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3-MANIFOLDS WHICH ADMIT FINITE GROUP ACTIONS

SHICHENG WANG

Abstract. We prove several results which support the following conjectures:

(1) Any smooth action of a finite group on a geometric 3-manifold can be

conjugated to preserve the geometric structure. (2) Every irreducible closed

3-manifold M with infinite nx(M) is finitely covered by a Haken 3-manifold.

1. Introduction and preliminary

The following Conjectures 1 and 2 in 3-manifold theory are important.

Conjecture 1. Suppose M is a closed geometric 3-manifold in the sense of
Thurston. Then any smooth action of a finite group G can be conjugated to

preserve the geometric structure.

For Conjecture 1, after the work of Thurston, Meeks and Scott, and many

others, the remaining open cases are that M supports the geometry of S3 and

G acts freely or M supports the hyperbolic geometry and the fixed point set of

G, fix(G), is a finite set (see [T2], [MS] or [E]).
For hyperbolic 3-manifolds, the conjecture below is closely related to Con-

jecture 1.

Conjecture la. Suppose M is a closed hyperbolic 3-manifold and two smooth

group actions Go and Gi are realizations of a subgroup GcOut7Ti(M). Then

Gi and Go are conjugate.

Conjecture la is true if the dimensions of the fixed point sets of both Go

and Gi are at least 1 by Thurston and Mostow (see the arguments in §2), or
the first Betti number of M, ßx (M), is positive and G = Z2 by Tollefson.

Conjecture 2. Every irreducible rational homology 3-sphere M with \nx(M)\ =

oo is finitely covered by a Haken 3-manifold.

Conjecture 2 naturally divides into two parts.

Conjecture 2a. Every 3-manifold M with |?ri(Af)| ^ 1 has a nontrivial finite

cover.

Conjecture 2a holds for every closed 3-manifold which is homotopy equiv-

alent to a 3-manifold with Thurston's geometric decomposition or is not an

integer homology sphere.
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Conjecture 2b. Every irreducible rational homology 3-sphere M with |7Ti(Af)| =

oo and a nontrivial finite cover is finitely covered by a Haken 3-manifold.

On Conjecture 2, J. Hempel did some pioneering work. Many interesting

facts have been proved by him and others, but this conjecture is still mainly

open.
In this paper, several facts supporting the conjectures above are proved. (The

author realizes some connections between Theorem 3 below and a main result

of recently published work of J. Hempel (4.2 of [H3]).)

Theorem 1. Suppose M is a closed hyperbolic 3-manifold, and smooth group

actions Go and Gx are two realizations of a subgroup G c Out nx(M). Then

fix(Go) and fix(Gi) are homeomorphic.

Corollary of Theorem 1. Suppose M, G, Go and Gx are as in Theorem 1.

Then Go and Gx are conjugate if there is an i, i = 0 or i = 1, such that either

dimfix(G,) > 0, or G¡ is fixed point free and M/Gi is nonorientable.

Theorem 2. Suppose M is a closed hyperbolic 3-manifold. Then any smooth

action of a finite group G on M can be conjugated to preserve the hyperbolic

structure if either
(1) dimfix(G) > 0, or G is a free action and M/G is nonorientable; or

(2) M is nonorientable and G is cyclic; or

(3) ßx (M) is odd and G is cyclic; or

(4) M is nonorientable and ßx(M) is even for the orientable double cover M

of M.

Theorem 3. Suppose M is an irreducible rational homology 3-sphere with

|7Ti(Af)| = oo, and M admits an orientation reversing periodic map of order

2nq, where q is an odd number and n > 0. Then M is finitely covered by a

Haken 3-manifold (actually Z-presentable 3-manifold) if either
(1) n = 1 and M has a non trivial finite cover; or

(2) q > 1 and \HX(M, Z)\ is odd (in particular, if M is an integer homology

sphere); or
(3) M is not a cyclic branched cover of a homotopy 3-sphere branched over

a strongly amphicheiral hyperbolic link and M has a nontrivial finite cover.

The next corollary gives a minor support of Thurston's geometrization con-

jecture.

Corollary of Theorem 3. Suppose an irreducible closed orientable 3-manifold

M admits an orientation reversing periodic map h of order 2k. Then M is

homotopic to a 3-manifold with geometric decomposition in the sense of Thurston

if either k > 1 or M has a non trivial finite cover.

