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THE CAUCHY PROBLEM IN CN FOR LINEAR SECOND ORDER
PARTIAL DIFFERENTIAL EQUATIONS WITH DATA

ON A QUADRIC SURFACE

GUNNAR JOHNSSON

Abstract. By means of a method developed essentially by Leray some global

existence results are obtained for the problem referred to in the title. The par-

tial differential equations are required to have constant principal part and the

initial surface to be irreducible and not everywhere characteristic. The Cauchy

data are assumed to be given by entire functions. Under these conditions the

location of all possible singularities of solutions are determined. The sets of

singularities can be divided into two types, K- and L-singularities. K , the

set of K-singularities, is the global version of the characteristic tangent defined

by Leray. The L-sets are here quadric surfaces which, in contrast to the As-

sets, allow unbounded singularities. The L-sets are in turn divided into three

types: initial, asymptotic, and latent singularities. The initial singularities ap-
pear when the characteristic points of the initial surface are exceptional accord-

ing to Leray's local theory. These sets of singularity intersect the initial surface

at characteristic points. The asymptotic case, where the set of singularities does

not cut the initial surface, can be viewed as projectively equivalent to the initial

case, the intersection taking place at infinite characteristic points. Finally the

latent singularities are sets which intersect the initial surface, but where the so-

lutions do not develop singularities initially. In the case of the Laplace equation

with data on a real quadric surface it is shown that the ^-singularities and the

asymptotic singularities occur on the classical focal sets defined by Poncelet,

Pliicker, Darboux et al. There are also latent singularities appearing in coor-

dinate subspaces of R^ . As a corollary a new proof is given of the fact that

ellipsoids have the Pompeiu property.

1. Introduction

For holomorphic partial differential equations the local theory of Cauchy
problems is well developed. In the noncharacteristic case the classical Cauchy-
Kovalevskaya theorem states existence and uniqueness of analytic solutions.

In the neighborhood of a characteristic point of the initial surface T Leray's
theorem [L] asserts in general existence and uniqueness outside the characteristic

tangent K. (See §2 for precise definitions and statements.) Globally, if T is
a hyperplane (in C" or R"), the Cauchy-Kovalevskaya theorem can in certain

cases be extended to yield entire solutions if the Cauchy data are entire (cf.

results by Persson [P] and Miyake [Mi]).

When T is an arbitrary analytic hypersurface, the global problem is more

complicated.    Recently, however, Sternin and Shatalov have given explicit
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solutions of this Cauchy problem in the constant coefficient case in terms of

an integral transformation, Rr, suitable for multivalued analytic functions

with singularities on prescribed varieties and ramified around the initial sur-

face T. (See [S-S 1, 2, 3] for details and further references.) The depen-

dence of a transformed function Rrf{p) — L_) f(x) dx on its variables p =

(Po, P\, ■ ■ ■ , Pn) £ CP" (CP" is the projective compactification of the dual

complex space C) is determined by the path (surface) of integration y(p)

(see [S-S 1] for the definition of y(p)) and the necessary globalization of the

solutions is motivated by a topological lemma ensuring the existence of y(p),

where the dependence of y on p may be multivalued, for almost all p e CP" .

Since Ry commutes with differentiation, the equation P(D)u = f is trans-

formed by i?r to an ordinary differential equation in the variable po. The

explicit solution u of the Cauchy problem P(D)u — f, Dau = 0 on T for

\a\ < m (m is the order of P(D)), is given by

(1.1) u = Rr-loQoRr(f),

where the operation Q means solving the above ordinary differential equation.

The singularities of this solution u have been determined in some cases

involving second order PDEs and quadric initial surfaces [S-S 2, 3]. (In fact

all given examples fall within the scope of the present study.) It is not clear to

what extent it is possible to get explicit sets of singularities outside the class of
problems given in the examples.

The present study is an attempt to combine the method of Leray (cf. [L, G-

K-L, G]) with the global existence theorems of Persson and Miyake in order to

get explicit results on the location of the singularities. This approach turns out
to be successful in the cases referred to in the title, but there seems to be little

hope of extending the method to other cases because of lack of appropriate

global existence theorems for these cases. However, given the restrictions to
second order equations and quadric surfaces, the present approach is slightly

more general than that of Sternin and Shatalov since it allows variable (i.e.
entire) coefficients in the nonprincipal part of the equation.

The results given in CN can be reinterpreted in RN. This is done in §5,

mainly for the case of the Laplace equation,

N    B2

P(D) = AN = E-qZ2>
j=\ axi

or for Laplace-like parabolic equations,

P{D) = A„,        n<N.

This study in RN has connections with classical works on the gravitation po-

tential of ellipsoids, since it can be shown that these potentials, when continued

inside the ellipsoid, are identical modulo a holomorphic function to a solution

of the Cauchy problem with data (describing the mass density) given on the

boundary T of the ellipsoid. These classical studies (cf. articles by Laplace,

Ivory, Gauss, Dirichlet et al. in [La]) establish that the singularities appear on
the focal ellipse related to the given ellipsoid. Recently, H. Shahgholian [Sha]

has generalized these results to n dimensions and polynomial Cauchy data. The

present study slightly extends this result by allowing entire data.
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There is still another classical connection to be pointed out. In [Her] Herglotz

studied the gravitation potential in the two-dimensional case by means of ana-

lytic functions of one variable. He observed that the singularities appear at the
foci, if the boundaries of the mass densities are algebraic curves, and further-

more that the singularities, which in general are bounded, may be unbounded if
the foci are extraordinary according to Plücker, Darboux et al. (cf. [PI, Dar]).

This observation can be reinterpreted in higher dimensions, as shown in §4, by

means of the corresponding distinction between K- and L-singularities.

Finally we would like to mention another source of inspiration for this study.

In [Sh 1] and [Kh-Sh 1] the concept of Schwarz potential is introduced. The
Schwarz potential of the analytic surface T in C" is the solution u of the

Cauchy problem Au = 0 in a neighborhood of T with data u = {Yl"=\ xj)/2
and gradw = (xi, Xi,..., x„) on T. Shapiro and Khavinson conjecture that

any solution of the Laplace equation with Cauchy data given on an analytic

surface F can be analytically continued (in R" or C") as far as the Schwarz
potential of T can be.

The investigation of this conjecture with regard to quadric surfaces has been
an important impetus for this work, which has not contradicted the conjecture.

This report is organized as follows: In §2 notation is presented together with

definitions and information from other sources. A summary of the main notions

is included at the end of this section. Section 3 deals with the linear algebraic

aspects which are needed to develop the theory. Section 4 contains the main

results in C^ including the main theorem, Theorem 4.3, and the definitions of

the various types of the singularities and their properties. Section 5 contains the
results in RN concerning mostly the Laplace equation. These results include

the identification in RN between the focal sets and the ^-singularities and also

a proof that ellipsoids have the Pompeiu property. Section 6 finally contains a

discussion of some open problems.

2. Notation and preliminaries

We will work within C^, N > 2, and let x and y denote variable vectors
in C^. (However, in §3 we change convention and let x € C" , 1 < n < N,

(x, x') e CN.) A general linear PDE is denoted

(2.1) P(x,D)u = f,

or

(2.2) £ aa(x)Dau = f(x),

\a\<m

where standard multi-index notation is used, e.g., Dau — d^u/dx"1 • •■dx%N ,

\a\ - Y!j=iai ■ du/dx denotes the gradient (du/8x\, ... , du/dxN). The

principal part of the operator P(x, D) in (2.2) is

(2.3) Pm(x,D)= Y, aa{x)Da.

\a\=m

We often use g instead of Pm to denote the corresponding principal symbol:

(2.4) g{x,Ç)= Y. <*a(x)ia,        ¿eC".

\a\=m
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We will be most concerned with second order equations (m = 2) with constant

principal parts:

N B2 N B

(2-5) £ aJkd^k+^bj{x)dTJ+C{x)U = f{xh
j,k=l J      K       j=\ '

where the matrix a^ is constant and symmetric. If a^ has rank n , 1 < n <
N, equation (2.5) can be transformed by a regular complex linear transforma-

tion to the form
N „

(2.6) Anu + Y/bj{x)-^ + c{x)u = f{x),
i=\ oxi

where we have used

A"u = 22-^2-

We will use the notation

(2.7) cp(x) = xTAx + BTx + C = 0

to define a general quadratic surface, T.
We introduce some more notation regarding the quadrics in §3 needed to

define a certain normal form.
A point x° € T is called characteristic with respect to P(x, D) if

(2.8) g(x°,d<p(x°)/dx) = 0.

Here, g = Pm and F = {x: q>(x) — 0} .
Note that condition (2.8) means that all nonregular points of Y (i.e., x°

such that 8<p(x°)/dx — 0) are formally characteristic. The set of characteristic

points is denoted TCh ■
We can now formulate the general Cauchy problem (*) involving the linear

equation (2.1) and the initial surface Y. Suppose that each function occur-
ring in (2.1) is holomorphic in a neighborhood of the analytic surface Y =

{x: q>(x) = 0} . We seek the unique analytic solution u(x) satisfying

(i) « is a solution of (2.1) P(x, D)u = / in a neighbor-

/2 9.) hood of r\rCH.
(ii) Da(u - w) = 0 on T\rcH for \a\ < m - 1, where w

is a given entire function.

If we in addition assume that (2.1) be of form (2.6) we will refer to the corre-

sponding Cauchy problem as (Q*).
Note that (*) always has a unique solution in a neighborhood of T\rcH in

view of the Cauchy-Kovalevskaya theorem. This study is concerned with the

possible global analytic continuation of this local solution of the (Q*) problem.

We next describe a variant of the Leray transformation method adapted to
the present situation. (We follow most closely the presentation in [G].) The first
step transforms the problem (*) to a related problem in CN+l by introducing

a new independent variable I.
Set

(2.9) Y* = {x: (p{x) = X)
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and let Dx, Dx ¿, etc., denote differential operators with respect to the indi-

cated variables. Consider the new Cauchy problem (**) :

(i)   P(x, Dx)u*{x, A) = f(x) in a neighborhood of TA\r¿H .

(ii)   DßxX(u* - w) = 0 on rVCH for \ß\<m-\.

The operator P and the functions / and w are identical with those of problem

(*). Note that the solution u of (*) can be recovered from u* by

(2.10) u(x) = u*(x,Q).

The second step consists of the introduction of a new variable t, in place

of A, by the transformation A = A(x, t), where A(x, t) is defined to be the

solution of the following Hamilton-Jacobi problem:

(2.11) A, = -g{x, 81/dx)

with initial condition

(2.12) X{x, 0) = <p(x).

Hence, A(x, t) is related both to the operator P and the surface Y. It can be

shown by classical Hamilton-Jacobi theory (cf. [G-K-L] or [G]) that the solution

A(x, t) is

(2.13) X(x,t) = X[y(x,t),t],

where

(2.14) X\y, t] = <p(y) + t(m - l)g(y, 8<p/dy)

and where

(2.15) y = y{x,t),      yeCN,

is defined implicitly by the relation

(2.16) x = x(y,t),

which represents the solution of the Hamilton equations

n   . (i) dx/dt = dg/dt,
K      ' (ii)   d£,ldt = -dgl8x

with initial conditions

(2.18) x(0)=y,       m = d<p/dy.

Note that in case (ß*), g(x, £) = £"=1 {j , and hence dg/dXj = 0, dg/dÇj =

Xj-
Curves of type (2.16) satisfying (2.17) are called bicharacteristics. Curves of

type (2.16) satisfying both (2.17) and (2.18) are called principal bicharacteristics

with respect to Y and are denoted ßy°, if they are issued from y°, i.e. if

x(y°, 0) = y°. Note that the observation made above concerning dg/dx and

dg/d¿¡ in the (Q*) case implies that the bicharacteristics are straight lines.

We also observe that in view of (2.12) the surface TA is transformed to the

hyperplane

(2.19) *¿ = {(x, í):í = 0}

by the transformation A = X(x, t).
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Now set U{x ,t) = u*{x, X{x, t)) and V{x, t) = 8u*(x, X(x, t))/BX.
It turns out that the so defined function V satisfies a certain equation

P\{x, t, T>x,t)V = 0, which is noncharacteristic with respect to the hyperplane

Xt (i.e., there is no characteristic point on Xt). The function U will also satisfy
an equation Pi{x, t, Dxt)U = f, which however in general is characteristic

unless P is a first order operator.

Hence, we consider the two alternative transformed Cauchy problems (* * *)

and (***)', the second of which is considered only in the case of first order

operators.

,       . (i) Pi(x, t, Dx t)V(x, t) = 0 in a neighborhood of Xt.

(***> (ii) Z)f(K-«;,)'= 0 on Xt for p = 0, 1,..., m-\.

(* * *)'
(i) Pi{x, t, Dx t)U{x, t) = f{x) in a neighborhood of Xt.

(ii) U{x,0) = w(x).

The new operators P\ and Pi and the function wx will be determined in the

next lemma.

Lemma 2.1. If the equation Pu = f is of type (2.5), the Cauchy problem (* * *)

takes the form: (set V¡ =8V/dXj etc.)

N

Vtt- Y. a]k{XtVjk-2XjVkt-XjkVt)

-YlbjßtVj-XJVt)-cXtV = 0
j=i

in a neighborhood of Xt ■
(ii)  V(x,0) = 0, Vt(x,0) = P(x,Dx)w(x)-f(x).

Moreover, if P2u = Y^f=\ aiui + cu • equation (* * *)' (i) is transformed

to

(iii)  Ut + P2U = f.

Proof, (i) Differentiating the relations U(x, t) = u*(x, X(x, t)) and V(x, t) =

u*k(x, X(x, t)) gives

(2.20) Uj = u* + u\Xj,

(2.21) Ujk = u*jk + u)kXk + {u*uXk + u\k)Xj + u\Xjk ,

(2.22) Vj = u\j + u*xxX}.

Equation (2.20) yields

(2.23) u* = Uj - VXj.

