
transactions of the
american mathematical society
Volume 339, Number 1, September 1993

REFLECTING BROWNIAN MOTION IN A CUSP

R. DANTE DEBLASSIE AND ELLEN H. TOBY

Abstract. Let C be the cusp {(x,y):x > 0, -xP < y < x?} where

ß > 1. Set dCx = {(x,y):x >0,y = -x?} and dC2 = {(x,y):x >

0, y = xP} . We study the existence and uniqueness in law of reflecting Brown-

ian motion in C . The angle of reflection at dCj\{0} (relative to the inward

unit normal) is a constant 6¡ £ (-?, |), and is positive iff the direction of

reflection has a negative first component in all sufficiently small neighborhoods

of 0. When 6X +62 < 0 , existence and uniqueness in law hold. When dx + 82 >

0 , existence fails. We also obtain results for a large class of asymmetric cusps.

We make essential use of results of Warschawski on the differentiability at the

boundary of conformai maps.

1. Introduction and outline of main results

In recent years there has been considerable interest in reflecting Brownian

motion, abbreviated as RBM, in 2 dimensions. This interest was precipitated

by the work of Varadhan and Williams [8] in which they consider an RBM in

D = {z = rew eC:r>0, 0 < 0 < £} ,        ie(0,2jr),

with constant oblique angle of reflection on each side of D. They gave simple

necessary and sufficient conditions for existence and uniqueness. Rogers [3, 4]

and Burdzy and Marshall [2] also consider RMB in D but with variable direc-

tion of reflection. All of the above mentioned authors explored the conditions

under which RBM can reach the origin. Also at issue was extending the process

beyond the first time it hits {0} . All the conditions are of a geometric nature.

Here we study the existence and uniqueness of reflecting Brownian motion

in the cusp

(1.1) C = {(x, y):x>0, -xß <y <xß},       ß>l,

with constant direction of reflection on each of the sides, relative to the in-

ward normals. Because <9C\{0} is smooth, standard results give existence and

uniqueness when the process starts away from 0, up to the first hitting time of 0.
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Thus the problem reduces to deciding whether or not RBM in C starting away

from 0 ever hits 0, and once there can it escape in a unique manner. Hence,

in studying existence and uniqueness, the focus of attention should be on the

behavior near zero.

Roughly speaking, RBM behaves like Brownian motion inside of C, reflects

instantly in an oblique direction off the sides and spends zero time at the origin.

More precisely, we pose the problem as a question of existence and uniqueness

of a solution to a submartingale problem in the style of Stroock and Varadhan

[7]. Let Qc be the set of continuous functions from [0, oo) into C. For / > 0

let JZt be the rj-algebra of subsets of Qc generated by the coordinate maps

Zs(co) = co(s) for 0 < 5 < /. We use ^# to denote o{Zt: 0 < t < oc}. Let

Cl(C) be the set of real-valued continuous functions that are defined and twice

continuously differentiable on some domain containing C and that together

with their first and second partial derivatives are bounded on C.

Let dCx = {(x,y) e C: x > 0, y = -xß} and dC2 = {(x,y) e C:x >

0, y = xP}. For / = 1, 2, let 0, e (-§, f ), for z e dC¡\{0} let n¡(z)
be the inward unit normal to dC, and let v¡(z) make constant angle 0, with

n¡(z). We take 0, > 0 iff the first component of v¡(z) is negative in small

neighborhoods of the origin. We also make the normalizations v¡(z)'n¡(z) = 1,

z e dd\{0}.
The Laplacian and gradient will be denoted by A and V as usual. A solution

to the submartingale problem on C starting from z eC is a probability measure

Pz on (Çlç, ÂZ) such that

(1.2) Pz(a(0) = z) = 1 ;

for each / e C2(C),

(1.3) fia(t))-\J\f(a>{s))ds

is a Pz-submartingale on (Qc> M, {JZt}) whenever / is constant in a neigh-

borhood of 0 and v¡ • V/ > 0 on d C, for / = 1, 2 ;

(1.4) Ep'[J~I{0](a>is))ds 0.

A family {Pz: z e C} is a solution of the submartingale problem on C if for

each z eC ,PZ is a solution to the submartingale problem on C starting from

z. In this case, we say Z(-) together with {Pz: z e C} is an RBM in C. The

process Z under Pz is an RBM in C starting from z. Any continuous process

having the same law as Z under Pz is also called an RBM in C starting from

z.

Let us briefly describe our method. Let S = {(x, y): y >0} be the upper half
plane, dSx the positive x-axis, dS2 the negative x-axis, and let {(/(/): t > 0}

be RBM in S with constant angles of reflection 8X and 82 on dSx and dS2

respectively. Here 0i,02£(-f,f). The sign convention in this case is distinct
from that described for C : now the angle of reflection is measured from the

inward unit normal and is positive if and only if the associated direction points

toward the origin. The process G is shown to exist for all values of 8X and 82

in Varadhan and Williams [8]. We will be more precise later. Let y : S —► C
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be one-to-one, onto, continuous, and conformai on S\{0} with J?"(0) = 0. It

is reasonable to conjecture that if

(1.5) A(t)= [ \^'(GU)\21(Gu¿ 0) du <oo   a.s.
Jo

then Z(.) = 3r(G(A-x(.))) ought to have the law of an RBM in C with the
desired reflection angles. Hence existence of RBM in C basically comes down

to verifying (1.5). Our main result is the following theorem.

Theorem 1.1. There is a unique solution of the submartingale problem on C if

01 + 02 < 0. If 8X + 82 > 0, there is no solution of the submartingale problem
on C starting from any z e C.

The reason for nonexistence is that for 8X + 82 > 0, the origin is hit with

positive probability and then the process is forced to absorb there, contradicting

(1.4). When 8X + 82 < 0, C7(-) started away from 0 will never hit 0, and hence

once Z(-) is away from 0 it never hits it again. As a by-product of our method

we obtain a similar theorem for a large class of asymmetric cusps.

Theorem 1.2. Consider the asymmetric cusp C = {(x, y): x > 0, -x6 < y <

xß} where ß > 1 and S > 2ß - 1. There is a unique solution of the submartin-

gale problem on C if 8X + 82 < 0. If 8X + 82 > 0, there is no solution of the
submartingale problem on C starting from any z eC.

The question of existence and uniqueness is still open for the case ô e

(ß, 2ß - 1]. Unfortunately our method fails in this case. Indeed, it is pos-

sible to show that in this case the crucial Theorem 6.2 below is false, by the

results of Warschawski [9].

The paper is organized as follows. In §2 we introduce the conformai trans-

formation y and various properties are given with the proofs deferred to §6.

In §3 we develop some preliminaries. Section 4 considers the existence and

uniqueness when 8X + 82 < 0 and in §5 we prove nonexistence for 8X + 82 > 0.

Section 7 is devoted to proving Theorem 6.2, a key technical result used in §6.

We prove Theorems 1.1 and 1.2 simultaneously. Hence for the rest of this paper

we will assume

C = {(x,y):x>0, -xs <y <xß},        ß>l,o = ßoxa>2ß-l,

dCx = {(x,y):x>0,y = -x3},    dC2 = {(x, y): x > 0, y = x*}.