Question. Suppose AT is a cyclic branched cover of S3 branched over a strongly

amphicheiral hyperbolic link. Is M virtually Haken?
If the answer is positive, with (3) of Theorem 3, 3.3 of [Tl] and 5.7.4 of

[T2], an interesting corollary will be

Proposition. Suppose the Poincaré Conjecture is true. Let M be a hyperbolic

3-manifold which admits an orientation reversing homeomorphism. Then M is

virtually Haken.
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All terminologies about 3-manifold theory not defined in this section are

standard and can be found in [BM, HI, R, S, Tl, and T2]. For index of fixed
point as well as covering space theory, see Appendices D and B of [Ki].

All manifolds and all group actions on manifolds are smooth. Suppose a

finite group G acts on a manifold M. Then for any g e G, fix(g) = {x e

M\g(x) = x} ; and fix(G) = (xe M\g(x) = x for some g e G, g ¿ id}. For
any polyhedron A, the dimension of A is denoted by dim A. When we say

dimfix(G) = 0, we mean that fix(G) is a nonempty finite set. We say G is

fixed point free or is a free action, if fix(g) = 0, g e G, g ^ id. For any set

B, \B\ is the cardinality of B.
A 3-manifold M is virtually Haken, if M is finitely covered by a Haken

3-manifold. A 3-manifold M is Z-presentable, if the first Betti number of

M, ßx(M), is positive. A 3-manifold M is virtually Z-presentable, if M is

finitely covered by a Z-presentable 3-manifold. A 3-manifold M is a rational

homology sphere, if H*(M, Q) = H,(S3, Q). Here Q is the field of rational
numbers and Z is the ring of integers.

The term hyperbolic 3-manifold (structure) always means complete hyper-

bolic 3-manifold (structure) of finite volume. A closed 3-manifold M is geo-

metric, if M supports one of the eight geometries described in [Tl] or [S]. A
closed irreducible 3-manifold M has a geometric decomposition, if M is geo-

metric or Haken. A link L is strongly amphicheiral, if L is invariant under

an orientation reversing involution on M.

Let B3 be the unit ball in R3. Then the Poincaré model of hyperbolic 3-space

H3 can be identified with intF3, the interior of F3. dB3 will be denoted by
S2^ . Iso H3, the full isometry group of H3, can be naturally identified with

GM(S20), the general Möbius group or the full conformai group on two-sphere.

For a hyperbolic 3-manifold M, out7ti(Af) is finite (see 5.7.4 of [T2]).
In proving Theorems 1 and 2, when we say a hyperbolic 3-manifold M, we

mean that the 3-manifold M admits a hyperbolic structure, but no hyperbolic
metric is specified; when we say a hyperbolic 3-manifold Mp, we mean the
3-manifold M with the given hyperbolic metric p.

For any x, y e M, p(x, y) denotes the distance between x, y under the
given metric p. Let M be a closed hyperbolic 3-manifold, two hyperbolic

metrics p and pi are equivalent if there exists a homeomorphism h: M —> M
suchthat pi(x, y) = p(h(x), h(y)). Wedenote px as h* p. For a covering map

p: M —» Mp , we have the pullback metric p*p on M. The deck transformation

group acts on Mp-P as a group of isometries.
The following two results will be repeatedly used in this paper.

Theorem A ([T3] or [MS]). Suppose that M is a closed irreducible 3-manifold

and a finite group G acts on M smoothly with dimfix(G) >0. Then M has

a geometric decomposition. Furthermore, if M admits a hyperbolic metric p,

then G can be conjugated to be a group of isometries on Mp .

Theorem B. Suppose M is a closed hyperbolic 3-manifold with positive first Betti

number. If f, g are two involutions on M such that the induced automorphisms

fi, g* on nx(M) are in the same outer-automorphism class, then f and g are
conjugate.