Setting W(x, t) = u*u{x, X(x, t)) and introducing V = u\ in (2.21) and (2.22)

gives

(2.24) ulj = Vj - WXj



THE CAUCHY PROBLEM IN CN

and

(2.25) u)k = Ujk - VjXk - VkXj - VXjk + WXjXk.

Hence,

N N

Y ajku%+Y bJu*j+cu*-f
j,k=\ 7=1

N

= Y "jk(Ujk - VjXk - VkXj - VXjk + WXjXk)
j,k=\

N

+ Ybj(Uj-VXJ) + cU-f
7=1

Now, using (2.11) in this case, ^ajkXjXk = -A, and WXt = Vt, we get

N N

(2.26) Vt= Y aJk(Ujk - 2VjXk - VXjk) + Y bj(Uj - VXj) + cU - f
j,k=\ 7=1

Differentiating (2.26) with respect to t and using Ut = VXt gives

N N

(2.27) Vtt=  Y "jk(VjkXt - 2VjtXk - VtXjk) + Y bj(VjXt - VtX¡) + cVXt
i,k=\ ;=1

where we have used

d2(VXt)
= VjkXt + VkXj, + VjXkt + VXjkt.

dXjdxk

This proves formula (i).

Since X(x, 0) = (p(x), V(x, 0) takes the values of u\(x, X) as (x, X) €
r¿ = {(x, X) : A = <p(x)} . But since u*(x, A) is the solution of Cauchy problem

(**) with Cauchy data given by w(x) independent of A on Yx, we must have

u\(x, A) = 0 on Yx, and hence V(x, 0) = 0. The expression for Vt(x, 0)
is obtained from (2.26) by setting t - 0, using V(x, 0) = Vj(x, 0) = 0 and
inserting w(x) for U(x,0).

Finally, formula (iii) of the lemma follows from (2.20) using (2.11 ): J^ =1 a¡Xj

— -Xt and Ut = VXt. The proof is complete.

It is clear that a solution V(x, t) of (* * *) also yields a solution u(x) of
(*). First U(x, t) can be determined by

U(x,t) = U(x,0)+ I |^(jc, s)ds
Jo  OS

and hence,

(2.28) U{x ,t) = w(x)+ [ V(x, s)X,{x, s) ds
Jo

as long as the integral is taken along a path inside the domains of analyticity
for V and A. Note that U,{x, 0) = 0 follows from V(x,0) = 0.
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Secondly, since u(x) - u*{x, 0) and u*(x, X(x, t)) = U(x, t) we have

(2.29) u(x) = U(x,t(x)),

where t(x) is defined by

(2.30) X{x ,0 = 0.

The following example shows how the transformation from (*) to (* * *)

works in concrete example.   We assume that (*) is the Cauchy problem (i)

Anu = 0, (ii) Da(u - \x\2/2) = 0 (H < 1) on v3, = {x: <p{x) = \x\2 -1=0}.
The solution

u(x) = n/2(n - 2) - \x\2-"/{n - 2)

is the Schwarz potential of B\ [Kh-Sh 1].

n(l+A)     (1+A)"/2|jc|2-"
u*(x, X) =

2{n-2)

is the solution of the corresponding problem (**) on B\ = {x: \x\2 - 1 = A} .

Hence,

"I = ^2)(l-M2-»(1+A)»/-).

The A-function for the present problem is A = |x|2/(l + 4t) — I. Therefore

n       f. 1 \
V(x,t) = u*x(x, X(x, t)) = 2{nn_     (l

;i+4i)(«-2)/2_

This can be seen to satisfy equation (* * *)(i), with Cauchy data

V(x,0) = 0,  V,{x, 0) = A\x\2/2 = n.

Finally

|jC|2 ft

U{x, t) = [-±- + /   V(x, s)X,(x, s) ds
2      Jo

\x\2     fn 2

2(n-2) \l+4t     (l+4i)"/2,

and, as required

u{x) = U{x, t{x)) = n/2{n - 2) - \x\2~n/(n - 2),

since 1 + 4t(x) = \x\2 , which follows from X(x, t) = 0.
We next collect some facts from Hamilton-Jacobi theory. First we make two

definitions.

(2.31 ) Zx = {x : X(x, t) = Xt(x, t) = 0 for some t},

(2.32) K=   U   ßy.
yercH

K is the characteristic tangent defined in [L]. The set Zx is obviously the set

of algebraic singularities of the function x h-> t(x) defined by X(x, t) = 0, as
long as X(x, t(x)) is defined.

The next lemma relates Zx to the characteristic tangent K.
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Lemma 2.2.  Zx c K.

Proof. We use the following basic facts:
(a) g(x, dX(x, t)/Bx) is constant along bicharacteristics.

(b) dX(x° , 0)/dx = B<p(x°)/dy .
Both (a) and (b) can be deduced from the fact that A can be constructed as

a function with derivatives A, = -g{x, ¿¡(x, t)) and dX/dx = £(x, t), where

¿¡(x, t) = £\y{x, t), t], Ç[(y, t)] is the solution of (2.17)-(2.18) and y(x, t)
defined by (2.15)-(2.16). Hence,

Tt8 \X ' dx^X ' 'V = dt8^X ' ^X ' ^ = 8xXt + 8& = &AÏ ~ 8(8x = °

on bicharacteristics, since (2.17) holds there. This proves (a).

As for (b) we have 8X{x°, 0)/dx = £(x°, 0) = 8tp(x°)/dy from (2.18).
Now suppose x° e ZA. Then A(x°, t°) = 0 for some t° . Then y(x°, t°)

is defined, since A(x°, t°) = X[y(x°, t°), t°]. Therefore x° = x(y°, t°), which

means that x° e ßyo. We must show that y° e Tch which implies ßyo c K.
From (2.11), property (a), and property (b) we have

Q = Xt{x\f) = -g(x°,^c{x°,f)Sj

Moreover, by (2.13)-(2.14),

A(x°, /°) = <p(y(x°, i°)) + t(m - l)g (y(x°, t°), |^(^(x°

= ^°) + i(m-l)g^°,^(};o))=0,

which implies (p{y°) = 0. Hence,

P0>0) = ¿r(y^(y0))=o,

which means that y° e rCH as required.

We also need

Lemma 2.3. (i) Zx is everywhere characteristic and tangent to Y along Ich •

(ii) If x° is an exceptional point of YCh , i-e., X(x°, t) = 0 in a neighborhood

of t = 0, then ßxo c YCn in a neighborhood of x°.

This lemma is proved in [G-K-L] using Hamilton-Jacobi theory and we omit

the proof here.
Leray's result regarding existence of the solution is stated in the following

theorem.

Theorem 2.4 [L, G-K-L]. Consider the Cauchy problem (*), where Y is not

everywhere characteristic. Assume also that x° is a nonexceptional regular point

ofY. Then (*) has a unique local solution in Q\K for some neighborhood Q

of x°.

The proof follows directly from the transformation method presented above

and from the Cauchy-Kovalevskaya theorem. Note that the condition that x°

t°)))
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be nonexceptional implies that the equation A(x, t) — 0 defines an algebraic

function x i-> t(x) in view of Weierstrass' Preparation Theorem.

These results have been extended by Hamada who shows that the same con-

clusion is valued if g(x, Ç) contains a multiple factor and if x° is nonexcep-

tional in a wider sense than in Leray's theory. (See [Ha] for details.) In this

case however the singularities on K may be essential.

The detailed study of the problem (Q*) is made possible by the fact that the

A-function in this case can be computed explicitly (this is done in §3) and that

the transformed problem (ß***) is covered by the following theorem, which

claims existence of a global solution.

Theorem 2.5 (Miyake [Mi], Persson [P]). Consider the following noncharacter-

istic Cauchy problem (/eC, xeC"-1):

(i)

Bmu     m~l I BP \

j£+Y[      Y     Oa{X,t)w{irxU))+      Y      h(X,t)D^tU
p=0   \\a\=m-p j       \ß\<m-\

= f(x,t).

(ii) dqu(x, 0)/dtq — Wq(x), 0 < q < m - 1, where wq(x) are entire

and the coefficients aa(x, t) are polynomials in x of type: aa(x, t) =

2"2|j>|<|a|c)'W*5'> where cy(i) as well as bß(x, t) and f(x, t) are ana-

lyticin Cf'xß, íicC,.

This problem has a unique analytic solution u(x, t) which may be analytically

continued along any arc in C"-1 x Q.

The equations (i) which satisfy condition (iii) are called Persson equations.
Persson [P] proved this theorem for the case where all coefficients are entire.

Miyake [Mi] proved a general theorem comprising even Goursat problems. In

that theorem the coefficients are allowed to depend only continuously on i. An
alternative proof of Theorem 2.5 appears in [J].

Example. The equation utl + x2uxx 4- (x + t)uxt + u = 0 is a Persson equation,

whereas un + x3uxx + u = 0 is not.

We also state some classical results concerning singularities, which will be

needed later.

Theorem 2.6 (Delassus, le Roux [De]). Let u be a solution of problem (*) where

all functions appearing in equation (2.1) P(x, D)u = f are analytic in some

domain £lcCN. Suppose u is analytic in Q\Y, where Y is a regular analytic
set. If u is not analytically continuable across x° e Y, then Y is characteristic

with respect to P at x°.

The proof of this theorem follows directly from a theorem of Zerner.
We say that a surface S = {x : <S>(x, x) = 0}, where O is real-valued and

hence 5 of real codimension 1, is Zerner characteristic at x° e S with respect

to P, if Pm{x°, dO(x0, x°)/dx) = 0. x is the complex conjugate of x, i.e.,

x = (xi, ... , Xjv) = (x{ - ix[',..., x'N — ix'ú), where x' and x" e E^ are the

real and imaginary part respectively of x.



THE CAUCHY PROBLEM IN C 11

Theorem 2.7 (Zerner [Z], [Hö 2, Theorem 9.4.7]). Let u be an analytic solution

of P(x, D)u = f in the domain Z = {x: 0(x, x) < 0}, where all functions

appearing in the equation are analytic in some domain Ú. Suppose x° e dZ,

x° e Q and dZ of class C1 at x°. Then, ifdZ is not Zerner characteristic

at x°, u(x) can be analytically continued across x°.

Proof of Theorem 2.6. Let Y be defined by <p(x) = a(x', x") + iß(x', x") = 0.
Set 5" = {x' + ix" : a(x', x") = 0} . Hence Y c S. Then, u is analytic in Q\Y
implies that u is analytic in £l\S. Suppose that x° 6 Y. The Cauchy-Riemann

equations yield

8a       1 / da      . da \ __ I I    da da \

dx] = 2 [dx] ~ ldxf) = 4 y dx] ~   ldxf)

I (da,   .d¿\ _ I (da_       dß_\
4 ydx'j    dx'jj   4 ydx'j    dx'!)

I (lËL. _ LÊ1.\ - 1 d(P
~ 2 \2dx] ~ 2dx'j) " 2d~xf

Hence, Y is characteristic if and only if S is Zerner characteristic. The con-
clusion follows from Theorem 2.7.

The Delassus-le Roux theorem (Theorem 2.6) can be slightly strengthened by

means of a classical result by Hartogs [Ha] concerning the sets of singularity of
analytic functions, not necessarily single-valued.

We make the same assumptions on the analyticity of the coefficients in the

equation Pu = f as before.

Theorem 2.8. Let u satisfy P(x, D)u = f in Q\r, where Y is a regular C1

surface of complex codimension 1 in the domain flcC". If u is analytic in

Q\r and not analytically continuable across x° e Y, then

(i)  T is an analytic set in Q..
(ii)   u has singularities on all Y n Q.

(iii)   T is characteristic with respect to P in Q.

Proof, (i) and (ii) constitute the theorem of Hartogs in the version given in
[B-T, Satz 19]. (iii) follows from Theorem 2.6.

We get directly the following corollary.

Corollary 2.9.

(i) No proper subset Y' ^ 0 of an irreducible algebraic variety Y can be

the set of singularities of a solution of (2 A).

(ii) If u is analytic in £l\Y, where Y isa C1 set of real codimension >2,
then Y is a removable set of singularities.

This study concerns in general possible singularities. The actual development

of a singularity depends in general on the Cauchy data. One can, however, in

certain cases prove the existence of singularities at characteristic points as the

following theorem due to Harold S. Shapiro shows:
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Theorem 2.10 [Sh 1]. Let u(x) be a local solution of the equation P(x, D)u = f
with Cauchy data w = 0 on the initial surface Y = {x: <p(x) = 0}. Suppose

that

(i)   <p is irreducible and regular at x° e Tch •

(ii)  f(x°)¿0.
Then u(x) must develop a singularity at x° .

(Note that the condition w = 0 is no restriction. With w ^ 0 one can

replace u by v = u - w).

Proof. Suppose that u(x) is not singular at x° e Y. Since the Cauchy data
vanish up to the order m - 1 on T, u can be written u = q>mv for some

holomorphic v in a neighborhood of x° (cf. [B-T, p. 92]). Hence, for \a\ = m,
Dau = (pA + m\Da<p • v and for \a\ < m, Dau = tpB, where A and B are

holomorphic near x°. Therefore,

P(x, D)u = (p • C + m\vPm(x, dcp/dx),

where C is another holomorphic function near x°. But since x is character-

istic, Pm(x°, d<p{x°)/dx) = 0, and hence P(x°, D)u(x°) = 0, contradicting

/(x°)#0.

We conclude this section with some examples taken mostly outside the class

(ß*) of problems illustrating the concept of A-globalization and giving a pre-

liminary view of the different K- and L-types of singularities which will be

studied in §4.
In the case where the A-function can be determined and where the trans-

formed equation (* * *)(i) turns out to be a Persson equation with entire coef-

ficients, the solution formula (2.29) u(x) = U(x, t(x)) can be given a global

interpretation. Also, the singularities of u can be seen to depend only on A
since the equation A(x, t) = 0 defines the function x i-> t(x). In fact, if x°

is a point not on Y such that A(x°, t°) = 0 for some i°/0 and if x° does

not lie on the envelope of the family of surfaces in C^ defined by A(x, t) = 0

(with t interpreted as the parameter of the family), then it is clear that w(x)
can be continued analytically from a point of Y to x° along a curve lying in

the set

A — {x : A(x, t) = 0 for some t)

and avoiding the envelope. This analytic continuation corresponds to a similar

continuation of U{x,t) from (x°, 0) to (x°, t°). We call this process A-
globalization. It is clear that the envelope of the surface family is identical with

the characteristic tangent K and constitutes a possible set of singularities (cf.
Examples 1 and 4).

