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A-SETS

R. W. KNIGHT

Abstract. A model of ZFC is constructed in which there exists a subset of the

Moore plane that is countably paracompact but not normal. The method used

in the construction is forcing using uncountable sets of finite partial functions.

wx and &>2 are shown to be preserved using a fusion lemma.

1. Introduction

A topological space is said to be a A-set if and only if whenever {D„ : n e co}

is a decreasing sequence of subsets of the space with empty intersection, there

exists a decreasing sequence {E„ : n e co} of open subsets of the space, also

with empty intersection, such that for every n, D„ ç E„ . A Gg -subset of a

space is an intersection of countably many open sets. An uncountable subset X

of E is a Q-set if and only if every subset of X is a Gg -subset of X.

The definition of a A-set is due to G. M. Reed and E. K. van Douwen; see
[R]. G. M. Reed proved that the tangent-disc space over a subset X of the

reals is countably paracompact if and only if X is a A-set. T. C. Przymusiñski

showed in [P] that there exists a separable countably paracompact Moore space

that is not normal if and only if there exists a A-subset of R. A slightly different
question concerns the properties of Pixley-Roy hyperSpaces. It is shown in [Lu]

that the Pixley-Roy hyperspace of a subset X of, for example, the reals is
countably paracompact if and only if every finite power of X is a A-set; the

relationship between such sets and the Pixley-Roy hyperspace is also mentioned

in [T].
A natural question is whether there is a tangent-disc space that is countably

paracompact and not normal, or equivalently, whether there is a subset of the
line that is a A-set but not a Q-set. (This question is asked in several of the

papers just mentioned; for a survey of questions relating to Q-sets and other

similar subsets of the real line, see [F].)

It was proved in [P] that no second countable A-set can have cardinality c.

Hence, under MA, every subset of the line that is a A-set is also a Q-set.

So, since neither V=L nor MA will separate real A-sets from Q-sets, the next

obvious approach is to try to distinguish them by forcing.
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It is easy enough to force to directly turn a subset X of R into a A-set, using

finite partial functions. All one has to do is to iterate c.c.c. forcing using finite

supports, and for every function / in any intermediate model from X to co,

to construct a function g from X to co such that for all x, g(x) > f(x),

and such that, for each n, {x: g(x) > n} is open; a decreasing sequence

(Dn : n e œ) of subsets of a set X with empty intersection corresponds with

the function fi(x) = min{n : x £ D„} .

One specific way of doing this is to iterate using partial orders K/, for fie

0)1 co, elements of Ky- being pairs (q, r) such that:

(1) qeFn(X,co);
(2) if x e dom(<?), then q(x) > f(x) ;
(3) r e Fn(co x œ, ZF¡) (Z¡8 being a countable base of open intervals for

the reals);
(4) for all m > q(x), for all i e co, x ^ r(m, i) ;

then if G is Ky-generic, the g mentioned above will be the generic func-

tion \J,q r)£Ga ' anQl if Rf is me 8eneric function \J, r)eG r, it will be the

case, because the set D(x, n) = {(q, r): x e dom(<?) and either q(x) < n or

(3z')(x e r(n, /'))} is dense, that

{x : g(x) > n} = [J (J Rf(m,i)
i£wm>n

and this set will thus be open.
However this seems not to be sufficient to prevent X from also being a

Q-set. The reason for this seems to be that one needs an infinite amount of

information to describe a (7,5-set, so that one cannot exert sufficient control on

the G<5-subsets of X using finite partial functions. Countably closed forcing is,

of course, completely useless for our purpose.
The development of the forcing poset relied on ideas borrowed from Laver

forcing (see [L and J, p. 19]) and from the poset used in [FM] to create a Q-

set concentrated around a countable set. The author would like to take the

opportunity to thank G. M. Reed, under whose supervision much of this work

was done, and A. Dow, W. G. Fleissner, A. J. Ostaszewski, W. S. Watson and the

members of the Toronto Set-Theoretic Topology group for useful conversations

and comments.

2. Prefatory remarks

The method used is based on the method which the author used in [K] to show

it consistent that there existed a A-set that was not a Q-set. That method arose

from conversations that the author had with A. Dow and W. G. Fleissner at

the 1989 Spring Topology Conference, and consisted of forcing with countable

trees of finite partial functions.

The version in this paper uses refinements made in this other method by

W. S. Watson and the author in an attempt to solve a different problem, which

remains unsolved at the time of writing.

The most important part of the method used is the notion of description,
described in §7. To say that an element of the forcing partial order describes

a function is essentially to say that it imposes rigorous limits on its behaviour,

limiting its value at each element of its domain to a countable ground model
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set. In essence, a descriptor, or desribing condition, "knows about" the function

it describes.

3. The finite partial functions

We assume ZFC+GCH in the ground model.
Let 3S be a countable basis for the reals, consisting of all open intervals

with rational endpoints. We abuse notation by pretending that Z38 and all its

elements are absolute; we could imagine the elements of S as being coded

by pairs of rationals. Let (vn : n e co) be a sequence of natural numbers
mentioning each natural number infinitely often.

We define Q to be the set of all x = (px, qx, rx) for which there exist

F e [cox]<w, and Ge [co2]<0) such that

(1) px.F^3B,
(2) rx:G^ <tí>3§ , (though we will write rx(y, i) for rx(y)(i)),

(3) qx e Fn(dom(/jx) x dom(rx), co),

(4) qx(a,y)<vk^px(a)nrxiy,k) = 0.

We order Q so that x < y if and only if qx D qy, (Vy € dom(ry))(y e

dom(rx) A ryiy) ç rxiy)), and (Va € dom(py))(a € dornig) A px(à) ç py(a)).

co2 enumerates sequences (D„ : n e co) of subsets of some set, the p(a)

axe approximations to the elements of that set, and the r(y)(i) go to make up

open sets Un containing the D„ ; the q(a, y) ensure that these Un have empty

intersection.