Theorem B is a generalization of a special case of Theorem 7.1 of [To] which
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is only stated for the orientable case. We make a comment below for the verifi-

cation of Theorem B on the nonorientable case. The proof of 7.1 in [To] need
only to use 3.7, 4.2 and 6.1 of [To] where the condition "orientable" is posed

for each of them. Since 3.3, 3.4, and 3.6 of [To] are actually proved for nonori-

entable case, so is 3.7. Since 4.1 is also true for nonorientable case (which is

implicitly contained in Chapters 10 and 13 of [HI]), so is 4.2. Since #(F) < 0
is the only possible case in the verification of Theorem B, 6.1 is also true for
nonorientable case by the uniqueness of the Nielsen Realization Theorem (see

p. 342 of [E]). Finally, since the fundamental groups of hyperbolic 3-manifolds

are center free, and since we need only to consider the case both dim fix(/ ) and

dimfix(g) are zero by the Corollary of Theorem 1, many long and complicated

arguments in the proof of 7.1 in [To] can be ignored in the verification.

2. The proof of Theorem 1

Lemma 1. Let G be a finite group acting on a hyperbolic 3-manifold Mp . Then

the following two statements are equivalent:

(1) G can be conjugated to be a group ofi isometries on Mp .

(2) There exists a hyperbolic metric px  on M under which G becomes a

group of isometries.

Proof. (2) => (1) By the Mostow Rigidity Theorem (5.7.2 of [T2]), id: nx(Mp)
-* nx(MPZ) can be realized by the unique isometry h: Mp —> MPi. Then for

any g e G, we have

p(x, y) = px(h(x), h(y)) = px(gh(x), gh(y)) = p(h'xgh(x), h~xgh(y))

i.e. h~x g h is an isometry of Mp .

(1) => (2) is a direct verification from the definition.   □

Lemma 2. A closed p2-irreducible nonorientable 3-manifold M supports a hy-
perbolic structure if and only if nx(M) contains no Z®Z subgroup.

Proof. Since the first Betti number of any nonorientable closed 3-manifold is

positive, any F2-irreducible nonorientable closed 3-manifold is sufficiently large

(6.7 of [HI]). Hence the orientable double cover M of M is Haken. If nx(M)

contains no Z@Z subgroup, then nx(M) contains no Z®Z subgroup. So

M supports a hyperbolic structure by 2.5 of [Tl]. The fact M is covered by

hyperbolic 3-manifold implies that M is homotopy equivalent to a hyperbolic

3-manifold by 6.7.3 of [T2]. Finally since M is /?2-irreducible and sufficiently
large, M itself is hyperbolic by 13.6 of [HI] and its proof.

The "only if statement is well known.   D

Lemma 3. Let M be a closed hyperbolic 3-manifold. Suppose a smooth action

of a finite group G on M is fixed point free. If the quotient manifold M/G is
nonorientable, then there is a hyperbolic metric on M such that the action of G

becomes a group of isometries under this metric.

Proof. We have the covering map p: M -> M/G. Since any hyperbolic 3-

manifold is p2-irreducible, by the strong version of the equivariant sphere the-

orem [MSY], M/G contains no fake ball. So M/G is p2-irreducible. Since

nx(M) is a finite index subgroup of nx(M/G), from algebra, nx(M) contains

no Z © Z subgroup implies that nx(M/G) contains no Z@Z subgroup. By
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Lemma 2, we know that the quotient manifold M/G has a hyperbolic met-

ric p. Lifting this metric to M, we get a hyperbolic 3-manifold Mp*p . The
action of G, as the action of deck transformation group, becomes a group of
isometries on Mp.p .   D

Proof ofiTheorem 1. Suppose Mp is a closed hyperbolic 3-manifold and g: Mp

-» Mp is a homeomorphism. Then any lift g: H3 —> H3 of g has a unique

continuous extension g°° on B3 = S2^ 1>H3 (see 5.9 of [T2]). Moreover, since

g has an inverse, g°° is also a homeomorphism. If g is an isometry, then

gelsoH3 and ár00!^ is conformai.

Suppose G, Go and Gi are as in Theorem 1. Let G, be the group of all lifts

on H3 of all elements in G, and G°° be the extension of G; on B3 = S^uH3,

i =1,2.
Let the homomorphism y¡: G, -» G-"3 —> G?0!^ be the extension followed

by the restriction.

Claim.  y¡: G, -> G?°|s2 is an isomorphism, i = 0, 1.