Another possible set of singularities is the complement Ac of A. These

sets will be called L-singularities in §4, (more precisely, initial or asymptotic

L-singularities) (cf. Examples 2 and 3). It will also be shown (Example 5) that

due to the multivaluedness of the function x >-> t(x), there may appear yet

another type of L-singularities, called in §4 latent singularities.

Note that the surface family {x: A(x, t) — 0} itself may have independent in-

terest. Since t = 0 corresponds to the initial surface T = {x: f(x) — A(x, 0) —

0} the family can be viewed as a deformation on the surface Y induced by and

characteristic of the principal part of operator P.
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In the list of examples below we will give for each problem, i.e., couple of

operator P and surface Y, the corresponding A-function, bicharacteristics ßy ,
Ac-set and characteristic tangent K .

Note first that for first order operators (m = 1), formula (2.14) shows that

A(x, t) = <p(y(x, t)).

Also, first order operators with coefficients linear in x give rise to a transformed

equation (* * *)' of Persson type.

Example 1. P = ai(d/dxi) + a2(d/dx2), r:x2+x2-l =0; ßy: x¡ = yj+ajt,

j = 1, 2; A = (xi - ait)2 + (x2 - a2t)2 - 1 (i.e., the deformation consists of a
translation of Y in direction (a\, a2)). Ac = 0 , K = translation envelop of

T, i.e., two straight lines with direction (a\, a2).

Example 2. P = xx(d/dxi)+x2(d/dx2), r:x2+x2-l = 0; ßy:Xj=yje', j =
1, 2 (i.e., straight lines through y in direction towards the origin but avoiding

this point unless y - 0) ; A = (x2 + x2)e~2t - 1 ; Ac = {(xi, x2) : x2 + x2 = 0} ,

K = 0 (no envelope due to the blow-up character of the deformation). Here,

Ac is an L-singularity which does not meet Y. This type will be called an

asymptotic singularity in §4.

Example 3. P = X[(d/pax\) + x2(d/dx2), Y: x2 - x2 = 0; ßy: x¡ = y je',

; = 1,2, A = x2e~' - xie-2'; Ac = {(x.,x2):x, = 0 or x2 = 0}\{(0,0)},

K = 0.

Here Ac U {(0, 0)} is an L-singularity which meets Y at the characteristic
(and exceptional) point (0,0). In §4 this will be called an initial L-singularity.

(This example appears in [L] as an illustration of the exceptional case).

Example 4. P = x2(<3/<3x.) - Xi(d/8x2), Y: x\¡a\ + x¡/a¡ -1=0; ßy:xx =
y i cost + y2 sin t, x2 = -y\ sin t + y2 cos /  (i.e., in R2 :  circles with radius

Jy2 + y2 ); A = (xi cos t - x2 sin t)2/a2 + (x\ sin t + x2 cos t)2¡a\ - 1 (i.e., the

ellipse T is rotated around the origin); Ac = 0, K — {(xi, x2) : x2 + x2 =

a2} U {(xi, x2) : x2 + x2 - a2} . In E2 , K is obviously two circles as indicated.

Example 5. P = d/dx\, Y: x2x2 - xi - 1 = 0 ; ßy : x\ = y\ + t ; x2 = y2 ;

A = x2í2 + (l-2xix2)í+x2x2-xi-l ; Ac = 0, if = {(xi, x2) : x2 = -\} . The

function x h-> t(x) defined by A = 0 obviously has an unbounded singularity

at x2 = 0 on one of the two branches of its Riemann surface. This singularity,

which clearly also appears in u(x), is an example of what is called a latent

L-singularity in §4.

In the case of first order operators it is well known that the analytic continua-

tion of the solutions can be achieved along the bicharacteristics (cf. Kreiss [Kr]).

Obviously the A-globalization takes this form as shown by Examples 1-5. In

the case of higher order operators, the picture is not that simple. This is shown

by the fact that the A-function given by (2.13)—(2.14) does not take the simple

form <p{y{x, t)) as in the first order case.

The last two examples deal with second order operators. In Example 6 the

transformed equation (* * *)(i) is a Persson equation with singularities in the

coefficients which however do not affect the solution u(x). This will be shown

in §4.
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Example 6. P = d2/dx\ - d2/dx2, Y: x2Ja\ + x¡/a¡ - 1 = 0;  ßy: Xj =
yj{l+4t/aj), X = x2/(a2 + 4t) + x2/(a2-4t)-l; Ac = 0 , #:x2 = ±(xi =±1)

(uncoupled signs), where 1 = Ja2 + a2 .

In M2 the deformation takes place within the square bounded by the four

lines of K.

In §4 it is proved that in the corresponding problem for P = A2 , K consists

of the four lines x2 = ±i(x\ ±1) (I = Ja2 -al, ai > a2), which cut R2 at the

foci Xi = ± 1, x2 = 0 of the ellipse Y.

Example 7. P = Xi(d2/dx2) - Y!jZ\ d2/dxj (generalized Tricomi operator),

r:x„ = 0.
Here, g(x, <*) = x^2 - £^~/ Ç] and A = q>{y) + tg(y, d<p/dy) = yn + ty{,

where y\ and y„ depend on x and t in a way given by the solution x = x(y, t)

of the Hamilton equations (2.17)—(2.18). We get Xi = yx + t2, x¡ = y¡ (2 <

j < n - 1) and x„ = y„ + 2yxt+ |i3. Hence, A(x, t) = x„ - tx\ + \t*.
The transformed equation (* * *)(i) here takes the form

Vtt = Xl(t2 - Xl)Vnn - 2xi Vnt - 2tVu + (X! - t2) Y Vjj,

7=1

which is a Persson equation with entire coefficients and hence yields entire

solutions V(x, t) and U(x, t). The function A(x, t) indicates that the initial

plane xn = 0 is deformed into new planes x„ - ixi + \t3 = 0, in such a way

that the envelope, K, is defined by 9x2 - 4xt3 = 0, a cylindrical surface with a

cusp at xi = x„ = 0.

Summary of main notions.   (*) is the main Cauchy problem defined in §2.
(ß*) is the same Cauchy problem when Pu = f is given by (2.6), a linear

second order normalized equation.
(**) and (* * *) are transformations of (*) defined in §2.
(ß**) and (ß* * *) are the corresponding problems specialized by (2.6).
g(x, ¿;) = Pm(x, Ç) is the principal symbol of P ((2.4)).
The quadratic surface Y is defined by <p(x) = x1Ax + BTx + C = 0 ((2.7)).
A point of x° e T is characteristic if g(x°, 8<p(x°)/dx) = 0.
Tch is the set of characteristic points of Y.
The function A, defined as the solution of (2.11)—(2.12), is determined by

(2.13)-(2.18).
Its form in the (ß*)-caseisgivenby (3.2) and more precisely by (3.19)—(3.21)

when <p(x) is in normal form.

In (3.23) T(x, t) and N(t) are defined as the numerator and denominator

respectively of A(x, t).
Also, in (3.23)-(3.24) the polynomials y/j{x) and a Ax, t) are defined.
ßy is the principal bicharacteristic defined by (2.16)—(2.17) issued from y e

Tch •
The characteristic tangent K is defined as Uyer H ̂  ((2-32)).

The notion of Persson equation is defined in connection with Theorem 2.4.

The normal form of tp is defined in Lemma 3.2 and in connection with that

the matrices Ip , Sp and the forms Ip{x), Sp(x), and Spm\x).
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The eigenvalues of A (the leading matrix in the normal form of <p) are

denoted a¡, 0 < j < M. If 0 is an eigenvalue it is denoted oq .
Pj is the multiplicity of a¡ and a¡ = -\¡4a¡ ((3.22)) are the poles of

A(x, t).
The variable notation (xw , x(ik), x^kv^> , etc.) is explained in (3.25)-(3.27).
<pW denotes Ej=i(9<P/dXj)2 ((3.34)).
W(x,x') is defined by (3.48).

The sets of singularities of u and t are denoted Su and St respectively.

The following is a list of the most important sets of singularities and their

defining relations:

¥ (3.37)
DiscT (3.41)
V" (3.43)
lj (3.44), I (3.46), I** (3.47), I* (4.5)
L = x¥uZ* ((4.6))

Lj, LA, and L¿ are defined in the text before Lemma 4.5.

Fk (5.8) (focal sets)

Xk (5.15), Yk (5.16), Yk (5.17).

3. Algebraic preliminaries

In this section we turn to the study of the multivalued function x h-> i(x) de-

fined by the equation A(x, t) = 0 and appearing in the solution formula (2.29)
u(x) = U(x, t(x)). To this end we determine the A-function corresponding to
the problem (ß*) in terms of the given quadric defined by

(3.1) <p(x) = xTAx + BTx + C = 0.

From now on we let x € C" be «-dimensional, where n is the number of

variables that appear in the principal part A„ of the operator. We let x' e
CN~n denote the remaining variables, which in the sequel will play the role of

parameters. We assume that 1 < n < N. Following this convention we let the

vector B in (3.1) depend linearly on x', B - B(x'), and in like manner the
constant C depends quadratically on x', C = C(x'). This dependence will in

general not be indicated explicitly.

Lemma 3.1. The X-function corresponding to the principal operator A„ and the

quadric Y defined by (3.1) is

(3.2) A(x, t) = ^-xT(I-G-l)x + (x-tB)TG-lB + C,

where

(3.3) G = I + 4tA.

(Note that (3.2) is valid even when t = 0, since t factors out of the expres-

sion xT(I - G~l)x . It is easily checked that A(x, 0) = tp(x) as required.)

Proof. We use formulas (2.13)—(2.14) to determine A(x, t), i.e., first (2.14)

X[y,t] = <p(y) + tg(y,d<p/dy),

where wè have set m = 2.

(p(y) = yTAy + BTy + C   implies    -~- = 2Ay + B.
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Since g(y,0 = Ej=^h

*{^) = (%)T(%) = i2>TAT+BT)(2Ay+B)

= 4yTA2y + 4BT Ay + BTB.

The Hamilton equations (2.17) here take the form

<34) (ia)   § = 2{y,     !<;<„,       (ib)   % =0,

(ii)    ^=0, «€C\

with initial conditions

(i)   x(0) = y,    x'(0)=y',       yeC, y'€CN~n.

(11)   £(°) = ¿j^M-

Equations (3.4)-(3.5)(ii) imply £ - dtp/dy. Hence, from (3.4)(i),

(a)   dx/dt = 4Ay + 2B,

[    ' (b)   dx'/dt = 0

which have the solution

n   . (a)   x=y + t(4Ay + 2B),

[     ' (b)   x'=y'.

Note that (3.7) defines the principal bicharacteristics, when y e Tch • Note also

that (3.7)(b) implies B(y') = B(x'), C{y') = C(x').
Inversion of (3.7)(a) gives

(3.8) y = (/ + 4M)-'(x - 25/) = G_1(* - 2Bt).

Moreover, from (2.14),

X[y,t]= yTAy + BTy + C + t{4yTA2y + 4BT Ay + BTB),

or equivalently

ALv, t] = yTA(I + 4tA)y + BT(I + 4tA)y + tBTB + C,

i.e.,

(3.9) X[y, t] = yTAGy + BTGy + tBTB + C.

Assuming t ^ 0 and using A = (G - I)/4t (from (3.3)) we get

(3.10) X[y, i] = [l/4t)yT{G - I)Gy + BTGy + tBTB + C.

Now, inserting (3.8) in (3.10) gives

X(x, t) = ^-(x - 2Bt)TG-\G - I)GG-\x - 2Bt)

+ BTGG-\x - 2Bt) + tBTB + C

= ^-(x - 273/)r(/ - G~l)(x - 2Bt) + BT(x - 2Bt) + tBTB + C

= ^-xT(I - G~l)x - BT{I - G~l)x + tBT(I - G~X)B

+ BTx - 2tBTB + tBTB + C

which is (3.2).

= ±-xT(I - G~l)x + (x - tB)TG~lB + C,
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If t = 0, we have x - y in (3.8), and (3.9) gives A = (p{x) as required. This
completes the proof.

Note that the linearity of equations (3.7) is a consequence of the fact that Y
is a quadric. For surfaces defined by higher order polynomials, equations (3.7)
would be at least quadratic in y causing y(x, t) and A(x, t) to be multival-

ued with algebraic singularities. In that case no global existence result for the
transformed equation (* * *)(i) of §2 corresponding to Theorem 2.5 is known

to the author.

We now proceed to the problem of transforming an arbitrary complex quadric
to one given in a normal form using transformations which leave the operator

A„ invariant, i.e., complex orthogonal transformations in the x-variables and
translations. Obviously it is not possible to achieve a complete diagonalization

in the complex case.

Some notation: Ip is the p x p unity matrix

j = k,

¿k,

Sp = j(Up + iVp), where Up and Vp are (p x />)-matrices such that

\j-k\ = l,

\j-k\*l,
l,     j + k=p,

j -1,    j + k=p + 2,        p>2.

0,      otherwise,

We define 5i = 0. Hence Sp is of form (p > 2)

(IP)jk (1,    J10,    j

(U>)7*={0;

p>\.

P>2,

/0    1    0

sp- 2

0
1

1
0

V

0

1

\
0

1

0/

I
+ 2

(
0

1

Vo

0     1      0 \

1

0
0

-1
-1

0

/

We also occasionally write Ip(x) for xTIpx, Sp(x) for xTSpx, and Sp])(x)

for xTSJpx.