4. The partial order

If S is a subset of Q, and 5 is an element of S, then we define S \ s to

be {teS:t<s}.
We define the partial order P to be the set of all pairs (G, T) for which

there exists ^((G, T)) suchthat

(PI) Ge[co2]«°>,
(P2) re[QP,
(P3) For all t in T, dom(r7) ç G,

(P4) Every finite compatible subset of T has a lower bound in T.

(P5) If x < s and s e T, then for each y e dom(rs) there exists y e T

below 5 such that py = px and ry(y) = rx(y) ; in addition, (px, qs, rs) e T.

(P6) i?((C7, r» is a club subset of {a x C : a e cox,  Ce [G]<tü'} .

(P7) If x e T and A x C e W((G, T)), then x \ (A x C), which we define

to be equal to (px \ A, qx \ (A x C), rx \ C), is also in T.

(P8)If xe T,weT, AxC e?((ff, T)), w <x \ (AxC), dom(pw) ç A
and dom(r„,) ç C, then there exists y e T below x such that y \ (A x C) = w

and py \ (cox \A)=px\ (cox \ A).

We will often abuse notation by identifying an element of P with the corre-

sponding subset of Q, and write T and (G(T), T) interchangeably. If S is

an element of P, then we define G(S \ s) to be equal to G(S) for any 5.

(P4) is technically extremely useful and helps to ensure, amongst other things,

that cox is preserved, by ensuring that forcing conditions have the c.c.c.
(P5) ensures that the generic functions built out of the p 's and the r 's are

sufficiently generic.
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(P6)-(P8) are used in the proof that the constructed space is not a Q-set; one

can think of them as saying that {x \ (A x C) : x e T} is a subset of T and is

completely embedded in T for every AxC in ^(T).

We order P by an order-relation < defined so that (G, S) < (H, T) if and

only if there exist a function n and a 'ê'(S) as above such that

(01) HCG,
(02) dom(Tr) = S and ran(7r) ç T,
(03) If n(s) = t and t' e T \ t, then there exists s' e S \ s such that

n(s') = t',
(04) If n(s) = t, then t = (ps, qs \ (cox x H), rs \ H),

(05) Every finite compatible subset of S U T has a lower bound in S UT.

(06) Suppose that s e S, t e T, AxC e W(S), s \ (A x C) = s and
n(s) = t \ (A x C). Then there exists s' e S such that s' \ (A x C) = s and

n(s') = t.

The motivation of (05) is that when we amalgamate conditions in the proof

of the Fusion Lemma, we shall be taking the set-theoretic union of the corre-

sponding subsets of Q, and we want to make sure that the result satisfies (P4);

we use (06) to make sure that it satisfies (P8).

5. Some Lemmas

In this section we prove some technical lemmas which we shall use (usually

implicitly) throughout the rest of the paper, and we also begin to set up the

machinery that we will use in the Fusion Lemma.

5.1. Lemma. Q has the c.c.c.

Proof. This is a standard application of the A-system lemma and the Pigeonhole

Principle.   D

5.2. Lemma.  P is nonempty.

Proof. The pair T = ({s e Q : dom(rs) = 0}, {0}) is an element of P; we

define W(T) to be equal to {a x {0} : a e cox}.   G

5.3. Lemma. The partial order is transitive; moreover, if S < T < U, the

composition of the functions witnessing S <T and T < U, witnesses S < U.

Proof. Suppose that S < T < U, that no witnesses S < T and that nx

witnesses T < U.
Define n to be nx o no . We show that n witnesses S < U.

Firstly, G(U) ç G(T) ç G(S), so (Ol) is satisfied.
Secondly, the domain of n is trivially the whole of S, and the range of n

is contained in U.

Suppose that n(s) = u. Then there exists t e T such that n0(s) = t and

nx(t) = u. Suppose that u' e U \ u. Then by condition (03) on nx, there

exists t' e T \ t such that nx(t') = u'. Now by condition (03) on tto , there

exists s' e S ï s such that n0(s') = t'. But then n(s') = u'.

Suppose that n(s) = u. Then there exists t e T such that no(s) = t and

nx(t) = u. Then u = (pt,qt \ (cox x G(U)),rt \ G(U)) and t = (ps,qs \

(cox x G(T)), rs Ï G(T)) by successive applications of (04) to nx and 7to , and

since G(U) ç G(T), we have that u = (ps,qs \ (cox x G(U)), rs \ G(U)) as

required.
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Now suppose that K is a finite subset of S and L is a finite subset of U,

and that K U L is compatible. Suppose that z is a lower bound for K U L,

and let K' = {(pz, q, r) : (p, q, r) e K} . Then K' ü L is compatible, having

z as a lower bound, and by (P5), AT' is a subset of S.

Let L' be the image of K' under 7ro. Then, by (04), L'uL is compatible
with lower bound z. So, by (05) applied to nx, it has a lower bound w in
r.

Then K' U {id} is compatible.

For, let y = (pw, qw U LU*&» r> where for every 7> r(y) = rw(?) U

(JíeA-rí(y). ryiy) is a well-defined function for each y, because for any y e

dom(ry), either y e G(T), when ryiy) = rwiy) U i)seKrs(y) = rwiy), or

y $ G(T), when y £ dom(rw), w being an element of T, and so ry(y) =

Us€Krsiy) ' and this is a function because K is compatible. qy is a well-defined

function for similar reasons.

The only condition for membership of Q which might present problems is

condition (4). So suppose that (a, y) e dom(^). If y e G(T), then (a, y) e

dom(qw). Since in that case py = pw and ry(y) = rw(y), condition (4) holds

because w is in Q. If, on the other hand y £ G(T), the (a, y) e dom(^)

for some 5 in K, and ryiy) = \JseKrsiy)- But K is compatible, with a

lower bound z, so that ryiy) ç rz(y), qy(a, y) = qz(a,y), and py(a) ç

pz(a) because of the way that K' was used in the construction of y . So since

condition (4) holds for z, it holds also for y.

y is a lower bound for K' U {w} , so K' U {w} is compatible. So by (05)

applied to n0, it has a lower bound x in 5. Then x is a lower bound for
K U L as required.