Froo/. We prove the claim for Gi. If we choose Go to be a subgroup of

Iso Mp, by Mostow Rigidity Theorem, then Go is a subgroup of Iso H3 and

the restriction of Gg0^ is a subgroup of GM(S2<>). Also yo'-Go -» G0I52

is an isomorphism. Since M is aspherical, for any g e G, if go e Go and
gi e Gx are the corresponding elements, then g0 and gï are homotopic. So
there is H: M x / -» M such that //(*, 0) = g0 and //(*, 1) = gx . Let

H:H3xI^H3 be a lift of // with H(*, 0) = go and FT(*, 1) = gx . Then

{xH, x e nx(M x I)} axe the lifts of H and we have an 1-1 correspondence

(I) $ = ## : {all lifts of g0} -> {all lifts of # }

which is given by xg0 ^ tg\, x e nx(M x I) = nx(M).

If H' is another homotopy from go to gx, let //" be a cyclic homotopy

which begins and ends at go defined by H"(*, t) = H(*, 2t) for 0 < 2i < 1
and H"(*, t) = H'(*, 2 - 2t) for 1 < 2t < 2. For any x e M, it is easy
to see that the trace H"(x, t), 0 < t < 1, is a loop lying in the center of

nx(M, go(x)). Since nx(M) is center-free, H"(x, t), 0 < t < 1, is trivial. By

covering space theory, any lift of the loop H"(x, t), 0 < t < 1 on H3 is also

a loop. Then one can verify by definition that the homotopy H' gives rise to

the same correspondence <I> in (I), so <P in (I) is independent the choice of the

homotopy from g0 to gx and yields an 1-1 correspondence

(II) <D: Go - G,.

Obviously the corresponding lifts t£o and xgx have a bounded distance

given by H, i.e., dist(r£o(-*). tgi(x)) < A for a constant A and all x e H3.

So the extensions t£q° and xg™ coincide on S2^ (see 2.1 of [T2]). Hence the

actions of Gg0 and Gf coincide on S2^ .

Suppose O(go) = gx and <D(Jq) = g[ respectively, here gi and g¡ axe the

lifts of gi and g¡. By the definition of <P, there is a homotopy H from g0 to

gx which covers a homotopy H from go to gx ; and a homotopy H' from go

to g[ which covers a homotopy H' from g0 to g[. Let H" be a homotopy
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from gçgo to g[gx which covers a homotopy from g0g0 to g[gx defined by

//"(*, t) = gó(*)H(*, 2t) for 0 < 2t < 1 and //"(*, t) = //'(*, 2 - 2t)gx(*)
for 1 < 2t < 2. By definition, <P(g¿g0) — g[g\ ■ So <P is a homomorphism,
and therefore is an isomorphism. So

yx:Gx$Go^Go™\S2„=G?\SL

is also an isomorphism.   D

Now it is time to prove Theorem 1. By definition,

fix(G,)=   (J   fix(g,).
gi€G,

Since both Gq° and Gf coincide on S2^, and both y0 and yx axe iso-

morphisms, for any finite order element go e Go, there is a gx e Gx such

that

(III) tcTIsi, = g^lsic » and the order of gx = the order of go.

Let h be a periodic map on B3. By the classic Smith theory and the fact that

an /'-homology ball (sphere) is an /-ball (sphere) for / = 0, 1, 2, we see that h
is either a rotation about a proper arc (in this case fix(h\dBi) is two points), or

a reflection about a proper disc (in this case fix(/z|öß3) is a topological circle),

or h is fixed point free on dB3.
Without loss of generality, we may assume that dim fix (Go) > dimfix(Gi).

If dimfix(Go) > 0, we may assume that Go has been conjugated to be a

group of isometry on Mp by Theorem A.

Case 1. dimfix(Go) = 2. In this case, there must be a go e Go C lsoMp such

that fix(go) has a geodesic surface component. Then there is a lift go e Iso//3
of go which is a reflection about a geodesic plane in H3 ; therefore go° is a

reflection about a proper disc on B3. By (III), there is a periodic map gx e Gx
suchthat gi°\s2 = go°\s2 ; therefore fix(g[>0|52 ) has a circle component which

forces g[°° to be a reflection about a proper disc. Hence dim fix (gx) = 2. It

follows that dimfix(Gi) = 2.

