EIGENVALUES AND EIGENSPACES FOR THE TWISTED DIRAC OPERATOR OVER $S U(N, 1)$ AND $\operatorname{Spin}(2 N, 1)$

ESTHER GALINA AND JORGE VARGAS

Abstract

Let X be a symmetric space of noncompact type whose isometry group is either $S U(n, 1)$ or $\operatorname{Spin}(2 n, 1)$. Then the Dirac operator \mathbf{D} is defined on L^{2}-sections of certain homogeneous vector bundles over X. Using representation theory we obtain explicitly the eigenvalues of \mathbf{D} and describe the eigenspaces in terms of the discrete series.

1. Introduction

Let G be a connected real reductive Lie group. From now on we fix a maximal compact subgroup K of G. Let $g_{0}=k_{0} \oplus p_{0}$ be the Cartan decomposition of the Lie algebra of G, with k_{0} the Lie algebra of K, and let h_{0} be a Cartan subalgebra of k_{0}. We denote by g, k, p, h the complexifications of g_{0}, k_{0}, p_{0}, h_{0}, and let $\Phi(h, g)$ be the root system of (g, h). Let Φ_{k} and Φ_{n} be the compact and noncompact rootspaces of $\boldsymbol{\Phi}(h, g)$ respectively; fix $\Phi^{+}=\boldsymbol{\Phi}_{k}^{+} \cup \Phi_{n}^{+}, \mathrm{a}$ positive root system; and denote by ρ one-half of the sum of the positive roots of $\Phi(h, g)$.

Let (τ, V) be a representation of K. We denote

$$
\begin{aligned}
& C^{\infty}(G / K, V)=\left\{f: G \rightarrow V, \quad C^{\infty} \mid f(g k)=\tau(k)^{-1} f(g) \quad \forall k \in K\right\} \\
& L^{2}(G / K, V)=\left\{f: G \rightarrow V \mid f(g k)=\tau(k)^{-1} f(g) \quad \forall k \in K,\|f\|_{2}^{2}<\infty\right\}
\end{aligned}
$$

where $\left\|\|_{2}\right.$ is the L^{2}-norm with respect to a fixed Haar measure. Both spaces are representations of G under the left regular action.

Let V_{σ} be an irreducible representation of K with maximal weight σ relative to Φ_{k}^{+}. The Dirac operator defines a map

$$
\mathbf{D}: L^{2}\left(G / K, V_{\sigma} \otimes S\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{\sigma} \otimes S\right)
$$

as in (3.1). \mathbf{D} is an elliptic essential selfadjoint G-invariant operator.
In this paper the eigenvalues of the Dirac operator are explicitly obtained for $G=S U(n, 1)$ and $\operatorname{Spin}(2 n, 1)$, and with σ far from the walls of the Weyl chambers. In additions, the respective eigenspaces are expressed as a finite

[^0]sum of discrete series using the Harish-Chandra parametrization of the discrete series. To obtain this we derive specific results for these groups which say when a discrete series occurs in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$; furthermore, its multiplicity is a power of two. For the case of $G=S p(2, \mathbb{R})$, we give examples of discrete series which occur in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ with multiplicity different from a power of two. In general, we show that each discrete series occurring in an eigenspace for a nonzero eigenvalue has even multiplicity. For the kernel the multiplicity is one.

2. Notation

In this section we fix notation and give some known results.
2.1. Let G be a connected real reductive Lie group and, from now on, let K denote a fixed maximal compact subgroup of G. Assume that the rank of G is equal to the rank of K. Let $g_{0}=k_{0} \oplus p_{0}$ be the Cartan decomposition of the Lie algebra of G, with k_{0} the Lie algebra of K; and let h_{0} be a Cartan subalgebra of k_{0}. Because of the rank condition h_{0} is also a Cartan subalgebra of G. The complexification of any Lie algebra is denoted without the subscript. So if $\Phi(h, g)$ is the root system of g (resp. h) and $\Phi(h, k)$ that of k (resp. $h)$, then $\boldsymbol{\Phi}(h, k) \subset \boldsymbol{\Phi}(h, g) . \Phi(h, k)=\Phi_{k}$ is called the set of compact roots of $\Phi(h, g)$. The complement of Φ_{k} is called the set of noncompact roots and is denoted by Φ_{n}. Let Φ_{k}^{+}be a fixed positive root system of Φ_{k}. One can choose a subset Φ_{n}^{+}of Φ_{n} such that $\Phi^{+}=\Phi_{k}^{+} \cup \Phi_{n}^{+}$is a positive root system of $\Phi(h, g)$. The choice of Φ_{n}^{+}is not unique: there are exactly $\left|W_{G}\right| /\left|W_{K}\right|$ choices, where W_{G} is the Weyl group of g and W_{K} is that of k. When necessary, we will say explicitly which choice will be taken.

Denote by

$$
\rho_{k}=\frac{1}{2} \sum_{\alpha \in \Phi_{k}^{+}} \alpha, \quad \rho_{n}=\frac{1}{2} \sum_{\alpha \in \Phi_{n}^{+}} \alpha
$$

and by $\rho=\rho_{k}+\rho_{n}$. When ρ is not analytically integral in G, fix a twofold cover of G, which will be also denoted by G without causing confusion, and call K the inverse image of K.
2.2. The Killing form is defined at g_{0} by

$$
B(X, Y)=\operatorname{Trace}(\operatorname{ad} X \operatorname{ad} Y)
$$

Its restriction to h is nondegenerate and negative definite, so $-B($,$) is an$ inner product on h_{0} which gives one on $i h_{0}$. Let $\left(i h_{0}\right)^{\prime}$ be the real dual of $i h_{0}$ and denote by (,) the inner product at $\left(i h_{0}\right)^{\prime}$ which comes from the Killing form. Also, B is positive definite in p_{0} and the K-representation on p_{0} is orthogonal.

Because of the last condition of (2.1), the representation

$$
K \rightarrow S O\left(p_{0}\right) \simeq S O\left(\operatorname{dim} p_{0}\right)
$$

given by the adjoint representation lifts to the universal cover $\operatorname{Spin}\left(p_{0}\right)$ of $S O\left(p_{0}\right)$; that is, the usual spin representation S of $\operatorname{Spin}\left(p_{0}\right)$ gives rise to a K-module. Let (s, S) denote this K-module.
2.3. Let (π, H) be a representation of G on the Hilbert space H. Without lost of generality we can suppose that $\pi(K)$ acts by unitary operators. Hence H is an orthogonal sum of irreducible representations of K as a K-module

$$
H=\bigoplus_{\tau \in \hat{K}} m(\tau) V_{\tau}
$$

where \hat{K} is the set of equivalence classes of irreducible representations of K; the multiplicity $m(\tau)$ is a nonnegative integer or $+\infty$. The subspace $m_{\tau} V_{\tau}$ is the isotypic K-submodule of type τ of (π, H). It is usually denoted by $H[\tau]$.

We say that (π, H) is an admissible representation if $\pi(K)$ acts by unitary operators and m_{τ} is finite for all $\tau \in \hat{K}$.

An admissible representation (π, H) is a discrete series if it is irreducible and all its matrix coefficients $g \rightarrow\langle\pi(g) u, v\rangle$ (with $u, v \in V_{K}$) are square integrable.

