fn = 12 -ñ o Fn

= ((« - 1)«A(« + 1, 2« - 2)) • (« o Fn)

= («-l)«A(«+l,2«-2)

x I (2« - 2) + J2(j + n- l)j + nA(j + «+1,2«- 2)(2« - 1)

But for 1 < j < n - 3,

A(« + 1, 2« - 2)(j + n- 1)7+"« = 0.

Hence,

[l,n-l,n]oFn = (n- 1)«A(« + 1,2«- 2)(2« - 2)

= («- l)«(« + l)---(2«-2)

= r"-2o[i, 2, «],

as claimed.

In order to streamline the computation of powers of Fn , we need some more

notation: for r < « and k a positive integer, define (1, r; n)k by

(I, r;n) = [1,2, r] + [l,r-I, r],

and

(I, r; n)k+x = T^-V o([l, 2, r] + [l, r-l, r]) + (l, r; n)k oF„,      foxk>l.

Lemma 4.2. (a)

F„ = T"-2 + J2Tn-ro(l,r;n),
r=4

(b)
n

F2 = T2("-2) + Y^ Tn~r o(l,r;n)2,

r=4

(C)
n

pk _ Tk(n-2) + Y^ Tn~r o(l,r;n)k.

r=4
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Proof, (a) Since

[j, j + I, n] + [j, n - I, n] = TJ~X o ([1, 2, n - j + l] + [l, n - j, n - j + 1]),

it follows that if we put r = n — j + 1 and reverse the order of summation, we

find that
n-3

Fn = (n- 1) + Y,iV,J + 1 ,n] + [j,n- 1, «])
7=1

n-3

= Tn-2 + Y^p-X([l, 2, n - j + l] + [l, n - j, n - j + I])

7=1

n

= Tn-2 + £ j-n-r o ([1 , 2, r] + [1 , T- 1 , r])

r=4

n

= 7,n-2 + 5^rn-ro(l,r;n).

r=4

(b) Because composition of block maps is left distributive over both addition

and multiplication—i.e., (f+g)oh = (f°h)+(goh) and (fi-g)oh = (foh)-(goh)
for all block maps f, g, and «—we have that

F2=    r-2 + ¿r-ro(l,r;n)    oF„

n

= T2(n-2) + J2 T"-r o T"-2 o ( 1, r ; «)

r=4

+ í¿r,-'o<l,r;«>JoF„

n

= t-2(«-2) + ^ Tn-r{jn-2 Q (I, r ; n) + (I, r ; n)) o Fn

r=4

= T2{^n-2X + YT"-r o (I, r; n)2 .

r=4

(c) This follows from (b) and induction.

Define the order o((l, r; «)) of (1, r; n) to be the least positive integer k

for which (1, r; n)k = 0, provided such an integer exists. (The context will

reveal whether o refers to the order of an array or to the order of a group
element.)

Lemma 4.3. If N is a positive integer divisible by o((l, r ; «)) for 4 < r < n,

then F» = T"("-2) and o(G„)\N.

Proof. By the previous lemma,

FN = TN(n-2) + £ Tn-r Q^>r;n)N_

r=4

But if o((l, r; «)) divides N, then the above sum is a sum of zeros; hence

FN = TN(n-2)    By earljer w0fk; it then f0ll0WS that  0(G„)\N .
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We are now ready to transform the problem to an analogous one involving

arrays of O's and l's.

5. Periodic seeded arrays

Let a > 0 and b > 0 be integers. An (a, a + b) (seeded) array with seed s

is a rectangular array {a, a + b ; s} of cells containing O's and l's. The array

contains b sections number a+l through a + b, with section a + k containing

a + k rows. Above row 1 of section 1 is the seed row, which consists of repeated

occurrences of an a-block s = sxs2---sa called the seed. The seed row is fixed

throughout the discussion of a particular array; the rules of generation do not

apply to the cells in the seed row. We identify cells with three letters: cell

(i, j; a + k) is in the ith column of section a + k .

