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THE SELBERG TRACE FORMULA FOR

5L(3,Z)\5£(3,R)/SO(3,R)

D. I. WALLACE

Abstract. In this paper we compute the trace formula for SL(i, Z) in detail

and refine it to a greater extent than has previously been done. We show that

massive cancellation occurs in the parabolic terms, leading to a far simpler

formula than had been thought possible.

1. Introduction and Background

"Of course, we won't really understand the trace formula until

it is written down for SL(4, Z)." Dennis Hejhal

The Selberg trace formula for groups of rank greater than one has been under
attack for some time by several people. Arthur has made the most progress (see
[1-4]), but others have also contributed, for example, Osborne and Warner [8],

Flicker [7], Warner [34], and Efrat [6]. Of these, Efrat's work is closest in spirit

to this paper, in that it sticks to a particular case and aims to get a formula

usable to the classical number theorist. The trace formula, as anyone reading
this paper is apt to know, computes the trace, on the discrete spectrum of the

Laplace-Beltrami operator on a particular space, of a cleverly designed integral

operator. The cleverly designed operator is supposed to be, above all else, trace

class.
In Arthur's and Flicker's papers this operator is assumed to be trace class,

which can be arranged in the adelic case by using a cusp form as the real part
of the function which defines the operator. For applications such as Sarnak's

[20] and those described in the appendices of Hejhal [9, 10], this restriction will
not do. Müller [17] has now solved the trace class conjecture, so in principal

any function can now be put into Author's formula (or Flicker's, Osborne and

Warner's, etc.) with complete a priori justification.
To do these same applications, however, one needs more than to know the

formula converges; one must also determine to what it converges. For such

applications one needs a formula as completely explicit as Selberg's original

[22]. The formula given in this paper is such a formula.

The main obstacle to deriving a clear trace formula for these groups is the
presence of a truncation parameter in all terms in the formula coming from

orbital integrals and Eisenstein series. One expects all the nonconvergent terms
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2 D. I. WALLACE

to sum to a convergent whole as this parameter tends to infinity. We believe

this paper sheds a great deal of light on exactly how this happens. Calculations

such as those in Appendix 1 and §7 are not foreshadowed by previous work and

are the key to cancellation. They could well be generalized to other groups now

that we see one example in detail. The obstacles to the general case should now

be quite visible.
In addition to Flicker and this author, two others have worked on the case

of SL(3, R) specifically. One is Kolk [13], who derived a trace formula for
co-compact subgroups and the other is Venkov [25], who worked specifically

on SL(3, Z) but was, again, unable to find a trace class operator. Nonetheless

we are indebted to him for his clear description of the Eisenstein series for
SL(3, Z) which we use extensively here. Also we refer any reader who is not

acquainted with the classical Selberg trace formula to Selberg [22], Hejhal [9,

10], or Terras [23] for a description of it, because we will be needing it later.
And now, onward!

Let G be a real semisimple Lie group. G has a maximal compact subgroup

K and G/K is a Riemannian symmetric space. This means that G/K has a
(7-invariant metric and measure, (G acting on the left), as well as an associated
collection of (/-invariant differential operators. In fact, the algebra of invariant

differential operators on G (and hence on G/K) is equivalent to the center
of the enveloping algebra U(G) which in general has rank G generators. So

for SL(3, R) there are two generators of U(G), one of which is the Laplace-

Beltrami second-order operator and the other is third order. When we speak of

the "spectrum" on some space we will in fact mean the joint spectrum of these

two operators which we denote by A[ and A2 .

A function, /, on the coset space G/K can be interpreted as a function on

G which is invariant on the right by K. In addition, we can require / to be
invariant by K on the left. Such a function is called ÄT-bi-invariant and from
now on / will be such a function.

Let Y\ , Y2 E G/K. We will write F,_I to stand for the inverse of Y\, where

Y\ is a coset representative in G. Then the object f(Y^Y2) makes sense for all
.K-bi-invariant / because it is independent of the choice of coset representatives
for Y\ and Y2. In this way we can construct a point pair invariant which is

the convolution kernel of an integral operator by setting k(Y¡, Y2) = /( Yf1 Y2)
which is a point pair invariant and the kernel of

Lk{g)(Yl) = f    k{Yx, Y2)g(Y2)dß(Y2).
JG/K

We will assume / is smooth with compact support and we will take dß to be

a left invariant measure on G/K.
In general, however, we wish to form our operator out of a function which

is invariant under the left action of some discrete group T. To do this we start

with / as before and form F(Y) = ^2Yerf(yY) and get

(1) K(Yl,Y2) = Y>nY1-l7Y2)
j-er

and

Lk{g){Yx) = J kW ,Y2)g(Y2)dß(Y2).
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Note that k is still ^-invariant although F is not, and k is left invariant
under T in both variables. 3 is the fundamental region for the action of T on

G/K. We think of g e L2(Y\G/K).
Let <S> be an eigenfunction of A[ and A2 which is invariant under T. Be-

cause Lk commutes with these operators, O is an eigenfunction of it also. Let

X\, X2, h denote the eigenvalues

AiO = AiO,    A20 = A20,    Lk<& = h<b

for the case where G = SL(3, R), K = 50(3, R). It is a theorem of Selberg
(called Selberg's Lemma) that h depends only on Ai and k2 and not on the
choice of eigenfunction (p corresponding to these eigenvalues. This is true for

both types of kernels mentioned so far. The function h{X\, X2) is called the

Selberg transform of /.
We will be making use of several kinds of coordinates on SL(3, E)/S0(3, R)

which we describe now. Langlands [16] introduced several kinds of coordinates
on SL(n, R)/SO(n, R) that specialize to three kinds for n = 3. First note that

the Iwasawa decomposition allows us to write G = A+NK where A is diagonal,
N strictly upper triangular, and K = S0(3, R) for this case. Choosing a coset
amounts to choosing an element of N and one of A+ , the identity component

of A . Thus we can identify G/K in this case with the coordinates

(yx   0      0
Y =     0    y2        0

V 0    0    l/y{y2

where yx, y2 > 0. Notice that the elements of the form Y can also be viewed

as a subgroup of G although "multiplication of cosets" makes no sense. The

set {Y = an ; a £ A, n e N} is an example of a parabolic subgroup of G.

In general the parabolic subgroups of G_are normalizers of the various closed

reductive subalgebras M of G where M contains some conjugate A. The

standard parabolic subgroups are those where M actually contains A and every
parabolic subgroup is conjugate to a standard one. For G = SL(3, R) the

candidates for M and P are

M0=A =

M, =

M2 =

M3=G,

0
0

0    0    l/yiy2l

P(M0) =

P{MX) =

P{M2)

P{Mi) = G.

eG

eG

eG

Langlands' coordinates for Pi and P2 are based on a convenient decompo-

sition and are given below for Pi. We write

P{Mi) = MiAxNi
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where

P(MX)

Ax =

Nx =

Mx = ±1

Notice that M\ is a real reductive group with compact center and in this

case we have

Mx IhfiUK* SL(2, R)/SO{2, R)

so natural coordinates for SL(3, R)/SO(3, R) are given by

(2)

,1/2

0
0

vu -1/2

:i/2

0
Y\

where v + iu can be regarded either as a point in the Poincaré upper half plane

or as a coset representative for M\/M\ UK. Similarly, consideration of P(M2)
yields coordinates

(3)

0
7

0

Associated to the discrete group SL(3,

We label the standard ones
we also have parabolic subgroups.

(4)
P0 = SL(3,Z)nP{Mi),    Pi =SL(3,Z)DP(Ml),

P2 = SL(3,Z)nP(M2).

Obviously both Pi and P2 contain Pn • F°r further information on parabolic

subgroups of a Lie group, see Schlichtkrull [21].

In order to build a trace class operator on L2(T\G/K) we must investigate

the joint spectral decomposition of Ai and A2 on this space. Because Y\G/K
is not a compact manifold in our case, the joint spectrum consists of a discrete

spectrum and a continuous spectrum. Furthermore the continuous spectrum

has a two dimensional part and an infinite number of one dimensional parts.