Acknowledgment. We are indebted to Professor Ruth Williams for suggesting

this problem to us. Secondly, she told us how to prove Theorem 3.2 and why we

needed it in our proof of uniqueness in §4. Our original proof of nonexistence

was rather lengthy and she suggested the method of Varadhan-Williams (1985)

should work with much less work. Last but not least we are grateful to her for

providing two weeks of support at UCSD for DeBlassie during August of 1990.

We are grateful to the referee for the careful review and detailed suggestions

for an improved presentation.

2. Properties of the conformal transformation

Since <9C\{0} is smooth, it suffices to construct an RBM in C starting at
0 up to the first time it leaves a small neighborhood of 0 in C . Thus we only
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really care about C in a neighborhood of 0. Hence rather than map S onto

C, we map a neighborhood of 0 in S onto a neighborhood of 0 in C. The

next theorem describes properties of a particular choice of such a map. We

defer the proof to §6.
For any e > 0 and x eM.2 let Be(x) = {y e K2 : \x - y\ < e}. For Be E2

and n > 0 an integer, let C"(B) denote the set of real-valued continuous

functions that are defined and n times continuously differentiable on some

domain containing B.

Theorem 2.1. There exists an e e (0, 1), a closed set H ç Bx(0) n C and a

homeomorphism Z?~: S n Be(0) —> H that is conformai on S n 5£(0)\{0} and

has inverse F that is conformai on H\{0} such that for some finite constant

Kx,

(i)   F(0) = 0,
(ii)   OedH,

(iii)   HnBs(0) = Cn Bs(0) for s sufficiently small,

(iv)   \F'(0\<Kx\t;\-x(-ln\t;\)-ß/(ß-xK CeSnB¡W)\{0}.
(v)   \F'(z)\<Kx, zeH\{0},

(vi)   \Ç$\i-ln\F(z)\)-»M-x<<Kx, zeH\{0}.

Moreover, the components of ZF are in C2(S n 5E(0)\{0}).

3. Preliminaries

Let Pz be a solution of the submartingale problem on C starting from z

and let Z be the canonical process on Qc • For 0 < s < e, define

(3.1) as = inf{t > 0: Z(t) e{xeH: \F(x)\ = s}}.

Lemma 3.1. If 0 < \F(z)\ < e and 8x+82<0 then

Pz(Oq A CJB < OC ) =  1.

// 0i + 02 > 0 then there exists Sx e (0, e] such that for 0 < \F(z)\ < ôx,

Pz(oq/\oS{ < 00) = 1.

Proof. Define Vj(0) = lim^o Vj(Q along dCj\{0} , j = 1,2. The angle vx(Q
makes with the positive x-axis (the angle measured as positive when taken in

the counterclockwise sense) decreases continuously from f + 8X towards 8X as

C moves from {0} outward along dCx. Similarly, the angle v2(Q makes with

the positive x-axis increases continuously from —(% + d2) towards -82 as Ç

moves from {0} outward along dC2.

First consider 8X + 82 < 0. If we regard Vj(Ç) (Ç e dCj) as a vector starting

at {0},then

{vx(Q: C e dCx} c |J [re'e: 6X < 8 <\ + 0,} =: Ax,
r>0

{«2(C): Í e dC2} ç (J [reie: - (| + 02) < 0 < -02} =: A2.
r>0

Notice zj e Aj ^ Wy(C) • Zj > 0 for f e dC¡■■, j = 1, 2. Since 0, + 02 < 0,
A\ n^2\{0} # 0 . Thus we can choose a unit vector v e Ax Ci/^UO} satisfying

(3.2) v-Vj(Q>0,        CedCj, 7 = 1,2.
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Next consider 0i-t-02 >0. Then the smallest angle between vx(0) and ^(0)

is strictly less than n. Let v be the unit vector bisecting the angle between

vx(0) and t>2(0). Then v • Vj(0) > 0 for j = 1, 2. By continuity, for some

neighborhood N of 0 in R2 we have v-vj(C) > 0 for C e NndCj, j = 1,2.
Hence we can choose ôx e (0, e] so small that

(3.3) v.Vj(Q>0,       Ce{w:\F(w)\<ôx}ndCj, j = 1,2.

This is possible because ZF is a homeomorphism.

Now we modify the proof of Lemma 2.1 on p. 411 of Varadhan and Williams

[8] as follows. Since <9C\{0} is smooth, for z ^ 0 the process Z(« A oq) has

a decomposition under Pz :

Z(ti\oo) =
f B(t) + J0'vx(Z(s))dYx(s) + ¡0lv2(Z(s))dY2(s),    0<t<o0,

I 0 , t > (T0

where Z(r A rjn) € C for all / > 0, 5, Yi, Y2 axe adapted to Z, B(- A ob) is a
two-dimensional martingale having mutual variation (B¡(- A cro) > -#./(• A ob))f =

3¡j(t Aoq) fox i, j = 1,2, and 5(0) = z Pz-a.s. 7j and Y2 are continuous

increasing processes with Yx(0) = Y2(0) = 0, and Yx(t), Y2(t) axe finite for

all t < oq. Moreover, for each j = 1, 2, Ï) increases only when Z is on

OC,\{0}.
Choose v as in (3.2) or (3.3) according to 8X + 92 < 0 or 0] + 02 > 0, and

observe that on {oq = 00} we have for

a={o'x,

if0i + 02<O,
lf01+02>O and     °<l^)l<û>

sup \Z(t A ffa)| > sup[Z(i A oa) • v] > sup[B(t A oa) - v].
t t t

Since {C e C: \F(Q\ < a} ç {C e C: |/^(C)| < e} ç // ç BX(Q) n C this yields

1 > sup[5(i A cra) -v],    a.s.

By (null) recurrence of the one-dimensional Brownian motion B(-) • v ,

sup[B(t) • v] = +00   almost surely.
1

Hence aa < 00 a.s. on {cto = 00} .   G

Theorem 3.2. // 0 < \F(z)\ <e and 8x+82<0 then Pz(o0 <oE) = 0. For ôx
as in Lemma 3.1, ifi 8X + 82 > 0 then there exists ô2 e (0, Sx) such that

inf{Pz(o0 <oâl):0< \F(z)\ < ö2} > 0.

Proof. Let a = (8X + 82)/n and in polar coordinates Ç = re'e , set

mr   0) = [racos(ad-8x),        a¿0,

1 '   '     \logr + 0tan01,        a = 0.

Then for some constant K2 (see Varadhan and Williams [8]—here V, is the
direction of reflection on dS¡  making angle 8,  relative to the inward unit
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normal N¡ to dS, with the sign convention on 0, described in §1 where S

was introduced)

<D € C2(S\{0}),

A<P = 0   inS\{0},

F¡.VO = 0   onÖ5A{0},  i = l,2,

O(C) >K2ra    ifa^O.

So if we define *F(£) = &o F(Ç), Ç e H, we see (cf. proof of Proposition 4.1

below) for some positive constants Kt, and K4

V e C2(H\{0}),

A4' = 0   in//\{0},

v¡-W = 0   ondC,f)H\{0},  i= 1,2,

V(0>Ki\F(Q\a,        Ce//\{0}    ifa^O,

^(0 <log|JF(C)l + ^4      Ce//\{0}   ifa = 0.