All discrete series can be parametrized by weights $\lambda \in\left(i h_{0}\right)^{\prime}$, the dual of $i h_{0}$, such that λ is nonsingular (i.e., $(\lambda, \alpha) \neq 0 \quad \forall \alpha \in \Phi(h, g)$), and $\lambda+\rho$ is integral (i.e., $\lambda(H) \in 2 \pi i \mathbb{Z}, \forall H \in i h_{0}$ such that $\exp H=1$). The discrete series H_{λ} of parameter (or Harish-Chandra parameter) λ has infinitesimal character χ_{λ}, and two discrete series are equivalent if and only if their parameters are conjugate by an element of the Weyl group of K.
2.4. Let $f \in C^{\infty}(G / K, V)$ or $f \in L^{2}(G / K, V)$ and consider the action of G given by

$$
\pi(g) f(x)=f\left(g^{-1} x\right)
$$

We also require the action of the elements of g_{0} as left-invariant differential operators, that is, if $X \in g_{0}$

$$
X f(x)=\left.\frac{d}{d t}\right|_{t=0} f(x \exp t X)
$$

Now if $Z=X+i Y \in g$, we define $Z f=X f+i Y f$. Then each $D \in$ $(\mathscr{U}(g) \otimes \operatorname{End}(V))^{K}$ defines a left-invariant differential operator on $C^{\infty}(G / K, V)$ [Wa, Chapter 5]. G acts on $(\mathscr{U}(g) \otimes \operatorname{End}(V))^{K}$ by Ad \otimes (repres. of K on End (V))
2.5. If $\left\{X_{i}\right\}$ is an orthonormal base of g (with respect to the Killing form), the Casimir element Ω is defined by

$$
\Omega=\sum X_{i} \bar{X}_{i}
$$

It is known that Ω belongs to the center of $\mathscr{U}(g)$. The Casimir operator acts on a discrete series H_{λ} by the constant $\|\lambda\|^{2}-\|\rho\|^{2}$. An explicit expression for the Casimir can be computed as follows. Let $\left\{H_{i}\right\}$ be an orthonormal basis of $i h_{0}$, and for each $\alpha \in \Phi(h, g)$, let

$$
g_{\alpha}=\{X \in g / \operatorname{ad}(H)=\alpha(H) X \quad \forall H \in h\}
$$

Choosing appropriately $X_{\alpha} \in g_{\alpha}, \Omega$ is given by

$$
\Omega=\sum H_{i}^{2}+\sum_{\alpha \in \Phi^{+}}\left(X_{\alpha} X_{-\alpha}+X_{-\alpha} X_{\alpha}\right)=\sum H_{i}^{2}+\sum_{\alpha \in \Phi^{+}}\left(H_{\alpha}+2 X_{-\alpha} X_{\alpha}\right) .
$$

3. Eigenvalues of D

If we fix a minimal left ideal in the Clifford algebra of p_{0}, the resulting representation of $s o\left(p_{0}\right)$ breakes into two irreducible representations. Composed with the adjoint action of k_{0} on p_{0}, this lifts to a representation S of K, called the spin representation. Let $\left\{X_{i}\right\}_{i=1}^{2 n}$ be an orthonormal base of p_{0}, let c be the operation of left Clifford multiplication and let V_{σ} be an irreducible representation of K of maximal weight σ (Φ_{k}^{+}-dominant). The Dirac operator

$$
\mathbf{D}: L^{2}\left(G / K, V_{\sigma} \otimes S\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{\sigma} \otimes S\right)
$$

is defined by

$$
\begin{equation*}
\mathbf{D}=\sum_{i=1}^{2 n}\left(1 \otimes c\left(X_{i}\right)\right) X_{i} \tag{3.1}
\end{equation*}
$$

where the X_{i} act as left-invariant differential operators for all i. The spin representation S decomposes into a sum of two subrepresentations $S=S^{+} \oplus$ S^{-}. If $X \in p_{0}$, then $c(X) S^{ \pm}=S^{\mp}$, so

$$
\begin{equation*}
\mathbf{D}^{ \pm}: L^{2}\left(G / K, V_{\sigma} \otimes S^{ \pm}\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{\sigma} \otimes S^{\mp}\right) \tag{3.2}
\end{equation*}
$$

are also well defined.
We list some properties of the Dirac operator D.D is an elliptic G-invariant differential operator, and as the riemannian metric of G / K is complete, \mathbf{D} and \mathbf{D}^{2} are essentially selfadjoint in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ [W]; that is, the minimal extension is the unique selfadjoint closed extension starting from the set of smooth compactly supported functions. So, we consider D densely defined by this extension, which coincides with the maximal one [A]. The eigenvalues of D are defined as the eigenvalues of the unique selfadjoint extension.

Let L_{d}^{2} be the closure of the sum of all irreducible G-invariant closed subspaces of $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$; Harish-Chandra has proved that L_{d}^{2} is the direct sum of a finite number of square integrable G-irreducible closed subspaces, that is a finite sum of discrete series

$$
\begin{equation*}
L_{d}^{2} \simeq \bigoplus_{\lambda \in F} n_{\lambda} H_{\lambda} \tag{3.3}
\end{equation*}
$$

with F a finite set and n_{λ} the multiplicity of the discrete series H_{λ} with parameter λ.

A theorem of Connes and Moscovici [C-M] ensures that if

$$
D: L^{2}\left(G / K, V_{\sigma} \otimes S\right) \quad \rightarrow \quad L^{2}\left(G / K, V_{\sigma} \otimes S\right)
$$

is an elliptic G-invariant operator, each eigenspace of D is a finite sum of discrete series and D has a finite number of eigenvalues.

Take Φ^{+}such that σ is a Φ^{+}-dominant weight. If Ω is the Casimir element of the universal enveloping algebra $\mathscr{U}(g)$ of g, the Parthasarathy equality for the square of the operator \mathbf{D} [A-S] is

$$
\mathbf{D}^{2}=-\Omega+\left(\sigma-\rho_{n}, \sigma-\rho_{n}+2 \rho\right) I .
$$

This equality restricted to an immersion of a discrete series H_{λ} (with infinitesimal character χ_{λ}) in L_{d}^{2} is

$$
\begin{equation*}
\left.\mathbf{D}^{2}\right|_{H_{\lambda}}=\left(-\|\lambda\|^{2}+\|\rho\|^{2}+\left(\sigma-\rho_{n}, \sigma-\rho_{n}+2 \rho\right)\right) I \tag{3.4}
\end{equation*}
$$

because the Casimir acts on H_{λ} by the constant $\|\lambda\|^{2}-\|\rho\|^{2}$ (see (2.5)).
Recall that n_{λ} denotes the multiplicity of the discrete series with parameter λ which occur in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$, that is

$$
n_{\lambda}=\operatorname{dim} \operatorname{Hom}_{G}\left(H_{\lambda}, L^{2}\left(G / K, V_{\sigma} \otimes S\right)\right)=\operatorname{dim} \operatorname{Hom}_{K}\left(H_{\lambda}, V_{\sigma} \otimes S\right)
$$

by Frobenius reciprocity. If the maximal weight σ of V_{σ} is sufficiently far from the walls of the Weyl chambers of K, or more precisely, if

$$
\begin{equation*}
(\sigma+\gamma, \alpha)>0 \quad \forall \gamma \in P(S), \forall \alpha \in \Phi_{k}^{+} \tag{3.5}
\end{equation*}
$$

with $P(S)$ the set of weight of S, then,

$$
\begin{equation*}
V_{\sigma} \otimes S=\bigoplus_{\gamma \in P(S)} V_{\sigma+\gamma} \tag{3.6}
\end{equation*}
$$

where $V_{\sigma+\gamma}$ is the irreducible K-module with maximal weight $\sigma+\gamma$. This happens because the multiplicity of each weight of S is one, and

$$
\begin{align*}
\chi_{V \otimes S} & =\chi_{V} \cdot \chi_{S}=\Delta_{K}^{-1} \sum_{w \in W_{K}} \operatorname{det} w \quad e^{w\left(\sigma+\rho_{k}\right)} \sum_{\gamma \in P(S)} e^{\gamma} \\
& =\Delta_{K}^{-1} \sum_{w \in W_{K}} \sum_{\gamma \in P(S)} \operatorname{det} w \quad e^{w\left(\sigma+\rho_{k}\right)+\gamma}=\Delta_{K}^{-1} \sum_{w \in W_{K}} \sum_{\gamma \in P(S)} \operatorname{det} w e^{w\left(\sigma+\gamma+\rho_{k}\right)} \\
& =\sum_{\gamma \in P(S)} \chi_{\sigma+\gamma} \quad(\text { by }(3.5)) \tag{3.5}
\end{align*}
$$

where χ_{w} denotes the character of the K-module W. By (3.6), we have that

$$
\begin{equation*}
n_{\lambda}=\sum_{\gamma \in P(S)} \operatorname{dim} \operatorname{Hom}_{K}\left(H_{\lambda}, V_{\sigma+\gamma}\right) . \tag{3.7}
\end{equation*}
$$