Finally suppose that we have chosen W(S) so that (06) holds for S < T,

and that we have chosen W(T) so that (06) holds for T < U. Suppose without

loss of generality that whenever AxC e W(S), A x (C n G(T)) eff(T).

Suppose that AxC e fë(S), s e S, u e U , dom(^) ç A and dom(r.s) ç C,

and that n(s) = u \ (A x C). Then if t = no(s), then by (04), dom(pt) ç A
and dom(r,) ç C n G(T) and nx(t) = u \ (A x (C n G(T))). So by (06) for
T < U, there exists t' e T \ t such that t' \ (Ax(CnG(T))) = t and nx(t) = u.
Now we apply (06) to S <T to find s' e S \ s such that s' \ (AxC)=s and

no(s') = t' ; then n(s') = u as required.   D

5.4. Lemma. If S e P and s e S, then S \ s isan elementoff and S \ s < S.

Proof. We define W(S \ s) to be {A x C e W(S) : dom(ps) ç A &. dom(rs) ç
C} . The appropriate function n is the identity.   D

5.5. Lemma. The set of S in P with a single greatest element is dense.

Proof. Let s e S. Then S \ s has a single greatest element.   D

5.6. Lemma. If n witnesses S <T and n(s) = t, then S \ s < T \ t.

Proof. The same function n will work, because condition (04) tells us that if

s' < s and n(s') = t', then t' < t.   D

We define an orderly sequence of elements of P to be a sequence (Ta: a e p),

p being some ordinal, such that
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( 1 ) Whenever a < ß, there is a function Uß a witnessing Tß < Ta, this

function including the identity function on Ta as a subset, such that

whenever a < ß < y , nyt a = nß t a o ny j ,

(2) Whenever A is a limit,  Tx = \}a<x, and for each a < X,  nx ,Q =

UjJe(a,A) nß,a >

(3) There exists a choice of W(Ta) for each a such that if a < ß, then

tf(Ta) = {A x (C n G(ra)) : ̂  x C e %(Tß)}.

5.7. Lemma. Suppose that (Ta: a < X) is an orderly sequence, and that X is

some limit ordinal less than co2. If we define Tx to be [}a<x Ta, and G(TX) to

be \Ja<x G(Ta), then (Ta: a <X) is an orderly sequence.

Proof. We first have to show that Tx is an element of the partial order. But

Tx obviously has cardinality no greater than cox, and conditions (P1)-(P5) for

being an element of P are properties of finite character.

Next, we have to construct W(TX). We define this to be the set of all in-

creasing countable unions of members of \]a<x&iTa) ■ Then W(TX) is indeed

club, and if AxC e %Z(TX), then for each a < X, A x (C n G(Ta)) is a count-

able union of elements of WiTa), and is therefore itself in WiTa). The other

properties of fë(Tx) are inherited from the W{Ta).

Now define nXy0l tobe U«e(Q i> nß,<* ■ Then nx¡a inherits all the required

properties from the nßa.   D

6. Extending domains

In this section we devote ourselves to setting up the technology that we will

use to prove the Fusion Lemma in §7. The notion of amalgamation of two

conditions that we will use in the Fusion Lemma is set-theoretic union; this

allows us to amalgamate Nj-many conditions without the difficulties attendant
on pruning a tree-like condition uncountably many times. All the results in this

section are essential, but Lemmas 6.3 and 6.5 are perhaps the high points.
If j is an element of Q, and y is an element of co2, define s - y to be

iPs, Qs \ ((0\ x ico2 \ {y})), rs \ (w2 \ {>})).

Suppose that S is an element of the partial order. Suppose that y is not in

GiS). We define & tobe {x eQ:(3t eS)it = x-y&qx = q,&y edom(rx)},

with G(S*) being G(S) u {y} .

6.1.   Lemma.  Sy is an element of P and lies below S.

Proof. First we have to show that Sy is an element of the partial order.

Suppose that K is a finite compatible subset of Sy. Then {s - y : s e K} is

a finite compatible subset of S, and thus has a lower bound w in S.

So, let x be defined to be (pw, \JseK Qs > r) wnere r \ G(S) = rw, and

riy) = Use* rsiy) • Then x is a lower bound for K and is an element of Sy.

Suppose that s e Sy, and that x < s. If y' € dom(rí) and y1 ̂  y, then

by (P5) on S, we can find y in S below s - y such that py = px and

ry(y') = rx(y') ; we can then extend this to an element of Sy below s. And, of

course, one can easily find z < s in Sy satisfying pz = px and rz(y) = rx(y) ;

z = (py,qy,r) will do, where r \ (co2 \ {y}) = ry , and r(y) = rx(y).

We define W(Sy) to be {A x (C U {y}) : A x C e W(S)}. W(Sy), thus
defined, has all the right properties.
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We define n so that for every s e Sy, 71(5) = s - y . We prove (05) in a

way similar to the way we proved (P4).   D

6.2. Lemma. If s e S, then {t e Sy : t - y = s} is predense below s in Q.

Proof. Suppose that x is an element of Q below 5 ; without loss of generality

y € dom(rx). We then define / so that t - y = s, and rt(y) = rx(y).

Then t e Sy and x < t.   U

Suppose that S < T and that y £ G(S). Then we define Sy 0 T to be
T U Sy, with G(Sy ®T) = G(Sy) ; we define &(Sy 0 T) to be W(T)u{Ax C :
Ax Ce W(Sy) &Ax(Cn G(T)) e %(T)}.

6.3. Lemma. If it exists, then Sy 0 T is an element of P and lies below T.

Proof. Suppose that n* witnesses Sy < T.

We show first that Sy 0 T is an element of the partial order.

Suppose that K is a finite compatible subset of Sy 0 T. Then, since Sy <T,

K has a lower bound in Sy 0 T by condition (05).
When it comes to checking the properties of W(Sy 0 T), we notice that it is

certainly club in {Ax C : A e cox & C e [G(Sy 0 T)]«°>} .
To prove (P7), we suppose that x e Sy ® T and that AxC e <ë'(Sy 0 T).