Note: if b = 0, then the array {a, a ; s} consists solely of the seed row

generated by s.
We generate {a, a + b ; s} inductively as follows:

1. Column 1 consists of all zeros. Having filled all cells in column j :

2. If there is a 1 in the jth column of the seed row, place a 1 in each of

cells (l,j+l;a+l) and (a+l, j+1; a+l).
3. If cell (i, j; a + k) contains a 1, and i ¿ a + k, then place a 1 in cell

(i+l,j+l;a + k).
4. If cell (a + k, j; a + k) contains a 1, place a 1 in each of cells (I, j +

I; a + k), (l,j+l;a + k+l) and (a + k + l,j + k; a + k+1).
However, if k = b (i.e., the cell is in the last row of the entire array),

place a 1 in cell ( 1, j + 1 ; a + b).
5. If the application of rules 2, 3, and 4, put two l's in a cell and add them

modulo 2.
6. Place a 0 in all cells in column j + 1 unaffected by the preceding rules.

We often identify the contents of a cell with a cell itself; to say that (i, j ; a +

k) = 1 means that there is a 1 in cell (i, j; a + k).
The period ZP({a, a + b; s}) of {a, a + b; s} is defined to be the least

positive integer p such that for all i, j, and k , (i, j; a+k) = (i, j+p ; a+k),

and we use the same notation to denote the period of a seed s. Finally, if B

is a /c-block, let us denote the «/c-block consisting of n repeated occurrences

of B by Bn . In particular, 1" (resp., 0") is the «-block consisting of all l's

(resp., all O's).

Theorem 5.1. Suppose that 3Z>({r - 2, « - 2; lr-30}) = 0 (modr - 2). Then

o((l,r;n))=Z?({r-2,n-2;Y-^}).

Proof. Let us construct a table in which columns represent powers of (I ,r;n)

and in which rows represent terms of the form [1, j, m], where 2 < j < m - 1

and r < m < n. Let us place a 1 or a 0 in a cell according as the term of

that row does or does not appear as a summand (multiplied by the appropriate

power of T) in the power of (1, r ; «) ofthat column. Theorem 4.1 describes

the rules for filling the cells.
Figure 1 illustrates this procedure for r = 4 and « = 6.

The rules from Theorem 4.1 imply that we have an initial section correspond-

ing to the terms [1, 2, r], ... ,[l, r-l, r] which is periodic with period r - 2

and such that for 1 < j < r — 3, there is a 1 in rows j and r - 2, while column

r - 2 is all zeros. Hence, row r - 2 consists of periodic occurrences of rf_30.
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<1, 4; 6)fc

k: 1 2 3 4 5 6 7 8 9 10 11 12
[1,7, m]

[1,2,4] 1010101010 1 0
[1,3,4] 1010101010 1 0
[1,2,5] 0 1 1 1 0 0 1 1 1 0 0 0
[1,3,5] 001110011  1 0 0
[1,4,5] 0100100100 1 0
[1,2,6] 001 10101 10 0 0
[1,3,6] 0001 10101  1 0 0
[1,4,6] 000011010  1 1 0
[1,5,6] 0010001000 1 0

Figure 1

The rest of the table fills in according to Theorem 4.1, which corresponds ex-

actly to the rules for filling in the cells of a seeded array. In fact, we may regard

row r - 2 as a seed—namely, the seed lr_30—for an (r - 2, n - 2) seeded

array in which the jth cell in row [1, i+1, r + k] is labeled (i, j ; r + k - 2).
(After that initial section, the first column in the array proper consists of all

zeros.)

Hence, the least positive power k for which (1, r; n)k = 0 will be equal to

the least positive k such that all entries in the /cth column of the array, including

the entry in the seed row, are all zero. This is equal to ZP({r -2, « - 2 ; rr~30}),

if we know that ZP({r - 2, « - 2 ; T~30}) is divisible by r — 2. But this was
assumed to be the case, and so we are done.

Theorem 5.2. Suppose that « > 4 is an integer, suppose that, for 4 < r < n,

^({r-2,«-2; r-30}) = 0   (modr-2).

Then

o(G„)\ lcm({^({r - 2, « - 2 ; r~30}) : 4 < r < «}).

Proof. This follows immediately from Theorem 5.1 and Lemma 4.3.

The next result is the key to understanding the periodicity of these seeded

arrays.

Theorem 5.3. (a) If {a, a + 1 ; s} is a seeded array, then row a + 1 consists of

repeated occurrences of the (a+l)-block 0s.

(b) If {a, a + b ; s} is a seeded array, then for 1 < k < b, the (a + k)th row

of section a + k consists of repeated occurrences of the (a + k)-block 0¿s.

(c) lfsa = 0, then â°({a ,a+l; s})| lcm(^(s), ^(0s)).