So, we only have to analyse when the isotypic component $\left(H_{\lambda}[\sigma+\gamma]\right)$, of the representation H_{λ} restricted to K of maximal weight $\sigma+\gamma$, is not zero. In the cases $G=S U(n, 1)$ and $G=\operatorname{Spin}(2 n, 1)$ it is known that if $H_{\lambda}[\sigma+\gamma] \neq 0$, then $H_{\lambda}[\sigma+\gamma]$ is irreducible because each K-type of any principal series has this property; that is,

$$
\begin{equation*}
n_{\lambda}=\left|\left\{\gamma \in P(S): H_{\lambda}[\sigma+\gamma] \neq 0\right\}\right| . \tag{3.8}
\end{equation*}
$$

Denote by $\operatorname{Eig}(\mathbf{D})$ the set of eigenvalues of \mathbf{D}, and by $\mathbf{W}_{\alpha}(\mathbf{D})$ the eigenspace of the operator \mathbf{D} associated to the eigenvalue α.

Proposition 3.1. Let \mathbf{D} be the Dirac operator defined in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$. Then,
(i) If $\beta \in \operatorname{Eig}\left(\mathbf{D}^{2}\right), \beta \neq 0$, and α is the positive square root of β,

$$
\mathbf{W}_{\alpha^{2}}\left(\mathbf{D}^{2}\right)=\mathrm{W}_{\alpha}(\mathbf{D}) \oplus \mathbf{W}_{-\alpha}(\mathbf{D}) \quad \text { and } \quad \mathrm{W}_{0}\left(\mathbf{D}^{2}\right)=\mathrm{W}_{0}(\mathbf{D}) .
$$

(ii) If α is a nonzero eigenvalue of $\mathbf{D}, \mathbf{W}_{\alpha}(\mathbf{D})$ is equivalent to $\mathbf{W}_{-\alpha}(\mathbf{D})$ as a G-module, so that each discrete series which occurs in $\mathbf{W}_{\alpha^{2}}\left(\mathbf{D}^{2}\right)$ has even multiplicity.
(iii) $L_{d}^{2}=\bigoplus_{\alpha \in \operatorname{Eig}(\mathbf{D})} \mathbf{W}_{\alpha}(\mathbf{D})$.
(iv) The set of the eigenvalues of \mathbf{D}^{2} is
$\operatorname{Eig}\left(\mathbf{D}^{2}\right)=\left\{-\|\lambda\|^{2}+\left\|\sigma+\rho_{k}\right\|^{2} \mid \lambda\right.$ is $a \Phi_{k}^{+}$-dominant Harish-Chandra parameter and $H_{\lambda}[\sigma+\gamma] \neq 0$ for some $\left.\gamma \in P(S)\right\}$
and the set of the eigenvalues of \mathbf{D} is

$$
\operatorname{Eig}(\mathbf{D})=\left\{\alpha: \alpha^{2} \in \operatorname{Eig}\left(\mathbf{D}^{2}\right)\right\} .
$$

Note. Using the Atiyah-Schmid result, which ensures that the kernel of \mathbf{D} is equivalent to $H_{\sigma+\rho_{k}}$, this proposition says that the multiplicity of each discrete series which occurs in L_{d}^{2} is even except for $H_{\sigma+\rho_{k}}$.

Proof. Since $\beta=\|\mathbf{D} f\|^{2} /\|f\|^{2}>0$, it makes sense to take the positive square root α.
(i) Since $\mathbf{D}^{\mathbf{2}}$ is an essentially selfadjoint operator its eigenvalues are real. If $\beta \neq 0$, let $f \in \mathbf{W}_{\beta}\left(\mathbf{D}^{2}\right)$, then $f \pm \alpha^{-1} \mathbf{D} f \in \mathbf{W}_{ \pm \alpha}(\mathbf{D})$, with α the positive square root of β, because

$$
\mathbf{D}\left(f \pm \alpha^{-1} \mathbf{D} f\right)=\mathbf{D} f \pm \alpha^{-1} \mathbf{D}^{2} f=\mathbf{D} f \pm \alpha f= \pm \alpha\left(\pm \alpha^{-1} \mathbf{D} f+f\right)
$$

Then, since

$$
f=\frac{1}{2}\left(f+\alpha^{-1} \mathbf{D} f\right)+\frac{1}{2}\left(f-\alpha^{-1} \mathbf{D} f\right)
$$

we have that $\mathbf{W}_{\alpha^{2}}\left(\mathbf{D}^{2}\right) \subset \mathbf{W}_{\alpha}(\mathbf{D}) \oplus \mathbf{W}_{-\alpha}(\mathbf{D})$.
\mathbf{D}^{2} is essentialy selfadjoint, so if f is in the domain of \mathbf{D}^{2}, then

$$
\left(\mathbf{D}^{2} f, f\right)=(\mathbf{D} f, \mathbf{D} f)
$$

If f also is in the kernel of $\mathbf{D}^{2},\|\mathbf{D} f\|=0$, that is $\mathbf{D} f=0$; and as the kernel of \mathbf{D}^{2} is closed, $W_{0}\left(\mathbf{D}^{2}\right)=W_{0}(D)$.
(ii) If $f \in L^{2}\left(G / K, V_{\sigma} \otimes S\right)=L^{2}\left(G / K, V_{\sigma} \otimes S^{+}\right) \oplus L^{2}\left(G / K, V_{\sigma} \otimes S^{-}\right)$, then $f=\left(f^{+}, f^{-}\right)$and $\mathbf{D} f=\left(\mathbf{D}^{-} f^{-}, \mathbf{D}^{+} f^{+}\right)$because of (3.2). The map

$$
\mathbf{W}_{\alpha}(\mathbf{D}) \rightarrow \mathbf{W}_{-\alpha}(\mathbf{D}), \quad\left(\dot{f}^{+}, f^{-}\right) \rightarrow\left(f^{+},-f^{-}\right)
$$

is really an isomorphism between $\mathrm{W}_{\alpha}(\mathbf{D})$ and $\mathrm{W}_{-\alpha}(\mathbf{D})$. In fact,

$$
\mathbf{D}\left(f^{+},-f^{-}\right)=\left(-\mathbf{D}^{-} f^{-}, \mathbf{D}^{+} f^{+}\right)=\left(-\alpha f^{+}, \alpha f^{-}\right)=-\alpha\left(f^{+},-f^{-}\right)
$$

(iii) The equality (3.4) implies that each discrete series in L_{d}^{2} is in an eigenspace of \mathbf{D}^{2}, the eigenvalue depends on the norm of the parameter λ. Then L_{d}^{2} is the sum of eigenspaces of \mathbf{D}^{2}, and by (i), we have

$$
L_{d}^{2} \simeq \bigoplus_{\beta \in \operatorname{Eig}\left(\mathbf{D}^{2}\right)} \mathrm{W}_{\beta}\left(\mathbf{D}^{2}\right) \simeq \bigoplus_{\alpha \in \operatorname{Eig}(\mathbf{D})} \mathrm{W}_{\alpha}(\mathbf{D})
$$