We now need to describe various orthogonal subspaces of L2(T\G/K). Let
^(yiiY), Ui(Y)) be a function in C%°(A). Notice that Pq fixes yi and Mi
both. So to build an automorphic function out of *F we must sum over P0\r,
getting

(5) Mn= £ v(yi(yy), ui(yy)).
yePo\r
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Let 80 be the closed subspace spanned by all 0<p. These 4* are precisely the

functions which, if averaged over K, would yield the AT-bi-invariant functions

on G.
Next, let *F be a C%° function of yi alone and let v(zx) be any even cusp

form for SL(2, Z) acting on the variable z\ = v\ + iux. Then *F and v are

both invariant under the action of P\ so let

(6) eltv,v(Y)=  E V(n(yY)).u(Zl(yY))
rePi\T

and, similarly

0i.*AY)= E v{yi(yY)Mz2(yY))
j-€ft\r

where z2 = v2 + iu2. Recall that a cusp form for SL(2, Z) is an eigenfunction

of the Laplace-Beltrami operator on SL(2, Z)\SL{2, R)/SO{2, R) which dies
out as Im z —> oo. Equivalently, when expanded as a Fourier series in x =

Re(z) the constant term is zero. Again, equivalently, the integral of v along any

closed ./V-orbit (closed under the action of Y) is zero. Let ©i,2 be the closed

subspace spanned by functions of the form &\^,v and 92>^tV . Ultimately
we will see that the trace formula requires only one of these, because of the

functional equations relating them. Let yx=y\, yi — y2- Then Haar measure

on G/K is given in Langlands' coordinates by

(7) dyxdzxdxxdtx=dy2dz2dx2dt2_

y\u\ y\u\

Where z¡ = v¡ + iu¡. Let 3 be a fundamental region for Y. Then 6o and

6i 2 are orthogonal with respect to the inner product on L2(Y\G/K) given by

(8) (f,g) = Jf(Y)g(Y)dp(Y).

So we now have

L2(Y\G/K) = H = Ho 0 e0 © Oi, 2.

and we would like to characterize all / e H0o = (0o © 0i ,2)x •

Let /(r)eHn. We have

0 = (6yl(Y),f(Y))

=  /(  E  "Vi{yi(7Y),ul(yY))\f(Y)dli(Y)
j3 \yaP0\r )

[ ^l(yl(Y),u1(Y))f(Y)dß(Y)
■/3o

•1/2   riß      /-1/2 dyxduX
= /      Vx(yx{Y),ux{Y))\      / /      f(Y)dxxdtxdvx-^

Jy{=QJu{=Q Jx{=  J-l/2=Jh=v, yXu

which is true for all *Fi e C™{A) if and only if

•1/2 r\/2 /-1/2/•l/Z /.l/Z fi/¿

/ / / f{Y)dxidtxdvx=0.
Jxi=-l/2 Jti=-l/2 Jvi=-\/2
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Similarly, we have

o = <0if»,„,/(r)}

= I ( E ^(yifriOMz, (yY)) j /(7)^(7)
^ep,\r

'3i

where 3; is a fundamental region for the action of P;. Four copies of 3X fit

into the region {yx > 0, -1/2 < xx < 1/2, -1/2 < tx < 1/2, vx + iux e 5}

with possible overlaps on the boundaries and with 5 the fundamental region

for 5L(2, Z) in the Poincaré upper half-plane. So we have

rl/2       fl/2     m ,.. ,™..,_ ,^-Tnñ* ,„ duxdvx dyxl  r°°   rr     r1'2      fl>2 - du\ c
0=1 //-/ / ^i{yX(Y)Mzx{Y))f{Y)àxdxx^{

y\

y\4Jy,=0 Jz^l \Vxi=-l/2Vi, = -l/2 /        «i

Since we can choose any 4*i it follows that

o=/_»(z,(y))f/"2    fm   Tm*^***1
^z,63 \A,=-l/2^í,=-l/2 , «?

for all yi . Fixing yx, the function

-1/2 /-1/2

g(zi)=/ / f(Y)dxxdtx
lxx=-\ßJtx=-\ß

is a function of zi alone. Thus it is in the span of the even cusp forms and
Eisenstein series and constants on SL{2, 1)\SL{2, R)/SO(2, R). (Notice /
is even.) It cannot be in the span of the even cusp forms, otherwise we can

pick v to give a nonzero inner product. If it is in the span of the constants or

Eisenstein series then it cannot be orthogonal to ©o . Therefore we must have

that
riß riß

/ / f{Y)dxxdtx=0.
Jxi=-lßJti=-lß

A similar argument for 02t¥ltV shows that

■1/2 ,1/2

/ / f(Y)dx2dt2 = 0.
Jxi=-\ßJt2=-lßlxi=-\ßJti=-\ß

So we have shown that / e Ho if and only if

riß riß riß

0= / / / f(Y)dxxdtxdvx
,q. Jxi=-lßJti=-lßJvi=-lß

1   ' riß    riß riß    riß

=   /        /       f{Y)dxxdtx= /        /       f(Y)dx2dt2.
J-lßJ-lß J-lßJ-l/2

These equalities tell us that the constant term in the Fourier expansion of / € Ho

is zero whether we expand with respect to xi and tx, x2 and t2 , or xx, tx,
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Then

¥(y.."i) = 4¿ /

and vx. If there are eigenfunctions in Ho, they will be called cuspidal, or cusp

forms, with respect to the group SL(3, Z).

A concise discussion of this decomposition can be found in Venkov [25].

We now construct the Eisenstein series associated to do. Set

(10) E0(Y;s,t)=   £ yx(yYYux(yYY.
yeP0\T

Let Ly(s, t) be the Mellin transform y/{yx, ux), that is,

roo     roo

Lv(s,t)= /    ¥(>;,, M,)>>,-*-V~'^i¿"i-
Jo   Jo

I /JRes=s0 JRtt=t0

Therefore

Mn= E>0'i0'r),"i0'r))
Po\r

= iá E /    /    M*, oyi^n^ií^)'*^

^"    ^Rej=i0 JRet=to

providing the sum which defines Eq(Y; s, t) converges. As described in [25],

the Eisenstein series is known to converge for 3s - t > 2, t > 1, but can be
meromorphically continued. These series have infinitely many polar lines but

the three which will cause us trouble later are given by the equations

(11) t=\,        3s-t = 2,        3s + t = 3.

In the rest of this paper we will be computing a lot of line integrals involving

Eisenstein series, along paths of the sort Res = cx. To do these computations

it will be useful to move a line like this to Re 5 = \ . In doing so we pick up

residues of the Eisenstein series in (for example) the variable s at the various
poles. The details to the functions obtained as residues in this way are given

in §5, but for now we keep the discussion brief. These residues are Eisenstein

series of one variable in general. They are orthogonal to the span of the part of

the continuous spectrum given by

span {¿so (Y;l- + irx,l- + i>2) J = 0O2)

and thus we have the decomposition ©0 = 0q' © 0O2' where

©o' = span {residues of £o} •

Next, let v be an even cups form for SL{2, Z) on the upper half-plane. We

let

(12) Ei(Y;vts) = J2yiiVYYv(zl{yY))
p,\r
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and

E2(Y;u,s) = ^y2(yYYv(z2(yY)).

Pi\r

These series converge for Res > 1 and have any poles which are in Res > 5

right on the real axis in the interval {\, 1]. The poles do not depend on the
choice of v in a given eigenspace. Ex and E2 are related by the functional

equations

, 13. Ex{Y;c2{v,s),\-s)=E2{Y;v,s),

[    ' E2(Y;cx(u,s),l-s) = Ex{Y;u,s),

where Cj{v, s) is some choice of eigenfunction in the same eigenspace as v

and

c\{c2{y ; s) ; 1 - s) = c2{cx{v ; s) ; 1 -s) = v.

All descriptions of Eisenstein series are explained in Langlands [16]. Due to
these functional equations we can span the set of all functions of the form

P,\r

where 1^ belongs to the eigenspace with given eigenvalue X, by choosing an

orthonormal basis for the vk and fixing /' = 1. Furthermore, if we set

rOO

Ms)= /   V(y)y-s-ldy,
Jo

then

^ = ¿7/       Ly(s)ysds

and hence

Ox,v,Vl{Y)= ^^.(yyjMzKyy))
Pi\r

= E ¿7 Í/        L*(s)yi(yYYds] viZiiyY))
p,\r

= ^-f        Lw(s)Ex(Y;v,s)ds
znl JRes=s0

and therefore ©12 is spanned by the Ex if Res > 1 and we choose an or-

thogonal basis {vk} for each eigenspace.

At some point later in this paper we will wish to move the contour of inte-

gration to Re s = \ but in doing so we pick up residues which occur discreetly.

Hence ©12 breaks up into two orthogonal pieces,

(14) e1,2 = ©(1'i)2©©(12)2

where 0, 2 is spanned by residues of Eisenstein series in (j , 1] and 0¡ \ is

spanned by the Ex along Re s = ¿ .

Thus we have the decomposition

(15) H = Ho® e\l\ © ©(,2)2 © ©I,1' © ©02).