Proof, (a) Let s = sxs2---sa be the seed for the seed row of an {a, a + 1}

seeded array. Since there is only one section, let us identify the cells by row

and column only, i.e., put (i, j) = (i, j ; a + 1).

Suppose sm = 1. Since the seed row is periodic, we have that sm+ka = 1 for

k > 0. The following table lists the cell positions containing l's which result

from sm+ka = 1 in the seed row:

Note that the rules apply independently to different occurrences of a 1 among

the first m elements of the seed row. Hence, if 1 < m < a and sm = 1, then
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Row Apply Place 1 in these columns

1 Rule 2 «7+1, a + m + I, 2a + m + 1, 3a + m + l, ...

a + 1 Rule 2 m + l, a + m + 1, 2a + m+ 1, 3a + m + I, ...

i, 2 < i < a Rule 3 m + i, a + m + l, 2a + m + i, 3a + m+ 1, ...

a + 1 Rule 3 a + m + 1, 2a + m+l, 3a + m + l, ...

a + 1 Rule 5   m+l (Ys from Rules 2 and 3 add mod 2). Then:

1 Rule4   «7 + 2, a+ 1 + m + 2, 2(a+ l) + m + 2, ...

i, 2 < i < a   Rule 3   m + l + i, a+l + m + l + i, 2(a+l) +m + l + i,

a+1 Rule 3   ...a +1 + m+1, 2(a +l) +m + l, ....

the array contains 1 's in cells (a + 1, k(a + I) + m + 1), fox k > 0, and by Rule

6, all other cells in row a + 1 contain zeros. That is,

JO,       if ; = 1 (moda + 1),

' \sm,     if j = k(a+ l) + m + 1, k > 0, and 1 < m <a,

and it follows that row a+1 consists of repeated occurrences of the (a+l)-block

0s, as claimed.
(b) Part (a) takes care of the case k = 1. Inductively, if row a + k of section

a + k consists of repeated occurrences of O^s, then we may regard this row,

together with section a + k +1, as the seeded array {a + k, a + k+l; 0*s} . But

then, by part (a), the last row consists of repeated occurrences of 00fcs, which

is just O^+'s, and the result follows by induction.

(c) We prove this if the periods of the seed row and row a+1 are a and

a + 1, respectively; for shorter periods, the argument is similar.
Now the net result of applying the rules is that for 1 < i < a,
( 1 ) The third row of the table reveals that the ¿th row of the array has a 1

in each of the following columns: m + i, a + m + i, ... , (a — l)a + m + i,

a2 + m + i, (a+l)a + m + i, ... ; and

(2) The seventh row of the table reveals that the /th row of the array has

a 1 in each of the following columns: m + i + 1, a + l+m + i+l,...,

(a- l)(a + l) + m + i- 1, a(a + 1) + m + i + 1, ... .
However, since a2 + m + i = (a- l)(a+ l) + «i + /'+ 1, those two l's add to 0

mod 2, and so column a + m + i has a 0 in row /. Hence, for 1 < i : < a , row /

has no 1 between columns (a-l)a+m + i and (a + l)a+m + /. So the only way

for there to be a 1 in column a(a+l) ¿seither (i) if (a-l)a+7«+7 = a(a+l) for

1 < / < a and 1 < m < a or (ii) if cell (a + 1, a(a + 1)) has a 1. If (i) is true,

then m = i = a and sa = 1 ; if (ii) is true, then sa = 1. By hypothesis, sa = 0,

so column a(a+1) consists entirely of zeros, including the seed row. As a result,

column a(a + 1) + 1 is identical to column 1, and so (/, j) = (i, j + a(a + 1))

for all i and j . We conclude that Z3°({a, a + 1; s})|a(a + 1).

An analogous argument for the general case shows that â°({a, a + 1 ; s}) is

a factor of lcm(^(s), ^(0s)). We are done.

Lemma5.4.   (&>(la-x0), &>(01a-x0)) = 1, &>({a, a+1; la~x0}) = 0 (moda).

Proof. For, the a-block   la_10 clearly has period a  and the period of the

(a + l)-block 01a_10 divides a+1 ; hence, these two periods are relatively
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prime. Finally, since sa = 0, it follows from Theorem 5.3(c) that

a\&({a,a + l; l^'O}).

Lemma 5.5. If sa = 0, then

&>({a,a + b; s})|lcm(^({a, a + b - 1 ; s}), &({(f, s})).