(iv) The equality (3.7) ensures that $n_{\lambda} \neq 0$ if and only if $H_{\lambda}[\sigma+\gamma] \neq$ 0 for some $\gamma \in P(S)$. Then by the equality (3.4) and (iii) if $H_{\lambda}[\sigma+\gamma] \neq$ 0 for some $\gamma \in P(S)$, one has that $H_{\lambda} \in \operatorname{Eig}\left(\mathbf{D}^{2}\right)$. But

$$
\begin{aligned}
\|\rho\|^{2}+\left(\sigma-\rho_{n}, \sigma-\rho_{n}+2 \rho\right) & =(\rho, \rho)+2\left(\sigma-\rho_{n}, \rho\right)+\left(\sigma-\rho_{n}, \sigma-\rho_{n}\right) \\
& =\left(\sigma-\rho_{n}+\rho, \sigma-\rho_{n}+\rho\right)=\left\|\sigma+\rho_{k}\right\|^{2}
\end{aligned}
$$

Thus,
$\operatorname{Eig}\left(\mathbf{D}^{2}\right)=\left\{-\|\lambda\|^{2}+\left\|\sigma+\rho_{k}\right\|^{2} \mid \lambda\right.$ is a Φ_{k}^{+}-dominant Harish-Chandra
parameter, and $H_{\lambda}[\sigma+\gamma] \neq 0$ for any $\left.\gamma \in P(S) v\right\}$.

$$
\text { 4. } G=S U(n, 1)
$$

Let K be the usual immersion of $S(U(n) \times U(1))$ in G, so K is a maximal compact subgroup of G. Let T be the torus of diagonal matrices of K, so T is also a compact Cartan subgroup of G. Let g_{0}, k_{0}, h_{0} be their Lie algebras and g, k, h the complexifications. Choose an orthonormal base $\left\{H_{1}, \ldots, H_{n}\right\}$ of the real Lie algebra $i h_{0}$ with respect to $-B($,$) , where B$ is the Killing form of $g \quad\left(B(X, Y)=\frac{1}{n} \operatorname{tr}(X Y)\right)$.

If $H=\sum i h_{j} E_{j j} \in i h_{0}$, let $e_{j} \in\left(i h_{0}\right)^{\prime}$ be given by

$$
e_{j}(H)=h_{j}, \quad j=1, \ldots, n+1
$$

Denote by (,) the dual symmetric form to the Killing form of g.
The root set of (g, h) is

$$
\Phi(h, g)=\left\{e_{i}-e_{j}: i \neq j, i, j=1, \ldots, n+1\right\}
$$

and
$\Phi_{k}=\left\{e_{i}-e_{j}: i \neq j, i, j=1, \ldots, n\right\}, \quad \Phi_{n}=\left\{ \pm\left(e_{i}-e_{n+1}\right): i=1, \ldots, n\right\}$.
Fix

$$
\begin{equation*}
\boldsymbol{\Phi}_{k}^{+}=\left\{e_{i}-e_{j}: i<j<n+1\right\} . \tag{4.1}
\end{equation*}
$$

The number of choices of Φ_{n}^{+}such that $\Phi_{k}^{+} \cup \Phi_{n}^{+}$is a positive root system of $\Phi(h, g)$ is $n+1=\left|W_{G}\right| /\left|W_{K}\right|$, because W_{G} is the set of permutations of $n+1$ elements and W_{K} that of n elements. The different Φ_{n}^{+}are

$$
\begin{equation*}
\Psi^{r}=\left\{e_{i}-e_{n+1}: 1 \leq i \leq r-1\right\} \cup\left\{-e_{i}+e_{n+1}: r \leq i \leq n\right\} \tag{4.2}
\end{equation*}
$$

with $1 \leq r \leq n+1$.
From now on fix r such that $\Phi_{n}^{+}=\Psi^{r}$, then

$$
\begin{aligned}
& \rho_{k}=\frac{1}{2} \sum_{i<j<n+1}\left(e_{i}-e_{j}\right)=\frac{1}{2} \sum_{i=1}^{n}(n-2 i+1) e_{i}, \\
& \rho_{n}=\frac{1}{2}\left(\sum_{i=1}^{r-1} e_{i}-\sum_{i=r}^{n} e_{i}+(n-2 r+2) e_{n+1}\right), \\
& \rho=\frac{1}{2}\left(\sum_{i=1}^{r-1}(n-2 i+2) e_{i}+\sum_{i=r}^{n}(n-2 i) e_{i}+(n-2 r+2) e_{n+1}\right) .
\end{aligned}
$$

Let $\lambda \in\left(i h_{0}\right)^{\prime}$ be an integral weight. Then λ satisfies $\lambda=\sum_{i=1}^{n+1} \lambda_{i} e_{i}$ with $\sum_{i=1}^{n+1} \lambda_{i}=0$ because the element $H^{\lambda}=\sum_{j=1}^{n+1} i \lambda_{j} E_{j j} \in i h_{0}$ such that $\lambda=$ $-B\left(, H^{\lambda}\right)$ has Trace $\left(H^{\lambda}\right)=0$. Moreover, $\left\|e_{j}-e_{j+1}\right\|=2$ gives

$$
\frac{2\left(\lambda, e_{j}-e_{j+1}\right)}{\left\|e_{j}-e_{j+1}\right\|^{2}}=\left(\lambda, e_{j}-e_{j+1}\right)=\lambda_{j}-\lambda_{j+1} \in \mathbb{Z} \quad \forall j=1, \ldots, n
$$

This implies that for some $s \in \mathbb{Z}, 0 \leq s<n+1$,

$$
\begin{equation*}
\lambda_{i}=m_{i}+\frac{s}{n+1}, \quad m_{i}, s \in \mathbb{Z} \quad \forall i=1, \ldots, n+1 \tag{4.4}
\end{equation*}
$$

Also note that λ is a Φ_{k}^{+}-dominant weight if and only if

$$
\begin{equation*}
\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1} \tag{4.5}
\end{equation*}
$$

and it is Ψ^{r}-dominant if and only if

$$
\begin{equation*}
\lambda_{r} \leq \lambda_{n+1} \leq \lambda_{r-1} \tag{4.6}
\end{equation*}
$$

Suppose λ is a Φ^{+}-dominant Harish-Chandra parameter. Then as $\lambda+\rho$ and ρ are integral (as $S U(n, 1)$ is simply connected, ρ is integral for any positive root system), λ satisfies (4.4), and since λ also is nonsingular, at (4.5) and (4.6) the strict inequalities hold.

To determine when a K-type occurs at a discrete series of G, fix $\Phi^{+}=$ $\Phi_{k}^{+} \cup \Psi r$. Denote by $m_{\lambda}(\tau)$ the multiplicity of the irreducible representation of highest weight τ in H_{λ}.
Proposition 4.1. Let $\lambda=\sum_{i=1}^{n+1} \lambda_{i} e_{i}$ be a Harish-Chandra parameter of a discrete series of the group $S U(n, 1)$ which is $\left(\Phi_{k}^{+} \cup \Psi r\right)$-dominant, and let $\tau=\sum_{i=1}^{n+1} \tau_{i} e_{i}$ be a Φ_{k}^{+}-dominant weight. If $\mu=\lambda+\rho_{n}-\rho_{k}=\sum_{i=1}^{n+1} \mu_{i} e_{i}$, then

$$
m_{\lambda}(\tau)=1 \Leftrightarrow\left\{\begin{array}{l}
\tau_{n} \leq \mu_{n} \leq \tau_{n-1} \leq \cdots \leq \tau_{r} \leq \mu_{r}<\mu_{r-1} \leq \tau_{r-1} \leq \cdots \leq \mu_{1} \leq \tau_{1} \\
\tau_{i}-\mu_{i} \in \mathbb{Z} \quad \forall i=1, \ldots, n .
\end{array}\right.
$$

Proof. If $\tau^{\prime}=\tau+\rho_{k}$ and $\mu^{\prime}=\mu+\rho_{k}$, then the inequality of the proposition is equivalent to

$$
\begin{equation*}
\tau_{n}^{\prime} \leq \mu_{n}^{\prime}<\tau_{n-1}^{\prime} \leq \cdots<\tau_{r}^{\prime} \leq \mu_{r}^{\prime}<\mu_{r-1}^{\prime} \leq \tau_{r-1}^{\prime}<\mu_{r-2}^{\prime} \leq \cdots<\mu_{1}^{\prime} \leq \tau_{1}^{\prime} \tag{4.7}
\end{equation*}
$$

because $\left(\rho_{k}\right)_{i+1}=\left(\rho_{k}\right)_{i}+1$ for each i.
The Blattner formula is

$$
m_{\lambda}(\tau)=\sum \operatorname{det} s Q\left(s^{-1} \tau^{\prime}-\mu^{\prime}\right)
$$

where $Q(\sigma)$ is the number of expressions of the weight σ as a sum of positive noncompact roots.