Lemma 3.2. Any complex quadratic polynomial <p(x, x') can be transformed

under translations and complex orthogonal transformations in the x-variables to
a normal form

(3.11) xTAx + BTx + C,

where A and B take the following forms : A is a constant symmetric n x n

matrix consisting of diagonal blocks A^ :

(3.12) A = [A({), A{2),..., A(q)] where each A(j) is of form

(3.13) AU) = ajlp + CjSp for some p>\.
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In (3.13) üj is an eigenvalue of A . e¿ can take the values 0 or 1. B is an
«-dimensional vector with components depending linearly on x'. Moreover,

Bj = 0, unless Ajj is the first diagonal element of a block v#) corresponding

to the eigenvalue av — 0.

Before the proof of Lemma 3.2 we collect some facts on the Sp matrices.

We use the following notation for Jordan boxes: Jp is a (p x p)-matrix such

that

m   -J1'     k-J = l>

Lemma 3.3.

(i) Sp is linearly similar to Jp.
(ii) Det(alp + Sp) = a».

(iii) Rank(Sp) = p - 1.

(iv) The operation SJP i-> SJp+l consists of letting the four superdiagonals of

Sp take one step towards the nearest corner.

In particular, xTSpx = 0, xTSp~lx = \(x\ - ixp)2, p > 2, and xTSp~2x =

(xi - ixp){Xp-i + ix2), p > 4.

(v) The forms xTSJpx, 0 < j < p - 1, are linearly independent.

(vi) xTSJpx is reducible if and only if j >p -2, p > 2.
(vii) For fl^O, xT(aIp + Sp)x is reducible if and only if p < 2.

(viii)

(Ip + 4t(alp + Sp))-> = Y n+^LiSi,        P > 2-
;'=0 v ;

(ix) If BT - (73!, 0, ... , 0) and GP = IP + 4tSp, then

B p_1 i
(x - tB)TG;lB = -± Y(-4t)J(Xj+i + ixp-j) + BiXl - tB\ + ^{-4t)pB2.

7=1

Proof. Property (i) is given in [Ga]. Properties (ii) and (iii) are consequences of

(i) and corresponding properties of Jp . Property (iv) also mimics the behaviour

of Jp and is easily checked by explicit computation. The linear independence

of (v) (in the vector space spanned by the monomials x;x¿) follows from (iv)

since this property implies that each form xTS]px contains some generator XjXk

which does not appear in any other. (Incidentally, we assume that Sp — Ip .)

(vi) and (vii) follow from corresponding properties of Jp. As for (viii), we

make the following ansatz

p-i
G;1 = (Ip + 4atlp + 4tSp)~l = Y CJSP-

7=0

Hence
p-\

GpGpl =c0(l + 4at)Ip + Y((l + 4at)cj + ^Cj-i)SJp,

7=1
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where we have used Sp = 0 from (iv). Identifying with Ip yields Cn =

(1 + 4at)~l and c¡ = -4(1 + 4at)~lCj-\, which implies that

cj = (-4ty(l + 4at)-J~l,       ; = 0, 1,..., p - 1,

as required, (ix) follows from direct computation and from the information on

the leftmost columns in Sp that can be extracted from (iv).

Proof of Lemma 3.2. The properties of the matrix A are given in [Ga]. It

remains to show that the components B¡ may be set to 0 as stated. We can
assume that A consists of only one block A = alp + eSp (e = 0 or 1). Set

x = y+v , where v is a constant vector to be determined. Then xTAx+BTx =

yTAy + yT(2Av + B) + vTv + BTB. We want Av - -\B, which is solvable
for v if a t¿ 0, since DetA = aP (Lemma 3.3(ii)) regardless of the value

of e. Assume now that A = Sp, i.e., a = 0, e = 1. Let A' be the result
of removing the first row and column from A and let B' and v' be B and
v with first components removed. A has rank p - 1 (Lemma 3.3(iii)). Also

A' has rank p - 1, since the first row of A equals the last row times / and

since, similarly, the first column of A equals the last times i and since, finally

A\\ = Aip = Ap\ = ApP = 0. Hence, the equation A'v' = -\B' is solvable for
v' which means that all components of B except the first can be annihilated
by the translation.

According to Lemma 3.2 the quadratic form <p(x) in normal form can be

expressed as a sum of C(x') and blocks of either a, ß, or y type to be defined:

(3.14) y/a := alp(x),        p > 1 (a-block),

(3.15) ¡/fß := alp{x) + Sp(x),       p>2, a¿Q (/3-block),

(3.16) y/y := Sp{x) + Bxxx,       p>\ (y-block).

Since the operation

(3.17) <p^A{<p) = X

is linear blockwise, the problem of determining A(<p) for arbitrary <p in normal
form is solved if A(y/a), A(^) and A(y/y) are determined.

Lemma 3.4. Suppose that the operation A o/~(3.17) corresponds to the principal

operator An. Then

(3.18) A(y/a) = alp(x)/(I+4at),       p>\.

(3.19) A(^ = ^+gi^%),       p>2.
K       ' yYp'     \+4at     ¿^    (l+4ai)7+i

p-\ B p-i

(3.20)

(i)   A(^) = Y(-4t)J-lSPJ)(x) + y 5>4í);'C*7+i + ixp-j)

7=1 7=1

+ ^t52(-4^ + 751x1-752í,        p>2,

(ii)   A(y/y) - BiXi - B2t,       p=l.

(3.21) A(C(x')) = C(x').
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Proof. Follows immediately from the general formula (3.2) and from properties

(viii) and (ix) of Lemma 3.3.
We assume from now on that a\, ... , % are the M different nonzero

eigenvalues of A . If 0 is an eigenvalue of A , it is denoted aç,. The multiplicity

of the eigenvalue a¡ is denoted p¡. Also set

(3.22) o,:=-l/4a,,       j>\.

Hence a; are the poles of A = A(<p).

We obtain immediately, as a corollary of Lemma 3.4,

Lemma 3.5. A = A(<p) can be expressed in either one of the following forms:

T(x,t)_     Ej-o ¥j(x)tj
(3.23) A =

NW      itiUV+tojtYj'
M

(3.24) A = y m
oj(x, t)

0(l+4a^

Here, y/j{x) are at most quadratic polynomials. Oj{x,t) are polynomials in

x and t, at most quadratic in x.
We assume that (3.23) defines T(x, t) and N(t) by identification of nu-

merators and denominators. It is assumed that T and N have no common

nonconstant factor.
We introduce some further notation in order to facilitate the study of the

polynomial T(x, t). First set

M

(3.25) 9(x) = Y9j(xU)) + C,
7=0

where each <pj contains the part of <p which involves the eigenvalue a¡. x(;)

is the corresponding segment of the variable vector x . Moreover,

Mj

(3.26) 9j(x^) = Yfjk{xuk)),
k=\

where each <pjk is the sum of all (j, A:)-blocks, i.e., the blocks of form ajlk(x) +

S/;(x),and xW the corresponding variables. Finally,

(3.27) <Pjk(xuk)) = Y<PMxUkV)î>

v=\

where each <pjkv is a (j, Ac)-block and x{Jkv> a variable segment contain-

ing k variables, x\ikv),... , x[jkv). Let also B^ correspond to the vari-

ables x(°fc> and 5^) to x^^. Hence A«*") is a segment of B of length

k: b\   ', ... , B^ . By Lemma 3.2 all components of B corresponding to the

variables xw , j: > 1, are zero. Only B(kv) do not necessarily vanish.

In order to determine the degree, Deg T, of T(x, t) as a polynomial in t,

we introduce the indices Caß and Çy which are related to the a- and /3-parts

and to the y-parts of tp respectively.
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First, set

(3.28)

where

(3.29)
Then define

(3.30)

Next set

(3.31)
and

(3.32)

M

ß-=Y rJ
7=1

r¡ := max{p: Sp appears in tpj}.

ifC = (po = 0,

otherwise.

bk := (BW)TB{k)

p :— ma\{q: Sq appears in <p0}.

It follows from (3.20) that the degree of A(ç>o) depends on whether bp and

bp-i vanish and whether t3,     ^ 0 for some v .

(3.33)     Cy = {

if tpo = 0 (i.e., if/? = 1),

ifôpSÉO,

if 6p = 0 and (Z>p_i ^ 0 or äJ""' ^ 0 for some v),

if bp = bp-i s 0 and B^v) - 0 for all v.

(pv)

We therefore set

f 0,
P,

P-U

P-2,
Lemma 3.6. (i) Deg T — Cap + Çy < n .

(ii) If tp is not everywhere characteristic, then Deg T > 1.

Proof, (i) follows directly from Lemma 3.4 and the definitions of Caß and Cy •

It is clear that Caß < fi, Cy <p, and hence degT < fi+p < « .
(ii) We prove that if deg T = 0, then <p is everywhere characteristic, i.e.,

g(x, dtp/dx) -0 on T = {x : <p(x) = 0}. Since A(x, 0) = <p(x) and tV(0) =
1, we have A(x, 0 = <p(x)/N(t). Hence dp/dx = N(t){dX/dx) and A, =
-<p(x)N'(t)/N2(t). The Hamilton-Jacobi equation gives g(x, dX/dx) = -Xt.
Hence,

g r'^w'öx,
» in ¿j

' dxj '

N2(t)

But since g(x, Ç) is homogeneous in ¿¡ of degree w , we have

1      (     dq>\        (p{x)N'

N2

and

g(x,^) = -<p(x)N'(t)Nm-2(t) = 0

on T, which proves the lemma.

We next set

(»4) '°'W:=t(^)2

and observe that the coefficients y/Q and y/\ in the representation T(x, /) =

E;=i ¥j(x)tJ satisfy the following lemma.
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Lemma 3.7. (i) y/o{x) = (p{x).

(ii) y/\{x) = -<p(2\x) + ktp(x) for some constant k.

Proof, (i) follows from the relation A(x, 0) = <p(x).

(ii) We use the Hamilton-Jacobi equation (2.11), which for P = An means

that

*--£(£)'■

i.e., for t = 0

«*• °>=-1 Gt(*■ °>)2 - -t (ü«)2=-»»«*>■
But

A        N'WT(x  tU Tl{X't]
Á'~    N2(t)1{X't) + ~ÑW

and hence

-<p{2\x) = X,(x, 0) = -N'(0)T{x, 0) + T,(x, 0)

= -N'(0)(p(x) + y/i(x),

which proves the lemma.

Lemma 3.8. If <p(x) is irreducible, then T(x, t) is irreducible.

Proof. Since <p{x) is irreducible and y/j{x) are polynomials of at most degree
2, it is impossible that T(x, t) = Q\(x, t) • ß2(x, t), where both Q\ and ß2
depend on x. Suppose t - a is a factor of T{x, t). Then a ^ a,, since

lim,_a; A(x, f) = oo for almost all x. Hence A(x, a) exists and vanishes

identically, i.e., A((pjkv)\t=a = 0 for each (j, A:)-block (pjkv . But this is impos-

sible in view of Lemma 3.3(v) which assures linear independence of SpJ'(x),

j = 0, ... , p - I . Hence, T(x, t) is irreducible.

We observe that the equation

(3.35) T(x,t) = 0

can be used instead of A(x, t) = 0 as defining equation for the function

x i-+ f(x). This is also more convenient since T(x, t) is a polynomial defined

everywhere.

We note also that for any x° e Y = {x : q>(x) = 0} there is at least one

function element of x >-► t{x) which takes the value t = 0 on T\rcH > since
<p(x) is always identical with ^oM in the representation

r

(3.36) T(x,t) = YVj(x)tJ-
7=0

It is also clear that for points x° € r\rCH this function element is unique, since
y/i(x) ^ 0 in r\rCH by Lemma 3.7.

Consider the function x>-*u(x) as a set Wu of function elements (uj(x),Wj),

where Uj(x) is holomorphic in the domain Wj. We assume that this set is com-

plete in the sense that it contains a function element on each domain to which

the function is analytically continuable.



THE CAUCHY PROBLEM IN CN 23

Definition 3.1. The initial branch of u(x) (solution of (ß*)) is represented by

the subset W£ of Wu such that for each element (w;(x), Wj) of W£: Wjf)Y¿

0 and Uj(x) satisfies the Cauchy data of (ß*) on r\rCH • Let t3£(x°) be the
open ball centered in x° : 73e(x°) = {x:\x- x°| < e} .

Definition 3.2. Let Z be an analytic set. u(x) develops an initial singularity on

Z if for some e > 0 and x° e Y n Z no initial function element (i.e. element

of W£) can be analytically continued across Z n 5s(x°) in t3£(x°) .

We need also the following definitions:

(3.37) ¥={x:^(x) = 0},

(3.38) ZT = {x: T{x, t) = Tt(x ,t) = 0 for some t}.

(Recall the corresponding set Zx related to A defined by (2.31).)

(3.39) St = the set of singular points ofx« t(x).

Classically we have (cf. [Gr-Fr]) St = V U ZT.
Here, the singular set 4* allows unbounded singularities whereas Zj only

contains algebraic singularities. We can also relate St to the discriminant Dj

of T. Recall that Dt is defined as the resultant of T and Tt (cf. [W]), i.e.,

Vr

ry, (r-\)\¡/r_x                      ■■■              yx      (Co 0 0

0            ry/r                            •••             2ft    ri ft     ■■•      0

0              . .          0    ri//r. 2ft    V\
y/r            • •    •          y/i     y/0     0 0 r- 1

rows
) ■ U      yr ••• Vl        W)l

The sign of (3.40) does not concern us here since we are only interested in the
zero set Disc T of DT :

(3.41) Disc T = {x : DT{x) = 0},        r > 2.

Dt is only defined if r > 2. For the case r = 1 we set

(3.42) Discr = rCH,        (r=l).

Dt is clearly a polynomial since y/r always factors out of the determinant in

(3.40).
It is well known that x° e Disc T, if
(i) T(x°, t) has a multiple zero, i.e., x° E ZT, or

(ii) Wr(x°) = Wr-\(x°) = 0, i.e., x° e ¥**, where

(3.43) «F* = {x : yr(x) = Wr-i (x) = 0}.

Clearly rcf.
Case (ii) above corresponds to the case where formally t — oo is a double

zero of T(x, t).