Proof. We proceed by induction on b . If b = 1, then the array {a, a + s} is

just the seed row generated by s, whose period is ZP(s) ; by Theorem 5.3(c),

â°({a, a + 1 ; s) is a factor of lcm(^({a, a ; s}), ^(0s)).
Assume that the theorem is true for b > 1, and consider the array {a, a +

b + 1 ; s} . By Theorem 5.3(b), row a + b of section a + b consists of peri-

odic occurrences of 0ès, and it is the seed row for the array {a + b, a + b +

1 ; 0fcs} . By Theorem 5.3(c), the period of {a + b, a + b + 1 ; 06s} divides

lcm(^(06s, Z?(Qb+x ;s)). But {a, a + b + 1 ; s} repeats precisely when both

{a, a + b ; s} and {a + b, a + b + 1 ; 0*s} repeat. Since ^(06s) is a factor of

both of these, and since ^(0ft+Is) is a factor of 3°({a + b,a + b+l; 06s}), it

follows that &>({a,a + b+l;s}) divides lcm(^({a, a + b; s}), ^>({0ft+1s})).
We are done.

Lemma 5.6. If sa = 0, then ZP({a, a + b; s})|lcm(a, a+1,...,a + b).

Proof. By the proof of Lemma 5.5,

&({a,a + b; s})|lcm({^(0fcs) : 0 < k < b}).

The lemma follows when we note that for 0 < k < b, ^(O^s)^ + k .

Lemma 5.7. If 4 < r < «, then

&>({r-2,n-2; T-30})|lcm(r-2, ... , «-2).

Proof. This is an immediate consequence of Lemma 5.6.

Theorem 5.8. Let « > 4. Then:
(a) o(C7„)|lcm(l,2,...,«-2).
(b) ^lcm(2'3--''1-2) = 7-(n-2)lcm(2,3,...,n-2)

Proof, (a) Let 4 < r < n. Then ^(F-30) = r - 2, so that by the proof of
Lemma 5.5, r - 2\ZP({r - 2, n - 2 ; ar_30}). By Theorem 5.2, it follows that

o(G„)\lcm({âs({r - 2, « - 2; lr-30}) : 4 < r < «}).

Call this number M. By Theorem 5.1, o((l, r; n)) =&>({r-2, n-2; lr_30}),
and so o((l, r; ri))\M for 4 < 4 < « . Hence, by Lemma 5.7,

M\ lcm(r - 2,...,«- 2)

for 4 < r < « . Thus, o(G„)\ lcm(2, 3,...,«- 2).
(b) Lemma 4.3 implies that F„M = T,("~2)M ; this proves (b), since

M|lcm(2, 3,...,«-2).

Theorem 5.8 does not rule out the possibility that o(G„) is a proper divisor

of lcm(2, 3,...,«- 2) ; in the next section, we rule out that possibility by

showing that o(G„) is divisible by lcm(2, 3,...,«- 2).

6. Periodic points and the order of Gn

In this section, we show that o(Gn) = lcm(2, 3,...,«- 2). The notation is
consistent with that of Boyle and Krieger [BK].
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A periodic point is an element x = (x,) of ~L2 such that x, = xi+k for some

k > 0 and all integers /' ; the least such k is called the period of x . Let P„

be the set of points of period « ; the action of the shift a partitions P„ into
orbits of length « . If / is an automorphism of I.2 , then we may restrict the

domain of / to the set P¡¡. Now if Q is an orbit in P®, so is f(Q), since /

commutes with a ; since P„ is a finite set, and since / is 1-1, it follows that

/ permutes the set tf„ of orbits of P„ ■ Let us call this permutation nn(f).

Lemma 6.1. If n„(f) has a cycle of length I, and f is an automorphism of

finite order, then l\o(f).

Proof. It is known [BK, p. 127] that the restriction of / to P® is a homomor-

phism of the automorphism group Aut(X2) of Z2 onto the symmetric group of

cfn . Hence o(nn(f))\o(f) ; thus, the length of any cycle of nn(f) also divides

o(f).

We now consider the restriction of Gn to Pk , for 3 < k < « - 1. If k is
a positive integer, and B is a /c-block, write [B]k to indicate the element of
Pk consisting of repetitions of the block B . We will omit the subscript when

the block length is clear from the context. Let Jk be the orbit in cfk of the

periodic point [0k~x l]k .