Suppose $m_{\lambda}(\tau) \neq 0$, so $Q_{s}=Q\left(s^{-1} \tau^{\prime}-\mu^{\prime}\right) \neq 0$ for some $s \in W_{K}$. Since $\Phi^{+}=\Phi_{k}^{+} \cup \Psi^{r}$, from (4.2) we get $\left(s^{-1} \tau^{\prime}-\mu^{\prime}, e_{i}\right) \in \mathbb{Z}$ and

$$
\left(s^{-1} \tau^{\prime}-\mu^{\prime}, e_{i}\right) \begin{cases}\geq 0, & 1 \leq i \leq r-1 \tag{4.8}\\ \leq 0, & r \leq i \leq n\end{cases}
$$

because $s^{-1} \tau^{\prime}-\mu^{\prime}=\sum_{i=1}^{n} n_{i}\left(e_{i}-e_{n+1}\right)$ with $n_{i} \geq 0$ for $i<r$ and $n_{i} \leq 0$ for $r \leq i<n+1$. Now W_{K} is the permutation set of the elements $\left\{e_{1}, \ldots, e_{n}\right\}$, so if π is a permutation of n elements, then

$$
\left(s^{-1} \tau^{\prime}-\mu^{\prime}\right)_{i}= \begin{cases}\tau_{\pi(i)}^{\prime}-\mu_{i}^{\prime} \geq 0, & 1 \leq i \leq r-1 \tag{4.9}\\ \tau_{\pi(i)}^{\prime}-\mu_{i}^{\prime} \leq 0, & r \leq i \leq n\end{cases}
$$

Since $\mu_{n}^{\prime}<\mu_{n-1}^{\prime}<\cdots<\mu_{1}^{\prime},(4.8)$ ensures that π leaves invariant the sets $\{1, \ldots, r-1\}$ and $\{r, \ldots, n\}$, because if $1 \leq i<r$ and $r \leq j \leq n$ (because τ is dominant), then $\tau_{\pi(j)}^{\prime} \leq \mu_{j}^{\prime}<\mu_{i}^{\prime} \leq \tau_{\pi(i)}^{\prime}$, implies $\pi(j)>\pi(i) \quad \forall i, j$ in the given intervals.

Let H be the permutation set that permute the τ_{j}^{\prime} 's in each interval [μ_{i}^{\prime}, $\left.\mu_{i-1}^{\prime}\right)$ with $1 \leq i<r \quad\left(\mu_{0}^{\prime}=\infty\right)$. For $s_{1} \in H$, since $Q_{s}=Q_{s s_{1}}$,

$$
m_{\lambda}(\tau)=\sum \operatorname{det} s Q_{s}=\sum \operatorname{det} s Q_{s s_{1}}=\sum \operatorname{det} s\left(s_{1}\right)^{-1} Q_{s}=\operatorname{det}\left(s_{1}\right)^{-1} m_{\lambda}(\tau)
$$

H always contains a transposition unless $H=1$, and the sign of a transposition (its determinant) is -1 , so $H=1$. Then, because of the decreasing order of τ_{j}^{\prime} 's $(j \neq n+1)$ and (4.8)

$$
\mu_{r-1}^{\prime} \leq \tau_{r-1}^{\prime}<\mu_{r-2}^{\prime} \leq \cdots<\mu_{1}^{\prime} \leq \tau_{1}^{\prime} .
$$

The same argument for the intervals $\left(\mu_{i+1}^{\prime}, \mu_{i}^{\prime}\right]$ with $r \leq i<n+1 \quad\left(\mu_{n+1}^{\prime}=\right.$ $-\infty$) yields

$$
\tau_{n}^{\prime} \leq \mu_{n}^{\prime}<\tau_{n-1}^{\prime} \leq \cdots<\tau_{r}^{\prime} \leq \mu_{r}^{\prime}
$$

Thus, the unique s such that $Q_{s} \neq 0$ is $s=1$, so $m_{\lambda}(\tau)=\operatorname{det} 1 Q_{1}=1$.
The proposition will be used for $\tau=\sigma+\gamma$ with σ a Φ_{k}^{+}-dominant weight and γ a weight of S. In this case

$$
\left.\begin{array}{rl}
P(S)= & \left\{\frac{1}{2}\left(\pm \alpha_{1} \pm \alpha_{2} \pm \cdots \pm \alpha_{n}\right): \alpha_{i} \in \Psi^{r}\right\} \\
= & \left\{\frac{1}{2}\left(\pm e_{1} \pm \cdots \pm e_{n}+m e_{n+1}\right): m=\text { number of }(-) \text { - number of }(+)\right\} \\
& \sigma=\sum_{i=1}^{n+1} \sigma_{i} e_{i}, \quad \frac{\sigma_{i}=m_{i}+s}{n+1}, s, m_{i} \in \mathbb{Z}, 0 \leq s<n+1
\end{array}\right\} \begin{array}{ll}
\pm \frac{1}{2}, & i \neq n+1, \\
-\sum_{i=1}^{n} \varepsilon_{i}, & i=n+1 .
\end{array}
$$

We retain the notation of $\S 3$.
Proposition 4.2. Let $\lambda=\sum_{i=1}^{n+1} \lambda_{i} e_{i}$ be a Ψr-dominant Harish-Chandra parameter, and let L_{d}^{2} be the discrete part of $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ as in (3.3) and σ be as in §3. Then
(i)

$$
n_{\lambda} \neq 0 \Leftrightarrow\left\{\begin{array}{l}
\left(\sigma+\rho_{k}-\lambda\right)_{i} \in \mathbb{Z}, \quad i=1, \ldots, n \\
\lambda_{i} \in\left[\sigma_{i+1}+\frac{1}{2}(n-2 i-1), \sigma_{i}+\frac{1}{2}(n-2 i+1)\right], \quad 1 \leq i<r-1 \\
\lambda_{r-1} \in\left(\sigma_{r}+\frac{1}{2}(n-2 r+1), \sigma_{r-1}+\frac{1}{2}(n-2 r+3)\right], \\
\lambda_{r} \in\left[\sigma_{r}+\frac{1}{2}(n-2 r+1), \lambda_{r-1}\right), \\
\lambda_{i} \in\left[\sigma_{i}+\frac{1}{2}(n-2 i+1), \sigma_{i-1}+\frac{1}{2}(n-2 i+3)\right], \quad r<i \leq n
\end{array}\right.
$$

(ii) $n_{\lambda} \neq 0 \Rightarrow n_{\lambda}=2^{m}, 0 \leq m \leq n$.
(iii) $n_{\lambda}=1 \Leftrightarrow \lambda=\sigma+\rho_{k}$.