SELBERG TRACE FORMULA 9

All the 0 are spanned by various joint eigenfunctions of the invariant differ-
ential operators and consequently each subspace described above is preserved
under the action of our invariant integral operator. Thus if H0 is nonempty

we conclude it contains some eigenfunctions. It is a theorem of Gelfand and

Piatetski-Shapiro that Z^Po, where Po is projection onto Ho, is an operator

of Hilbert-Schmidt type and hence has discrete spectrum. (See [8].)

At this point we should note that the referee of this paper sketched a proof

that, in fact, there are no poles of Ex or E2 when Res > \ and that therefore

©j1 2 is empty.

This will not affect our calculation in any way, but we left the ©j1 \ m the

above formula to emphasize the fact that the trace formula we are about to

derive does not depend on projecting our operator onto the cuspidal part of the

spectrum. Nonetheless we are much indebted to the patient referee who took

the time to point this out.

We point out that the discrete spectrum is contained in H0 U &[l\ with the

possible exception of the constant function which occurs in 0O''. Also we note

that the space 0, \ decomposes under an orthogonal decomposition of the v

so that we have

ÖlVE0'^1*)
) _

K=l

where &x,2(vk) is just the span of those elements of 0^2 with some fixed

cusp form vr ■ The proofs of this and also the orthogonality of 0o and ©1,2

follow from the Fourier expansions of the various Eisenstein series, which will

be presented later.
It follows from the above discussion that if we wish to adjust our integral op-

erator Lk we must subtract off the contribution from the continuous spectrum.

To see what this contribution looks like, we will compute the action of Lk on

an element of 0O2). Recall

Lk(e0,}¥){Yx)=[k(Yx,Y2)6oMY2)dll(Y2)

= I (EM-1^)] e0MY2)dfl(Y2)

=   Í \Y,f(Yx-XyY2) J / / Ly(s,t)E(Y2;s,t)dsdtdß(Y2)
Jo \  y J JRes=l/2JRet=l/2

=  [ [ Lv(s,t)( [k(Yx,Y2)E(Y2;s,t)dli(Y2))dsdt
jRts=l/2JRet=l/2 \Jl /

=   [ i Ly{s,t)h(s,t)E(Yx;s,t)dsdt
jRes=l/2JRet=l/2

=  f f f 6oMY2)E(Y2;l-s,l-t)
J3 JRes=l/2JRet=l/2

xh(s, t)E(Yx;s, t)dsdtd\/2.
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Thus if we wish to subtract off the contribution from 0O ' we must use the

operator constructed from the kernel

k(Yx,Y2)- f [ h(s,t)E(Y2;l-s,l-t)E(Yx;s,t)dsdt
jRes=l/2JRet=l/2

= k(Yx,Y2)- [ [ h(s,t)E(Yx;s,t)E(Y2;s,t)dsdt.
jRes=lßJRtt=lß

The calculation is similar for ©j2)2 and ©q1' although we have yet to charac-

terize the elements of ©0''.
So the operator whose trace we will compute is the one formed from the

kernel

(16)

k(Yx,Y2) = k(Yx,Y2)-±-[ f h(s,t)Eo(Yx;s,t)E0(Y2;s,t)dsdt
*n jRes=lßJRtt=lß

h{s, Vj)Ex(Yx ; s, v¡)Ex{Y2 ; s, v¡)dst-í
jr[ 2ni JRes=lß

"if ~ ~-
E TT; I h(s> aj)Eo(Yi ; 5, aj)E0(Y2 ; s, aj) ds
*—¡ ¿ni jRes=X/2

n     m

7=1 1=1

where E0(YX ; s, ak) = Rest=ak{s) E0(YX ; s, t) and

y(atj, ßi) = Ress=ßi Éq(Yx ; s, ak).

So the aj , ßi are various poles of Eo and ¿To respectively, and span 90 '.
Mercer's theorem (see, for example, Courant and Hubert [5]) then allows us

to expand

k(Yx, r2) = E h^ > Wa, ,lÁYi)<f>M,x2(Y2)
h,h

where the (¡>iltx2 are an orthonormal basis for the discrete spectrum, indexed

by eigenvalues (Xx, X2) of Ai  and A2. If we set Yx = Y2 and integrate we

obtain the trace of L-k as

(17) trLk= Y,h{Xx,X2)= I' k{Y,Y)dß{Y).
il h

The bulk of the calculation of the trace formula goes to show that the right-hand
side of this identity converges, rendering the left-hand side an honest trace. We
do this by calculating the right-hand side of (16) with a truncation parameter

inserted whenever there is a convergence problem, and then letting the trun-

cation parameter tend to infinity. Some of the terms present no convergence
problems and these are discussed in the next section.

2. Leading terms

The first noticeable thing about the integral J0k{Y, Y)dfl(Y) is that the
integrand is the sum of various functions, most of which cannot be integrated
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separately. One of the summands of k is the original kernel

k(Y,Y) = '£f(Y-iyY)

where / is a function in C£°(G//K). Although the integral of this entire sum

is not finite, the elements of T can be split into two sets, Yx and I^ where

the sum over Yx and the integral over 3 can be interchanged to give a finite
number. Ti consists of the identity element and all elements of Y which are

not conjugate to an element of Pi. T2 consists of all elements conjugate to an

element of Pi except the identity element. We must now compute

(18) /E/o- lyY)dß(Y)

to see that it converges. Recall that Pi = P(Mx)n SL(3, Z) and hence consists

of all elements of the form

/

M

\0    0

«\

where M e GL{2, Z), a, b e

±1/

So a necessary criterion for an element, y e SL(3, Z) to be conjugate to an
element of Pi is that it have at least one eigenvalue of ± 1. It turns out that

this criterion is also sufficient, that is, every element with an eigenvalue of ± 1
is conjugate under SL(3, Z) to an element of Pi. See Wallace [27] for a proof

of this. So Ti consists of the identity element, elements whose characteristic
polynomial has three distinct real roots none of which are ± 1 which we will

call hyperbolic, and elements whose characteristic polynomial has two imaginary
and one real root not equal to ± 1 which we call loxodromic. The identity term

is easy to compute.

(19) jf/(y-'/n^in = ¡J{I)dß{y) = (volJ)/(7).

For the hyperbolic term we wish to compute

/ \

(20) I E    f(Y~lyY)

\ y hyperbolic J
^(y) = /E E f(Y-lyY)dll(Y)

{y} ye{y}

where {y} denotes the conjugacy class containing y

- / E  E f{Y-xa-'yoY)dl¡{Y)
•^ {y} rezAr

where ZY =centralizer of y in Y.   Now since the map Y —> Y~lyY is a

dilation for hyperbolic y we know that only a finite number of the terms
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are nonzero. Hence the first sum and integral can be interchanged to give

EÍ   E   f{Y-lo-xyoY)dll{Y).
,..-,   Jj  -rr, xr{y}J:,aezy\r

Now the map Y —> a Y is discrete so that only a finite number of terms in the

summand are nonzero. Thus (20) equals

E   E    If{Y-xo-'yoY)d,{Y).
M aezr\rJ:>

A change of variables gives

E   E   /     AY-lyY)d„(Y)
{y}aeZ,\TJa  'a

and grouping the a~l3 together yields

Y-lyY)dß(Y)

where 3y is a fundamental region for the centralizer of y in Y. We can change

variables to conjugate y in SL(3, R) and take a representative y which is
diagonal. Written out in a choice of coordinates, the integrand is given by

f(Y->yY) = f

and {ex, e2, 1/6162} are the eigenvalues of y and

'ei -e2~

and

dJY)^dyi^2dxxdx2dxi.
y\Y2

It remains to describe the nature of Zy, 3y, and {y}. It follows from
[23] that Zy is isomorphic to the group of units in the order Z[e] for e any

eigenvalue of any y e Zy, y ± 1. 3y is therefore a strip, -00 < xx < 00,

-oo<X2<oo, -oo<X3<oo, whose cross section in the (yx, y2) plane has

area equal to the regulator of Z[e]. The number of conjugacy classes {y} with

eigenvalues {ex, e2, IA162} is the class number of the ring Z[e]. With these
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comments and the preceding changes of variables, (17) becomes

(21)

where

£ E     cl(Z[a,])Reg(Z[a,])
totally real cubic j, k¿{0,0)

number fields
with fundamental

units a\ , ßi

{a{ßk)2{ajßk)

[ßkiW{a\ßk)
f{AjBk)

l/axa2 l/ßißi

W{a[ßk) = {a[ßk - a{ß!{){a2ß!i - a{ß$){a{ßk - a{ß$), cl(P) is the class

number of R, and Re g(R) is the regulator of R. Also f(E) is the transform

of / at a diagonal element E given by

/(£)= [ f(EN)dN.
Jn

This transform has various names. See Lang [15], Terras [23], or Hejhal [9].
We will call it the Harish-Chandra transform.