If x e T and AxC e %(Sy), then since AxC e W(Sy ®T), A x (C n
C7(r)) e ^(r) ,andxf(ixC) = xf(^x(Cn G(T))), which is in T by
(P7) on Í. So now suppose that x e Sy, and that AxC e%(T). Then
x Í (A x C) = n*(x) \ (AxC), because C ç G(T). Now tt*(x) 6 T, so by
(P7)on T, x \(AxC)eT.

The difficult case of (P8) is when x e Sy, AxC eW(T), w e Sy ®T,
dom(pw) ç A and don^r«,) Ç C. Then, since C ç G(T), y £ G(T) and
y e dom(r.s) for every s e Sy, w e T. Similarly, x \ (A x C) e T. Also,

x \ (A x C) = n*(x) \ (A x C), and so by (P8) on T, there exists y e T \ n*(x)

suchthat y f (AxC) = w and py \ (cox\A) =pn-(X) \ (o)x\A). Finally, by (03),
there exists z eSy \ x such that n*(z) = y ; then using (04), z \ (AxC) =y \

(AxC) = w, and pz \ (cox\A) = py \ (cox\A) = pn.(x) \ (cox\A) = px \ (cox\A).

If x e T, Ax C e ^(Sy) and w e Sy, with w \ (A x C) = w and
w < x \ (A x C), then also n*(w) < x \ (A x C). We find y < x such that

y e T, y \ (A x C) = n*(w), and py \ (cox \A)=px \ (cox \ A). Now we use
(06) to find z eSy such that z\(AxC) = w and 7t*(z) = y . Then by (04),

pz \ (cox \A) = px \ (cox \ A). So z is the element of Sy 0 T below x that we

were looking for.

We now observe that Sy 0 T < T. For, let n be defined so that n(s) = t if

and only if either s = t e T or n* (s) = t.

Then (04) holds because if n(s) = t, and s £ T, t = (ps, qs \ (tox x

G(T)),rs \ G(T)) by (04) for Sy and T; whereas if s e T, then t = s =

ips,Qs\ (o)\ x G(T)), rs \ G(T)), as required.

(05) holds because of (P4) for T and (05) for Sy < T, and (06) holds
because of (06) for Sy < T.   D

6.4. Lemma. Suppose that (Ta : a < ß) is an orderly sequence, and that S <

Tp . Then if y i G(S) U G(Tß), and Tß+X is defined to be Sy 0 Tß , then
(Ta : a < ß + I) is also an orderly sequence.
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Proof. We use the n defined in the proof of Lemma 6.3, and the W(Sy © T)

defined above.   D

6.5.   Lemma. Suppose that s e Sy. Then Sy © T \ s = Sy \ s.

Proof,   y is in dom(r5) for every s in Sy, but is not in dom(r,) for any t e T.

So, if t e T and s e Sy, then t£s.   □

7. The Fusion Lemma

In this section, we prove that the partial order preserves cox and co2. It

turns out that it preserves all cardinals because it has cardinality co2, but this

is unimportant for the purposes of this paper.

Suppose that / is a name for a function from the ground model to itself.

Then we say that a condition T describes fi, or is a descriptor of fi, if whenever

n witnesses U <T, and U 11- fi(a) = b , there exists / in the range of n such

that T \ t\\- f(a) = b.
Descriptors enable us to prevent functions from collapsing cox and co2 ; they

will also be useful in proving that the space X we will construct in the generic
extension is a A-set and not a Q-set; to prove it a A-set we will use a descriptor

of a function coding a countable collection of subsets of X with empty inter-

section; to prove that it is not a Q-set we will use a descriptor of a function

coding a G¿-set.
We construct the descriptor of a function by amalgamating into an element

of the partial order other elements which decide values that the function takes;

we use the methods of §6.

7.1. Lemma. Suppose that T U- f: p -> V, where p e co2. Then there exists

T' < T such that T' describes f.

Proof. We construct V as the last element of an orderly sequence (Ta : a <

p + I), with To = T. We construct Ta+X by constructing an orderly sequence

(Ta ß : ß e Xa), with Xa being some countable ordinal and Ta^o being equal

to Ta , as follows:
For each ß < Xa, we look for some Sa j < Ta ß with greatest element

sa,ß which is incompatible with sag for all ô < ß, such that Saj de-

cides the value of f(a). If such an Saß exists, choose some ordinal yaj e

u>2 \ G[Sa,ß] U G[Taß], and define Ta>ß+i to be S'a,/°'/î © Taß . Lemma 6.5

tells us that we do obtain an orderly sequence this way. If it is not possible to

find such an Sa yß , put Xa = ß + 1 and Ta+X = Ta ß .

Having constructed V , we show that it describes /.

Suppose that U <T, that n witnesses this. Suppose that U \Y f(a) = b,

and that U has greatest element u which is compatible with sa ¿. (For, if

it were the case that u was incompatible with all of them, we would have a

contradiction to the definition of Xa.)

Suppose that n* witnesses V < Ta ß+x , and that 7r+ is equal to non*.

Now u and sa¿ are compatible. So, by Lemma 6.2, there exists s in Sa!ß7a-ß

which is compatible with u, and so by (05) there exists w e Saya-ß u U

which is below both. Without loss of generality w e U. For if w e Sa^y"-ß,
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then because w < u, w < n\u), so that there exists w' e U \ u such that

n^(w') = w.So use w' instead of w .

Now suppose that n(w) = x and 7t*(x) = y. Then rf(w) = y.

Now, U\w<T'\x< Taß+l \ y. But y < s. Hence ya>ß e dom^), so

that y € Saya'ß, and by Lemma 6.5, Taj+X \ y = Say--ß \ y , and this in its

turn is <Sa>ß.