Remark. If $\sigma+\rho_{k}$ is a Harish-Chandra parameter, then $\mathbf{W}_{0}\left(\mathbf{D}^{2}\right)=\mathrm{W}_{0}(\mathbf{D}) \supset$ $H_{\sigma+\rho_{k}}$ by (iii) of the last proposition and (iv) of Proposition 3.1. Actually, the equality is true by the irreducibility of $\mathrm{W}_{0}(\mathbf{D})$ [A-S].
Proof. (i) Suppose that $n_{\lambda} \neq 0$, then $m_{\lambda}(\sigma+\gamma) \neq 0$ for some $\gamma \in P(S)$, so by Proposition 4.1 and (4.3)

$$
\sigma_{i}+\varepsilon_{i}+\left(\rho_{k}\right)_{i}-\mu_{i}=\sigma_{i}+\varepsilon_{i}+\left(\rho_{k}\right)_{i}-\left(\lambda_{i} \pm \frac{1}{2}\right) \in \mathbb{Z} \quad \forall i
$$

if and only if $\sigma_{i}+\left(\rho_{k}\right)_{i}-\lambda_{i} \in \mathbb{Z} \quad \forall i$ and

$$
\begin{aligned}
& \lambda_{i} \in\left[\sigma_{i+1}+\varepsilon_{i+1}+\frac{1}{2}(n-2 i), \sigma_{i}+\varepsilon_{i}+\frac{1}{2}(n-2 i)\right], \quad 1 \leq i<r-1, \\
& \lambda_{r-1} \in\left(\sigma_{r}+\varepsilon_{r}+\frac{1}{2}(n-2(r-1)), \sigma_{r-1}+\varepsilon_{r-1}+\frac{1}{2}(n-2(r-1))\right], \\
& \lambda_{r} \in\left[\sigma_{r}+\varepsilon_{r}+\frac{1}{2}(n-2(r-1)), \lambda_{r-1}\right) \\
& \lambda_{i} \in\left[\sigma_{i}+\varepsilon_{i}+\frac{1}{2}(n-2(i-1)), \sigma_{i-1}+\varepsilon_{i-1}+\frac{1}{2}(n-2(i-1))\right], \quad r<i \leq n .
\end{aligned}
$$

As $\varepsilon= \pm \frac{1}{2}$ the components of λ are in the given intervals.
Conversely, we want to know when there exist $\gamma \in P(S)$ such that $m_{\lambda}(\sigma+\gamma) \neq 0$. Denote
for $i \leq r-1$

$$
\begin{aligned}
& N_{i}=\left[\sigma_{i+1}+\frac{1}{2}(n-2 i-1), \sigma_{i+1}+\frac{1}{2}(n-2 i+1)\right), \\
& B_{i}=\left[\sigma_{i+1}+\frac{1}{2}(n-2 i+1), \sigma_{i}+\frac{1}{2}(n-2 i-1)\right] \\
& M_{i}=\left(\sigma_{i}+\frac{1}{2}(n-2 i-1), \sigma_{i}+\frac{1}{2}(n-2 i+1)\right]
\end{aligned}
$$

for $i=r-1$

$$
\begin{aligned}
& N_{r-1}=\left(\sigma_{r}+\frac{1}{2}(n-2(r-1)-1), \sigma_{r}+\frac{1}{2}(n-2(r-1)+1)\right), \\
& B_{r-1}=\left[\sigma_{r}+\frac{1}{2}(n-2(r-1)+1), \sigma_{r-1}+\frac{1}{2}(n-2(r-1)-1)\right], \\
& M_{r-1}=\left(\sigma_{r-1}+\frac{1}{2}(n-2(r-1)-1), \sigma_{r-1}+\frac{1}{2}(n-2(r-1)+1)\right]
\end{aligned}
$$

for $i=r$

$$
\begin{aligned}
& \left.N_{r}=\left[\sigma_{r}+\frac{1}{2}(n-2(r-1)-1), \sigma_{r}+\frac{1}{2}(n-2(r-1)+1)\right)\right), \\
& B_{r}=\left[\sigma_{r}+\frac{1}{2}(n-2(r-1)+1), \lambda_{r-1}\right), \\
& M_{r}=\varnothing
\end{aligned}
$$

for $r<i \leq n$

$$
\begin{aligned}
& N_{i}=\left[\sigma_{i}+\frac{1}{2}(n-2(i-1)-1), \sigma_{i}+\frac{1}{2}(n-2(i-1)+1)\right), \\
& B_{i}=\left[\sigma_{i}+\frac{1}{2}(n-2(i-1)+1), \sigma_{i-1}+\frac{1}{2}(n-2(i-1)-1)\right], \\
& M_{i}=\left(\sigma_{i-1}+\frac{1}{2}(n-2(i-1)-1), \sigma_{i-1}+\frac{1}{2}(n-2(i-1)+1)\right] .
\end{aligned}
$$

Observe that the intervals N_{i} and M_{i} have length one, except when they are empty. Suppose $H_{\lambda}[\sigma+\gamma] \neq 0$. When $\lambda_{i} \in N_{i}$, for $i<r$, set $\varepsilon_{i+1}(\gamma)=$ $-\frac{1}{2}$ and for $i \geq r$, set $\varepsilon_{i}(\gamma)=-\frac{1}{2}$. Similarly, for $\lambda_{i} \in M_{i}$, put $\varepsilon_{i}(\gamma)=$ $\frac{1}{2}$, when $i<r$ and $\varepsilon_{i+1}(\gamma)=\frac{1}{2}$ when $i>r$. If λ is a Harish-Chandra parameter whose components satisfy the conditions on the right-hand side of (i), then two consecutive components λ_{i} and λ_{i+1} of λ cannot be at N_{i} and M_{i+1} respectively. So, either case determines the value of the corresponding component of γ. If $\lambda \in B_{i}, \varepsilon_{i}(\gamma)$ can take either value. So, there exist a γ such that $H_{\lambda}[\sigma+\gamma] \neq 0$.
(ii) Suppose that $\lambda_{i_{j}} \notin B_{i_{j}}, j=1, \ldots, m$, and $\lambda_{k} \in B_{k}$ for $k \neq i_{j}$. Then $\lambda_{i_{j}} \in N_{i_{j}} \cup M_{i_{j}}$, so this determines exactly m components values of the γ 's such that $m_{\lambda}(\sigma+\gamma) \neq 0$. Thus there exist 2^{n-m} weight γ such that $m_{\lambda}(\sigma+\gamma) \neq 0$.
(iii) $n_{\lambda}=1$ is equivalent to the existence of a unique $\gamma \in P(S)$ such that $m_{l}(\sigma+\gamma) \neq 0$, so the components of λ determine every components of γ, or equivalently $\lambda_{i} \in N_{i} \cup M_{i} \quad \forall i=1, \ldots, n$. Note that $M_{r}=\varnothing$, so $\lambda_{r} \in N_{r}$. This implies that $\lambda_{i} \in N_{i} \forall i>r$. The component $\lambda_{r-1} \in M_{r-1}$, because $\lambda_{r-1} \geq \lambda_{r}+1 \geq \sigma_{r}+\frac{1}{2}(n-2(r-1)-1)+1=$ right extreme of the open set N_{r-1}.

So $\lambda_{i} \in M_{i}$ for $i<r$. Again, as the lengths of N_{i} and M_{i} are one,

$$
\begin{array}{ll}
\left(\sigma+\rho_{k}-\lambda\right)_{i} \in \mathbb{Z} & \forall i=1, \ldots, n \\
\left(\sigma+\rho_{k}\right)_{i} \in M_{i}, & i<r \\
\left(\sigma+\rho_{k}\right)_{i} \in N_{i}, & i \geq r
\end{array}
$$

so the conclusion is $\lambda=\sigma+\rho_{k}$.
The converse is true because each component of λ is in $N_{i} \cup M_{i}$ and this determine exactly $\gamma=\rho_{n}^{r}$ by a similar argument to that used before. This γ satisfies $H_{\lambda}[\sigma+\gamma] \neq 0$, that is $n_{\lambda}=1$.

$$
\text { 5. } G=\operatorname{Spin}(2 n, 1)
$$

In this case the maximal compact subgroup K is $\operatorname{Spin}(2 n)$. Fix T a maximal torus in K with Cartan subalgebra h_{0}, and an ordered orthonormal base $\left\{H_{1}, \ldots, H_{n}\right\}$ of the real Lie algebra $i h_{0}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the dual base to $\left\{H_{1}, \ldots, H_{n}\right\}$, so

$$
\begin{equation*}
e_{j}\left(H_{j}\right)=\delta_{i j} \tag{5.1}
\end{equation*}
$$