Thus as in the proof of Theorem 2.2, p. 411 of Varadhan and Williams [8],
for 0 < s < \F(z)\ < e, by Lemma 3.1, optional stopping and dominated

convergence, (recall a < 0),

(3.4) Ez[V(Z(osAoE))] = V(z).

Hence for a < 0 we get

K3saPz(os < o£) < Ez[V(Z(os))I(os < oE)]

<EzmZ(as,\ag))] = V(z)

or

(3.5) Pz(os < aE) < Kïxs-aV(z).

By Lemma 3.1, oq A aE < oo a.s. so by continuity of paths, {oq < Ot) —

f\s>0{crs < oE} a.s. Hence letting 5 J. 0 in (3.5), Pz(oq < oE) = 0 (since a < 0)

as desired.
When a = 0 and 5 is small, from (3.4)

¥(z) = EzmZ(os A ae))\ < (lo%s)Pz(os < at) + loge + 2K4

or (for s < 1)

Pz(as < oE) < (logs)'xmz) - loge - 2K4]

and upon letting s | 0, Pz(oq < oE) = 0 once again.

Finally, we consider a > 0 (i.e., 8X + 82 > 0). Choose ¿3 > 0 such that for

ôx e (0, e] as in Lemma 3.1

(3.6) {C:W)<à3}Ç{C:\FiC)\<Sl}.

This is possible because for some positive k, <P(£) > k\Ç\a, (, e S. Then

choose S2 > 0 so that

(3.7) ô2<min(â,(±S3)x'a)

and

(3.8) {C: 1^(01 < <52} Ç {C: ̂ (0 < ̂ 3}.
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The latter is possible because a > 0 and ¥(C) < \F(Q\a for C e //.

For r < Si define

pr = inf{t>0:x¥(Zt) = r}.

Then pq = <?o and, as in (3.4) above, for z satisfying \F(z)\ < ö2 and 4*(z) >

s,

EzmZ(psApSi))] = V(z).

Thus sPz(ps < pSi) + <j3(1 - Pz(ps < ps3)) = ¥(z), which yields

(3.9) Pz(ps<pSi) = Xi'{z)'âi.
s — 03

For z satisfying 0 <\F(z)\ < ô2 we have

Pz(po A ps¡ < 00) > Pz(oq Aoô<oo) = l

by (3.6) and Lemma 3.1. Then by path continuity,

{p0<pS}} = f]{ps<pS}}   a.s. Pz.
s>0

Hence upon letting s J. 0 in (3.9) we get

*¥(z)
Pz(Pq < ps,) = 1--^-,        0 < \F(z)\ < S2.

03

But for such z , by (3.7) and that a > 0, *¥(z) < \F(z)\a < r52a < ¿f53. Hence

inf{Pz(;«o<^3):0<|JF(z)|<i52}>i.

To finish, just observe for 0 < \F(z)\ < 62 we have by (3.6)

Pz(OQ < <TSl) > Pz(P0 < PS,)-     O

4. Existence and uniqueness for 8x + 82 < 0

Recall ß > 1 and S = ßoxo>2ß-l. Throughout this section we assume

0i + 02 < 0. By Theorem 3.2 it suffices to consider an RBM in C starting

from 0. As in the introduction, let S = {(x, y): y > 0} be the closed upper

half-plane. Set dSx = {(x, 0): x > 0} and dS2 = {(x, 0): x < 0}. Let Nj
be the unit inward normal to dSj , and let V¡ make angle 8¡ e (-f , f ) with
Nj, j = 1,2. Here Vj points toward 0 iff 8¡ > 0. We take Vj • Nj = 1.
Let {C7(/) : t > 0} be a realization of a reflecting Brownian motion (RBM) in S

starting at 0 e S with directions of reflection Vx, V2 on dSi\{0} , 952\{0},

respectively. More precisely, on some filtered space (il, Z?, {Z7[}, Q) there is

defined a continuous {¿^}-adapted process G such that

(i)   Q(GU e S Vu > 0) = 1 = Q(Gq = 0) ;
(ii) for every f e cf(S) satisfying Vj.Vf>0 on dSj and /= constant

near 0,

f' I
f(Gt)- /   -Af(Gu)du   is an {c5^}-submartingale ;

./o 2

(iii)   EQ[f0°°I(Gu = 0)du] = 0.
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Varadhan and Williams [8] have proved existence and uniqueness in law of G

on the space of continuous paths in S. For any number 5 > 0 set

ns = ns(G) = inf{t>0:\G,\=s}

and define (here e is from Theorem 2.1 )

AG(t)
rtMe

JO
\^'(Gu)\2I(Gu¿0)du.(4.1)

If

(4.2)

then AG is continuous (hence finite) on [0, nE]. Since 9~ is conformai away

from 0 (so !F' ± 0 there) and G does not spend positive time at 0 a.s. (Q),

under (4.2) AG is strictly increasing on [0, nE]. Then AG on [0, nE] has a

strictly increasing continuous inverse aG defined on [0, AG(nE)]. Define

AG(nE(G)) < 00

(4.3) ZG(t) = ¥(G(aG(t A AG(nE)))),    for t > 0.

We will sometimes drop the superscript G in the notation.

Recall that we need only construct an RBM starting from 0 until it leaves a

small neighborhood of 0 in C. Thus for existence we need only verify (1.2)-

(1.4) for the law of ZG on (Çlc, J?) with t replaced by iAcr£ where

oe(œ) = oE = inf{t > 0: \F(œ,)\ = e}.

If this is true, we say ZG(.) is an RBM in C, stopped at time oE, starting at

0. We will usually not include the statement "starting at 0".

Proposition 4.1. // A(nE) < 00 then ZG(-) given by (4.3)  is an RBM in C

stopped at time aE.

Proof. Since F(0) = 0,

E°-[I(ZG = 0)] = EQ[I(Gq = 0)] = 1.

Also, since F(H) = 5 n BE(0), oE = A(nE) and so

EQ
\i:

I(ZG = 0) ds = E°-\J'l(3r(G(as)) = 0)ds

= EQ\fei(G(as) = 0)ds

= 0

since a(') is strictly increasing and EQ[J0°° I(GS = 0) ds] = 0.

To show (1.3) suppose / € C%(C) is constant in a neighborhood of 0 and

v,--V/>0 on dd, i =1,2. Let h(Q = fo^(Q, Ç e SnBjÖj. Then h
is constant in a neighborhood of 0 and h e C%(S n BE(0)).

Let

J(z) =

(dFx dFx\

dzx dz2

dF2 dF2

\dzx dz2)

z = (zx, z2),
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be the Jacobian of F . By conformality, for some positive c¡(z),

Vj = Cj(z)J(z)Vj(z),       z e (dCj\{0}) n H, j=l,2.

Also, for C - F(z) and f(Z) the Jacobian of & at Ç,

VA(C) = v(/o^)(C) =f(ZY(vfi)(sr(Q) = (J~x(z)Y(vfi)(z).