Now Sa tß decides the value of fi(a). But U \w isa common lower bound

for Saj and U, and U lh f(a) = b . So Sa¿ lh f(a) = b .
Finally we observe that x is in the range of n , and V \ x < Sa j , and so

forces f(a) = b as required.   D

7.2.   Lemma. P preserves cox and co2.

Proof. Suppose that p is one of œ and cox and that / is a name for a function

from p to p+ . We show that / is not a name for a collapsing function.

For, / has a dense set of descriptors, and if T describes /, then because

T has the countable chain condition, for every element a of p, there exists a

countable ground model set Aa such that T lh f(a) e Aa . Then, T' \\- fi: p ->

Uae/i ^a >tnat *s t0 sa^' T forces the range of / to lie in some ground model

set of cardinality no greater than p. So / does not collapse p+ .   a

8. The space

In this section, we construct the space X which we shall prove is a A-set and

not a Q-set. If S is an element of the partial order with greatest element s,

the ps(a) is an approximation to the ath point in the space.

Let H be P-generic. Let H be the set of all x for which there exists
T e H such that x is the greatest element of T. (Lemma 5.5 tells us that

the set of T with a single greatest element is dense.) Let P: cox —► â°(R) be

defined so that for each a, if there exists x e H such that a e dom(px), then

P(a) = C\x€iipx(a).

8.1. Lemma.  P(a) is defined for each a.

Proof. Let T e P and let t e T. Construct s < t with a e dom(ps). Then

there exists z e T such that z < t and pz = ps. Then T \ z is an element of

P with a greatest element z for which a e dom(pz).

So we see that the set of U, with a single greatest element u with a e

dom(pu), is dense. So a € dom(P).   D

8.2. Lemma. If T and U are compatible elements of P with greatest elements
t and u respectively, then t and u are compatible.

Proof. Suppose that S is below both. Then, if s e S, by using order condition

(04) we can easily show that 5 < t and s < u.   D

8.3. Lemma. Suppose that T has greatest element t and that a e dom(pt).

Then the set D(T, a) of all U, with a greatest element u having the properties

that Pu(a) Q Pt(a) and that the measure of pu(a) is less than half the measure

of p,(a), is dense below T.
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Proof. Suppose that S is below T. Without loss of generality, S has a greatest

element j . Construct x < s such that px(a) ç pt(a) and that the measure of

px(a) is less than half the measure of pt(a).

Then there exists z e S such that pz= px . Then S \ z e D(T, a).   □

8.4. Lemma. For each a, P(a) has a unique element.

Proof. Let T be an element of the generic filter H, with a greatest element /

with a e dom(pt). We construct a sequence (Tn : n e co), such that T = T0,

and for each n , Tn+X is an element of D(Tn , a) in H. Let /„ = pn(a) ', then

(I„ : n e co) is a sequence of intervals with widths tending to zero, the closure

of each being contained in its predecessor. Clearly, the intersection of the /„

is a single point. (We appear to have fudged the issue of the absoluteness of
the closure operation; in this particular case this does not matter.) Finally, if

S is an element of H, and if S has a greatest element 5 with a e dom(ps),

then because S is compatible with each of the Tn , for each n , ps(a)nl„ ^ 0 .

Now, the only way that ps(a) can fail to contain the single point in Ç\ne(0 h is

if that point is an endpoint of ps(a). But in that case there exists some element

S' of D(S, a) in H, and if s' is the greatest element of 5", then that single

point is not an endpoint of ps> (a), so that for some n, pS'(a) nln = 0 , which

is impossible.   D

We denote this unique element by either P(a) or xa , and let X be equal

to {xa :a e cox} . X is our example.

8.5. Lemma. If a ^ a', then P(a) ^ P(a'), and for any a, P(a) is not in the

ground model.

Proof. Suppose that a^ a', and that y is a ground model real. Let T be an

element of P and t be an element of T. Then we construct x < t such that
a, a' e dom(px), px(a) npx(a') = 0 , and y £ px(a).

Then there exists z e T such that pz= px . Then T \ z\V y ^ xa^ xa<.   D

9. AT is a A-set

In this section we show that A is a A-set. We do this by taking descriptor

of a function coding a decreasing sequence (Dn : n e co) of subsets of X with

empty intersection. Choosing some y £ G(T), we construct a new condition

S out of T in such a way that the various rs(y, i), for s e S, axe forced to

union up to form a sequence (Un : n e to) of open subsets of X ; the various qs

compel this sequence to have empty intersection, and D„ ç U„ by genericity.

Suppose that (Dn : n e co) is a decreasing sequence of subsets of X with

empty intersection. We define g so that g(a) = min{« : a $ Dn} .

Now let T be an element of P describing g, and let y e co2\G[T]. For
each a e co x, let Aa be a maximal antichain in T, having the property that if

a e Aa, then T \ a decides the value of g(a). Each Aa is countable.

Define S to have as elements all elements x of Q for which x-y e T, and

such that if (a, y) e dom^), then for some aeT above x-y, a e Aa and
T \ a lh g(a) = k for some k < qx(a, y). We define G(S) to be G(T) U {y} .

9.1.   Lemma.  SeP.
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Proof. Suppose that K is a finite compatible subset of S. Let x be a lower

bound in P for K. Let K' = {(px, q, r) : (p, q, r) e K} . Let L = {s - y : s e
K'} . Then L is a finite compatible subset of T, and thus has a lower bound

y in T.

Now define z to be equal to (py, qy U|JJ€A:, qs, r), where r \ (co2\{y}) = ry ,

riv) = UseK' rsiv) ■
Then z eQ.
For, suppose that (a, y) e dom(^z), and that qz(a, y) = k. Then (a, y) e

\JseK' dom(fls), because (a, y) cannot possibly have been inherited from
dom(qy).