The geometric interpretation of this term resides in the Zy. Because the

centralizer of y has two generators the fundamental region for it in some copy

of A is a torus with area Reg(Z[c*i]). Because it sits in a copy of A, it is

a totally geodesic (flat) submanifold of 3. Furthermore it turns out that the

hyperbolic elements are the only ones which give rise to flat tori in 3. That
is, these are the only elements whose centralizers are both confined to a split

Cartan subgroup of G and have two generators. So the hyperbolic term counts

all the flat tori which occur in 3.
For the loxodromic terms, we have

L S f(Y~lyY)dß(Y)
yer

y loxodromic

and for the same reasons as for the hyperbolic term we can interchange sums

and integrals so that (19) equals

(22) E E //( Y~iyY)dß(Y)

where {y} refers to the conjugacy class with representative y.
Now, y is the element of some Cartan subgroup of SL(3, R) which is not

split over R. In other words, y is conjugate under SL(3, R) to

(23)

where

7=\r   Re

v0    0

„   _ /coso   coséA
e~\,sin0    cosöj
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Furthermore, the generator of Z(y) goes, under the same change of variables,
to

/

7o = r0 Re0

\0     0

0 \
0

V/
A fundamental region for the action of j>o in the coordinates given earlier is

3? = {Y\l <yx < r0> ux > 0, xx, tx, vx € R} .
Furthermore, the conjugacy classes are arranged by cubic number field with

multiplicity equal to the class number of an order. See [23] for more details.

We denote the class number associated to Z[r0e'6°] as cl(r0, 0O).

Writing y and y as in (23) and doing some arithmetic to the formula in
(22) yields

(24)

Ecl('o,0o) / /
Jo,

where

and

dM(Y)

In these coordinates, dß(Y) = dxdtdv(du/u2)(dy/y). The determinant of the

Jacobian of this transformation is given by

|/| = |l-r-3(2cos0) + r~6|.

Making the change of variables and integrating out yx leaves (24) in the form

(25)

A

dto. 0q)I"T"o1
1 — tu/"3 cos 0 + r~6|

/Ju>0 ,reR3

RrX
dxá

dudv

0        0

Here we have written out the remaining part of dß(Y) and we note that if

we regard X as the point in the Poincaré upper half-plane, H, given by v + iu,

then (l/u2)dvdu is the SL(2, R) invariant measure associated to H in the
usual way.

The transform given by

(26) f(Y) = f    íf I y I 0   1   t \
Jx€R Jt€r€R 0     0      1

is a transform which occurs other places in the Selberg trace formula for this
group and is also a type of Harish-Chandra transform. The integrand in (25) is

equal to
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after integrating out x and t. </> is SO(2, R) bi-invariant in the coordinates
u + iw e H with the usual action.

A slight modification of the argument in [30] on page 12 tells us that

0 \  (X~x    ReX

Jiu
/||0   r     0   || J)"'^

= ([        he(s, t)rl~s ds) u'
\jRes=lß )

where hg is the Selberg transform of fe and where

fe(r, u,v,x,t) = f(r,u',v',x, t)

and

u' = lm((X-lReX)oi),        X=fê   "/Of)'

v' = Re((X-lReX)oi).

Combining this with a calculation due to Selberg and found in Kubota [14]

we can write the orbital integral in (25) as

A-sa-2et

(27) / / h(s,t)Ç^
jRet=lßJRes=lß

1 + e~2nt
ßjRes=lß

Writing the pair (r, 9) as powers of r0 and multiples of 0O mod n, we can
write the loxodromic term as

yr      ^        cli/o, 0o)|lnro|

z^o, es i1 -2rö3J ™ je+rô6j\
distinct

(28) mixed cubic
number fields

r r J{ls)p-2j8<,Imt

x/ / h(s,t) ° ,        , ,— dsdt.
jRe,=ißjRes=iß l+e-2*'

Note that |lnr0| is the regulator of the number field. Together formulas

(19), (21), and (28) account for all the orbital integrals for Ti, and together

they comprise the leading terms of the trace formula. We refer the reader to
[23, 24, 26, and 29] for further details about the calculations in this section.

3. Introduction to the parabolic term

As pointed out earlier, P(A/i ) is a parabolic subgroup and Mx is a reductive

subgroup of G. Recall that Mx is

0
0  leG

,0   0

and so has an Iwasawa decomposition of its own given by

'u1'2   u~xl2v   0\    (K   0

0       u-"2    0    •

o      o     \)   Vö~~ö~
d

±i,
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where K is isomorphic to 0(2, R). So sitting inside P(Mi ) is a copy of H, the

Poincaré upper half plane, represented as Mx/K. Now Pi = P(MX)C\SL(3, Z)

acts on P(MX) and has a subgroup, Mx n SL(3, Z), which is isomorphic to

GL(2, Z) and it acts on Mx /K to give a fundamental region, 32 which is half
of the standard one for SL(2, Z).

The strategy for computing the parabolic term for SL(3, Z) is to reduce

all orbital integrals and Eisenstein series, whenever possible, to the ones that

occur in the trace formula for GL(2, Z) acting on H = Mx/K. This rank one

formula will involve a particular ¿i-bi-invariant convolution kernel, given by

rr f/u*'2   uv-1'2   0\  l\   0   x\\
(29) f{v + iu)= //       / 0      w-'/2    0       0   1    t )) dxdt.

JJxjeR    \\  o 0        1/  \0   0    \jI

This is a type of Harish-Chandra transform, equivalent (up to notation) to

formula (26), and the reader will notice that it is AT-bi-invariant. It has an

associated Selberg transform which we will call h(t) and we have shown in [28]

that

(30) h{t) = 4-.¡ h(s,t)ds
Lnl JRes=lß

where h is the Selberg transform associated to /.

There are a few differences between the trace formula for GL(2, Z) and

for SL(2, Z). The major one is that only the even cusp forms for SL(2, Z)

are cusp forms for GL(2, Z). Fortunately only even cusp forms show up in

the construction of Eisenstein series for SL(3, Z). Another detail which may
cause confusion is that they are normalized to reflect the fact that 32 is only

half as large as the fundamental region for SX (2, Z). So mysterious factors of
2 appear at certain places in our calculations.

Finally we must warn the reader that not all orbital integrals and Eisenstein

series can be reduced to the pattern described here. That is why there is a rank
zero cancellation as well as a rank one cancellation. In the next four sections

we summarize the content of several papers devoted to the calculation of this
term.

4. Parabolic orbital integrals

These integrals fall into two broad groups: those which come from elements

in Po and the rest. The elements of Po are those with more than one eigenvalue

equal to ± 1, where as the others have exactly one eigenvalue equal to ± 1.

First we look at the case where exactly one eigenvalue is ±1. For more details

than are given here, see [26 and 30]. Any such element can be conjugated into

Pi and has a centralizer which is cyclic. In [26] we made an attempt to count

the conjugacy classes corresponding to eigenvalues X, X, ± 1, but only obtained
a bound on the number. Similarly we tried to compute the centralizer explicitly
and got a partial description of that also. To finish the trace formula these

descriptions must be exact, and we give them here, referring the reader to [26]

for parts of the proofs.

Since we are in Px we use coordinates given by (2) with yx = yx . In these

coordinates we have a fundamental region with a cusp at yx = +oo and ux =
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+00. We will have to truncate the region 3 to have these various terms converge

separately. We cut it off at yx = T (and ux = S if necessary).

If our representative of a conjugacy class is

y= '

then its centralizer is of the form

7o

0    0

'Mo

0     0

where M — A/q for some k . Suppose | tr Af | > 2. We can change coordinates

to conjugate both of these to Jordan normal form where

ok     o

0

Obviously ë = ±e_1. It is easy to see that a fundamental region for yo is

the cylinder between ux = 1 and ux - e2. The calculation for the integral is
essentially the same as for the hyperbolic case, and we get

£      T.    I iff   fmf(r
Jxi Jt, Jv, Jy¡ = l/T Ju¡ = l \

r-l g] dgk.
{i*,e-,±l}{<5,(£*,e-*,±i)}

conjugacy classes
with these
eigenvalues

±1

where

and

g =

dgK =
uxyx

r1/2
M
,-1/2

dxxktx dvx, y\=y\:

and j(k) is the power of e generating the centralizer of y(ek, ëk, ±1).