Thus for C e (dSj\{f)}) n 5£(0), we have z = ^"(f ) e (3C,\{0}) n // and

VA(C) • ̂  = (VA(f))'F;   (as matrices)

= K(V/)(z))V-1(z)]c;(z)/(z)^(z)

= o(z)V/(z) • u,-(z) > 0.

Thus
1        /-¡ACTe

fiZÜJ-2^      Afi(ZG)ds

i     /-(Act,.

= h(GttttMt)) - j yo     A(A o F)(^(Ga(i))) rfi

1       /•îA(T£

= A(C7a(íACT£))--y      AA(.Ju(s))|F(^(C7a(í)))|2¿S

i     /•a(íAr7£)

= A(C7a(íACTs)) - - y AA(C7M)/(GU # 0) du

i     ra(t/\as)

= h(Ga{tAac)) - 2 j AA(G,)<fo

is a submartingale.   G

We can reverse the preceding procedure. Indeed, given a realization Z(>) of

RBM in C stopped at time at(Z) starting from 0, since 8X + 82 < 0, Lemma
3.1 and Theorem 3.2 imply oE(Z) < oo a.s. Set

(4.4) Vz(t) = / \F'(ZU)\2I(ZU ¿0)du,        t > 0.
Jo

By Theorem 2.1, for some constant K, Vz(t) < Kt for all r > 0 and Vz

is continuous and strictly increasing on [0, oE(Z)\. Hence it has a continuous
strictly increasing inverse vz(t) on [0, Vz(oE(Z))]. Define

(4.5) Gz(t) = F(Z(vz(tAVz(oE(Z))))),        t>0.

Similar to Proposition 4.1, Gz is an RBM in S stopped at Vz(oE(Z)).

We now use the above to show existence and uniqueness of RBM in C

stopped at at(Z).

Theorem 4.2. Let G be an RBM in S starting at 0. If 8X + 82 < 0 then the
condition

rn*(G)

(4.6) /        |Gur2|ln|G„|r^/(Gu^0)ufu<oo
./o

is sufficient for existence and uniqueness in law of RBM Z in C stopped at time
aE(Z).

Proof. Assuming (4.6) holds, then by Theorem 2.1 (iv), AG(r\t(G)) < oo . Hence
existence follows from Proposition 4.1.
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Next v;e consider uniqueness. Observe

,4~ f Vz(oE(Z)) = nE(Gz),

[ ' ' I AG(nE(G)) = aE(ZG).

Then since the law of RBM on S stopped at nc is unique, we need only show

that the associations

Z(. A aE(Z)) RBM in C stopped at oE(Z)

-» Gz(- A Vz(oE(Z))) RBM in S stopped at nE(Gz)

and

G(- A tje(G)) RBM in S stopped at nE(Z)

-> ZG(. A AG(nE(G))) RBM in C stopped at aE(ZG)

form a one-to-one correspondence. For this it suffices to show

(4.8) oE(Z^) = oE(Z),        Z{-GZ\.) = Z(.AoE(Z)),

and

(4.9) UG{zG)) = nE(G),        G^(.) = G(- A r¡e(G)).

We only prove (4.8), the proof of (4.9) being similar.

Observe first that

(4.10) A^z\Vz(t)) = t,        t<oE(Z).

Indeed, for such t, Vz(t) < Vz(oE(Z)) = nE(Gz) (by (4.7)) so the left side is

well defined and by (4.1) is

•vz(t)

\Z?'(Gz)\2I(Gz¿0)duI
Jo

fVz(t)

= /        \^'oF(Z(vz))\2I(Z(vz)^0)du   (by (4.5))
^o

= f'\Z?-'oF(Zs)\2I(Zs¿0)\F'(Zs)\2ds    (by (4.4))
Jo

= [ I(Zs7iO)ds
Jo

= /.

Applying this, by (4.7),

oe(Z^) = A(GZ)(nE(Gz)) = ¿GZ\Vz(aE(Z))) = oE(Z),

giving the first part of (4.8).

For the latter part, by (4.10), vz(a{GZ)(t)) = t for t < aE(Z) and so

Z(°z)(t) = 9-(Gz{a°z(t A A°z(nE(Gz)))})   by (4.3)

= F(Gz{aGZ(tAoE(ZGZ))})   by (4.7)

= F(Gz{aGZ (t A oe(Z))})   (first part of (4.8))

= Z(vz{[aGZ(tAoE(Z))]AVz(aE(Z))})   by (4.5)

= Z(tAoE(Z))

as desired.   D
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By Theorem 4.2, to prove existence and uniqueness of RBM for 8X + 82 < 0,

it suffices to verify (4.6). For this we need the following theorem.

Theorem 4.3. Let h e C(Sn5£(0))nC2(Sn/?£{0}\{0}) with h(0) = 0, Ah > 0
on S\{0}, and V¡ • VA > 0 on (dSj) n #£(0)\{0}, j = 1, 2. Then

r'Affer /-'Affe

E° [J      Ah(Gs)I{h{Gs)>Q}ds< oo.

Proof. Suppose gn: R -> [0, oo) is continuous with suppg„ ç [±, -}-] and

¡gn(r)dr=l. Let

K(t)= I  [ g„(r)drds.
Jo Jo

Then kn e C2(R), k„ vanishes in a neighborhood of 0 and \kn(t) - t V 0| < ¿

for some constant A > 0. Moreover, 0 < k'„ < 1, k'Z > 0 and as n -+ oo,

k'n(t)^I{Qt00)(t). _

With A as above, it follows that kn o h e C£(S n BE(0)). Now k„ o A can be

extended outside of SnBE(0) so that it is in C%(S) and satisfies Vj-V(knoh) > 0

on dSj, j = 1,2. Such extensions are made in Varadhan and Williams [8].

Therefore by the submartingale property

EQ[knoh(GtMe)-knoh(z)]

>-2E0
rt/\ric

/      [AA(C7,)^ o h(Gs) + IVA^)!2^' o h(Gs)] ds
Jo

Note that since A is bounded on S n BE(0), as n -> oo the left hand side

converges to L7ß[0 V A(C7ÍA,J] - 0 V A(z). By hypothesis, all integrands on the

right are nonnegative. Hence by Fatou's lemma, since k'„ converges to /(o,oo).

r /-'Ai/t

EQ\ Ah(Gs)I(h(Gs) > 0) ds < 00

is desired.   □

Now we specialize this to verify (4.6). In polar coordinates (r, 8) for z

rew let
2

A(z) =
[-lnr-0tan0!]"F

0,

zeBE(0)nS\{0},

r = 0,

where ß is the same number used to define the cusp C. By making e from

Theorem 2.1 smaller if necessary, for r < e we have A > 0, A(0) = 0, A e

C(SnB~M)nC2(SnB¡JO)\{0}) and

AA =
_J£_

ß-l
r~¿[-lnr-8tandx]~7

ß-l
+ 1   (1+tan2

._M_
Then AA > 0 on 5n5£(0)\{0} and AA > ATr-2[-lnr]"^ for 0 < r < e and
some constant K > 0 depending on e, ß and tan|0i|. In polar coordinates
V/. - (êA   lâh) «jo
yn - \ñr > rae) bU•9r ' r dd

VA = -^—(-Inr- 8tandx)-ß^~x (-, -tan8x
ß-l \r    r
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also,
Vx = (-tan0i, 1)   and    V2 = (-tan02, -1).