Because y is a lower bound for L, py(a) ç pt(a) for all í in I, But

for each t e L, pt(a) = px(a), and for every t e K, px(a) C pt(a). Also

rziy) = UseK' rsiy) ■ N°w K' is compatible, with lower bound x . So if (a, y) e

dom(<?z), then for some s e K', (a, y) e dom(^), and so (a, y) e dom(i?x),

and qx(a, y) = qz(a, y) = k. Now if i e dom(rz(y)) and v, > k, then

i e dom(rx(y)), and px(a) n rx(y, i) = 0 . Now py(a) C px(a) and rz(y, i) =

rx(y, i), so also pz(a) n rz(y, i) = 0 .

Also z e S, because z-y = y e T, and if (a, y) e dom(^z), then for some

t e K, (a, y) e dom(qt), and T \ a lh g (a) = k for some k < qt(a, y) and

some a e Aa above t — y. Now y = z -y < t - y, and qz(a, y) = qt(a, y).

So T \ a lh g (a) = k for some k < qz(a, y) and some a e Aa above z - y ,

as required.

To prove (P5), suppose that s e S and that x < 5. Then x < s - y, and

so since s - y e T, (px, qs-y, rs^y) e T. But now, (px, qs, rs) is a permitted

element of S; the only thing that would need to be checked is that it is an

element of Q, and that is straightforward enough.

In addition, if y' € dom(ri) \ {y}, we can find t e T below sy such that

Pt - Px and r,(y') = rx(y') ; we then observe that (px, qsliqt, r) is in S, where

r \ co2 \ {y} = r,, and r(y) = rs(y).

We now need to find an element t of S such that px = pt, rx(y) = rt(y),

and t<s. Well, let t = {px,qs,r), where r \ co2\ {y} = rs, and r,(y) = rx(y).

Then t is an element of Q, because s and x are. Now all we need to observe
is that it is a permitted element of S.

Next, we construct &(S). Let &* = {Ax(Cl) {y}) : Ax C eff(T)} . Then
&* is club in [coxxG(S)]w. We define W(S) to be the set of all ^x(CU{y}) in

W* such that if a e A, then for all a in Aa , dom(pa) ç A and dom(ra) ç C.
Clearly, W(S) is club.

Now suppose that x e S and A x (C U {y}) is in ^(S). Then we have to

show that x \ (A x (CU {y})) G S. Suppose that (a,y) e dom(qx^Ax{Cu{y}))) ■

Then for some a e Aa above x, T \ a lh g(a) = k for some k less than or

equal to qx(a, y). But since a e Aa, dom(pa) ç A and dom(ra) ç C. So, a

is also above x [ (^x(Cu{y})). Since x f (^x(Cu{y}))-y = (x-y) \ (AxC),

and AxC eW(T), x \ (A x (Cu{y}))-y is in T, and so x t(^x(Cu{y}))
is in S as required.

Suppose that w <x \ (^x(Cu{y})), and that dom(pw) ç A and dom(rw) ç

Cu {y}. Then w-y<xf(,4x(CU {y})) -y = x -y \ (A x C), so there

exists y' e T such that y' \ (A x C) = w - y, py* \ (cox \ A) = px \ (cox \ A),

and y' < x - y.   So let y = (py>, qw U qx U qy>, r)  where r(y') = ry>(y')
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for y' 7^ y and r(y) = rw(y).   Then y  is an element of S, is below x,

p, \(cox\A)=px \(cox\A),and w=y \ (A x (C U {y})).   D

9.2. Lemma. S < T.

Proof. Suppose that x e S ; then we say that n(x) = y if and only if y = x - y.

Clearly, in this case, y eT.
We now show that n has the right properties.
To prove (03), suppose that n(s) = t. Suppose that t' e T \ t. We exhibit

s' e S \ s such that n(s') = s. We define s' to be (pt>, qt> U qs, r), where

r \ co2 \ {y} = rti, and r(y) = rs(y). Then s' e S, is below 5, and is sent to t'

by n.
To prove (05), suppose that K is a finite subset of S U T. Let x be a

lower bound for K, and let K' = (K n S) U {(ß, q, r) : {p, q, r \ (<y2 \ {y})) e
K nT & riy) C rxiy)} . Then K' is a finite subset of S, and is compatible,

since it has x for a lower bound. So, by (P4) for S, it has a lower bound in

S.
To prove (06), suppose that Ax C e ^iS), that s e S, dom^) ç A and

dom(ri) ç C, and that t e T satisfies n(s) = t \ (A x C). Then we define s'

so that s' - y = t, rs,(y) = rs(y), and qs, \ (cox x {y}) = qs \ (cox x {y}). Then

s' e S, and is below s, and n(s') = t.   D

Given a generic filter H, we define a function Q in the corresponding generic
extension so that Q(a) = k if and only if, for some element U of H with top

element u, qu(a, y) = k .

9.3. Lemma.  S lh Q: cox -► co, and S lh (Va)(ß(a) > g(a)).

Proof. For suppose that U < S decides the value of g(a), and either decides

the value of Q(a) or forces it to be undefined.
Let 7To witness U < S, nx witness S <T, and let n be their composition;

n witnesses U <T.
Since T describes g, there exists t e ran(7r) such that T \ t decides the

value of g(a) ; without loss of generality (using (03)), t < a for some a for

which T Í a lh g(a) = k, so that U also forces g(a) = k. Suppose that

n(u) = t, and that no(u) = s and nx(s) = t.

Then there exists s' e S \ s such that (a,y) e dom(qs-); if (a, y) $.

dom(<Zs), then a suitable s' can be defined just by adding (a, y) to the domain

of dom(<7s), and setting qs>(a, y) = I for some sufficiently great / for which

/ > k . So, S \ s' lh Q(a) = I.
Now we find u' eU \u such that n0(u') = s' ; then U \ u' < S \ s'.

We said that U either decides the value of Q(a) or forces it to be undefined;

clearly it forces Q(a) = /. So, U lh Q(a) = l>k = g(a).   D

Now let En = {x eX : Q(x) > n} , and let U„ = \j{R(i) : v¡ > n} , where R

is the generic function constructed from the rx(y).

9.4. Lemma. (1) SU-DnçÈn.
(2) S I h Ên = Ün , so that S forces È„ to be open.

(3) S\rf]n€(ûÙn = 0.