Lemma 6.2. Let r, s, and t be positive integers. Then

(a)

griiVl'U,) = [O-'l^L+i.    ifs = r-2,

(b)

grWl'l+t) = [0S+11'-1]Í+Í5    ifs = r-3,

(c)

grilWl'h+t) = [Osl']s+<,    otherwise.

Proof. From the definitions, we see that

gr(xx---xr) = r_(,-2)o(xr_i +xix2---xr_2xr)

= X] + X3_rX2-r • • • XrjX2

= xi,     if X3_r = x2 = 1 and X2_f = • ■ • = Xq = 0

= Xi,      otherwise.

Hence, if x e 2Z2 , then gr complements Xj if and only if x; is preceded by

the block 10r_3 and followed by a 1; otherwise, gr leaves x, alone. Thus, the

only way that the periodic point [OM'k+i can be altered by gr is if it contains
the block 10r_2l or the block 10r_3l 1. This happens if and only if s = r - 2

oxs = r-3.1fs = r-2, then

[0slt]=-l/0r+2l'f/+2li"- ,

so that

grilffl']) = ■■■ l'0r+11 l'0r+111'■ ■■ = [0r+x l'+x] = [0s-1 l!+x],

as claimed. Likewise, if s = r -3, then gr^O5!']) = [0s"1"1 li_1]. For all other

values of r and s, gr leaves [0*1'] unchanged.
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Lemma 6.3. Suppose I < i < m-2 < n - 3. Then:

(a) G„([0'"-'l']m) = [0'"-'-1l'+1]m.

(b) C7„([01"J-']m) = [0'"-1l]m.

Proof, (a) Let I <i <m — 2<n- 1. Now

Gn = gn ° • • • ° gm-i+2 o ■ ■ ■ o g4 .

Hence, by Lemma 6.2(a),

gm-M o • • • o Ä([Om-«'l'']m) = [0m-'0']m ,

gm-i+2Íl0m-i0i]m) = [W-'-W^U , and

gn o • • • o gw-l+3([0m-,-10í+1]m) = [O—'-'O'+Mn, -

Thus, C7„([0m-'l']m) = [0w-'-1lI+1]w , as claimed.

(b) By Lemma 6.2(b) and (c).

¿r4([or-1]m) = [o2r-2]m,

M02im-2W = [03im-3]m,...,

^m+,([0'"-2l2]m) = [0'"-1l]m),

gri[Om-1 l]m) = [O"1-11]M    for «7 + 1 < r < « ;

hence, it follows that Gn([0lm-x]m) = [0m-x l]m .

Lemma 6.4. Let nm(Gn) be the permutation induced by the automorphism Gn

on cfm. If3<m<n-l, then [0m_1 l]m is in a cycle of nm(G„) of length

m - 1.

Proof. Repeated applications of Lemma 6.3(a) reveal that

Gn([Om-ll]m) = [0m-2l2]m,G2n([0m-Xl]m) = [0m~ili]n, ... ,

Gm-2([0m-l1]m) = ror-llm;

then by Lemma 6.3(b),

Gm-l([0m-l1]m) = [om-l1]m

Hence, ([O^-'l^, [0"-2l2]m, , ... , [0lm-x]m) is a cycle of nm(Gn) of length

»7-1.

Corollary 6.5.  lcm(2, 3,...,« - 2)\o(G„).

Proof. Let 3 < m < n - 1. By Lemma 6.4, nm(Gn) contains a cycle of

length «7 - 1. Hence, by Lemma 6.1, o(G„) is divisible by m - 1, and so by
lcm(2, 3, ... , «-2).

Theorem 6.6. Let « > 4 ; then o(G„) = lcm(2, 3,...,«- 2).

Proof. This follows from Corollary 6.5 and Theorem 5.8(a).

We note that we may generalize the results of §§3-6 in the following way.

For « > 4 and r > 0, define the block map Fn r and the automorphism Gn r

by

n-3

Fn.r = (n + r- 1) + 5^-/'0'+l) • • • (;' + r+l)A(; + r + 2, « + r - l)(n + r),

7=1

G      — rr~í-n+r~2^ o F

Using the techniques of the previous section, we can show that the order of

G„,r is independent of r.
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Theorem 6.7. Let « > 4 and r > 0. Then:

(a) Gn,r = gn+r ° gn-l+r o • • • o g4+r .