Expanding (31) in these coordinates, multiplying and rewriting the variable

in coordinates of type (2) gives

21nPlne2efc

(32)

J2     Z(ek, ëk , n(ek))
{ekJk,±l}

ok

{ek - ëk){ek - n(ek))(n{ek) - ëk)

0

0

where n(ek) = ±1 as appropriate, and

E    *>■
{¿((e*,è*,i,(e*))}



18 D. I. WALLACE

(33)

The pertinent fact missing from [27] is that

trAf-2|-cl(e,e~)    if n = 1,

trM|-cl(e,ê) if n =-\,
Ç(ek , ëk, r¡(ek)) =

where cl(e, ë) is the usual class number in GL(2, Z) of M. The proof of this
fact is in Appendix 1. Then (33) allows us to rewrite (32) as

(34) 21nP £   E
lne2e¿

He]
orders in

real quadratic
number fields

fc>0
JL'((Í ¿0(¿ !))*

The reader will recognize the part in brackets as the hyperbolic term for the

trace formula for GL(2, Z) acting on H. There is no need to truncate in the

variable u since this term converges.
Similarly for the elliptic M, we get

(35) 21nP
1

{y} elliptic
2Msm(ln/M) L

oo  g-(2ln/M)t

l+e -Inl
h{t) dt

where the part in brackets is the usual elliptic term for GL(2, Z).   This of
course depends on a result similar to (33), also found in Appendex 1.

Now we need to consider the elements of Po . For the purposes of computa-

tion they fall into four classes.

I.
1 ad b
0 1 cd .
0 o 1  /    a, b,c,d s

d¿0
(ä,c)=l

!

and all y conjugate to one of these,

II. those conjugate to

be

III. y conjugate in SL(3,R) to

-1

0

, 0

IV. y conjugate to one of

0

but not elliptic. All of these are computed in [27], and in more detail

than here. We present a quick description of each case.
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I. The centralizer of y consists of elements of the form

1   an    b
0    1

,0    0

Using coordinates of the form

(36)

(37) |

a fundamental region for the centralizer of y is given by

0<yi<oc,     0 < y2 < oo,     0 < *2 < 1,

0 < xx < à,    -oo < x3 < oo.

The representatives of the conjugacy classes of elements in I are

lab (mod n)
0    1 c | ,        (a,c) = n, a,b,c>0,

,0   0 1

and
1    -a   -b (mod «)
0     1 -c
0    0 1

Changing the yx, y2 coordinates to the yx, ux coordinates of (2) and trun-

cating yx and ux gives the sum over elements of this type to be

n=(",c)    -T rs rl       roo rain

2EE E /    /    /   /     /a>0e>0    6=1    Jy=l/T Ju=l/S Jx2=0 Jx3=-oo JX>=0

0     0 1 // "i^i

After suitable changes of variables and integrating out xx and x2 this becomes

dwdvdu
3c«2

rS roo fCU^T* / / 1      a/U      V\\

(39)    2E/    /    E/       / P   !   w))
a>QJu=i/sJv=-ooc>0Jw=cuviT->   yy0   0    \jj

As in the classical trace formula, we interchange the inner sum and integral,

neglect terms which are oT{\) and (39) becomes

41nrV/5      r     i"0 f\\°   U"   w))^-dvdw
a>0Ju=llsJv=-ooJw=0      Wq        0 \jjU

which in turn equals

The reader will recognize this as the parabolic orbital integrals of the type

( 11 ) for GL(2, Z), for the kernel obtained from /.
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II. Recall that this term consists of elements of the form

1   0   b\
0   10,       bel, mo,
0   0    \)

and we see immediately that the centralizer is all of Po.  Four copies of the

fundamental region for P0 fit into the strip

.... 0 — 00<>'l<00,        — 00<M]<00,

0<Xi<l,      0<X2<1,      0 < *3 < 1.

The orbital integral in these coordinates is given by

1    0   u7l/2y73b'

\zZ /      /    /    /   /     o  1        0
(42) * b>QJul=l/sJyl=l/TJxl=0Jx2=0Jx3=0      \\0    0 1

du dyx  ,     ,    ,
•—z-=- dxx dx2 dx2.
u\a y]

Setting v = u~xl2y~*b and changing the integral with respect to u gives

\ 2vdvdy

b2y-I    E/(43) i TI /      0   1    0

Interchanging sum and integral in (43) gives

i.2-C(2)r/r     filo    1    0]]«*^

and integrating out y gives

(44) C(2)lnP H f[ ( 0    1    OjUiA;.
Jv=0    V\°   °    lJJ

Equation (44) is an example of a term which does not reduce to an integral

we recognize as part of the trace formal for GL(2, Z).
III. Here y is elliptic and is therefore conjugate in SL(3, Z) to either

/-l     0    0\ /—1    1     0
yx =     0    -10        or    y2 =     0     1     0

\ o    01/ \ o   o -i
For 7i the centralizer looks like a copy of GL(2, R) and the calculation of

the orbital integral is routine. We get

(45) 21nrvol32/("01    _°, ) •

Of course this is a multiple of the orbital integral for GL(2, Z) for the element

(-o1-0,)-
For y2 the centralizer is conjugate to a congruence subgroup.    To(2) of

GL(2, Z). Knowing this, the integral is routine and gives

(46) 21nrvolD(r0(2))/^~01     ^ )
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where 3{Yo{2)) is a fundamental region for the subgroup of GL(2, Z) whose

lower left entry is congruent to 0 mod 2.

IV. There are three forms this case covers

l-\     a    0\ /-l     a     1

yx*     0    -10,    72=      0    -10
V o    01/ V o    o   i

Each of these is a computation similar to what we have done already and

they all give a multiple of the same lower rank integral. We just state that the

total contribution is

Ö)—££/(-„' -I'm
This concludes the discussion of the orbital integrals which diverge in the

trace formula. After truncation their contribution is given by the sum of for-
mulas (34), (35), (40), (44)-(47). We now turn to a discussion of the various

Eisenstein series which contribute divergent integrals to the trace formula.

5. Eisenstein series

We must calculate to the contribution of the Eisenstein series which are sub-
tracted from our kernel in formula (16). First we will look at those which are

induced from even cusp forms on SL(2, Z). We are subtracting something of

the form

(48) íéní h(s,Vj)Ex(Y;s,Vj)Ex(Y;s,Vj)dsdgK.
Jo znl JRes=lß

This term is computed in [28] and we summarize the results here. Replacing s

by 1 - s and truncating 3 at yx = T we get

-^-. i h{s,Vj)l  E(Y;s,Vj)E(Y;l-s,17j)dgKds
¿nl JRes=l/2 JoT

and we then wish to move the line of integration to Re s > 1. We can do this

because any residue of a pole of the product of Eisenstein series will contribute
zero to the final formula (see [28]). We are also making use of the Paley-

Wiener theorems for the Helgason transform [11]. After moving the contour

and unwinding the first of the two Eisenstein series, we get that (48) equals

(49) ^ [ h{s,vj)  Y,   I     "A", + iUi)y\Ex{Y;\-s,Vj)dYds.
¿™ jRes=i+e yepi\rJr°:>T

A messy estimate shows we can replace the region of integration

[\Jyo0r      by the strip     \í Í

where D3 is a fundamental region for SL(2, Z). This estimate is in [28] or

alternatively, see Appendix 2.
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At this point the only function depending on xx and tx is the remaining

Eisenstein series, ¿si(y ; 1 - s, Vf). After integrating we are left with the con-

stant term in its Fourier expansion in tx. Thus (49) becomes

iJïî I       h(s>"j) I      /        /    y\vj(vi + iui)
(AQ\ * ¿nl JRes=l+e Jyi = l/T Jvt+iUteOiJx^O

r i_ç_ ,,        .   .      i_5   ,_    ,      w   ^dxxdyxduxdvx ,
x[y\ sVjh(vx + iUx)+y¡ sc2(Vj,l-s){z2)]—   *\ 2 —-ds.

yxux

The second term in the summand has as a factor the function c2(Vj, 1 -s)(z2)

which is some cusp form in the variable Z2 . Integrating out x2 gives zero as
its integral, for reasons given in [28]. So (49a) becomes

-ail     h{s-"')\f   Í     »hh^if^*.
znl JRes=l+e "* Jy^l/TJv^+imeli V\ UX

The Vj are normalized so that their square integral over D3 is 2, so doing

the remaining integrals gives a contribution of 2\nTh{vf) = 2\nTh{tf), for
this term. Altogether, the contribution from these types of Eisenstein series is

(50) -llnT^hitj).
vj

Next we turn to those Eisenstein series which are built out of the functions

y\u\. References for this calculation include [28, 12, and 33].
Recall from § 1 that these Eisenstein series are constructed as

E0(Y,s,t)=   £ yi(yy)sMi(yy)'

yePo\r

for Res and Reí large. An alternative way to construct these for Ret small
is as the sum, (given in Imai and Terras [12]),

E0(Y,s,t)=   ]T  E(ux(yY), t)yx(yY)s,

yePx\r

where E is an Eisenstein series for SL(2, Z).   The poles of ¿?o are given

in Figure 1 and the two ways of writing ¿so will help us move the plane of
integration across these lines one at a time.