It is in the proof of this lemma that we use the full power of (P5).
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Proof. That S I h t>„ ç È„ is a trivial consequence of Lemma 9.3.

We now prove that S forces Èn and U„ to be equal.

First we show that S I h U„ ç Èn. For, suppose that U < S, and that

U lh Q(a) = k < n, so that U lh xa £ É„. Suppose that u e U has the
property that (a, y) e dom(^M).

Then, whenever v < u, (a, y) e dom(qv) and qv(a, y) = k . So, if v, > k ,

pv(a) n rv(y, i) = 0 .

Hence, if v¡ > k, U \ u lh xa £ R(i), and so U \ u lh xa £ U„ . Because

the set of such U \ u is predense below U, U I h xa g Un . A density argument

now allows us to see that -S lh (Va)(xQ ^ Èn —> xa ^ U„). Thus S \\- Ùn ç È„ .

Now we prove that S I h È„ ç Ùn . For, suppose that u e U, and that

qu(ot, y) = k > n, so that U \ u lh xa e Èn . Then, construct z < u such that

(Va' e dom(/?„) \ {a})(/jz(a) npz(a') = 0), and such that for some / for which

Vi = k, rz(y, i) = pz(a). Clearly such a z can be found.

We now use (P5) to find x e U \ u such that px = pz, and such that

rx(y, i) = rz(y, i) = Pz(<x) = Px(o) ■ Then U \ x lh xQ e R(i), so that U \ x lh

xa e un .

So, S lh Èn ç Un .
Finally we prove that S forces the Un to have empty intersection.

But Ù„ is forced to be equal to É„ , and if Q(x) = n , then x ^ E„+x, by

definition of the E¡. Since Q is forced to be a total function, f| U„ = 0 as
required.   D

9.5.   Theorem. X is a A-set.

Proof. We have put around the D„ a sequence (Un : n e co) of open sets with

empty intersection, as was required.   D

10.   A is NOT A Q-SET

We prove this by starting with a particular subset L' of X, and proving that

out of any descriptor of a function coding a Gg -subset of X, we can construct

a new condition which forces that G^-set to be different from L'. The way
this works is that a (/¿-set is determined by a countable function, so that if T

describes a Gg-set, then only countably many elements of T axe involved in

the description. So, take two elements ao and ai of «i not mentioned in
any element of T which takes part in the description; one of xQ0 and xa, will

be in L' and the other will not. Now construct a new condition U out of T

in such a way that U treats ao and ax exactly the same; that is to say, there

is a symmetry on U which interchanges the roles of ao and ax , and which

leaves the part of U which describes the oVset unaffected. It turns out that

the symmetry is so great that if U forces xao to be in the GVset, then it does

not force xa, to be outside it; and so we show X that the GVset is different
from L'.

Let cox be divided, in the ground model, into two disjoint uncountable sets

L and M. We show that in the generic extension, L' = {xa : a e L} is not a

Gg-set. In particular, we show that if, in the generic extension, f)nea) U„ is a

6>set, then L' ± f]n€a) Un.
For, let g be some name for a function from co x co to ZZ8 , such that for

each n , lh {Jkew g(n, k) = U„ .



58 R. W. KNIGHT

Let T e P describe g and have a greatest element /. For each n and k , let

An>K be a maximal antichain in T such that for each a e An¿, T \ a decides

the value of g(n, k). Let a* and C ç G(T) be such that for each a* x C e

%Z(T), and for all a in any of the An¿ , dom(/?a) ç a*, and dom(ra) ç C.

Let ao e L and axe M be greater than a*.

Let wo'. cox —► cox be defined to fix every element of ojx except a0 and

ax, which it switches, and let wx be a self-inverse bijection on co2, with the

property that c7i[G[r]] n G[T] = 0 . Let m* be the isomorphism on Q, and
xux be the isomorphism on P, induced by woxwx. Notice that m* and wx

axe self-inverse. ( x is meant to suggest the double-sharp sign.)

If s e T, s' e m*(T) and ps = ps<, we define the amalgamation [s, s'] of

s and s', to be (ps,qsUqs< ,rsurs<).

Define U to be {[s, s1] : s e T, s' e wx(T),s \ (a* x C) = zo^(s') \

(a* xC) &ps=pS'}, with G(U) being G(T) U wx[G[T]].

We define W(U) to be {A x (Cuwx[C]) :(AxC)e W(T) &a* CA&Cç
C}.

10.1.   Lemma.   U e V, U < T, and wx(U) = U.

Proof. To prove (P4), suppose that K is a finite compatible subset of U. Let

K' = {s : (3s')([s,s'] e K)}. Then K' is a compatible subset of T. Let u

be a lower bound in T for this set. Let Kx = {(pu, q, r) : (3p)((p, q, r) e

K)} = {[(Pu,q,r),(pu,q', r')\ : (3p, p')([(p, q, r), (p', q', r')] e K)} ; then

K\ is a compatible subset of U, and K[ = {s : (3s')([s, s'] e Kx)} has lower

bound u. Now, since a* x C e 'S'(T), v = u \ (a* x C) e T. But then,

since s f (a* x C) = tJ7»(s') [ (a* x C) whenever [s, s'] e K, if K'{ = {s1 :

(3í)([í, s'] e Kx)} , then K" U {w^(v)} is compatible and so has a lower bound

w in w*(T). Let u' = (pw , qu, ru) ; then u' is in T and lies below u, and

since w < w*(v), xz*(w) \ (a* x C) < u' \ (a* x C) < v . Finally, by (P8),

there exists x in T such that x < u' and x f (a* x C) = 07'(tu) í (a* x C).

Since x < u', px extends pu* = pw . Let w' = (px, qw, rw) ; this is an element

of w X(T) and lies below w .
Then w' is a lower bound in xux(T) for K", x is a lower bound in T for

K[, w' and x are compatible, pw> = px and x f (a* x C) = w^it;') f (a* x C),

so [x, w'] exists as a member of U and is a suitable lower bound for [s, s']
and [t, t'].