It is easily verified that Vj • VA > 0 on («9S;\{0}) n 5£(0), ;' = 1, 2, because

0i + 02 < 0. Therefore A satisfies the conditions of Theorem 4.3 on BE(0) n S

and

E<2\J       l^r^lnlG,!!-^

<k~xeQ

{{GS*0} i

r(Ai)£/•fAJ)£

/      Ah(Gs)I{n{Gs]>Q} ds
Jo

< 00

as desired.

Remark. If 8X + 82 < 0 then by Lemma 3.1 and Theorem 3.2 an RBM in C
starting away from 0 never hits 0. Of course, the preceding calculations show

the process can be started from 0.

5. RBM IN C DOES NOT EXIST if 8X + 82 > 0

Throughout this section we take 8X + 82 > 0.

Theorem 5.1. Suppose 8X + 82 > 0. Then for any z e C, there is no solution to

the submartingale problem on C starting from z.

First we prove the following special case.

Theorem 5.2. Suppose 8X + 82 > 0. Then there exists no solution to the sub-

martingale problem on C starting from 0.

Proof. Suppose there exists a process Z with law Pq on (fíe. *#) satisfying

(1.2) and (1.3). We will show below that (1.4) cannot also hold for this process

and therefore an RBM in C starting from 0 does not exist when 8X +82 > 0.
Let a, <P(r, 0) and *P(Z) be defined as in the proof of Theorem 3.2. Let

e be as in Theorem 2.1 and set c = cos 8X A cos 02 ; note c > 0. Define

K = c(e/2)a and let

pK = inf{t>0:V(Zt) = K}.

We will prove below that

(5.1) P0[w(tApK) = Ofoxallt]= 1.

Because <P(r, 0) > 0 for (r, 8) e S n ß£(0)\{0} and <D(0, 0) = 0 when
0i + 02 > 0, by continuity of <P, there exists an open neighborhood J of {0}

in H for which *F(z) < K for all z e J. Therefore continuity of paths and

(1.2) imply pk > 0 a.s. so (5.1) and (1.4) cannot both hold.
Let g: [0, oo ) -> [0, 1] be a twice continuously differentiable function such

that
, .      / 0,    0<x<l/2,

11,    x > 1

and let M = max^6[oi00){|^'(x)| + |g"(*)|} • For each s > 0 with s < K and

z e H define

hs(z) = g(s-xV(z));

hs(z)(l - h2K(z)y¥(z),    2K>V(z)> s/4,

otherwise.
ft ï     / A*(
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Because F is conformai in //\{0} , fi is well defined as an element of C%(H),

constant in a neighborhood of {0} and Vfi-Vj = 0 on BE(0)r\dCj. Moreover

A4* = ((A®)(F))\F'\2 on H\{0} and since A<D = 0 in S\{0} it is easy to show
for z e H,

' 0, 0<«F<5/2,

Afi(z) = <   (s-2g"x¥ + 2s-xg')\(V<t>)(F)\2\F'\2(z), s/2<V<s,

0, s<*¥<K.

By Doob's stopping theorem and (1.3), with equality,

(5.2) fi(w(t A pK)) - - J       Afi(w(u))du

is a P° martingale. Also on {z e C: 0 <xV(z) < K} , fis -> ¥ uniformly and

Afi -► 0 as s I 0. By (2.31) of Varadhan and Williams [8] there is a constant

b < oo such that |(V<P)(.F)|2 < bV2-2/« on //\{0}. By Theorem 2.1vi), on

H\{0},
\F'(z)\<Kx\F(z)\(-ln\F(z)\)ß^-x\

But on {z: s/2 < *¥ < s}, \F(z)\ < (^)x/a so for \z\ sufficiently small, since

x(-lnx)PKP~xî is an increasing function for small positive x,

/c\2/a /   i       ? \2ßl(ß-x)

mz)P<*i©'0|î|)      .
Thus on {z e C: 0 < «P(z) < K) ,

/     1 n2/?/(/î-1)

\Afi\<K5{(s-2M)s + 2s-xM}s2-2las2lai — In - J

1
K6s[—In

a

2ß/(ß-\)
S

C

which is bounded uniformly in s on {z e C:0 < T(z) < AT}. Because

martingales are preserved under bounded convergence at each time /, by letting

5 | 0 in (5.2) we find ^(w^ A p¡c)) is a Pq martingale. Hence

Eo[V(w(tApK))] = V(0) = 0

for all t > 0. Since *F > 0 on C\{0} this implies (5.1) and we are done.   D

On fíe , for Z(.) the coordinate process and r > 0, define

xr = xr(Z) = inf{t > 0: \Z(t)\ = r}.

The proof of the following theorem is much like that of Theorem 2.1 on p. 410

of Varadhan-Williams [8].

Theorem 5.3. For each z e C there is a unique probability measure Pz on fíe

such that

(i)   PP(Z(0) = z) = l;
(ii) for each f eCj(C) satisfying v¡ • Vf > 0 on dCj, j = 1,2,

f(Z(tAxo))--j      (Af)(Z(s))ds

is a Pz-submartingale;

(iii)   Pz°(Z(i) = 0W>T0)=l.
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Moreover, the family {P®: z e C} has the strong Markov property.

In light of Theorem 5.2, Theorem 5.1 is a consequence of the following result.

Theorem 5.4. For z e C\{0}, P%(x0 < oo) > 0.

Proof. Let ôx and ¿2 be from Lemma 3.1 and Theorem 3.2, respectively. Thus

0 < ô2 < ôx < e. If z satisfies 0 < \F(z)\ < ô2, then by Theorem 3.2

(5.3) 0 < Pz(oq <oSl) = P°z(oq <aSl)< P°(to < 00),

as desired. Define B = {C G C: 0 < \F(Q\ < \ô2} and xB = inf{t > 0:

ZteB}. Then for each z e C\{0}, Pz°(ts < 00) > 0. Indeed, for z in the
interior of C, this follows from properties of ordinary Brownian motion in C ;

for z in the boundary of dC excluding the origin, reflecting Brownian motion

will enter the interior of C immediately and from there will have positive

probability of hitting B. Together with (5.3) and the strong Markov property,

this yields the desired conclusion for z satisfying \F(z)\ > ö2.    D

6. Proof of Theorem 2.1

Our plan of action is to define a function F explicitly enough to prove it

has the properties stated in Theorem 2.1. In essence we do the following. Open

the cusp via a conformai mapping to locally flatten the boundary near 0 so

that the tangent is well defined there. Then conformally map to the unit disc;

from there map conformally to the upper half-space S. This seems convoluted

because Warschawski [9] does have results on conformai maps from a cusp to

the unit disc. The trouble is, the results are too coarse for our purpose. On the

other hand, he has results on conformai maps from domains with continuously

turning tangents to the unit disc and they are good enough for us.
First we open the cusp. Below in (7.1) we give an explicit parametric repre-

sentation of d Cx and d C2 in polar coordinates. With this in mind, using the

principal branch of In z , set

(6.1)   fis(z) = {

0, z = 0,

exp{-2^îyexp{-(^-l)lnz}}, z^O, S = ß,

[ expj-^expí-Off-l^nz}-/!},        z#0, Ô > ß.