The above definitions mean that Disc T = Zr U *P* and S, = Disc T U »F.
We finally relate St to the characteristic tangent K = U^ercH & ■ ̂ efine first

(3.44) lj = rl(aj),

_ ( Zj,    if t = aj is a multiple zero of T(x, i) for all x e Z;,

7      \ 0      otherwise.
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(I**  ¿ 0  means that  I**   is defined by  ß(x)  = 0, where   T{x, t)  =

(t - aj)2Q\{x, t) + Q(x)R(x, t); Q, Q\, and R are polynomials.)

M

(3.46) £=UZ;>
7=1

M

(3.47) z** = |Jz;*.
7=1

Note that ZT can be decomposed as

ZT = ZxU{Knl)WL**.

Here, ^nl = K\Zx , since it follows from the proof of Lemma 2.1 that the

only points of K which do not belong to Zx are those of form x = x(y, a,),
y G rCH • Since X[y, a;] = 0 if y e rCH, these x are elements of Z =

Ujii i"1 ("7) • Hence, we have ZT = KWL** and 5, = ¥ U Zr = ¥ U # U I**.

Also, since Disc r = ZT U ¥**, Disc T = AT u I** U ¥•*.
We collect these facts in a lemma:

Lemma 3.9. (i) St = ^U ZT = »FuDiscT = VuKuZ**.
(ii) Disc r = K U ¥** U I**.

We finally present lists of polynomials in normal form representing three

different classes of surfaces that are crucial to our theory.

Lemma 3.10. Consider quadratic polynomials in normal form. The following are

reducible :

(i) alX2 + C2(x'),

(ii) a\x\-\-a2x\,

(iii) aix2 + S2(xW),

(iv) aiI2(x^) + S2(x^),

(v) S2(x) + C2(x'),

(vi) S2(x(°21)) + S2(x(°22)),

(vii) 53(x),

(viii) 731(x')x1+731(x')C3(x')>

(ix) C4(x')C5(x') •

The following define everywhere characteristic surfaces:

(x)   Ip{x), p>2,
(xi)  BTx^ + 2X1 S2(x(°2">) + C(x'), where 73r73 = 0 and q > 0.

The following define everywhere noncharacteristic surfaces;

(xii) Ip(x) + Cq, 0 # c0 <E C, p > 1.

(xiii) 53(x) + C\, 0 ^ C\ e C,
(xiv) 73rx(01» + 2X1 ^2(x<02^) + c(x'), where 0 ^ 73r5 e C, q > 0,

(xv) 73rx + c2 , where B = k(x')B°, k is linear in x', t3° is a constant

vector (73or73° ̂ 0), and 0 ± c2 e C.
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Remarks. We let q = 0 in the above sums signify that the sum is identically

zero. From now on we let W denote the sum in (xi):

W(x, x') := 73rx(01) + YS2(x{02v)) + C(x'),

(3.48) ¿Í

where BTB = 0, q>0.

This polynomial is identically characteristic in the sense that 2~]"=i d2W/dxj =

0, whereas £)"=i d2Ip/dxj = 4Ip , implying that Ip (p > 2) is characteristic but

not identically characteristic. Also, it follows from (3.20)-(3.21) that A(W) =
W.

Proof of Lemma 3.10. (i)-(ix). We use the fact that the sum of two blocks,
<P(i)(x) + <P(2)(y)> is reducible if and only if a^ and q>(2) are squares. This

together with properties (vi) and (vii) of Lemma 3.3 reduces the proof to an

inspection of a small number of cases.

(x)-(xi). A general quadric cp(x) = xT Ax + BTx + C is everywhere charac-

teristic if and only if

( -7T- 1   -7T- = <P(2) = km   for some keC.
\dxj   dx

Since dtp/dx = 2Ax + B, <pW = 4xTAx + 4BTAx + BTB . This condition then
leads to

(3.49) (i)   A2 = kA/4,        (ii)   BTA = kBT/4,        (iii)   BTB = kC.

These conditions must hold for each (j, A:)-block. The only such blocks which

satisfy (3.49)(i) are, by Lemma 3.3, those with second order part given by Ip(x),

S2(x), or 0. Inspection of the possible cases shows that only (x) and (xi) are

everywhere characteristic.
(xii)-(xv). The condition for a quadratic polynomial <p(x) to be everywhere

noncharacteristic is

(3.50) 1 eRadId(p, <p{2)),

where Id(tp, ç>(2)) is the ideal in C[x, x'] generated by m and ç>(2> and Rad Id

its radical. We refer to Lemma 4.7 which shows that only polynomials cp(x)

for which deg T < 2 need to be checked. We omit the details of the proof,

which again is reduced to checking a small number of cases.

We conclude with explicit versions of some reducible quadratic forms ap-
pearing in Lemma 3.10.

(3.51) S2(x) = (//2)(x,-/x2)2,

(3.52) al2(x) + S2{x) = (xi - ix2)((a + \)x{ + {ia + ¿)x2),

(3.53) S¡(x) = (I + i)x2(xi - ix^).

4. Singularities in C^

Assume that equation (2.1 ), P(x, D)u — f, is of form(2.6), i.e. has principal

part Pm = An . Then the transformed equation of problem (ß***) reduces to
n n

(4.1 )        Vtt- Y^tvn - UjvJt - hivt) - Y bMtVj - XjVt) -cXtV = 0.
7=1 7=1
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Since A( is a quadratic polynomial and X¡ are linear polynomials in x, we

can conclude that (4.1) is a Persson equation and Theorem 2.4 can be applied.

This means that the solution U{x, t) of (ß***) exists in C^ x £2, where Q =

Cr\{ai, ... , aM} , since {aj}f=l is the set of poles of the coefficients A, Xt, X¡,

and Xjj of equation (4.1). Hence, the solution u(x) - U(x,t(x)) of the

original problem has possible singularities in X = \jf=l t~l(aj) which can be

attributed to the outer function (x, t) h-> U(x , t). Then, if Su is the total set
of singularities of w(x), we must have

(4.2) 5„cS,Ul = Ä'uS'UZ,

since St = K U Y U I" from Lemma 3.10 and I** c X.
Before stating the main theorem we investigate the sets *F and S more

closely.

Lemma 4.1. The following list comprises the cases of nonempty ^-sets:

(i) (aß-case) If

M

<p = <paß = Y(aJIpMU)) + RAxU)))>
7=1

where Rj is a sum of Sp-terms in the x^-variables, then

V=ix:Yhi(xU)) = o\-

(ii) (aßW-case) If <p = tpaß + W(x, x'), then

¥ = {(x,x'): W(x,x') = 0}.

(iii) (y-case) Let Çy be the index defined in (3.33), Mq the number of Sq-
blocks appearing in <po, and p the maximal order of blocks in <po. Moreover,

bq = {B^)TB^,

p    Mç

<Po = YY(^(x{0qv)) + B['lv)x^v)).

q=\ v=l

There are three cases according as Çy = p, p - 1, or p - 2 :

(a) Çy=p(bpï0):

¥={(x,x'):M*') = 0}.

(b) C? = P - 1 [bp = 0 and (bp-i t 0 or b\"v) £ 0 for some v)) :

¥={{(*, *'):£(-4rVi(*')

+ t^YB\pv)(xp°pv) + ixfpv)) = o}.
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(c)   Çy = p - 2 (bp = bp-i=0 and B[pv) s 0 for all v) :

¥={(x,x'):^(-4rV2(*')

+ t^Yi(^pv)-iXp0pv))2

v=l

,p-2 Mp-i

+ t^fl y Bf-l-v)(xp°:rl-v) + ixf'p-Kv)) = o}.
2 v=l >

Moreover, the cases of nonempty W^-sets are case (ii)(c) above in the special

case where Mp = 1, Mp-\ =0, bp = bp-\ = bp-2 = bp-i = 0. In that case

¥** = {x : x<0p) - ixp0p) = 0} .

Proof. Follows from the formulas (3.18)—(3.21) from which in each case the

leading coefficient y/r of T(x, t) can be read off. In the case of the ^"-sets,

recall that 41** = {x : y/r{x) = y/r-\{x) = 0} and the fact that of the blocks

SJP(x), ; = 0, 1,...,p - 1, only S^~2)(jt) and 5^_1)(x) have a common
factor (Lemma 3.3).

Lemma 4.2. The following list comprises the cases of nonempty 1,-sets. For each

term <pj of <p we define the corresponding set X; = t~l(aj). Here Mq is the

number of Sq-blocks appearing in (p¡ and p the maximal order of blocks in <Pj.

(i) (a-case). If m¡ = ajIPj(x^), then

lj = {x:IPj(x^) = 0}.

(ii) (aß-case). If

p    Mq

tp^ajIp^ + YY^0"^'
q=2 v=\

then

z7 = Ix : Y(xipv) - ixppv)}2 = ° I •

Moreover, the cases of nonempty I,**-sets are case (ii) above, when Mp — 1,

Mp-i =0. In that case Z** = {x : x\iP) - ixpip) = 0}.

Proof, (i) follows directly from the representation Z; = {x : T(x, a¡) = 0}.

As for (ii), assume that <pj = a¡Ip + Sp(x). From (3.19) it follows that the

corresponding part of T

Tj(x,t) = (\+4ajt)p-lajlp(x)

(4-3) + ¿(1 + 4aJty{-4ty-2-'Spp-x-j\x)

7=0

and hence 7)(x,a,) = (-4aj)P-2Spp~l)(x). Obviously Tk(x, a,) = 0 for

k ^ j. For a general (p¡ as given in the statement of the lemma, Z7 is defined

by a sum of Spp~{'-blocks as indicated. In the case of Z**, we have a nonempty



28 GUNNAR JOHNSSON

(4.4) 1 u,

set when t = a¡ is at least a double root of T(x, t) = 0 on a set of complex

codimension one. This happens if y/o{x) and ^i(x) have a common factor,

where y/j are the coefficients of (1 +4ajt)j in (4.3): 7) = YfjZo V)(l +4O/07 •

Hence, Z** is defined as the zero set of the common factor of S/f'^ix) and

5^_1,(x) in the case Mp = 1, Mp-X =0.

Inspection of the lists in Lemmas 4.1 and 4.2 shows that all ^-sets are char-

acteristic. The Z-sets are characteristic except in case (i), when pj = 1. Since
any possible set of singularities must be characteristic (Theorem 2.5), we can

delete these sets defining

if Pj = 1 in case (i) of Lemma 4.2,

otherwise.

M

(4.5) £*=UZ7*-
7=1

The set of possible singularities of u(x) is therefore reduced to K u ^Fu Z*.

We define

(4.6) L = ¥uZ*,

(4.7) L*=4'uZ.

The set L*\L may for natural reasons be called a locus of a ghost singularity.

We can now state the main theorem:

Theorem 4.3. Suppose that u(x) is a solution of Cauchy problem (Q*). Then,

(i) u(x) can be analytically continued along any path in CN\(K U L).
(ii) The set of singularities of u, Su, is a union of irreducible components

ofKUL.
(iii) u(x) is defined at each point of K\L and has there at most a bounded

singularity.

Proof. Part (i) has already been proved, (ii) follows from (i) and Corollary

2.9. The statement in (iii) is clearly true for x° e K\Ç¥ U Z). If x° lies

on a "ghost singularity" Z\Z*, i.e., x° 6 K n (Z\Z*), then U{x, t(x)) is not
a priori bounded at x°, since we do not know the character of the singularities
of U(x, t). However, U(x, t) must annihilate a bounded, algebraic singular-

ity of t(x) and must therefore also be bounded at (x°, i(x°)). The proof is

complete.

We next collect some information on the set K in a theorem. Let r¿H be

an irreducible component of Tch > the set of characteristic points of Y. YJCH

is said to be exceptional if each x° € r¿H is exceptional, i.e., T(x°, t) = 0 in

some neighborhood of t = 0 for all x° e r¿H . We say that K is degenerated

along r¿H if \Jyerj ßy C r¿H . K is degenerated if K is degenerated along

each component of Tch •

Theorem 4.4.

(i) K is empty if and only if Y is everywhere noncharacteristic.

(ii) K  is degenerated along r¿H  // and only if r¿H  is exceptional.   If
deg(T) = 1, then K is degenerated.



THE CAUCHY PROBLEM IN CN 29

In the remaining part of the theorem we assume that K is neither empty nor

degenerated.

(iii) K is a ruled, everywhere characteristic surface tangent to Y along Yea ■

(iv) K = Disc T\L = Disc 7\( V U Z**).
(v) The defining polynomial, Qk , of K is a factor of the discriminant Dt

of T and has degree deg(ß/i:) < 4r - 4 < 4« - 4, where r = deg(T) =

Cap + Cy ■
(vi) K is reducible if and only if YCn is reducible.

Proof, (i) From the definition of K, K = Uj-ercH &y » ̂  l% c^ear tnat ^ = 0

if and only if Tch = 0, since ßy , y e Tch , is always a line or a point, i.e.,
nonempty.

(ii) If T¿H is exceptional, then K is degenerated along K by Lemma 2.3(ii).

If, conversely, K is degenerated along YJCH , then for fixed x° e T¿H (y(x°, t) e

r¿H in a neighborhood of / = 0. Hence X[y, t] = tp(y)+t(m-l)g(y, dw/dy) =

0 in a neighborhood of t = 0 and A(x°, t) = 0, i.e., r¿H is exceptional.

(iii) That K is ruled follows from the definition. The rest follows from
Lemma 2.3(i).

(iv) is proved in §3 (Lemma 3.9).

(v) follows from the expression (3.40) of DT observing that each component

of the determinant has at most degree 2.

(vi) We use the fact that an analytic set, 5, is irreducible if and only if its

set of regular points, 5REg » is connected (cf. [He]). Since Ä' is a ruled surface
and its set of nonregular points has codimension > 1, it is always possible to

connect a regular point of K with a regular point of TCh by a path that avoids

singular points of K. Hence the problem of connectivity for KREG is reduced

to that for (Torreo •

It should be mentioned in connection with the characteristic tangent K that a

kind of latency phenomenon occur when deg(T) > 3. In that case the function

x t-> t(x) has at least three branches. A point x° G K may have the property

that two branches of t, t\ and t2 , take the same value there and hence may

develop a singularity, whereas the third branch tj, does not become singular
at x°. That this nonsingular branch may be the initial one when x° € Y is

shown in the example of the three-dimensional ellipsoid, where K intersects R3

along the so called focal hyperbola which cuts the ellipsoid Y at points not on

rCH and hence cannot be the locus of initial singularities. This phenomenon,
which obviously does not occur when deg(T) = 2 will be discussed in §5 in the

ellipsoid case and presently also in connection with L-singularities, where we

will give precise definitions of latent and initial singularities.