Case 2. dim fix (Go) = 1. Now there must be a go e Go c lsoMp such that

fix(go) has a geodesic circle component. Then there is a lift go e Iso//3 of

go which is a rotation about a geodesic axis in H3 ; therefore gó°° is a rotation

about a proper arc on B3. Similarly by (III) there is a periodic map gi e Gx
such that fix(g1°°|S2 ) has two points which forces g,°° to be a rotation about a

proper arc. It follows that dimfix(Gi) = 1.
From Cases 1 and 2, we see that if dimfix(Go) > 0, then dimfix(Gi) > 0.

By Theorem A, G, conjugates to a G'¡ c Iso Mp. By the uniqueness part of

Mostow Rigidity Theorem, we have G0 = G\. Hence fix(Go) and fix(Gi) are

homeomorphic.

Case 3. dim fix(Go) = 0. We may assume that Go is a group of isometry under

some metric (not hyperbolic in general) on M. Suppose fix(go) ̂  0. Then for

any x e fix(go), there is a go-invariant ball B(x) centered at x on which g0

is orientation reversing,  go must be order 2, otherwise dimfix(go) > 0. It is
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not difficult to see the local index of go on fixed point x is 1. So the Lefschetz

number L(g0) = #fix(g0). For gi e Gx which is homotopic to go, we have

L(g0) = L(gi); therefore #fix(g0) = #fix(gi). Furthermore, if g,, g¡ e G,,
gi ¿ g¡ and fix(g,) ^ 0 ^ fix(g,'), then fix(g,) n fix(g,') = 0 . (Otherwise, pick

x e fix(g,) nfix(g-), there is a g¡- and g;'-invariant ball B(x) centered at x on

which both gi and g\ are orientation reversing. As an orientation preserving

periodic map on B(x), g¡g¡ has fixed point set of dimension at least 1. By
our assumption on Case 3, we must have g¡g¡ = id. Since both g, and g\ are

order 2, we have g, = g\.)

Recall that L(id) = x(M) = 0 for id e G. We have

#fix(G0)=   £   #fix(go)= £ L(g0)

go&Go, go€G0
go^id

= £ L(gx)=   £  #fix(g,) = #fix(G,)

g,€Gt gi€G,,
gtfrà

which implies fix(Go) is homeomorphic to fix(Gi).

Case 4.  fix(Go) = 0 . Then fix(Gi) = 0 . This is a trivial case.   D

Proof of the Corollary of Theorem 1. The case of dimfix(G,) > 0 for / = 1 or

i = 2 has been verified in the proof of Theorem 1.

Suppose G i is fixed point free and M/G is nonorientable for i = 0 or

i = I, then G i is fixed point free and M/G is nonorientable for both i = 0

and i = I by Theorem 1. By Lemma 3, there is a hyperbolic metric p¡ on M

such that G, is a group of isometry on MPi. By Lemma 1, Gi conjugates to a

subgroup G\ c Iso MPo. By the uniqueness part of Mostow Rigidity Theorem,

as subgroups, Go = G\.   D

3. The proof of Theorem 2

Lemma 4. Suppose Mp is a hyperbolic 3-manifold with positive first Betti num-

ber, and f is an involution on M, then f conjugates to an isometry of Mp .

Proof. By the Mostow Rigidity Theorem, fi : nx(Mp) —> nx(Mp) can be realized

by the unique isometry g : Mp —> Mp. Then / and g are involutions such

that the induced automorphisms /*, g* on nx(M) axe in the same outer-

automorphism class of nx (M). By Theorem B, / and g are conjugate.   D

Proof of Theorem 2. By Lemma 1, to prove Theorem 2, we need only to prove

that there is a hyperbolic metric p on M such that G become a group of

isometries on Mp.

Proof of (I). If dimfix(G) > 0, then Theorem 2 follows from Theorem A. If
G is fixed point free and M/G is nonorientable, then Theorem 2 follows from

Lemma 3.

Proof of (2). Suppose M is a closed nonorientable hyperbolic 3-manifold and

G = Zn = (h\hn = id).

By (1), we may assume that dimfix(G) = 0.

Let q be the smallest positive integer such that fix(/z9) ̂  0. Then h2" is
an orientation preserving periodic map and therefore dimñ\(hlQ) > 1 . By our
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assumption, we must have h2q = id and then 2q = n . Let q = 2kl, here / is

an odd number. Then n = 2k+xl. There are two subcases.