We will show below ((7.2)-(7.3) and Lemma 7.3) that fi does indeed open the
cusp. Now for y e (0, 1 ) sufficiently small, / is well defined and one-to-one

on N = {z:\z\ < y, Rez > 0} n C. Moreover, fi and fi¿x, are conformai

on Ar\{0} and fi(N\{0}), respectively, with

{0, w = 0,

exp{-^m(-^lnti,)}, w¿0, ö = ß,

exp{-^ln(-^[lnw + /f])},       w¿0, o>ß.

Notice

(6.3) fs(z) = e-"t'2[fß(z)]2   for<5>/L
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In polar coordinates z = re'e, 8 e [-§, f ],

(fß(z) = exV{-J(^x-)r^ß-x)cos[(ß-l)8])e'n,

\fis(z) = \fiß(z)\2em,       o>ß,
(6.4)

where

(6.5)
<Pß=2jß^r)r-{ß-x)sin[(ß-l)8],

cps = 2cpß-i,    S > ß.

We leave the proof of the following elementary lemma to the reader.

Lemma 6.1. The following bounds hold

(6.6) \fl(z)\<C\f5(z)\\z\-ß,       zeN\{0},

(6.7) \ifix)'iw)\ < CH-'t-lnMr^ï,       w e f(N\{0}).

Consider the set C Cl {z: \z\ < y¡2} . Smooth out the corners located on

{z: \z\ = y¡2} and call the resulting set H. Define Rg = fig(H).

Let gs be the one-to-one conformai mapping (with conformai inverse gj ' )

taking RS\{<J} onto D\{0} where D = {C: |i- 1| < 1} with #¿(0) = 0. Such

a map exists because o/í¿\{0} is C°°. Moreover, gg and gjx are continuous

on Rs and D, respectively. The proof of the following theorem about g's is

very technical, so we leave it for the next section.

Theorem 6.2. If S = ß or if S > 2ß - I then g's on Rg\{Q} has a continuous

extension to Rg and g's ^ 0 on Rg. In particular, (g¿1)' is bounded on D

and gg is bounded on Rg .

Remark. When S > ß and S <2ß - 1, using results of Warschawski [9] it is

possible to show Theorem 6.2 is not true.
In view of Theorem 6.2, if ô = ß or ô > 2ß - 1,

(6.8) \gâ-x(0\<c\Q,       íeD,

(6.9) \gg(w)\<c\w\,       weRg.

Next, map D\{(2, 0)} onto S = {Z: lmZ > 0} by the confounal mapping

Pi0 = TTC'       CeD\{(2,0)}.

Also,

P-lW = Z^Ï2> ^S>

is also conformai and we can choose e > 0 such that

fs-xog-xop-x(dSnB¡W))cdC;

then

(6.10) (/r1)' is bounded on Be(0) n S ;

(6.11) ^\Z\<\p-l(Z)\<c\Z\   foxZeBE(0)nS;
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(6.12) p' is bounded on p~x (BE(0) n S).

At last we can define H and F . Set

H = ffxog-xop-x(BÄÖjnS),     F(z)=poggofig(z),        zeH.

Then F is conformai from //\{0} into ß£(0)n5\{0} with conformai inverse

ZF = fjx o g~x op~x and parts (i)-(iii) of Theorem 2.1 clearly hold.

By (6.9) and (6.11)

(6.13) \gs-xop-x(Z)\>c\Z\,       ZzBMnS.

Hence for Z e BE(0) n S, by (6.7), Theorem 6.2 and (6.10)

i^'(£)i = \iff1)' ° gjx °p-\t)\ • \(g;l)'°p-xm • \ip-x)'iS)\

<[c\ggx op-x(Z)\-x(-ln\g-x op-x(Z)\)-ß^].[c].[c].

Since x —> ̂(-lnx)-^/(^-1) is decreasing for x small and positive, by (6.13)

we get

^'(Ol^clír'í-lnlíl)-^   foxZeBE(0)nS.

This gives (iv) in Theorem 2.1.
If z e H\{0}, then by (6.12), Theorem 6.2 and (6.6)

\F'(z)\ = \p' o gg o fs(z)\ . \g'ô o fg(z)\ . \fl(z)\

<c.c-c\fg(z)\.\z\-ß

and by (6.4) the latter is bounded. This gives part (v).

All that remains is part (vi). By (6.11) and (6.8)-(6.9)

1|/,(z)|<|JF(z)|<C|/,(z)|,        zeH.
c

Thus for z e H\{0}

F'(z)

F(z)
(-lnlF(z)ir^T < cl^z)H^~/>(-lnC|/,(z)|)-^

<c\z\-ß(-ln\fig(z)\y&

< clzr^Iclzr^-1']-A    (by (6.4))
= c.

Here too we are using that the neighborhood N is chosen small enough so that

0 = argz is sufficiently small that cos((/? - 1)0) > c' > 0 in (6.4).   D

7. Proof of Theorem 6.2

We need the following result of Warschawski [10].

Theorem 7.1 (Warschawski). Suppose W is a closed rectifiable Jordan curve with

a continuously turning tangent. Furthermore, assume that the tangent angle x(s)

as a function of arclength s is Dini continuous. If G maps D° conformally and

injectively onto the interior of fê then G' has a continuous extension to D and

G' #0 on D.   U
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Here x(s) Dini continuous means for some nondecreasing continuous func-

tion K(t), t e [0, a], with

r k(u)
Jo     u

du < &
lo

we have

|t(j2)-t(äi)| </c(|ä2-5i|),        |ü-íi| <c

Theorem 6.2 immediately follows from Theorem 7.1 and the next theorem.

Theorem 7.2. If S = ß or S > 2ß - I then dRg has a continuously turning

tangent. The tangent angle x(s) is Dini continuous as a function of arclength s.

Proof. Since dRg\{0} is C°° , we need only consider dRg in a neighborhood

of 0. Near 0, dRg consists of two arcs, call them YX(S) and Y2(ô), separated

by 0. We parametrize as follows. Let

(7.1) ('•i(0 =
I r2(t) =

rx(t) = t(l + i2««5-1))1^,        8x(t) = -tan-' ts~x,

í(l-(-í2(/»-i))i/2j        02(í) = tan-1^-1.

These give parametric representations (in polar coordinates) of dCx, dC2, re-

spectively, for t > 0. Then for some dx > 0, in polar coordinates peltp for

k=l,2,

Yk(Ô):p = pk(t),       cp = cpk(t),       te(0,ox),

where (cf. (6.4))

(72) {Pk(t) = \fs(rk(t)eie^)\,

I nit) = <pg(rk(t)eif>^).

Then

( wx(t) = px(-t)e'^-'K       te (-¿i,0),

(7.3) w(t) = I w2(t) = p2(ty^, te(0,Sx),

10, t = 0,

is a continuous parametric representation of dRg near 0.