As we cross each of these lines we pick up a residue which is a lower rank

Eisenstein series. All three lines are equivalent under the functional equations

to t = 1 (or 0). Here is the full set of functional equations for these series:

a. c(l-t)E(Y,s,t) = E(Y,s,l-t),

b. c(l-^^JE(Y,s,t)=EÍY,^(l-s + t),^-l+3s + t)yj ,

c. c(l - t)c (l - 3S~¡~1) E(Y,s, t) = E (y, 1 - i - 1, 1 - ^ + Ç) ,

d   c\[l-^)c(l-3-^±)E(Y,s,t)

= E (y, l(l-s + t), I(3-3s-r)) ,

e.   c{\ - t)c (l - 3S~í~l) E{Y, s, t) = E (y , 1 - I - I, ^) .
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Reí

3j +1 = 3

3s-t =2

(5/6, 1/2)

Figure 1

t = 1

3i -1 = 2

3s + t =3

f=l

Res

Here the function c is given by

c(s) =
nl/2r (s - ft Ç(2s - I)

r(s)C(2s)

As described in formula (16) we must calculate

(52) i:—. f I h(s,t) [    E0{Y,s,t)E0(Y,s,t)dydsdt,
¿nl jRes=lßJRet=lß JoTS

where 3T,s = {Y e 3\y{z) < T,  u(z) < S}.  For the residues at the poles
s = 1, etc., we must compute a similar integral.

We compute (52) by replacing s and 7 by 1 — s, 1 — t, moving the line

of integration to Res, Ret large, computing there and moving the lines of

integration back to Res = Re t = \ . When we move the lines of integration we

must now worry about poles of the function

(53) g{s,t) = E(Y,s,t)B{Y,l-s,l-t).

Ignoring the poles of g for the moment, we will compute (52) where Res

and Ret are large. We can do an unwinding argument when Res is large to

replace

iff     h(s,t)E(Y,s,t)E(Y,l-s,l-t)dß(Y)dsdt
jRes=c¡ JRet=C2 JOt.s

by

f        f        f y\(E(zx,t)E(Y,l-s,l-t)dfi(Y)dsdt
JRes=c¡ JRet=c2 JxJy~l0T,s

?ePi\r

and an estimate which is done in Appendix 2 shows that the integral above may
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be replaced by

iff       if rt*(*i.o
xE(Y, 1-s, \-t)dn{zx)^^-dsdt

y\
where 3-¡fs is the fundamental region for SL(2, Z) acting on zx —vx + iux,
truncated at ux < B, and dß(zx) is the SL(2, R) invariant measure for zi.

Integrating over xx and tx we are left with the constant term in the Fourier

expansion of E(Y, 1 - s, 1 - t) which (due to Venkov [25]) is

j,1 *£(zi, 1 - í) + y*       >c I-2-) E Ui,-2-)

(54) ^   ¥ „     rt   /3-lî-f\J      2-3s + ^+ >V c(l-í)cí-2-J     T1'-2~

where Zi = Ui + iux and ¿i(zi, *) is an Eisenstein series for SL{2, 2
The first term in the summand (54) gives

ffff y\E{z\, t)E{zx ,1-i)
jRes=c, J=Ret=c2 Jzi63),s Jl/T<y¡<T

dy\
xy\~sh{s, t)-^-dß{zx)dsdt.

yf
We can take Ret = c2 = \ because we only needed Res large. Integrating out
y gives (54) equal to

21np/ /       h(t)E(zx,t)E{zx,t)dn(z)dt
JRet=l/2 Jz€3}s

where

h(t) = f      h{s,t)ds.
jRes=c

The other two terms behave differently. Moving lines of integration and

doing some messy integrals (see [29] for details) gives an additional amount of

Kxh(j, 5) where Kx is some constant which is independent of all variables in
sight.

In [29] we also calculate the residues of g(s, t), (53) and see that they are
zero.

The last Eisenstein series to be considered is the residue of E(Y, s, t) as s

and t move from the region of convergence to Re s = Re t = j . Looking at

Figure 1 tells us that poles occur at t - 1 and at s = |, t — \ if we follow

a path from Ret — cx to Reí = ^ (fixing s) and then from Res = c2 to

Res = 5 . When moving past t = 1 we pick up a residue Res<=i E(Y, s, t)

which we will call Er(Y, s). We can then move ER(Y, s) and Res = \ . As

we do this we pass through two places where Er(Y , s) has poles, namely at

s = 1 and s = \ . At these places Er(Y , s) is equivalent via the functional

equations to the residue of E(Y, s, t) at Res = \ , Re t - j .
We need to consider first the integral

(55) /      / h(s, l)ER(Y,s)ER(Y,s)dsdfi(z)
JOt.s JRes=l/2
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and the residues of the ER{Y, s) at Res = 1 and Res = \. Note that

h(s, 1) = h(s, 0) because t and 1 - t are equivalent under the functional
equations and so t and 1 - t give the same eigenvalue of the pertinent differ-
ential operators.

Neglecting poles of ER(Y, s) for the moment we will compute (55). As

usual, replace s by 1 - s, treat the resulting function

gR = ER(Y,s)ER(Y,l-s)h(s,l)

as a meromorphic function of s and move the line of integration to Res

large. The function gR(z, s) has three poles along the real axis in s. Be-

cause ER(z, s) has poles at s = \, s = 1, ER(z, 1 - s) has poles at 3 and 0.

So we must check for residues at ^ , \ , and at 1. This calculation is done in

[29] and yields a contribution of K2h{\ , 1) + K^h(\, 1) where, again K2 and
K3 are constant.

Now we can proceed to unwind gR for Res large. For Res large the Eisen-

stein series with constant term yfcg H-  is just the one you get by summing

CEiZyeri 00\r>'i(î'zi)i " ! (where cE - Rest=xE(zx, tx)) which converges for

Res large enough. (See Imai and Terras [12].) So we can unwind ER(s, z) to

obtain

/        / / / y\cEER{Y,\-s)dn{Y)ds.
jRes=c Jl/T<y,<T Jz,€0iiS J\<x\ ,t\<l

Again, we are suppressing a calculation which is done in Appendix 2. The

above, after integrating out xx and tx, becomes

/       / /       y,cE\y{-cE + yfctc(}-^)EU,2-^)
jRes=cJl/T<y¡<T Jz¡€3i¡s I \      ¿      /       V L      /

xh{s, l)dn{zx)^-ds.
^1

This expression is the sum of two terms, the first being

/       / / ^h(s,l)dn(zx)dyxds
jRes=cJl/T<yl<TJzieO)¡s yl

which yields

(56) cEvol3i¡s-2lnT f       h{s,l)ds,
JRes=c

and we can move the line of integration to Res = 1/2 and replace h(s, 1) by

h{s, 0) if we want.
We show in [29] that the second term contributes zero to the formula.

Now, this calculation of ER is sufficient to cover the other two poles also

because the functional equations relate the three lines

(1) s = ± + ia,        t=\,

(2) s = f + m,     t+^ + iß,     3a + ß = 0,

(3) s = l + ia,     t=\ + iß,     3a-ß = 0.

Functional equation ( 1 ) says

ER(Y, 4 + io, £ - i3a) = c(l - (i + i3a))ER(Y, § + ia, lj + /3a)



26 D. I. WALLACE

and functional equations (2) says

ER{y, l + ia, i +/3a)

.«(i-(i<i±iü^l±*ä))ft,7.i+ii(i-*,).i).

So the sum of both residues is

c(0)(l +c(i - ¿3a))£*(z,, I + i/(l - 4a), 1).

But c(0) = 0, so the only contribution comes from the term already computed

in (56).
So, the terms which contribute 0(ln T) to the parabolic terms of the trace

formula are (with appropriate constants put in)

2ni ^-. f f h(t)E(zx,t)E(zx,t)dß(zx)a
¿nl JRet=l/2Jz¡eOi¡s

+ 4vol33,s(fV) / h(s,0)ds
\2niJ JRes=Xß

The terms which are 0(1) come from the various residues discussed earlier,

and they are

(57) Kxh(\,{)+K2h{\,\) + Kih{\,\)

where the constants are independent of everything in sight, namely z, s, t,

h , etc. They are numbers. All other terms are o (I) and have been suppressed

completely.

6. The rank one cancellation

We cannot claim to have a trace formula for an operator unless we can show

that both sides of the formula converge to something finite and independent of
any parameters of truncation introduced. The obstacle we must overcome is
the coefficient of In T in all the "parabolic" terms computed in §§4 and 5.