L, the set of L-singularities was defined (4.6) as the union L = 4* u Z*.
This union suggests a possible classification of the irreducible components of

L, but it seems more natural to make the following distinction among the L-
components:

LL, latent singularities
L[, initial singularities

LA, asymptotic singularities

We make the precise definitions below.

Let LJ be an irreducible component of L.
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Definition. Li is is initial if V' n Y ^ 0 and if some solution m(x) of (ß*)

develops an initial singularity on U . (See Definition 3.2.)

Definition. V is latent, if V V\ Y ̂  0 and L7 is not initial.

Definition. L7 is asymptotic, if L7 n T = 0 .

It follows immediately that each irreducible component of L is either la-

tent, initial, or asymptotic. We say that the above types of components of L
comprise the sets Ll , L¡ , and LA respectively. Hence, L = LLU L/UL^.

Lemma 4.5. Let V be an irreducible component of L. If V n T (¡L TCh . then
V is latent.

Proof. Let x° e V n r\rCH • Then by the Cauchy-Kovalevskaya theorem each
solution exists initially in some neighborhood of x°. Hence V is latent.

The initial singularities are related to the exceptional points of TCh according

to the following lemma.

Lemma 4.6. Suppose YJCU is an irreducible component of Yqh ■

(i) If x° e r¿H is an exceptional point, then x° e V for each component

V ofL.
(ii) If r¿H is exceptional then YJCB c L¡.

Proof, (i) If x° is exceptional, then y/j{x°) = 0, 0 < j < r. Hence, if SJ'(x)

is the defining polynomial of V , SJ(x°) = 0, since Sj(x) = Yl%ocj¥j(x) for
some Cj.

(ii) If T¿H is exceptional, K is degenerated along r¿H (Theorem 4.4(ii)).
But from Theorem 2.10 it follows that (ß*) in general, (for almost all Cauchy

data) has a solution with singularities initially on rCH • These singularities must
propagate along an analytic surface of complex codimension one (Corollary 2.9)

and hence L¡ must be nonempty. From part (i) it follows that YJCH c L¡.

Note that Tch is always exceptional, when T(x, t) = tp(x) + ty/\(x), i.e.,

when deg(T) = 1. When deg(T) = 2, rCH may be exceptional. This occurs,
e.g., when y/\{x) and y2(x) have a common factor as is the case when ¥** ^

0. It can be shown that if deg(T) > 3, TCh is never exceptional. The degree

of T can in fact be used as a measure of the complexity of the quadric Y.
The general rule is that with higher complexity only latent singularities exist, as

shown by the following lemma:

Lemma 4.7. If deg(T) >3,all components V of L are latent.

The lemma follows from the fact that, if Sj(x) is the defining polynomial

of V, SJ{x) is not an element of the ideal Radld(ç?, y/\), which corre-

sponds to the variety Tch • This can in turn be shown from the geometric
fact that if deg(T) > 3 there is always an x° e V n Ich such that the gradi-

ents dSj/dx, dtp/dx, and dy/i/dx do not vanish at x° and are not linearly
dependent. We omit the tedious proof of this fact.

We also state without proof that Sj(x) = 0 defines Lj , asymptotic or initial,

if and only if A(x, t) can be written

Ni(Oßi(x, t) + Sj(x)Q2(x, t)
A(x, t) =

N(t)
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where Ni(t) is a factor of the polynomial N(t). Q\(x, t) and ß2(x,i) are

polynomials. This shows that L¡ U LA is identical with Ac U Tch , where Ac

is the lacunary set of the A-globalization defined in §2.
Lemma 4.7 shows that in order to find initial and asymptotic components of

L it is sufficient to check the cases where deg(T) < 2. This makes it possible

to list all nonempty occurrences of LA- and L/-sets. If deg(T) = 1, clearly all

V are nonlatent, since <p + y/\ t = 0 defines a function t with singularities at

{x : ^i(x) = 0} on the unique branch of t. If deg(T) = 2, the ^-singularities
are in general latent:   y/2t2 + y/\t + tp = 0 defines the function t with two

branches, t = -^i/2^2 ± J(i//2 - 4(py/2)/4y/2 . In general only one branch of t

develops a singularity at {x : y/2(x) = 0} n Y. The other branch takes the value
t(x) - -<p(x)/y/\{x) on {x : y/2(x) = 0} in a neighborhood of Y, which means

that this nonsingular branch is the initial one. However this latency property

fails if y/2 and y/\ have a common factor. This case can in fact occur. It

is equivalent to the case when 4* = *F**.   Hence, in case deg(T) = 2 and

V c *P*, V is nonlatent.
In like manner it can be shown that the Z-singularities also in general are

latent. If we rewrite the equation t2y/2+ty/i+<p - 0 by means of the substitution

s = \¡{t - aj) it reads c2s2 + C\S + c0 — 0 where Co = W2, C\ = 2a/^2 + ¥\ »

c2 = T(x, aj) - y/2a2 + y/\a} + q>. Here, if c2 and c\ have a common factor, s

tends to oo, i.e., t tends to a7, on both branches. Hence Z7 = {x : Co{x) = 0}
is a nonlatent singularity if c2 and Ci have a common factor. This happens in

Examples L6 and L7 below and is equivalent to the case when Z; = Z**.

With these remarks we present the list of nonlatent L-singularities. For each
quadric Y - {x : tp(x) = 0} we indicate the corresponding A-function (with
respect to Pm — A„), the LJ-components and in some cases the characteristic

tangent K. In the first four examples deg(T) = 1 which means that all V-

components are nonlatent and K is degenerated. In the following five examples

deg(T) = 2. Here latent L;-components may occur and K is not degenerated.

Recall the notation b(k) = (B^)TB^ . We also use the notation W{x*, x')

to indicate that the x-variables appearing in W, x*, do not appear anywhere

else in the polynomials <p .

Example LI.

q> = alp(x) + W(x*, x').

1 + 4at
j _ f x:Ip(x) = 0},    ifp>2,

\ 0 otherwise.

L2 = {(x,x'): W(x*,x') = 0}.

If IT is a constant ^ 0, then Ll c LA and L2 = 0. Otherwise L1 c L/.

Also, L2 cLj.

Example L2.

tp = aiIPl(xM) + a2IP2(xW).
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fli/p,(s(1))     a2IP2(xW) _ 4axa2t(Ip[ + IP2) + axlPx + a2IPl

\+4axt        \+4a2t (1 + 4a.r)(l -\-4a2t)

x:IPl(x^) = 0},    ifpi>2,

0 otherwise.
L' =

L
2_ Jx:Lp2(x(2)) = 0},    ifp2>2;

t 0 otherwise.

L3 - {x : 7Pl (x«1)) + 7P2(x(2)) = 0} ;        V C L/, j = 1, 2, 3.

Example L3.

91 = T^V0» + 5>2(x<02">) + B(2v)xf2v)) + Y S3(x^) + W{x*, x'),

X = y/\t + <p,

where

Wl=- ô(i) _ 2iY B{2v\xf2v) - ixf2v)) - 2/ ¿(xj03"' - ixfv)f,
i/=i j/=i

L = {x : y/\{x) = 0}.

Here the noncharacteristic surfaces (xiii), (xiv), and (xv) of Lemma 3.10 are

included. In case (xiv) L = 0. In case (xiii) and (xv) L = LA . Otherwise
L = L¡.

Example L4.

M2

<p = alIp(xW) + Ys2(x{l2l')),        P>2-

_ 4a2tIp(XW) + <p{x)

(l+4a,i)2

L1 = {x : 7p(x(") = 0} = Lj.

Example L5.

<p = aj2(x^) + 52(jc(1)) + W(x*, x').

H^(l+4fli02 + a172(l+4ai0+^2

(l+4a,i)2

L1 = {x : xj" - ix^ = 0} ,        K = {x : a2(x{ + ix2)2 - 2iW = 0}.

L1 =LA,    if W = constant ¿ 0 {<p is reducible if W = 0).

Ll = L¡,    if W is not constant.

L2 = {(x, x') : W{x*, x') = 0} is latent, i.e., L2 = LL.
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Example L6.

<p = alIp(xW) + Si(xW),       p>\.

A = 7^ + S3(*(0))-4^V0))

= Y^-t{<P + 4*(xj°> - ixf){ai{\ + Oxf - 2/(x|°> - ixf ))

8/aii2(x{0)-/xf)2).

L1 = {x:x{0)-/xf} = L/.

l2 = |x:7p(x(1))-0},    if/?>2,

\ 0 otherwise.

L2 = LL.

Example L7.

<p = aiIp(xW) + S3(xW),       p>3.

ailp Si 4tS\

l+4ait     (l+4aií)2     (1 + 4<M)3

—±-—{aiIp{\ + 4a{t)2 + (1 + 4<M)(x!13) - /x<13))

. ((1 + 0xf > - ¿(xj13> - /*<»>)) + ¿(x<13> - taj»>)*).

L1={x:x|13)-/x<13)} = 0 = L/.

L2 = {x:7p(x(1') = 0} = LL.

Example L8.

9» = 54(x) + W(x*, x') = (xi - ¿x4)(x2 + 1x3) + x(x2 - /X3)2 + W.

X = 8/i2(xi - /X4)2 - 4/"i(xi - z'x4)(x2 - z'x3) + tp.

L — {x : X\ - ¿x4 = 0} = L/.

K = {x : (xi - ix4)(x2 + 1x3) + W7}   if W ^ 0.

(W = 0 implies that tf = {x : x2 + /x3 = 0}.)

Example L9.

M2

<P = Y^xi02v) + B?V)xf2u))) + W{x*, x').
1/=1

A = 2/¿W + (bW-liYB^Hx^-ix^)] t + f.

If t3J2i/) = kuq(x'), where kv e R and g(x') is linear in x', then L = {(x, x')

i(x') = 0} = L,.
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Remarks corresponding to the nine cases.

1. This case includes the sphere 23/=i x2 = 1 and various cylinders, Yfj=\ xj

= 1, p < N. If n = N, we have asymptotic singularities in these cases

on {x : £/li x2 = 0} and {x : Yfj=\ x) = 0} respectively. The classical

Newton potential for the sphere and the Schwarz potential for the above surfaces

determined in [Kh-Sh 1] show that unbounded singularities actually occur, in

[S-S3] appears an example where the singularities exhibit a very strong growth,
in fact u{x) > cel/\x\ along a certain path.

If n < p, another type of singularity appear:

Example. Pm = Aj, i.e., P(D)U = UXiXi+ lower order derivatives. q> = x2 +

x2 - 1, N = 2. Since « = 1, tp must be written <p = x2 + W, where

W = x\ - 1. Hence L1 = 0 and L2 = {x : W = 0} = {x : x2 = ±1}.
Here K is degenerated and L equals two lines which are tangent to Y at

r<:H = {(0, ±1)}. Moreover the lines L are clearly the only characteristic
curves tangent to Y at rCH • Now a result of Dunau [Du] states that under

certain conditions which in this case imply that the surface L is the unique

characteristic surface tangent to Y at a point x° e Tch , the same conclusion
is valid as in Leray's theorem with L in place of K, even if x° is exceptional

(thereby slightly extending Leray's Theorem 2.3). Dunau's conditions involve

even the nonprincipal part of P but are satisfied in this second order case, e.g.,
if the first order part of P is identically zero.

This example, together with some other of type <p = Ip{x) + W, are the only

ones among the quadrics to which Dunau's theorem is applicable.

2. In [Kh-Sh 1, p. 20] the Schwarz potential in R3 (continuable in C3) of
1 + x2 ~ X3the conical surface x,2 + x2 - x2 = 0 is determined. The result is

Ur(x) = C,(3x32 - |x|2) + C2(3x| - |x|2)
,      X — x3     „    .   .
log H-l-3x3x

|x|+x3

where |x|2 = x2 + x\ + xf and Q , C2 two given constants. In agreement

with the result here, t/p has singularities in L1 = {x : x2 + x2 = 0} and in

L3 = {x : |x| — 0} . The singularities of Uy are logarithmic in L1 and algebraic

in L3, which shows that L-singularities may be bounded or unbounded.

3. As noted in the example L — {x : x\ - z'x3 = 0} is an asymptotic

singularity, if <p = S3(x) + Co = (1 + i)x2{x\ - ¿x3) + Cq , cq ^ 0. This
can be observed in R3 after the substitution x3 ■-► /x3 which transforms

A3 to d2/dx2 + d2/dx2 - d2/dx2 (i.e., the wave operator) and ip to tp' -

cix2(xi + x3) + Co . The plane Xi + x3 = 0 is clearly characteristic with re-
spect to the wave operator and asymptotic to the transformed surface P = {x :

*'(*) = 0}.
5. A similar subexample as in case 3 can be given here. If W = 1 and if

z'x2 is introduced in place of x2, we get the two-dimensional wave equation

and the hyperbola T = {x : (xi - x2)(xj + ax2) + 1 = 0}. Here Xi - x2 =

0 is a characteristic asymptote. It can be shown that K represent the two

characteristic tangents of Y of form xi + x2 = c.
6, 7. These two similar examples have the same singular sets. But note the

difference: In Example 6 the Ip and 53 variables are not overlapping whereas

they are in Example 7. In case p = 3 it can be shown that in both examples

there are two different characteristic surfaces which are tangent to Y along
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Tch: L1 = L[ and L2 = LL. These cases are together with those discussed in
Example 1 the only cases of tangent L-sets among the quadrics. The exhibited
lack of uniqueness means however that the result of Danau cannot be applied.