Now we show that U < T. Define n so that n([s, t]) = s. We show that

this works.

If [s, t] exists, then certainly s = (p[Stt], q[Stt] \ (cox x G(T)), r[J;(] f G(T)).
Suppose that K is a finite subset of T and {[s¡, t¡] : i e k} is a finite subset

of U, and that their union is compatible. Then if t' = w^t \ (a* x C)) and

t" = iPt,dt>, rt>), then by (P5) and (P7) on wx(T), {[t, w\t \ (a* x C))] :
t e K} ç U, and its union with the set of [s¡, t¡] is compatible. So there is in
U a lower bound for all of them.

Suppose that [s, t] e U ; then n([s, t]) = s. Suppose that s" e T \ s. Let
5' = (Ps" « Qs, fs), and let t' = (psn , qt, rt) ; then [s', t'] is an element of U

below [s, t]. Then s" \ (a* xC)<s' \ (a* xC) = w*(t') \ (a* x C). So, by (P8)

on T, there exists w*(t") < w*(t') such that xv*(t") \ (a* xC) = s' \ (a* x C)

and pt„ = ps„ . Then [s", t"] e U, and n([s", t"]) = s" .

To prove (O6), suppose that [s, t] e U, and AxC e W(U), that dom(p[sJ])
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ç A and dom(rrí)t)) ç C, that s' e T, and that n([s, t]) = s = s' \ (A x C).

Then we use (P8) and (P5) on T to find t' e wx(T) \ t such that t' \ (a*xC) =

xzri(s' \ (a* x C)), and such that pt< = ps>. Then [s', t'] is an element of U

below [s, t], and n([s', t']) = s', as required.

We also observe that U is fixed by w '.   D

10.2. Lemma. Suppose that W < U, and that W lh xao e f)n€ca Un.   Then

wx(W)\rxaief]newÜn.

Proof. Suppose that W < U, and that W lh xao e r\neco U„ . Then for each n ,
there is a dense set of Y below W, for each of which there exists I eZZ8 such

that Y lh xQ0 e I ç ifn .

We show that for each such Y, there exists Z below wx(Y) such that

Z lh xa, e I ç Un.
Without loss of generality, Y has a greatest element y.

Suppose that 7to witnesses Y < U, that nx is the function defined in the

proof of Lemma 10.1 witnessing U < T, and that n is their composition.

We are given that Y lh xao e I. But this can only mean that ao € dom(py),

and that py(a0) ç /. But then, zu^y) is the greatest element of wx(Y), and

Pwt(y)i<X\) = Pyi(*o)-Q I, SO  ZUX(Y) lh XQ, el.

We are also given that Y \\-1 ç Ü„ . Well, T describes g, so there exists t

in the range of n such that T \ t\\-1 CÛn. Suppose that no(z) = u and that

7Ti(m) = t.

Then since T \ t lh / ç Un , by the definition of a* and C, there exists s eT

compatible with t such that dom^) ç a*, dom(rs) ç C, and T \ s lh / ç Un .

Now since u e U and nx(u) = t, there exists t' such that u = [t,t']; t'

necessarily satisfies t \ (a* x C) = xv^t') \ (a* x C). So xu^s) is compatible

with t'. (Note that [s,wi(s)] is an element of £/.) Hence [s,w((s)] is
compatible with u.

But,   [s,xzt*(s)] = w^([s,w^(s)]), and so is compatible with  w^(u) =

[wKt'),wKt)]. '
Now, if 7Tq is the function induced by 7to under the map tr/', then 7tJ

witnesses wx(Y) < wx(U) = U. Since n^zu^z)) = w^u), and w^u)

and [s, ro^s)] are compatible, zo^(z) and [s,tztl(s)] are compatible (using

condition (04)) and so there exists v in wx(Y) which is a lower bound for

[s, xv^s)] and w\z).

Then wx(Y) \v<U \[s,m*(s)]< T \s,so wx(Y) \ v lh / ç Un .

Since wx(Y) \ v < wx(Y), wx(Y) \ v lh xQ, e I C U„ .

wx(Y) \v is therefore the element of P below wx(Y) that we were looking
for.    D

10.3. Proposition.   U 1/ L' = f)n€w U„ .

Proof. By Lemma 10.2, if U lh xao e f]n€w Un, then U 1/ xQ| i f)n€œ Ü„.

Hence, if U lh V ç Ç]new Ü„ , then U 1/ n„g0, ün Ç ¿' •   □

10.4. Theorem. A w «oí a ß-j^i.

Pwo/. We have shown in this section that if C\neo) U„ is a name for a Gá-set and
T is a descriptor of it, then there exists U < T which does not force the GVset
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equal to L'. Since the set of descriptors of a G^-set is dense, I h L' ¿ f]nea) Un .
Since this is true for every name for a G^-set, L' itself is not Gg . Since X

has a subset which is not Gg , it is not a Q-set.   D

11. Conclusions

The proof that it is consistent that there exists a A-set that is not a Q-set

is now complete. The method presented can be easily modified to yield a set

whose every finite power is a A-set, but which is not a Q-set, thus answering

D. J. Lutzer's question. In this model, 2H° = 2Kl . A model in which there

was an uncountable A-set and in which the continuum was less than 2Nl would

contain a subset of size 2K° of the set of all functions from cox to co, which

dominated under the product partial order, and hence under the partial order

of eventual dominance; this is because if A is a A-set, then the set of functions

from A to ta corresponding to decreasing countable sequences of open subsets

of X with empty intersection, is a set of size 2W and is a dominating family
in Wl co. (The question of the existence of such a model was investigated in [S]

and [JP], and certain restrictions were placed on models in which one existed,

for example, that in such a model, the continuum must be greater than or equal

to No, and cannot be real-valued measurable.) However it seems to be difficult

to modify the partial order used in this paper to simultaneously add a large

number of reals and preserve cardinals greater than co2 .
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