The reader will by now have noticed the repeated references to the trace

formula for GL{2, Z) acting on SL(2, R)/SO{2, R). Bits and pieces of this
formula, in fact of the difference between the two sides of the formula, have

been appearing among our calculations. Now our task will be to show that all
parts of it are present and sum to zero. This calculation will remove most of

the badly divergent (0(ln T)) terms in the formula.

By way of review, the 0(ln T) terms appearing thus far are given in formulae

(34), (35), (40), (44)-(47), (50), (54), and (56). In this section we will consider
all but (44) and (56).

Formula (34) accounts for all of the hyperbolic terms, with a factor of 2 In T.

The reader is invited to compare this formula with Selberg's original recipe.

Formula (35) accounts for elliptic terms where the element of GL(2, Z) has

distinct nonreal eigenvalues. Again, the formula matches Selberg's with a factor

of 2 In P. Remember, h{t) is the Selberg transform (in 51.(2, R)) of f(zx).
Formula (40) gives the contribution of the parabolic orbital integrals for

which y has eigenvalues equal to 1, with the truncation parameter Im(z) < 5.
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Formula (47) gives the parabolic orbital integrals with eigenvalues equal to

-1. Together (40) and (47) give all the parabolic orbital integrals with a factor.

Notice in formulas (40) and (47) that we sum over elements of the form ( ¿ a )

and ( "q1 _?, ) where a > 0 only. This is because in GL(2,17) the elements

(¿°) and (¿ ~a), for example, are conjugate. Notice also that since / is left

invariant by (~0l _°j ) the two formulas are equal. So we get a total contribution

Now, this amount is more than you would expect from elements conjugate

to (¿ j) and (~o f\) • This is because the formula gives the same amount

you would get by starting with a fundamental region for 51.(2, Z) rather than

GL{2,17). Thus we have

left to explain. The part which contributes to the lower rank trace is

(59) 41„rWS     /(J   f)*f.

Formula (50) subtracts the trace of the operator formed by using the function

£     f(z-xyw) = K(z,w)

yeGL(2,Z)

as the convolution kernel for the trace formula. Formula (50) subtracts the left-
hand side of the GL(2, Z) from all the other terms, which are the right-hand
side. This is the key to why cancellation occurs.

Formula (54) calculates the contribution of the Eisenstein series for GL(2,17)
with appropriate factor of 2 In T.

Formulas (45) and (46) together give

2In T. 4vol32f(~rj    _°, ) •

Now, since / is left and right 50(2, R) invariant, this is the same as

(60) 21nP 2vol32/(01    _°1)+2vol32/(+01    +0!)

The expression in brackets is the term for the center of GL(2, Z).

Even with these terms we are still missing a few orbital integrals from the

rank 1 formula, namely these corresponding to the elements ( ¿ _°i ) and ( ~o' ¡ ) •

These have simple centralizers. The first one has a centralizer of order 4 and

so does the second, so we must add to the GL(2,17) formula:

(61) -[M]/;(("o#;)(¡t)
[    ) (-1    OUI    x\(jy       0    \\dxdy

\0     lA0    10     l/y/yj)    y2    ■
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We can sum them like this because they are all conjugate in GL(2,17) to

( -Q j ). Truncating y at 5 and calculating the integral gives

21nr.i.21n5.i£0/(-1    ï) du

which is equal by left 50(2) invariance to

(62) I(lnP)(ln5)£/(¿   \)du.

Of course, adding this in obliges us to subtract it off also. Fortunately, it cancels

with (58) as In 5 gets large.
Last we must look for the contribution to the spectrum of the constant func-

tion. For this we must subtract off and later add it back in. It will contribute

(63) 21nr(voia2)_1M0).

To summarize, if we add up (34), (35), (40), (47), (58), (50), (54), (45), (46),
(62), and (63), we get zero because they are, taken together, equal to

21nP[[right-hand side GL{2, Z) trace formula]

- [left-hand side GL{2, Z) trace formula]].

Now you see why this section is called the rank one cancellation.

7. The rank zero cancellation

Terms left in the parabolic part of the trace formula after §6 come from

formulae (44), (56), and (63). Together they give

1   0   u'
C(2)lnP/     /( ( 0    1    0 | }vdv

0    1

(64)

•/"/((IJv=o  yy0

24vol33-lnr(xM /       h(s, l)ds
\¿7ii j yRei=c

+ 21nP-Ä(0)
vol J^ '

Using the functional equations to replace h(s, 1) by h(s, 0) introduces a

factor of 6/n . Thus the second term of the summand is

(65) -24vol3j(5).nr(¿)/R_*(J,0)&.

The integral {\/2ni) /Rei=w2 h{s, 0) ds can be expanded as

ds.
2ni¿7 / / f(Y)y(Y)6*u(Y)°dY
■nl JRes=c |/l'e.S/.(3,R)/SO(3,R)

Writing the part in brackets in geodesic polar coordinates for 5L(3, R) gives

(66)

¿7/    /     A/   4K\°   yu°l/2   °° ))y(KY)
znl JRes=c JKeSO(3) •> ' ö Jy,u>0      \       \      Q 0 y~2 J J

x{yuxl2 - yu-xl2){yuxl2 - y-2)(y~2 - yu'1'2) d-^dKds — .
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For a computation of this Jacobian, see Terras [24]. The mysterious factor of 6
in the exponent comes from setting the y of formula (3) equal to y instead of

yxlk. Now, viewing the integrals in s and y, we see that this is the Helgason

transform in y followed by its inverse at y — 1. The integral in (65) then
becomes

JfC€S&(l) Ju>o     \ \

M»/2      0      0N

0     u~xl2   0
(67) JK£S&(i)Ju>o    yy o        0      1

x {uxl2 - u-xl2){uxl2 - 1)(1 - u-x'2) dK d-±.

Now, / is <5^(3)-bi-invariant, so one can eliminate or replace K with any

special value desired. We would like to rotate the point

(ux¡2      0   \    .       .
{  0     u-x/2)°l = ul

in the Poincaré upper half-plane so that its imaginary part is one.   In other

words, we want

T    / / cos 9     sin 9 \      A     ,
Im .   „ a    o ui   = 1.

y \ - sin 9   cos 9 )       )

Computing the point gives

/cosö     sin0\      . _ (1 - a2) sing cos 0     ./

V-SÚ10   cos9j°ul-: cos20 + M2sin20 +1 \\cos2 9 + u2 sin2 0        V cos2 0 + u sin2 0.

(l-«2)(^)sin20
+ l

2-(m2+1 + (1-w2)cos20)       \k¿(w2 + l + (l-w2)cos20)y '

If the imaginary part of this number is one then the real part is given by

Re(kg • ui) = 2~(1 - "2)sin20 •

Furthermore, cos20 = (w-1)/(m+1). With these substitutions,

.     (       (l-w2)^sin(20)        \

k60lU = l+{l(cos29(l-u2) + l + u2))

= i + u~x/2(l-u).

Setting v = ux'2 - u~xl2, dv = ±(«_3/2 + u~xl2) du. So

v dv = i(M'/2 - M-1/2)(M-3/2 + u-x'2) du = I(ii - O ^.

Checking that, in (67),

(ul>2 + u-xl2){uxl2 + 1)(1 - w-1/2) = (M - tT1) + (m-1/2 - u'/2)
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we see that (65) equals

(68)

-2,4)v„,3íl„r(í)(^)

*// Ju Jk

ux'2      0      0'

f\K\    0     u~x'2   0
\     V   0        0      1

lu-m-u^Ûldk
u

v dv

Now, ce + n/3 = (vol33)-1 » so simplifying the constants gives

^(i)(£)-'--'-(£W¥)G)(£)-»
C(2).~6

Therefore the second summand in (68) cancels out the term form (44). We are

left in (68) with the integral

(69)
Jui

i2ln77  f
Ju>0

ux>2      0      0'
0     wxl2   0

0        0       1
(u '2 _ ,Aß\ Ú1u1'1)

which we hope cancels with formula (63) which appears as the third summand

in (64).
But we notice that the factor (uxl2 - wxl2)/u in (69) is just the Jacobian for

geodesic polar coordinates in the Poincaré upper half-plane. So we have that

.        //w'/2       0       0'

(70) //llO
Ju>0

M-'/2     0   I   \{UXI2-U-XI2) — .
0       1M u

0

After writing / in terms of its Selberg transform at u, y = yields

1/2 JRes=lß

, f f [    h(s,t)(ux'2-u-x/2)u'—dsdt.
47t    JRet=lßJRes=lßJu>0 u

Integrating s and throwing in a gratuitous rotation gives

2nl JRet=lß Uu>0Je=0 u     n .