The root system $\boldsymbol{\Phi}(h, g)$ lies in $\left(i h_{0}\right)^{\prime}$, the real dual of $i h_{0}$. It is known that

$$
\Phi_{k}=\left\{e_{i} \pm e_{j}: i \neq j, i, j=1, \ldots, n\right\}, \quad \Phi_{n}=\left\{ \pm e_{i}: i=1, \ldots, n\right\}
$$

Fix

$$
\begin{equation*}
\boldsymbol{\Phi}_{k}^{+}=\left\{e_{i} \pm e_{j}: i<j\right\} \tag{5.2}
\end{equation*}
$$

Now we have two choices of Φ_{n}^{+}such that $\Phi^{+}=\Phi_{k}^{+} \cup \Phi_{n}^{+}$is a positive root system, these are

$$
\begin{equation*}
\Psi^{1}=\left\{e_{1}, \ldots, e_{n}\right\}, \quad \Psi^{2}=\left\{e_{1}, \ldots, e_{n-1},-e_{n}\right\} \tag{5.3}
\end{equation*}
$$

With (5.1) in mind

$$
\begin{equation*}
\rho_{k}=\sum_{i=1}^{n}(n-i) e_{i}, \quad \rho_{n}^{1}=\frac{1}{2} \sum_{i=1}^{n} e_{i}, \quad \rho_{n}^{2}=\frac{1}{2}\left(\sum_{i=1}^{n-1} e_{i}-e_{n}\right) \tag{5.4}
\end{equation*}
$$

where ρ_{n}^{i} correspond to choice of Ψ^{i} as positive noncompact root system. Let $\lambda \in\left(i h_{0}\right)^{\prime}$ be an integral weight, so $\lambda=\sum \lambda_{i} e_{i}$ with $\lambda_{i} \in \mathbb{Z} \quad \forall i=1, \ldots, n$ or $\lambda_{i}=\frac{1}{2}\left(2 k_{i}+1\right)$ with $k_{i} \in \mathbb{Z} \quad \forall i=1, \ldots, n$. Note that λ is Φ_{k}^{+}-dominant, is equivalent to

$$
\begin{equation*}
0 \leq\left|\lambda_{n}\right| \leq \lambda_{n-1} \leq \cdots \leq \lambda_{1} \tag{5.5}
\end{equation*}
$$

because $\left(\lambda, e_{i}-e_{j}\right)=\lambda_{i}-\lambda_{j} \geq 0$ if $i<j$, and $\left(\lambda, e_{i}+e_{j}\right)=\lambda_{i}+\lambda_{j} \geq 0$. λ is Φ_{n}^{+}-dominant is equivalent to $\lambda_{n}=\operatorname{sgn} e_{n}\left|\lambda_{n}\right|$ having in mind the choice made in (5.3). Recall that λ is a Harish-Chandra parameter of a discrete series if λ is nonsingular and $\lambda+\rho$ is integral. Thus, when λ is Φ^{+}-dominant, this is equivalent to having strict inequalities at (5.4) and λ being integral (because ρ is integral). The restriction that λ is Φ^{+}-dominant is equivalent to be Φ_{n}^{+} dominant. From now on, λ shall be $\boldsymbol{\Phi}_{k}^{+}$-dominant.

The next proposition gives a necessary and sufficient condition for when a K-type occurs in a discrete series of $\operatorname{Spin}(2 n, 1)$ of parameter λ. Denote by $m_{\lambda}(\tau)$ the multiplicity of the irreducible component of maximal weight τ in this discrete series.

Proposition 5.1. Let $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}$ be a Φ^{+}-dominant Harish-Chandra parameter (for either of the two choices of Φ_{n}^{+}). Let $\tau=\sum_{i=1}^{n} \tau_{i} e_{i}$ be a Φ_{k}^{+}-dominant weight and set $\mu=\lambda+\rho_{n}-\rho_{k}=\sum_{i=1}^{n} \mu_{i} e_{i}$. Then,

$$
m_{\lambda}(\tau)=1 \Leftrightarrow\left\{\begin{array}{l}
\tau_{i}-\mu_{i} \in \mathbb{Z} \\
\left|\lambda_{n}\right|+\frac{1}{2} \leq\left|\tau_{n}\right| \leq \mu_{n-1} \leq \tau_{n-1} \leq \cdots \leq \mu_{1} \leq \tau_{1} \\
\operatorname{sgn} \lambda_{n}=\operatorname{sgn} \tau_{n}
\end{array}\right.
$$

Proof. Fix $\Phi_{n}^{+}=\Psi^{1}$, and let λ be Ψ^{1}-dominant, or equivalently $\lambda_{n}>0$. Let $\tau^{\prime}=\tau+\rho_{k}$ and $\mu^{\prime}=\mu+\rho_{k}=\lambda+\rho_{n}$, then we have to prove

$$
m_{\lambda}(\tau)=1 \quad \text { if and only if } \quad \mu_{j}^{\prime} \leq \tau_{j}^{\prime}<\mu_{j-1}^{\prime}, \quad j=1, \ldots, n\left(\mu_{0}=\infty\right)
$$

In this case the Weyl group W_{K} of K is the set of maps

$$
s:\left(e_{1}, \ldots, e_{n}\right) \rightarrow\left(\pm e_{\pi(1)}, \ldots, \pm e_{\pi(n)}\right)
$$

with an even number of minus signs where π is a permutation of a set of n elements; the determinant of s is the sign of π. The Blattner formula say that

$$
m_{\lambda}(\tau)=\sum_{s \in W_{K}} \operatorname{det} s Q\left(s^{-1} \tau^{\prime}-\mu^{\prime}\right)
$$

where $Q(\sigma)$ is the number of expressions of σ as a sum of positive noncompact roots. If $s \in W_{K}$, one has that $Q_{s}=Q\left(s^{-1} \tau^{\prime}-\mu^{\prime}\right) \neq 0$ if and only if $\pm \tau_{\pi(k)}^{\prime}-\mu_{k}^{\prime}$ is a nonnegative integer for all k. Since the number of minus sign is even, and $\mu_{n}^{\prime}, \tau_{j}^{\prime} \geq 0$, except for τ_{n}^{\prime}, then s cannot change signs, so $\tau_{n}^{\prime} \geq 0$. Besides, since $\mu_{n}^{\prime} \leq \mu_{j}^{\prime} \forall j$, it follows that $\tau_{j}^{\prime} \geq \mu_{n}^{\prime} \quad \forall j$ (otherwise $Q_{s}=0 \quad \forall s$). Suppose that $m_{\lambda}(\tau) \neq 0$, so $Q_{s} \neq 0$ for some s. Let H be the permutation subgroup which changes the elements τ_{j}^{\prime} which are in the interval $\left[\mu_{k}^{\prime}, \mu_{k-1}^{\prime}\right)$. Since the order of τ_{j}^{\prime} in the interval is irrelevant, if $\pi \in H$ and $s_{1} \in W_{K}$ corresponds to π, then $Q_{s s_{1}}=Q_{s}$.

$$
m_{\lambda}(\tau)=\sum \operatorname{det} s Q_{s}=\sum \operatorname{det} s Q_{s s_{1}}=\sum \operatorname{det} s\left(s_{1}\right)^{-1} Q_{s}=\operatorname{det}\left(s_{1}\right)^{-1} m_{\lambda}(\tau)
$$

But H always has a transposition, except when $H=\{1\}$, in which case there is only one τ_{j}^{\prime} in each interval $\left[\mu_{k}^{\prime}, \mu_{k-1}^{\prime}\right)$. This holds for $k=1, \ldots, n$ where $\mu_{0}=\infty$. Since $\tau_{n}^{\prime} \geq \mu_{n}^{\prime}$ and the coefficients τ_{j}^{\prime} are ordered, $m_{\lambda}(\tau) \neq 0$ only if the condition of the proposition holds.