Moreover, in these cases the latent set L¿ satisfies L¿nr c Tch and is therefore
a counterexample to the converse of Lemma 4.5.

To make the example more explicit, suppose that p = 3 in Example L6 and

a\ = a{\ + i). Moreover we make the same substitution /x3 -» x3 as in case 3
above to make the example real. Tch has two components,

Tch : x2 = Xi - z'x3 = 0.

rCH^2 + ¿(x1-X3)=X1(l-T¿l)+X3(l + ¿)=0.

L1 (initial) defined by Xi-z'x3 = 0 and L2 (latent) defined by x2+x2-r-x2 = 0

are both tangent to Y along YlCH, whereas K, defined by xi(l - l/16a2) +

x2/2a-i-x3(l-r-l/16a2) = 0, is tangent along YqH . Clearly T¿H is an exceptional

component and YqH is not.

8. Example 8 can also be given a real interpretation. It shows that the

Cauchy problem for Ux¡x¡ - UXlX2 + UXjXi - UXiX4 = 0 with entire Cauchy data

on (xi -x4)(x2 + x3) - j(x2 -x3)2 = Co may have an L-singularity on the plane
Xi — x4 = 0.

From the list of nonlatent L-singularities we can also extract the fact, not

proven so far, that no irreducible component V of L is identical with some
component of K. For deg(T) < 2 this follows from the list, we need only

check L-sets that are tangent to Y. For deg(T) > 3 it follows from Lemma
4.7.

The list also proves most of the following theorem.

Theorem 4.8. All solutions of Cauchy problem (Q*) are

(i) entire, when Y is identically noncharacteristic, i.e.,

q>{x) = BTx(0) + Y S2{x{02v)) + C(x'),     where 0 / BTB € C, q > 0.

(ii) Defined everywhere, i.e., L = 0, when

(a)
9

<P = Va = Y aix) + c°>        0 ^ Co e C, or

7=1

(b)

p    Mq

<p = (Py = Y Y(s<t(x{0qv))+*ii")*i0"')) >    ° *b(p) e c
q=\ u=\

(B<P) = 0 and 0^H)eq, or
(c)

(p = <Pa + <Py

(iii) Single valued, when <p = <p${x), where çj3 is the polynomial given in
case 3 of the L-list.
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Proof, (i) All solutions are entire when Tch = 0, i.e., Y is everywhere non-

characteristic, and when LA = 0. Comparing Lemma 3.11(xii)-(xv) and the
L-list yields the given polynomial which is identical with case (xiv) of Lemma

3.11.
(ii) It follows from the definition of L, L = *F U Z*, that L = 0 only if y/r

is a nonzero constant and all nonzero eigenvalues are simple. These conditions

yield the three cases.
(iii) u(x) is necessarily single value if (a) U{x, t) is entire and (b) t(x) is

single valued, (a) implies that tp must only contain ç?rterms. (b) implies that

deg(7) = 1.
These conditions imply that the given polynomial is the only remaining pos-

sibility.

Remark. In [Kh] part (i) of Theorem 4.8 is proved for all cylindric surfaces,

not only quadric.

5. Singularities in R^

In this section we mostly study equations with principal part A#« and the sin-

gularities in RN of the solutions of the corresponding Cauchy problems (ß*).

To show that the results for solutions of Cauchy problems have relevance

for the classical Newton potential of a bounded domain in R^ , we state the

following lemma, versions of which can be found in [Kh-Sh 1] and [Kh-Sh 2].

Let u be the Newton potential of the bounded domain Q in R^, with mass

density /, i.e.,

where / and dQ are assumed to be real analytic.
Let u = Uj in Q and u = ue in Qc. It is well known that u e Cl(MN).

Let v be the solution of the following Cauchy problem in RN :

AnV =f in a neighborhood of <9Q,

v=^- =0   ondQ, j=l,...,N.
dxj

Assume that v can be continued real analytically in a domain Q.v .

Lemma 5.1. (i) u¡■ = v + ue in Qc n Qv .

(ii) ue — -v + Ui in Q n Q.v .

This means that since ue, which satisfies Aue = 0 in Í2C, is real analytic

in Qc and w,, which satisfies Au, = / in Q, is real analytic in Í2, v has

precisely the same singularities as «, in Qc and the same singularities as ue in

Q. It turns out that in the quadric case that concerns us here, i.e., ellipsoids in

R^, Ui lacks singularities in Qc , whereas ue in general develops singularities

at the focal sets.
Before entering into this study, however, we make a short review of some

classical results in this direction for the two-dimensional case and the Laplace

equation. Already Herglotz [Her] studied the two-dimensional Newton poten-

tial by means of the function which later was named the Schwarz function. For

the corresponding Cauchy problem studies have been made by Davis [Da] and
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Khavinson-Shapiro in [Kh-Sh 1-2]. We follow here most closely the presenta-

tion in Karp [Ka].
Let r be a real analytic curve in R2, defined by q>{x, y) = 0. (We use

here x and y as variables in R. Also, z = x + iy, z = x - iy.). Setting

x - (z + z)/2, y = (z - z)/2z, we obtain tp(x, y) = 0(z, z) = 0. Solving this

equation for z gives a function z ^~z = s(z), called the Schwarz function for

T. By means of this function the following two-dimensional Cauchy problem
for the Laplace equation can be solved.

A2m(x , y) = 0 in a neighborhood of Y.

(5.2) du     dw du     dw
u = w,    — = —   and   — = —       onT,

dx      dx dy      dy

where w(x, y) is real analytic in a neighborhood of Y.

Lemma 5.2 [Da, Kh-Sh 1, Ka]. Problem (5.2) has a solution u(x, y) = ReF(z),
where

,.->        dF _ dw (z + s{z)    z-s(z)\     .dwfz + s(z)    z -s(z)
(■5-3) ~TZ — "STT l ï        '        T;        ) _ ldz      dx V     2      '      2/     )      dy \     2      '      2/

where s(z) is the Schwarz function for Y.

The proof can be found in the indicated references. We have immediately

Corollary 5.3. If w(x, y) is real entire (i.e., entire when extended to a function

in C2), then Su, the set of singularities of u is Su = {(x, y) : z = x + iy is a

singularity of s(z)}.

Herglotz showed [Her] that the two-dimensional Newton potential with mass

density given by an entire function has the same property.

Using Corollary 5.3 we locate the singularities of solutions of (5.2) in three

different cases.

Example 1. Y: a\x2 + a2y2 -1=0, a\ ^ a2.

4>(z, s) = s2{a\ - a2) + 2sz(a¡ + a2) + z2(a\ - a2) - 4

s{z) has algebraic singularities in Disc0, the zero set of the discriminant D^

of <f> as a polynomial in s. It follows that Disc(/> = {z : z2 = 1/ai - l/a2}

which implies that the singularities are located at the two foci of the ellipse Y.
These singularities are obviously 7^-singularities in the present terminology.

Example 2. Y: x2 +y2 -1=0. </>(z, s) = zs- 1, here s(z) = 1/z, which gives

an unbounded singularity of 5 at the origin coming from the leading coefficient

in (f> and corresponding to an asymptotic singularity set LA when interpreted
in C2.

Example 3. Y: (x2 + y2)2 + 4x2 + 2 = 0. (This curve belongs to the class of

bicircular curves also studied by Herglotz [Her].) Here <f>{z, s) = s2(z2 + 1) +

2íz + z2 + 2. Here, apart from the algebraic singularities given by the dis-

criminant (computation shows {(x, y) : z2 = -1 ± /'}), there is also unbounded

singularities of s at z = ±i, i.e., at (x, y) - (0, ±1), due to the leading coef-
ficient. These singularities are however latent since they only occur on one of

two branches of s(z).
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The three examples show singularities of type K, LA, and LL respectively.

(The unbounded singularities of s(z) may or may not induce unbounded sin-

gularities of U(x, y). In any case they should be classified as L-singularities.)
There are no L/-singularities in the real two-dimensional quadric case, a fact

that also can be read off from the L-list in §4. In order to find latent singulari-

ties one has to use at least third order curves as shown by the Schwarz function

method.
Herglotz observed the corresponding distinction between bounded and un-

bounded singularities of s(z) in the case of the Newton potential. He at-
tributed the difference to the fact that for two-dimensional quadrics the bounded

singularities appear at ordinary foci, whereas the unbounded appear at ex-

traordinary foci (e.g., the origin). According to a classical definition an or-

dinary focus of a curve in R2 is a point (a^, a2) such that the isotropic cone

(xi - a\)2 + (x2 - a2)2 = 0 in C2 is tangent to the complexified extension of Y

to C2 in at least two finite points. The focus is extraordinary if the tangential

points lie at infinity (cf. [PI, Dar]).
Note that the tangential conditions can be interpreted in terms of the Schwarz

function 5. The isotropic cone is transformed to an expression of type

(z - C\)(z — c2) = 0 by the introduction of the z- and z-variables. Hence

ordinary foci correspond to points z = c\ , z = c2 such that the lines z = c\,

s — c2 are tangent to the curve defined by <P(x, s) = 0. Extraordinary foci

occur when lines of this type are tangent at infinity, as are z = 0, 5 = 0 in the

case of the circle x2 + y2 - 1 = 0, i.e., sz - 1 = 0.
Since the classical definitions of foci can be extended (cf. [PI]) to spaces with

higher dimensions than 2, it is an interesting question to investigate whether

the couplings ordinary focus—bounded singularity and extraordinary focus—

possibly unbounded singularity hold even in higher dimensions. The results in

§4 indicate that they do, as far as singularities appearing at the foci, or focal
sets, are concerned. But the results also show that singularities also appear

at nonfocal sets. Such is the case, in general, for the initial and latent L-

singularities. Hence, the above focal singularity principle cannot be generalized

to higher dimensions without restrictions.

We now turn to the study of (ß*) in R^ , when T is a real quadric. In this

case it is actually possible to diagonalize the quadratic polynomial and we get

essentially only three cases:

(5.4, ,H,    £^p = 0,
7=1 °>

^IPj(xW)       (0)

7=1 °>

Note that we have replaced a¡ by \¡b¡■.

We assume here that the equation P(x, D)u = f is nonparabolic, i.e., its

principal part is A^u. This is no serious restriction. Results corresponding to
Theorems 5.4 and 5.6 can easily be proved in the parabolic case. We can write
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the three versions of (5.4) in a single form

(5.5) (p{x) = YJ^-1 = Co,
7=1

-*- IpMU))

bj

where Co = 1, 0 and x[0' in cases (i), (ii), and (iii) respectively. Accordingly

the equation (p^ = 0 can be written (modulo a constant):

(5.6) £^ = <i>
7=1 J

where Ci = 0, 0 and £ respectively.

The principal bicharacteristics ßy , y e Tch , are defined by (from (3.6))

(5.7) (i)   4j) = ylj) + fy^ =y\p(\ + *\ j=\,2,...,M.

In case (iii) we have also

(u) x;o)=^ = 2i.

We now define the focal sets, 7^ , by

(5.8) F, = I
M j (xUh

xeRN:IPk(xV) = 0   and    y t^-l = c2
fí\  bj-bk

where c2 = 1, 0 or x[0) - bk/4 in cases (i), (ii), and (iii) respectively.

We suppose that b\ > b2 > ■ ■ ■ > b^. In all cases we assume b\ > 0, in case

(ii) also b\i < 0.

Theorem 5.4.  K n R* = \Jk=l Fk .

This theorem holds for cases (i)-(iii). Note that some Fk may be empty as,

e.g., 7\ in case (i).

Proof (case (i)). We first prove that Fk c K n RN. Suppose x e Fk . Then

we claim that there is a y e TCh and a t e C such that x(v}) = ylJ\l + 4t¡bf)

v = 1,2,..., pj. Choose t = -bk/4 and ylj) = x¡P/{l - bk/bj) for j¿k.
Choose finally y(k) such that

7 (y^)     b2T Ip,{x(J))

i.e., such that y satisfies (5.6). (Recall that x e TCh if x satisfies (5.5) and

(5.6).) We check that y satisfies (5.5):

^iPj(y{J)) = v    hMu))       b2      iPj(XW)

£-   bj       l¿bj(i-bk/bj)2   bkf¿(bj-bk)2

IPj(xU))(bj-bk) =srIPj(xUÏ) =

as required. Hence the claim is proved and therefore Fk c Kf\RN.

We next need a lemma.
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Lemma 5.5.  ßy (y ê YCh) intersects RN only for some real t.

Proof. Suppose not. Then (from (5.7)) for some t = a + iß, ß ¿ 0, there is an

x e R^ such that

, (bj + 4t)2

and

% (bj + 4i)2

Note that all denominators are nonzero, when t £ R. Set

=   IP]{xM)   =        IPj(x{j))

1     {bj + 4t)2      (bj + 4(a + iß))2

_hMU))_
(bj + 4a)2 - 16/J2 + Siß(bj + 4a) '

-HPj(xU))ß(bj + 4a)

Hence,

Imvi =
1     ((bj + 4a)2 - 16/J2)2 + 64ß2(bj + 4a)2

or

Imvj = - kjß(bj + 4a),    where kj > 0.

(5.9) and (5.10) imply

M

(5.11) £lm^ = 0,

7=1

M

(5.12) YbJhnvJ = °-
7=1

Also (5.9) implies that at least one IPj(x^j)) ^ 0 and hence (5.10) implies that

at least two different 7Pj-terms, IPr and IPs do not vanish, i.e., kr ^ 0 and

ks¿0.
From (5.11) and (5.12) it follows that for all c :

M M

0 = Y(bj + c)lmVj = ~Ykjß(bj + c)(bj + 4a).
7=1 7=1

Now, take c = 4a. Then, -ß Ylf=\ kj(bj + 4a)2 = 0, which is impossible since
kj, bj, and a are real, all kj > 0 and kr,ks^0. The lemma is proved.