Subcase (1). k = 0, then G = Z2¡, / > 1 is an odd number. We may assume

h2 acts freely on M. (Otherwise as above we get dim fix(G) = 1.) So we get

a nonorientable hyperbolic 3-manifold

(h2\(h2)'= id)

and h induces an involution h on M. By Lemmas 3 and 4, there is a hyper-

bolic metric p under which h becomes an isometry. Put the metric p*p on

M, where p is the covering map from M to M, then h becomes an isometry

on M. Hence the action of G become a group of isometries.

Subcase (2). k > 0, let M be the orientable double cover of M and (n\n2 =

id) be the deck transformation group, where n is an orientation reversing in-

volution.
Since every homeomorphism sends orientation preserving loops to orienta-

tion preserving loops, the action of group G can be lifted to an action of a

group G with | G | = 2k+2l. Let h be an orientation reversing lift of h , then

h2 + l is a lift of the identity in G. Since h2 + ! is orientation preserving, it

must be the identity of G.

Let Gi = (h\h2 +<l = id). If h' is not fixed point free for some i < 2k+xl,

then h' is not fixed point free. This implies that i = q = 2kl. Since k > 0,

h2 l is orientation preserving, it must have the fixed point set of dimension 1.

It is impossible by our assumption. So Gi acts freely on M. Now we get a

nonorientable hyperbolic 3-manifold Mx = M/Gx and n induces an involution

rj on Aii. By Lemmas 3 and 4, there is a hyperbolic metric p on M such that
If becomes an isometry.

Put the metric p*p on M, where p is the covering map from M to Mx.

Gx and n becomes isometries on Mp*p . Hence the action G become a group

of isometry on Mp*p . Since the generator of deck transformation group (n\n2 =

id) is an isometry, the metric p*p on M induces a hyperbolic metric p on

M under which the action of G is a group of isometries.

Proof of (3). Suppose M is a closed orientable hyperbolic 3-manifold with odd

first Betti number. By (1), we may assume that dimfix(G) < 0.

If the action of G is free, then the quotient manifold M/G is p2-irreducible

and sufficiently large by [MSY and Ha]. Moreover nx (M/G) contains no Z©Z

subgroup; therefore it admits a hyperbolic metric p by Lemma 2. Then G

becomes a group of isometries on Mp.p .

If the action of G is not free, then the generator h is orientation reversing.

Let q be the minimum positive integer such that dimf\x(hq) = 0. By the proof

of (2), we have q is odd and n = 2q .
Let Gx = Zg = (h2\(h2)q = id). Then Gi acts freely on M. So we get

M = M/Gx.

Claim. The first Betti number of M is positive.
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Proof. From linear algebra, the oddness of the first Betti number of M im-

plies that any periodic automorphism on H2(M, Z) has a nonzero primitive

invariant homology class a up to ± . Then we have a Ä2-equivariant two-sided

incompressible surface F representing a by [Ha]. Now F is nonseparating.

After assigning + and - to the two sides of F, by the fact that F and h2'(F)

(with suitable orientations) are in the same homology class, there is a natural

way to assign + or - to the two sides of h2,(F) for each j'. The fact that q

is odd implies that h always sends the positive sides to the positive sides. So

the image p(F) is still two-sided in M, here p is the covering map from M

to M. The same argument shows that p(F) is nonseparating in M. Hence

the first Betti number of M is positive.

Now (3) follows by the arguments used in the previous cases.

Proof of (4). Suppose M is nonorientable and the first Betti number of the

orientable double cover M of M is even. By Theorem A and Lemma 3, we

need only to consider the case dim fix(G) = 0. As we see before, if dim fix(G) =

0, there must be an involution with isolated fixed points only. This case is ruled

out by the following Lemma 5.

Lemma 5. Suppose M is a nonorientable closed 3-manifold, and g is an invch

lution on M with isolated fixed points only, then the orientable double cover M

of M has odd first Betti number.

Proof. Since the Euler number of any closed 3-manifold is zero, #fix(g) is

equal to the absolute value of the Euler number of M-fix(g). Since Af-fix(g)

doubly covers {M - fix(g)}/(g), #fix(g) is even, denoted by 2k.