We need the following expansions.

Lemma 7.3. For 0 < t < ô

2 f^ [. a0(ô) < 0 when ô > ß,
m=0

oo

nit) = j + £ bm(o)tlm(ß-xx,      bx(ô)< 0;

m=l

yj(')/>i(0 _ ,*-> v r «tf-»-«    ICo{0) = ° z/ s = ß '

m=0

oo

W> m=0
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Proof. Since tan x z is analytic on \z\ < 1 and sinz is entire, sin(ytan_1z)

has a power series on |z| < 1 in odd powers of z . Thus for y > 0 and a > 0,

oo

(7.4) (l + u2)'asin(ytan-xu) = u^2am(a,y)u2m,        -1 < u < 1

w=0

where

(7.5) a0(a,y) = y,       ax(a,y)<0.

Hence by (7.1) and (6.5)

9ßirxit)e'W) = - ^rtf-V"1 f) a« (^ > 0 - l) tlm(ô-X)
m=0

fS-ß f-£öM(^,/?-iW-'
m=l ^ '

When á = ß , by (7.2) this gives

oo

nit) = ~ + ¿2 am(ß)t2m(ß-V ,        ax(ß)>0;

äx < 0.

m=\

when ô > ß we get

9'i(0 = 2í'5-^ -f-5>(^.*-i)^
m=l

71

2

= -? + í,-/,E«-.Wí2m('-|),      flöW<0,
m=0

as desired.
By (7.1), (7.4) and (6.5)

f,(ii(0«*w) = ¿T^TT) £ «« (^ «^ - 0 ^^

Together with (7.2) this gives for ô = ß ,

00

P2(0 = £ + £M<y)'2w(/'"1)'       AiW<0;

for S > ß,

m=\

nit) = 2
00

2(/>-l)¿-   m\    2
0-1 , 0 - 1   t2m{ß-X)

n

2
00

= f + ^èm(t5)i2^-'),        &,(*)< 0,
m=l

as desired.
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By the chain rule
oo

cp'x(t) = (ö-ß)ts-ß-xYjam(o)t2m^-^

m=0

oo

(7.6) + tö-ß(o - l)ts~2 £ am(S)2mPm-xKs-V

m=0

= t*-ß-xTem(o)t2^-x\     ¡e^ = °   ifâ = P>
¿0 mV ' Uo(¿)#0   ifa>ß,

and
oo

<p'2(t) = tß~2 Y,iß~ l)2mbm(S)t{2m-X){ß-x)

(7.7) r
= rlY,fmiS)t2m(ß-i\      fiia)¿0.

m=\

An argument similar to that giving (7.4) shows for y and a > 0,

oo

(7.8) (l + M2)-acos[)'tan-1M] = ^Ma,y)M2m,        -l<u<l,

m=0

where

(7.9) bQ(a,y)=l.

Thus by (6.4) and (7.1)

\fß(rx(t)e^)\ = expí-j^rv-') £ bm {tlL, ^ _ i) ,*»(*-

= exp(r^-1)£gmi2^-')},        *,<<);

I m=0 J

moreover, by the chain rule

Jt\fß^it)e^)\= ßf
\fP(r,it)e^))\ [P     l)t     ^8mt

m=0

oo

1)
oo

+ r('-'>(¿ - i)ts~2 £ 2msmi(2w-1)(<5-

m=0

oo

= rßJ2hm(S)t2m{S-x),       hoio)¿0.
m=0

Together with (7.2) and (6.4) this yields

(7.10) ^^j;/.^",      ;oW/o.
m=0

Similarly,

(7.11) ^^¿^(^/»-i),        M¿)_,0

W' m=0
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The formulas (7.6), (7.7), (7.10) and (7.11) yield the desired representation of

tp'iPilp'i ,i = l,2.   D

We continue with the proof of Theorem 7.2. Write

xk(t) = Repk(t)e'^ ,    yk(t) = lmp^e^'l

Then

(7.12)
x'k(t) _ C0S(Pkit) - f0jcp'k(t)sintpk(t)

vW) " sincpk(t) + ^cp'k(t)coscpk(t)

By Lemma 7.3, as t —> 0+ ,

cosc>i(0 = sin \ta-ß Y,am(ô)t2m(S-X)

-{

m=0

ax(o)t2(ß-X) + o(t2(ß~X))   ifo = ß,

a0(o)ts-ß + o(ts-ß) ifo>ß,

sinc>i(0 = - 1 +o(l),

if¿ = j3,

m l    \c0(o)tä-x+o(tä~x) if^ > >s,

o(/2^-'))   ifö = ß,

o(ts'ß)      if<5>ß,
oo

cos MO = -sin^M^2"^-1) = -hie)?«-» + o(i2^-"),
w=l

sinc?2(0 = ! +o(l),

^<p>2(t) = d0(o)t*ß-V + o(t*ß-\

Then as t —> 0+

*i(0
y'i(0

s = ß,

s>ß,

(7.13)

and

(7.14)

ai(¿)f2(/,-"+0(^-")-0(^-")(-l+o(l))

-l+o(l)+o(l)

ao(3)ts-ß+o(ti-ß)-o(ti-ß)(-\+o(l))
-l+o(l)+o(l)

-ax(o)t2(ß-V   ifo = ß,

-a0(o)tä-ß      if¿>^,

o-,     ö = ß,
0+,      5>ß,

x'2(t) = -bx(o)t2^ß-x) + o(t2^ß-x^)-do(o)t^ß-X) + o(t^ß^)

y'2(t)~ l+o(l) + o(l)

~-bx(o)nß-V
-0+.

These show that the tangents to w(t) in (7.3) for / ^ 0 turn continuously

to a vertical line as t —► 0. Thus dRg has a continuously turning tangent.
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Let 5(0 , t e (Sx ,ôx), denote arclength; to prove Dini continuity of t(.) as

a function of s it suffices to find a continuous nondecreasing function k such
that for O(t) = x(s(t)),

(7.15)

and

( ^du
Jo+   u

< 00

(7.16)      |e(f,) - e(/2)| < ic(|j(íi) - 5(í2)|) ,

By (7.13M7.14) and (7.3)

tan-'^-iO-tan-1^-^)-*i i

kan"1 4(h)- tan-1 4(f2)
ie(í,)-e(í2)l

tx&t2e[0,ôx),

OR

/, & t2 e i-Si, 0].

tx&t2e(-ox,0],

tx&t2e[0,âx).

Writing tan x a - tan x b = ¡a (1 + x2)  ' dx for a, b both positive or both
negative, we have

i 1 i 1
tan-1 --tan-1 -

u v
<\u-v\   foxu&v>0   OR   u&v<0.

Then to prove (7.16), it suffices to show

(7.17)
jr. x.

< *(J'Jm)2+y'i(u)2du) ,       0<tx<t2<ox.