We can now prove that KnRN c \Jk=2 Fk . Suppose that x e K n RN . By
Lemma 5.5,

(5.13) xij) — y\j\\ + 4t/bj)   for some y e rCH and for some real t.
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Since y satisfies (5.5)—(5.6), not all ylJ> eU) Suppose yr ' and y¡

k ^ 1. Then by (5.13) at least one of xi ' and xj1' is not real which is

impossible. Hence only ^-components in a single y^ -block are not real. Then

xik) G R only if t = -bk/4, which means that x(k) = 0 for all v. This

determines t. Hence x„ = y„(\ - bk/bj) for j = 1,..., M. This implies

that IPk(x) = 0 and also, since y e TCH and satisfies (5.5) and (5.6), that

Ylj^k hj(x^)l(bj - bk) — 1. (Do the calculations in the beginning of the proof
in reverse order.)

This proves the theorem in case (i). The proofs of cases (ii) and (iii) are
similar.

Now suppose that bk > 0 and -bk+\ < 0. Then the A-globalization of
the solution u(x) of (ß*) is achieved as t varies between -bk/4 < 0 and

-bk+i/4 > 0 on the real axis. More precisely, u(x) can be analytically contin-

ued in Ak\K c R^, where

(5.14) Ak = {x eRN : X(x ,t) = 0 for some t e Ik},

where

Ik = {t el: -bk/4<t <bk+l/4},    if k < M,

and

IM = {t € R : -bM/4 < t}.

Note that the L-singularities are never encountered here since these always

correspond to constant ¿-values of form t = -bj/4 or infinity. This principle

of real A-globalization has clearly a complex counterpart achieved by letting t

vary in a complex domain including 0 and avoiding the a;-values.
In order to describe the real analytic singularities we make the following

definitions:

(5.15)

(5.16)

t/t :=

Yk:=l

{X G
pN . Ipk(xw) = 0},

M

X cx.-TIpÁxU)) cc

7=1
j¿k

(c2 takes the values 1, 0 or x\ '■ - bk/4 as in (5.8)).(0)

(5.17) <k ■=
A IPl(x(i))

x € Xk :  >    -r1—¡-—
PÍ bj-bk
iïk

>C2 >■

Note that Xk — Yk\JFk\J Yk and that Fk is the boundary of both Yk and Yk

and Xk.
Now write the equation A(x, t) = 0 in the form

(5.18)
kIp¿xU^      f  «

^ bj + 4t " ^  -bj - 4t + 3
7=1 j=k+l        J

rV».where c3 takes the values 1, 0 and x\ ' +1 corresponding to the cases (i), (ii),

and (iii) in (5.4).
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Note that the left member of (5.18) is decreasing in the interval Ik , whereas

the right member is increasing for fixed x . Moreover, if IPk(x^) / 0 then the

left member tends to +oo as t tends to -bk/4 within Ik . Likewise, the right

member tends to +oo as t approaches -bk+\/4 in Ik. These observations

are sufficient to motivate the claim that in RN\(Xk uXk+i) equation (5.18) has
a solution t e Ik. Moreover, if x e Xk, then (5.18) has a solution in Ik if

x e Yk. Similarly, if x e Xk+l, then (5.18) has a solution if x e Yk+l. We
can now state the theorem on real existence domains.

Theorem 5.6. Suppose that Y is a quadratic surface in RN given by (5.4)

where bk > 0 and bk+\ < 0. Then the real analytic solution of (Q*) exists in

RN\(Fk UYku Fk+l U Yk+\). If pk = \ the solution can be analytically continued

across Yk . The same holds for Yk+l if pk+\ = 1.

Proof. The proof follows directly from the observation motivated above that

Ak\K is identical with the existence domain of the theorem. The continuation

across Yk and Yk+l when pk — 1 and pk+l = 1 respectively follows from the

fact that Yk and Yk+l, normally parts of L-singularities, in the indicated cases
are only ghost singularities, i.e., subsets of L*\L. See Definitions 4.6, 4.7.

Corollary 5.7 (for ellipsoids). 7« case bM > 0 in (5.4)(i), i.e., in case the quadrics

are ellipsoids, the set of possible singularities of the solution of (Q*) is F m U YM

or (in case pm = 1) Fm ■

Remarks. The set FM in Corollary 5.7 is the focal ellipse (ellipsoid) of the

ellipsoid T and YM the corresponding domain inside Fm . The real focal sets

Fi, ... , FM-\, do not appear as sets of singularities in the real analytic case.

Thus, e.g., the focal hyperbola in case N = 3,

is not a set of singularity of u(x) as long as the analytic continuation is per-

formed within R3. This is also seen by the fact that it intersects the initial

ellipsoid at points in R3 and hence not at characteristic points. The Cauchy-

Kovalevskaya theorem excludes the possibility of the hyperbola being an initial

set of singularities. However, if the analytic continuation is performed in C3,

partly outside R3, the focal sets Fy , ... , Fm-i may carry singularities. This is
the latency phenomenon for TT-sets mentioned in §4 and caused by the fact that

the defining polynomial T(x, t) for the function x >-» t(x) is of degree > 2

allowing one branch of t to be analytic at a point where two other branches

develop an algebraic singularity.
To illustrate Theorem 5.6 we give several examples.

Example 5.1 (cone).

r:«p + ^>=o,      *,>0, »2<0.
b\ b2

Here Fx = F2 = 0 and the set of singularities is Su = Y\ U Y2 = Xx U X2.
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Example 5.2 (ellipse in R2).

T:xl + Xi = l,       bl>b2>0.
b\     b2

SU = F2 = {{±y/bl-b2,0)}.

Example 5.3 (rotation paraboloid).

Su = F1UYl,    where F, ={(0,0, ¿)},

and

y, = {x :xi =x2 = 0, x3 > \}.

Example 5.4 (prolate rotation ellipsoid).

r.xL + xi±Ä = u    bl>b2>o,
b\ b2

Su = F2 u Y2,    where F2 = {x : x2 = b\ - b2, x2 = x3 = 0},

Y2 = {x : |xi|2 < ¿>i - b2, x2 = x3 = 0}.

Example 5.5 (oblate rotation ellipsoid).

Y:X±±Xí + f = l,        bl>b2>0,
b\ b2

Su = F2 = {x : x2 + x2 = b\ - b2, x3 = 0}.

Example 5.6 (one-sheeted hyperboloid).

r.xl + xi + xl = u       b,>b2>0>
b\     b2     o3

3-

Su = F2UF3,

Fl = {x ■X2 = °' Ä - Á =l)    (hyperbola)-

F3 = {x:X3 = 0'Ä + Ä=:1} (ellipse)-

Example 5.7 (two-sheeted hyperboloid).

r.*?+*| + *Í = 1>        bl>0>b2>bi>
b\     o2     o3

Su - F2       (Fi = 0,  y, = X! = {x : X! = 0}, and hence a ghost singularity),

C X2 X2 17*^ = {x : x2 - 0, t——,-7—*t" = 1 ? (hyperbola, same as in Example 5.6).
t bx-b2     b2-bi       J
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Examples 5.4 and 5.5 can be compared to the following explicit versions of

the outer Newton potential ue of the corresponding ellipsoids considered as

boundaries of masses of constant density one, i.e.,

(5.19) "'W = iÄ

where Q is domain bounded by the real quadric (x2 -I- x2)/b\ + x2/b2 = 1.

Following Kellogg [Ke, Chapter VII.6] the explicit outer potential can be written

(we set 1 = \/b\ - b2 , which is real if the ellipsoid is oblate, and l\ = ^Jb2 - b\,
which is real in the prolate case)

(5.20)

ue(x) = -= (2/2 + 2x3 - x2 - x2) ( -z - arctan ——-.-

1  /  n-        3x2
+ 7?   vk + X

3

'2 V7^ T

or

(5.21)

M,) = 4(-2/2 + 2x2-x2-x22)ln(^A)

t(x) is here defined by (x2 + x2)/(b\ + t) + x2/(b2 + t) = 1 with the condition
t(x) = 0 on T. As this function takes the value x = -b\ on the interval {x :

|x3| < l\, x\ = x2 = 0} in the prolate case, ue(x) in (5.21) has a logarithmic
singularity on this interval. This conforms with the result in Example 5.4. No

similar singularities appear in (5.20), the oblate case (compare Example 5.5).

The unboundedness of the singularities in the prolate case is explained by

the fact that when interpreted in C3, the singular set Y2 is a subset of an L-

singularity. Any other singularity of ue(x) (in (5.20) or (5.21)) can be attributed

to the function x which has algebraic singularities of the K type. These are

the F2 sets in Examples 5.4 and 5.5. Note that the expression \Jb2 + x does

not introduce any new singularity, since b2 + x = x2 • h(x), where h(x) ^ 0

in a neighborhood of x~l(-h2). In fact, the set x3 = {x : x3 = 0} is a ghost

singularity contained in L*\L as mentioned in §4.
The results obtained here are related to the Pompeiu problem (cf. [Be] or

[Z]) for ellipsoids. A bounded domain Qcl" is said to have the Pompeiu

property if / = 0 is the only function / such that ¡„imfdx = 0 for all rigid

motions a of Q. It has been proved (cf. [Be]) that under some mild restrictions
on fl, ÇI fails to have the Pompeiu property if and only if the Cauchy problem

,, __. ANu+au = 1, in a neighborhood of dQ., u and du/dx vanish

^ '    '        on dil,

has a solution in Q for some complex a ^ 0.

This fact together with the present results and Theorem 2.10 make it possible

to prove the following theorem.
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Theorem 5.8. All ellipsoids,

M I (x)
E:Y-?£-+<\       (bi>b2>--->bM>0)

have the Pompeiu property.

Proof. Assume that u(x) is any solution of problem (5.22) and that x* £ Fm ,

the focal ellipsoid. We will show that u(x) must develop a singularity at x*
when continued analytically from dE. Since problem (5.22) is covered by

Theorem 2.10 on the existence of singularities, u(x) must be singular on dEcH

and hence at a point y* e dECn such that x* e ßr . From the proof of

Theorem 5.4 it follows that y*^ is real if j < M.

We now define the following triangular two-dimensional set depending on x*

and y* :

Z = {x:x(J)=yl^(\ + ^-\ , -b-f<t<Q, ;<Mand
(5.23) l V        J/

xiM) = oyw (a + *L\   -bJL < t < o, o < e < i}.

It is clear__that Z contains a segment of E between y* and a point y e

EDRNr\Z.
We now claim that an open neighborhood of Z can be taken as a domain of

monodromy for the solution u(x). Since this domain borders to the singular set

ßy it is clear that u(x) must develop a singularity at x* even when continued

in R^ from y to x*.
To prove the claim it is sufficient to show that Z c Ay\Ky where Ay = {x :

X(x, t) = 0, t € y} , y = {t e R : t > -bM/4} , and Ky = K n Ay. Ky can also

be defined as Ky = \Jy€Ecti ßy > where ßy = {x : x(y, t) e ßy, t e y} (x(y, t)

given by (2.16).) First, ZcA, is clear from the definition of Z . It remains

to show that Z avoids any ßyy .

This follows from the following easily verified facts.

(i) In order that ßy intersect Z , y^ (j < M) must be real.

(ii) ßy intersects Z only if y is of form

(5.24) y = (ky", z(M)),    where y" is defined by y* = (y*', y<M)).

(iii) If y* e Eqh , the only other y e ECH of form (5.24) are those of form

<±y«>z(M))t   /pM(ZW)=/pi((/W).

(iv) No ßj , where y is of form y = (±y*', z^), IPM(z^M)) = IPu(y*{M)),

intersects Z.

6. Open problems

A complete investigation of the singularity sets should contain a study (not

performed here) of their topological properties, e.g., homotopy groups of K,

KuL, CN\(K U L), etc., in C^. Also, the question of reducibility for K
is not quite settled here although the problem is reduced to the corresponding

problem for YCh •
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It is natural to ask for results concerning the sets of singularity in the case

of higher order or indeed analytic initial surfaces. As mentioned in §3 it seems

impossible at present to achieve complete global existence results in these cases

using Leray's theory. However, since it is possible to compute the A-function ex-

plicitly in some of these cases, albeit the function may be algebraic and multiple-

valued, the discriminant of A may yield interesting possible singularity sets. The

approach of Sternin and Shatalov [S-S 1,2,3] seems, however, more promising

in this respect even if the singular sets thereby may be difficult to determine

explicitly.
Another open problem concerns the possibility of weakening the requirement

on the Cauchy data to be entire. In the real two-dimensional case the Schwarz

function method makes it possible to follow the propagation from C2 to R2 of

singularities originating from the Cauchy data. It is not clear whether a similar
analysis using Leray's theory would be successful. By a different method, in

[J] called the method of globalizing families (due essentially to Hörmander),

it is possible to prove in some special cases, including the complex sphere and

the cone YlíLiixí^)2 - aYf¿Li(xl2))2, that the same conclusions as in Theo-
rem 4.3 are valid if the Cauchy data only are required to be holomorphic in a

neighborhood of T\rcH •
The local theory of Leray et al. [L, G-K-L] has been further elaborated by

Dunau [Du] and Hamada [Ha], who obtain results in neighborhoods of some

exceptional points. It would be interesting to know whether the present classi-

fication of the singularities into K, L¡, and LL in these neighborhoods may

play a role even for more general initial surfaces.
Khavinson and Shapiro have recently initiated an investigation on the global

behaviour of the solutions to Dirichlet problems [Kh-Sh 3, Sh 2]. A natural in-
teresting question, is whether the Dirichlet solutions from entire data may have

singularities outside the class of singularity sets originating from the Cauchy
problems studied here. Ebenfeit [E] has recently shown that this is actually

the case by exhibiting examples (including x4 + y4 = 1 ) where the Dirichlet

solutions in R2 develop singularities at infinite sets of points.

This discrepancy between Dirichlet and Cauchy solutions with entire data

should be further investigated.
Finally we return to the Khavinson-Shapiro conjecture that the Schwarz po-

tentials cover all possible singularities of solutions to Cauchy problems for the

Laplace equation. Comparing the results of the present study with the known

facts on Schwarz potentials (e.g., [Kh-Sh 1]) does not give rise to any counterex-

amples to the conjecture. It is obviously an interesting problem to continue

investigations on singularity sets with this conjecture in mind.
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