Let g and gi be the lifts of g on M. Then we should have that #fix(g)+
#fix(gi) = 4k (see 2.1 of [Ki]). Since the generator of deck transformation

group is orientation reversing, one of those two lifts of g, say gi, is orientation

preserving. Hence gi acts freely on M and #fix(g) = 4k . The local index of

an isolated fixed point of an orientation reversing involution is 1. So we get

the Lefschetz number L(g) = 4k .

Let gZi be the induced homomorphism on H¡ and g* be the induced ho-

momorphism on //'. Let Ax be the matrix of gTi under some basis B of Hx

and A2 be the matrix of g2 under the Poincaré dual basis B* of B ; A2 be

the matrix of gZ2 under the algebraic dual basis of B*.

Let a be a fundamental class of H^(M, Z) and b e H2(M, Z). By Propo-
sition 24.24 of [G], we have g»i[(a n g2(b)] = g»3(a) n b .

From g», = id and g*3(a) = -a, we have -a n g2(b) = g*x(a n b) which

implies that under the Poincaré dual basis, A\ = -Ax . On the algebraic dual

basis, we have A2 = A\, here A'2 is the transpose of A2. Hence we get A'2 =
-Ay.

Set trace Ax = /, then trace A2 = trace A2 = -/.

Now we have

4k = L(g) = 1 - trace^i + traced - (-1)

= 1 -traced -traced -(-1) = 2 - 2/= 2(1 -/).

So / - 1 should be even, therefore / should be odd. Eigenvalues of Ax axe

1 or -1 because A2 = id. This is possible only if the first Betti number of M
is odd.   D
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4. The proof of Theorem 3

Lemma 6. Suppose p: M —> M is a cyclic branched cover branched over a link

L in M. If M is virtually Z-presentable, then M is virtually Z-presentable.

Proof. Suppose there is a finite cover p': M' —> M such that ßx(M') > 0. By

passing to a finite cover, we may assume that p' is a regular cover. Let N(L)

be the regular neighborhood of L. Then we have the commutative diagram of

regular covering maps

Mx —P-L^ M-p~x(intN(L))

M' -p'-x(intN(L)) —?—+      M -int N(L)

where Mx is the regular covering space of M - int N(L) corresponding to the

subgroup pt(M-p-x(intN(L)))np't(M'-p'-x(intN(L))).
For any torus component Fi of dMx, p[(Tx) is a boundary torus F of a

component S of p~x(N(L)); px(Tx) is a boundary torus V of a component S"

of p'-x(N(L)). We have p^S') = p(S) = S for some component S of N(L).

Let m be the meridian of S. Then qm can be lifted as the meridian ofjS for

some q and m can be lifted as the meridian of 5" (since p' : M' —► M is a
covering), therefore qm can be lifted as a simple closed curve mx on Tx by the

covering space theory and the definition of Mx . Note that p\|: mx —> p\(mx) is
a covering map of degree 1 and px\: mx ^> px(mx) is a covering map of degree

Now attaching solid torus SxxD2 to Mx by identifying (dSxxD2, xxdD2)

with (Fi, mi), then we can extend maps px and p[ from Mx to MxuSx xD2

so that p\\: Sx x D2 —► S is a covering and px\: Sx x D2 -+ S' is a branched

covering with branching index q. Do the same thing for all components of

dMx , and denote M = MXU (\J{SX x D2}'s), we get a commutative diagram

M —^—> M

Plï ÏP

M' —^—» M

where p\ : M —» M is a covering and px: M —> M' is a branched covering.

Since the degree of px is not 0, it is well known that p'u(nx(Mx)) is a finite

index subgroup of nx (M1), then it follows that p'x#(Hx (Mx, Z)) is a finite index

subgroup of HX(M',Z). Hence ßx(Mx) > ßx(M') > 0.   D

Proof of Theorem 3. Let h be the orientation reversing periodic map of order
2nq.

Proof of (1). If n = 1  and M has a nontrivial finite cover.  Since hq  is an

orientation reversing involution on M, (1) follows from [W2].

From now on, we assume n > 1.
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If the fixed point set of an orientation reversing periodic map is empty or is

dimension 2, then it is not difficult to see that M virtually is Z-presentable

(see [H2]). So we assume that h has isolated fixed points only. Then it is easy

to see that the fixed point set of h2m is dimension 1 for any 0 < 2m < 2nq.