(b) For a// r and fixed n, o(Gn,r) = lcm(2, 3,...,«- 2).

The proof is somewhat messier than that of Theorem 6.6, but it follows the

same lines, and so is limited.

7. Return numbers and the order of G„

In this section, we show that, whereas each Gn has finite order, composing

Gn with the complementation map produces an automorphism of infinite order.

We turn once again to the work of Boyle and Krieger [BK].

Let / e Aut(Z2), and let nn(f) be the permutation induced by fi on cfn,

the orbits of periodic points of least period « . For each orbit Qecfn , choose

a fixed but arbitrary periodic point xq e Q. If Q is in a cycle C(Q) of n„(f)

of length d, then fid(xQ) e Q. Since

Q = (xQ, o(xq), ... , od-x(xQ)),

it follows that fid(xo) = or(xQ), for some unique r such that 0 < r < d . This

integer r is called the return number of / for the cycle C(Q).

Lemma 7.1. Let fi e Aut(Ï2) be of finite order k. If r is a return number of fi

for a cycle of orbits of points of period «, then kr = 0  (mod n).

Proof. This is essentially Boyle and Krieger's Proposition 1.4 [BK, p. 130].

Theorem 7.2. Let c(x) = x be the complementation automorphism. Then for

all « > 4, c o G„ = G„ is an automorphism of infinite order.

Proof. Let N be any positive integer such that 2N + 1 > « and such that

(2N + 1, «) = 1. Let x be the periodic point [(10)N 1]2n+x . Now Gn =
gn ° • • • ° g4 ; it is easy to check that gk leaves x fixed and unshifted if k > 5 ,
but that g4(x) = [(lO^Ohjv+i. Hence, Gn(x) = [(IQ)NQ]2N+X, and so

G„(x) = [(Ol^lkiv+i = [0(10)"-' 11 W> = (7([(lO)Nl]2N+x) = o(x).

Hence, G„ has return number r = 1 on an orbit of points of period 2 N + 1.

If o(Gn) = k, then by Lemma 7.1, k = kr = 0 (mod 2A + 1). But since N
is arbitrary (although 2A + 1 is relatively prime to «), it follows that k = 0,

contrary to the assumption that k is the order of a nonidentity automorphism

of X2 . Hence, Gn has infinite order for all « > 4.

Remark. A key step in the preceding proof is that if k > 5, then the maps gk

fix all periodic points [(lO^lkjv+i for N sufficiently large. Thus, with only
very slight changes in the proof, we may generalize Theorem 7.2 as follows:

Theorem 7.3. Let c(x) = x be the complementation automorphism.   Let F

be any automorphism of 1.2 that fixes the periodic points [(10)Arl]2jv+i for all

sufficiently large N.  Then coFog4 = Fog4 is an automorphism of ~L2 of

infinite order.

8. The subgroup %" and its properties

In this section, we define the subgroup !%? of Aut(Z2) and summarize its

properties. First, we show that gn and gk commute, except when « = k ± 1.
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Lemma 8.1. Let n, k > 4. Then:

(a) fn°fik = fk° fin if and only if\n-k\i±l.
(b) fn2 = T2"-*. _

Proof, (a) Since fn = (n - 1) + 12 • ■ • (« - 2)« , a straightforward computation

shows that

fn°fik = (n + k-3) + (n- 1)« •• • (« + k - 4)(« + k - 2)

+ (k-l)k--- (k + n-4)(k + « - 2)

+ ((k -l)k--- (k + n-5)(k + « - 3)

x (« - 2)(«^T) • ■ • (n + k-5)(n + k- 3)(« + k - 2)).

Note that the last product is equal to zero if and only if n ^ k + 1. Since the

rest of the expression is symmetric in « and k, this implies that /„ commutes

with fk whenever \n - k\ ^ 1. Finally, by the previous statement, it is clear

that  /„ o fin_x ¿ fn-X o f„ .
(b) Note that if n = k, then everything cancels in the previous expression

except for the term (« + « - 3) = (2« - 3) = T2n~4 . Hence fin = T2n~4 .

Corollary 8.2. Let n, k > 4. Then:

(a) gn°gk = gk° gn if and only if\n-k\¿±l.
(b) g„ is an involution.

Proof, (a) This follows from Lemma 8.1(a), the definition of gn and the fact

that the shift commutes with all block maps.