For typographical clarity in the next few lines we drop the / subscript.   By
(7.12) for

p(u)
h(u) = sintp(u) + cp'(u) coscp(u),

we have

yW-fa
<{\[l+ f,{hW{h)XlPp{'{t2)\ SÍn(^(Í2) " f (íl))

cos(f(t2) - cp(tx))\\,n'tt\JzM2L    m'/t\j2iLxl \-\h(h)h(t2 1-1

By the formulas after (7.12), |A| is bounded below away from 0 for Sx small

and l + <p'(tx)tp'(t2)p(tx)p(t2)/p'(tx)p'(t2) is bounded. Therefore

(7.18) 7<'»>-£te><c Wih)-9iti)\ + m'tt ̂ ^M   m'tt \ÉLxl
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Now we examine each term separately. By Lemma 7.3

(7.19)

|fl(Í2)~fl(íl)| =

|«»2(f2)-?»2(*l)l =

<P'A(t2) - <p'Aih)
PX PX

,„/ P2,t x / P2(t v
9277ih) - 9277C2)

"2 "2

£ am(ô)[t
2m(8-\)+o-ß      t2m(S-l)+S-ß

-t:

OT=0

oo

£*«(<*)['

2m(ß-\)      ,2m(ß-\)
-t

m=\

oc

£Cw(¿)[/<2m+1)(<5-1)-/(12m+1)(á-1)]

w=0

oo

£¿mW
(2m+3)(/>-l)      ,(2m+3)(0-l

w=0

Choose r e (0, 1] so small that S - (2ß - 1) - r(ß - 1) > 0 if á > ß ;
otherwise let r = 1. Here is where we use the hypothesis 2ß - 1 < ô whenever

S > ß. This particular choice of r does not come into play until the end of

this section. Define

k(u) = (-In u)-{X+r),        0<«<i.

Then k(u) is increasing and satisfies (7.15). We need the following lemma to

examine the right side of (7.17).

Lemma 7.4. Assume a, p, n, b > 0. Then for some bo, c > 0 independent of

n>
sup(l - x-p)a(n - ln[l - e-b{x-V]) <nVcb
X>1

whenever b > ¿?o ■

Proof. Call the function to be maximized k(x).   If 2 > ^, the function

Xp+\e-b(x-\) is decreasing for x > 2. Hence for such b,

(7.20) sux}Xp+xe-b{x-x) = 2p+xe-b.
x>2

Consider the function

(7.21) kx(x)
l-x-o

1 < x < 2.
1 -e-b(x-\) '

Since limx_1+ kx(x) = f and kx(2) < (1 - e~b)-x,

1

sup kx(x) = -r V-t V sup{Mx0): 1 < x0 < 2, k[(x0) = 0}.
i<x<2 b     l-e~b

But if k[(xo) = 0 then

-b(x0-\) pxQ
-p-\

px-p-x + b(l-xçp)

and so

So we get

(7.22)

M*)-**"'"'+ *(1-V1<g^.

_l       il 1

SUP   k\(x) < —r— V-t.
\<x<2 b        l-e~b
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Using (7.20)-(7.22), for some b0 ,

(l-x-p)a+x
(7.23)

Since

3l-rHM)
xP+le-b(x-l) = c<00    ifb>b0.

lim k(x) = 0,        lim k(x) = n,
X-.1 + ' jc-»oo

we have

supfc(x) = n V sup{fc(xo): xo > 1 and k'(xo) = 0}.
x>l

If x0 > 1 and k'(x0) = 0 then

n - ln[l - *-*(*>-»] = ±xp+ie-b(x0-i)    '-V
'       l ap ° 1 -<?-*(*<>-1)

and so
n - Y~p\a+l h

k(x0) = V   n-xg+'g-^°-'>

c
< —o   provided b > bo,

ap

by (7.23). Thus

sup k(x) < nV cb,       b > bo as desired.   D
x>\

By (7.10)-(7.11), (7.2) and (6.4), for some y¡ > 0, if t is sufficiently small,

lri(i)|>cr'«p(-y,r<'-1>),
and since

^/x('(M)2+y;(M)2 = |/>;-(«)|Wi + ffgoo

> CM_^exp(-y/M"^-1))

it follows that
rh

I   \jx[(u)2 + y'^u)2 du >c      u

= c[e~v'

-Be-»»-{,-l) du

— r\¿>   r¡'2 — e   ri',.g-wr   ']

= ce y' 2      [1 - e M • 2      J].

Thus

(7.24)
/c (y"' ^W+y,'^)^

> (-lnc + y,/-^"1» - ln[l - e-^i      'S"  %-***.

For (7 > 0 (where RHS = Right-hand side), with 0 < tx < t2 ,

t9 -tql2       'l        _ tQ~   —   <-1

RHS(7.24)
1-

«x 1/(1+0

■lnc-f-7,72 (ß-i)

-ln[l-e-^-^',[('1/'2)^-"-H)

</|{[-lnc + y;i-(/,-1)]vc7i/2"(/f"1)}1+r   for t2 small,

1+r
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by Lemma 7.4 (setting a = 1/(1 + r), n = -Inc + yd^"^ , b = y¡t2{fl~x),

p = q/fß - 1), and x = (tx/t2)-^~x) > 1). Then for t2 small,

in in l2      l\        <- /—*«—(l+r)(^—1)
UM) RHS(7.24) -Lh

where q > 0 and C is independent of tx and t2.

Finally, we prove

(7"26) ^LHSa^)01 * C   f°r ° - tx < t2>  h SmalL

Similar arguments prove similar bounds for \cpx(t2)-cpx(tx)\ replaced by the left

hand parts in the 3 remaining equations in (7.19). Then together with (7.18)

we see that (7.17) holds with k replaced by Ck and we will be done. So on

to (7.26).

Lemma 7.5. If p > 1 then (1 - xp)/(l - x) < p for 0 < x < 1.   D

Corollary 7.6. If p > I then

|/§,-rH<p|i2|(p"l),|i!-r?|.   □

Choose q > 1 such that

(7.27) ff-(l + r)C^-l)>0.

Then choose M > 1 such that

(7.28) 2m(ß-l)-q>l    for m > M.

By Corollary 7.6, (7.19) and (7.25)

|Pi(*2)-Pi(*i)| < |g>i(f2)-Pi('i)|

LHS(7.24)      -     RHS(7.24)

\E^oaAS)[t22m{S-l)+S-ß-t2r^+0-ß]
<

+

RHS(7.24)

\"°° 1/7   (X\\f2m(o-l)+o-ß-g \2m(S-l)+S-ß] uq      /?,
2^m=M+l \am\0)\l2 [ g Jl^-'!!

RHS(7.24)

M

<c£|uw(á)|íf (S-l)+S-ß-(ß-W+r) +ctqf(ß-m+r)

m=0

(by (7.25))

where we have used (7.28) and (7.25) to bound the second summation. The

last term on the RHS is bounded for Í2 small by (7.27). If ô > ß then
2m(ô - 1) + (ô - ß) - (1 + r)(ß - 1) > S - (2ß - 1) - r(ß - 1) > Ó by
choice of r. When ô = ß then since üq = 0 we are only concerned with

m e {1,2,..., M} in the first summation and then 2m(ö — 1) + (S - ß) —

(1 + r)(ß - 1) > 0 by choice of r. In any event the first summation is also

bounded for t2 small. This gives (7.26) and we are done.   D
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