By Lemma 6, to prove that M is virtually Z-presentable, we need only to

prove that M/(h2') is virtually Z-presentable for some i.

We have a branched covering p: M -» M/(h2q) —► M = M ¡(h2).

Now h induces the orientation reversing periodic maps h' and h on M/(h2q)

and M with isolated fixed points only respectively.

Claim 1. (a) If |^i(Â7)| is finite, then \nx(M)\ = 1.
(b) If \nx(M/(h2q))\ is finite, then \nx(M/(h2q))\ = 1.

Proof. For (a). Suppose |7Ti(A/)| = / for some integer /. Now h is an orienta-

tion reversing involution on M with isolated fixed point only. The fundamental

group of nonorientable 3-manifold (M-ñx(h))/(h) is of order 21. By Epstein's
Theorem (9.5 of [H]), 1=1.

For (b). Since h'q is an orientation reversing involution on M/(h2q) with

isolated fixed point only, the proof of (b) is the same as that of (a).

Proof of (2). Since q > 1, so h'2 has dimension 1 fixed point set. By Theorem

A, M/(h2q) admits a geometric decomposition. In particular, nx(M/(h2q)) is

residually finite by Theorem 3.3 of [Tl]; therefore M has a nontrivial finite

cover. If \nx(M/(h2q))\ = oo, by the fact that h'q is an orientation reversing

involution on M/(h2q) and [W2], M/(h2q) is virtually Z-presentable.

Otherwise \nx(M/(h2q))\ = 1 by Claim 1. Since M/(h2q) has geomet-
ric decomposition, M/(h2q) must be S3. Then the cyclic branched covering

M/(h2g) —► M is the cyclic branched covering from S3 to S3 branched over

an unknotted circle C in downstair S3 by the positive answer of the Smith

Conjecture (see [BM]).

Since fix(/z) ̂  0, we can pick a circle component C of fix(/z2). Then C is

a component of upstair branch set with branching index 2n~xq .

Claim 2.  ñx((h)) = C.

If there is another component Ci lying hx((h)), then Ci belongs to ñx(h2" '").

So the involution h2" q contains at least two circles. The \HX(M, Z)\ is odd

implies that M is a mod 2 homology 3-sphere. By the classical Smith theory

(5.1 of [B]), the one dimensional closed manifold fix(h2"~ q) is a module 2

homology sphere. It is a contradiction.

So M is a cyclic branched cover M/(h2) = S3 branched over an unknotted

circle C. It follows that M itself is S3. It is a contradiction.

Proof of (3). If |7Ti(A/)| = oo, since we assume that M has a finite cover and

h is an involution with isolated fixed point only, M is virtually Z-presentable

by [W2].
So we assume that M is a homotopy 3-sphere by Claim 1. First the branch

set of p in down-stair is a /z-strongly amphicheiral link in M.

Since n > 1, M has a geometric decomposition. If M contains two-sided

incompressible torus, then M is virtually Z-presentable by [K or L]. Otherwise

M is a Seifert manifold or a hyperbolic 3-manifold. If M is a Seifert 3-

manifold, then nx(M) = oo implies that M is finitely covered by a circle
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bundle over Fg with g > 0 (see p. 438 of [S]); therefore M is virtually Z-

presentable. If M is hyperbolic, by Corollary 2.1 on p. 142 of [BM], the branch
set is a hyperbolic link.   D

Proof of the Corollary of Theorem 3. We only sketch the proof, the details can

be found in the proof of Theorem 3.

If hx(h) is empty or dimfix(A) = 2, then M itself is Z-presentable; there-

fore M is Haken. So we may assume that nx(h) is a nonempty finite set. If

k > 1, then dimnx(h2) = 1, so M itself has a geometric decomposition. If

k = 1, then \nx(M)\ = 1 or \nx(M)\ = oo. If \nx(M)\ = 1, then M = S3 ; if
| A i (Ai) | = oo, then M has a nontrivial finite cover implies that M is finitely

covered by Haken manifold Af. If M is a 3-manifold with a nontrivial torus

decomposition, or is a Seifert manifold, so is M by Theorems 8.6 and 2.1

of [MS]. If Af is hyperbolic, then Af is homotopy equivalent to a hyperbolic

3-manifold by 6.7.3 of [T2].   D
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