(b) Since g„ = cr^n~2^ o (/„)oo , Lemma 8.1(b) implies that

g2 = CT-(2«-4) 0 (T2n-4)oo = (T-(2»-4)+2n-4 = ff0 .

hence, g2 is the identity map. Since it is clear that g„ is not the identity map,

it follows that gn is an involution.

We may now summarize our results as follows:

Theorem 8.3. Put

Fx = 1,  i^ = Xi,    and Fn=xn-l+xn(Fn^l+xx---x„-2)    fiorn>3,

Gn = <r-("-2) o (Fn)«,   /or«>4,

fn = Xn-X + Xi  M | Xk J X„ ,

gn=aHn-2) 0 (/n)oo)

ßZ = ({o}ü{c}U{gn:n>4}).

If n>4, then:
(a) G„ = g„og„_x o---og4.

(b) (/Tlcm(2-3'-'"-2))      _ ff(n-2)lcm(2,3,...,n-2)

(c) o(G„) = lcm(2, 3,...,«- 2).

(d) G„ is an automorphism of infinite order.

(e) For r > 0, put Gn,r = gn+r ° gn-i+r ° ■ ■ ■ ° g*+r ; then

o(Gn,r) = lcm(2, 3, ... , «-2).

(f) For k > 4, g„ commutes with gk if and only if \n - k\ / ±1.
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(g) gn is an involutory automorphism of 12.

(h) %Z contains automorphisms of all orders.

Proof. We have already proved all of these results except for (h). So let M be

a positive integer. Since o(Gm+2) = lcm(2, 3,... , M), it follows that

o(GM+2)lcm{2'i'-'M)/M) = M.

Hence, %? contains automorphisms of all finite orders. Since a and G„ have

infinite order, it follows that %Z has automorphisms of all orders.

9. Problems and questions

The work in this paper suggests problems and raises questions in a number of

areas. First of all, those interested in combinatorial arrays might pursue further
investigations of the structure of seeded arrays. In particular:

Question 9.1. What happens to the periodicity of seeded arrays if we
(a) change the rules for filling the array?

(b) change the modulus (i.e., fill the array mod « instead of mod 2) ?

There are other infinite families of block maps, like the maps F„, whose

powers can be described in terms of seeded arrays.

Problem 9.2. Characterize those families of block maps whose powers corre-

spond to the periodic seeded arrays of §5.

Question 9.3. Given a set of rules for filling seeded arrays, is there a correspond-

ing family of block maps whose powers can be described in terms of the given

set of rules?

Next, the algebraic and geometric structure of Z%Z and of its subgroups is an

area worthy of further study. If no two of {nx,n2, ... , nk} are consecutive

positive integers, then (gn,, gni, ■ ■ ■ , gnk) is isomorphic to the direct sum of k

copies of Z2 . It is easy to show that if « > 4, then (g„ , gn+x) is isomorphic to

the dihedral group Df, of symmetries of the regular hexagon. Other than that,

not much is known; there is, however, enough evidence to suggest the following

conjecture:

Conjecture 9.4. If k > 0, and nx, ... , nk axe distinct integers > 4, then the

number of nonisomorphic groups of the form (g„x, ... , g„k) is equal to the

number n(k) of partitions of the integer k .

Problem 9.5. Characterize the finite subgroups of %Z.

The marker constructions of Hedlund [H] and of Boyle, Lind, and Rudolph

[BLR] yield automorphisms of 2Z2 (as well as automorphisms of arbitrary shifts
of finite type) which have finite order. To each such automorphism, there corre-

sponds a block map. But deciding whether the endomorphism corresponding to

a given block map is an automorphism, or even merely onto, seems to be some-

what more involved. This problem may be tractable for involutions, however:

to this end, if a = 0 or 1, define ax = a and a0 = a.
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Problem 9.6. Let Z2§n¿ = bx •• -bk^xbk+x ■■ ■ b„ , where b, = 0 or 1.   Given
necessary and sufficient conditions on the block Z%n k f°r the block map

fi(xx---x„) = xk + '[[xfi
¥k

to induce an automorphism of Z2 that is an involution modulo the shift.

We note that certain sufficient conditions are known (see [BLR, pp. 74-75]),

but that these may not be necessary.

Finally, we begin this study by investigating the following question, which is

still unanswered:

Question 9.7. Is Aut(X2) generated by the shift and involutions?
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