Writing u as Im(z) and changing back to rectangular coordinates gives

(I) ¿7 / / *W Im(z)'dt d^ = 11 ̂ z) dfi{z) = I ' 2h^ ■
\nj 2ni JRet=x/2Jz n Jz n

Thus, (69) becomes

Inr^Ä(0)-21nr(5)Ä(0)-2hir(^)Ä(0)

which is what must be cancelled from (63). In short, (64) is zero.
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This concludes our discussion of the parabolic term. The reader will notice

that our techniques give more cancellation than expected. Presumably one could

apply these techniques to the classical formula in order to show certain of the
terms in it are actually zero.

8. Statement of the theorem

Let G - SL{3, R), K = 50(3, R), and Y = SL{3, Z). Let / be a left
¿v-invariant function on G/K and let / infinitely differentiable and compactly
supported. From the convolution kernel

K(Z,Y) = 1£f(Z-xyY)

yer

and denote by L-k the integral operator on L2(Y\G/K) built from kernel via

formula (16). Then this operator is trace class and the trace of Lk on the
discrete joint spectrum of the invariant differentiable operators on this space is
given by the following formula:

Tr(L,) = vol(3)/(7)

+ E E     cl(Z[a,])Re*(Z[ai])
totally real       j,k¿{0,0)

cubic number fields
with fundamental

units a¡ ,ß\

(a{ßk)2(aißk)

W(a\ßk)
f(AjBk)

Y^      y*       elfo, 0p)|Inr0|

W*]    èU-2^cos;0 + r-^|
distinct

mixed cubic
numbers fields

J(l-s)~-2j80lmt

llp___r_
1 + e-2"

+ (Kx)h Q, ^j+K2h Q, l) +K3h ß, l)

r r rJ(l-s)p-2j60lmt

/ / h(s,t) ° ,        . ,     dsdt
jRu=ißJR^iß l+e-2*<

where

vol 3 = volume of a fundamental region for Y on G/K,

4>   \ (ßi   o      o
0 , B =     0    ß2        0

l/a,a2/ V°     0     Vßiß2.

W(ax ,ßx) = (axßx - a2ß2)(a2ß2 - a3ß3)(axßx - <*3&),

a3 = l/aia2,  ß3 = 1/A#>,

cl(P) = class number of ring R,

Re g(R) = regulator of R,

f(E)=  f f{EN)dN,
Jn

(\   v   x\

A/=     0    1    H, dN = dvdxdt,
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r0e'e° — fundamental unit of a mixed cubic number field,

h(s, t) = the Selberg transform of / at the eigenvalues,

corresponding to s and t,

j90 is taken mod n.

Proof. These are the terms left after cancellation, namely, (19), (21), (28), and

(57).

Appendix 1

We must calculate the number of conjugacy classes associated to an element

in p.

In order to justify formula (34) we must prove (33) here. We need to count

the number of 5L(3, Z) conjugates of an element with eigenvalues {e, ë, n(e)}

where e is a unit other than ±1 is a quadratic number field, ë is its conjugate

and //(e) = ±1 is the norm eë . We already showed in [27] that such an element

is conjugate to something of the form
'M

A =

0    0
b MeGL(2,

±1.

Since Pj  is its own normalizer we need only consider further conjugacy by

elements of Pi. Conjugating by an element of the form
'B

,0   0
allows us to choose a particular M as representative of the GL{2,17) conju-

gacy class associated to {e, ¿} in GL(2, R). Therefore the total number of
conjugacy classes is cl(e, ë) • n where n is the number of inequivalent matrices
with a particular choice of M in the upper left-hand corner. In order to count

the number of inequivalent y of the form
'M

0    0

with fixed M, one must conjugate by

>Qk

0    0

where Q generated the centralizer of M in 5L(2, Z). Explicitly, this conju-

gation gives

y'y(y')-l =

where

-Q
i )   Vo   oh;

(71) ~"G)+G)+*G)
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To count the inequivalent candidates we will start with the case k — 0. Then

we can reduce (f) by adding on something of the form (I - M) (cd). We can

compute det(7 - Af), which gives (2 - TrAf) if detAf = 1 and TrAf if
detM — -1. The case where TrAf = 0 and detAf = -1 is covered elsewhere,

and TrAf ^ 2 for these terms. Thus, I - M is invertible. Now we can put

I - M into Smith normal form which gives

(/ - AT) = ( Q1    J \ N,       dxd2 = det(7 - Af), àe\N = 1, 0 < e < dx.

We can now choose (cd) so that

*©■©■

Kd) = [c

(")*(     a'

\bj     \b mod di

Similarly, by choosing (d) so that

*G)-Ö-

Then

and thus

(7-Af)
^2

we have

(i-M»0 = (o')
fa\     (ax mod ¿A

\b)     \ b mod d2 J '

so that
modi/i

b mod ¿2

Thus we have at most 2 - TrAf conjugacy classes corresponding to Af.

Now we must account for the effect of Qk .
Recall that conjugation by an element of the form

<Qk

0     0

leads to the expression (7 - Af) (cd) + Qk (f) in the upper right-hand corner of

our new matrix. If two of these agree, we have

<'-"> (2)+* G)-c- *> (2)+*>§
or equivalently,

v-viVt)*«*--*)®- 0.

Remembering that Q generates the centralizer of Af, we will assume k2 > kx

and write (71) as

(7-Af) Gh'-O = 0
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and k-k2-kx

GH-*(rä)
This yields

(_-) = (,-M)-'(/-e')(:)

which is a situation we can achieve exactly when (I - M~X)(I - Qk)(l) is an

integer vector. Referring to the results in (26) we see that k is exactly the power

for which the generator of the centralizer for

' M        a
b

^ 0    0    1
looks like

>Qk

1.0    0
Thus the number of conjugacy classes with Af in the upper left-hand corner is

0<a<dxO<b<d2^a'b'M

where ka ¿ is the least k suchthat

(I-M-x)(I-Qk)(fy

Therefore the expression in (34)

d(X,l,tlW)

Ç(X,X,r,(X))=lne     ¿     k>
1=0

dxd2 = \2-TrM\,

1
^a,b ,m

{M} 0<a<dl 0<b<d2    a-e>OT

= lnecl(A,I)|2-TrAf|

where cl(A, 1) is the narrow class number of the order Z[X]. This proves the

claim in (33).

Appendix 2. Regions of integration for the parabolic term

This appendix is inserted to justify a computational trick that was used in

[27, 28, 29, and 31]. Sections 4 and 5 are based on the use of this trick, which
is easy to justify only when all parts of the trace formula are present. For the

parabolic orbital integrals and the Eisenstein series both, we took the liberty of

replacing an integral over the region {U^p^ry-1*^* = -Ri} wim me region

0 < x2 < 1  '

z&3iyS

\/T<y<T.
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In the situation where the difference between the integrals over Pi and R2

was estimated explicitly, namely [28], the difference was o(T) and thus could

be ignored for our purposes. In other situations, namely [27], [29], and [31], the
author's fortitude flagged noticeably when the moment came to do this estimate,

resulting in a broad hint that any reader with his salt could go check it himself.

Our apologies to any reader who actually attempted to do this. It is much easier

to justify this trick in the context of the entire parabolic term.

A quick perusal of §§4 and 5 shows that the above trick of replacing Pi by
P2 was done in every single integral in what is called the parabolic term. What

must be shown to justify it is that

/   (paraoblic term) - /   (parabolic term) = /        (parabolic term) = 0t{\) .
JR\ v R2 J R\ —R2

Now, the region Pi - P2 is just given by P3 = {y~xY : Y e 3T,s » y E PX\Y,

y~xY < 1/T} and P3 = \JSn where 5„ = {y~xY : Y € 3T'S, y e PX\Y,

l/(n + l)T <y~xY < 1/nT} . If the integral JR (parabolic term) is not 0t{\)

then the partial sum ¿Zn=i Is (parabolic term) must not go to zero in T. We

can instead look at

N r
(72) E /   I (parabolic terms) |

nTXJSn

and it suffices to show that this goes to zero. But (72) is first equal to

/ I (parabolic term)| < /   | (parabolic term)|

where P4 = {Y : 0 < jci, x2 < 1, z e 33lS, l/(« + \)T < y < 1/P} . That is to

say, UÍLi 5« is contained in the portion of the cylinder containing P2 where

i/(n + i)T<y< \/t.
However, a quick review of §§6 and 7 easily convinces us that if we replace

the lower endpoint of the y-integral (formerly \/T) with some other parameter
(in this case, l/(« + 1)7"), the value of the trace formula remains the same. All

that will change is that 2 In T will be replaced by (n + 2) In T as the truncation

coefficient in front of the various expressions. Therefore we can conclude that

JR |(parabolic term)| is indeed Or(l) and this, in turn, justifies the trick of

replacing Pi by P2 in §§4 and 5.
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