Conversely if the condition of the proposition holds, $\tau_{\pi(k)}^{\prime}-\mu_{k}^{\prime} \geq 0$ if and only if $\pi=1$, so $Q_{1}=1$ and $Q_{s}=0$ if $s \neq 1$, that is $m_{\lambda}(\tau)=\operatorname{det} 1 Q_{1}=1$ (we know that in the case of $\operatorname{Spin}(2 n, 1)$ that $m_{\lambda}(\tau)$ is at the most 1).

Now consider $\lambda_{n}<0$, or equivalently λ is Ψ^{2}-dominant. If we change the positive noncompact root set Ψ^{1} to Ψ^{2}, then $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}+\left(-\lambda_{n}\right)\left(-e_{n}\right)$ with $-\lambda_{n}>0$, so the conditions are the same as in the first part of the proof. In this situation we must have

$$
-\tau_{n} \geq\left|\lambda_{n}\right|+\frac{1}{2}>0 \Rightarrow \tau_{n}<0 \Rightarrow \operatorname{sgn} \lambda_{n}=\operatorname{sgn} \tau_{n}
$$

and the proof is complete.
We will use the last proposition in the case $\tau=\sigma+\gamma$ with σ a Φ_{k}^{+}-dominant weight and γ a weight of S, because that is what we need to obtain the set of elements of $\operatorname{Eig}\left(\mathbf{D}^{2}\right)$ (see Proposition 3.1(iv)). In this case

$$
P(S)=\left\{\frac{1}{2}\left(\pm e_{1} \pm \cdots \pm e_{n}\right)\right\}
$$

Let

$$
\sigma=\sum \sigma_{i} e_{i}, \quad \sigma_{i} \in \mathbb{Z} \quad \forall i, \quad \text { or } \quad 2 \sigma_{i} \text { is odd } \quad \forall i
$$

Thus,

$$
\sigma+\gamma=\sum\left(\sigma_{i}+\varepsilon_{i}\right) e_{i}, \quad \varepsilon_{i}=\left(\gamma, e_{i}\right)= \pm \frac{1}{2}
$$

Proposition 5.2. Let $\lambda=\sum_{i=1}^{n} \lambda_{i} e_{i}$ be a Φ_{k}^{+}-dominant Harish-Chandra parameter, and let L_{d}^{2} be the discrete part of $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ as in (3.3), and σ as in (3.5). Then,
(i)

$$
n_{\lambda} \neq 0 \Leftrightarrow\left\{\begin{array}{l}
\sigma_{i}-\lambda_{i} \in \mathbb{Z} \quad \forall i, \\
\lambda_{i} \in\left[\sigma_{i+1}+n-i-1, \sigma_{i}+n-i\right], \quad i<n \\
\left|\lambda_{n}\right| \in\left(0,\left|\sigma_{n}\right|\right], \\
\lambda \text { and } \sigma \text { are in the same Weyl chamber for } \Phi^{+} .
\end{array}\right.
$$

(ii) $n_{\lambda} \neq 0 \Rightarrow n_{\lambda}=2^{m}, 0 \leq m \leq n$.
(iii) $n_{\lambda}=1 \Leftrightarrow \lambda=\sigma+\rho_{k}$.
(iv) $\|\lambda\|^{2} \leq\left\|\sigma+\rho_{k}\right\|$ and $\|\lambda\|^{2}=\left\|\sigma+\rho_{k}\right\| \Leftrightarrow \lambda=\sigma+\rho_{k}$.

Remark. Using the notation of the Proposition 3.1, the equality $\mathbf{W}_{0}\left(\mathbf{D}^{2}\right)=$ $\mathrm{W}_{0}(\mathrm{D})=H_{\sigma+\rho_{k}}$ holds.
Proof. (i) Suppose that $n_{\lambda} \neq 0$, so $m_{\lambda}(\sigma+\gamma) \neq 0$ for some $\gamma \in P(S)$, so

$$
\begin{aligned}
& \sigma_{i}+\varepsilon_{i}-\mu_{i}=\sigma_{i}+\varepsilon_{i}-\left(\lambda_{i}+\frac{1}{2}\right) \in \mathbb{Z} \quad \forall i \Leftrightarrow \sigma_{i}-\lambda_{i} \in \mathbb{Z} \quad \forall i \\
& \lambda_{i} \in\left[\sigma_{i+1}+\varepsilon_{i+1}+n-i-\frac{1}{2}, \sigma_{i}+\varepsilon_{i}+n-i-\frac{1}{2}\right] \text { for } i<n, \\
& \left|\lambda_{n}\right| \in\left(0,\left|\sigma_{n}+\varepsilon_{n}\right|-\frac{1}{2}\right]
\end{aligned}
$$

$$
\operatorname{sgn} \lambda_{n}=\operatorname{sgn}\left(\sigma_{n}+\varepsilon_{n}\right)=\operatorname{sgn} \sigma_{n}
$$

by the last proposition and (5.4). Note that $\left|\lambda_{n}\right|+\frac{1}{2} \leq\left|\sigma_{n}+\varepsilon_{n}\right|, \lambda$ integral and nonsingular, ensures that $\operatorname{sgn}\left(\sigma_{n}+\varepsilon_{n}\right)=\operatorname{sgn} \sigma_{n}$.

Conversely, we want to find $\gamma \in P(S)$ such that $m_{\lambda}(\sigma+\gamma) \neq 0$. Denote

$$
\begin{array}{ll}
\text { for } i<n & N_{i}=\left[\sigma_{i+1}+n-i-1, \sigma_{i+1}+n-i\right), \\
& B_{i}=\left[\sigma_{i+1}+n-i, \sigma_{i}+n-i-1\right], \\
& M_{i}=\left(\sigma_{i}+n-i-1, \sigma_{i}+n-i\right] ; \\
\text { for } i=n & \\
& N_{n}=\varnothing, \\
& B_{n}=\left(0,\left|\sigma_{n}\right|-1\right], \\
& M_{n}=\left(\left|\sigma_{n}\right|-1,\left|\sigma_{n}\right|\right] .
\end{array}
$$

This is the situation graphically:

If $\lambda_{i} \in N_{i}$, this fixes the value of $\varepsilon_{i+1}(\gamma)=-\frac{1}{2}$ for γ 's such that $H_{\lambda}[\sigma+\gamma] \neq$ 0 . Similarly, $\lambda_{i+1} \in M_{i+1}$ ensures $H_{\lambda}[\sigma+\gamma]=0$ for $\varepsilon_{i+1}(\gamma)=\frac{1}{2}$. But both cannot occur simultaneously, because N_{i} and M_{i+1} have both length one and equal extremes, and $\lambda_{i+1}-\lambda_{i} \in \mathbb{Z}$, that is that only one of the cases determines the value of $\varepsilon_{i+1}(\gamma)$. So there is a γ such that $m_{\lambda}(\sigma+\gamma) \neq 0$.
(ii) Suppose that $\lambda_{i_{j}} \notin B_{i_{j}}, j=1, \ldots, m$, and $\lambda_{k} \in B_{k}$ for $k \neq i_{j}$. Then $\lambda_{i_{j}} \in N_{i_{j}} \cup M_{i_{j}}$, this determines exactly m component values of the γ 's for which $m_{\lambda}(\sigma+\gamma) \neq 0$. So there exist 2^{n-m} weights γ such that $m_{\lambda}(\sigma+\gamma) \neq 0$.
(iii) $n_{\lambda}=1$ is equivalent to the existence of a unique $\gamma \in P(S)$ such that $m_{\lambda}(\sigma+\gamma) \neq 0$, so that the components of λ determine every component of γ, or equivalently $\lambda_{i} \in N_{i} \cup M_{i} \quad \forall i$. Now note that $N_{n}=\varnothing$ and this ensures that $\lambda_{n} \in M_{n}$. But two consecutive components of λ cannot be in the same interval (M_{i} and N_{i-1} have the same extremes), so $\lambda_{n-1} \in M_{n-1}$. Repeating the same argument we obtain that $\lambda_{i} \in M_{i} \forall i$. Then, as $\lambda_{i}-\sigma_{i} \in \mathbb{Z}, \lambda=\sigma+\rho_{k}$.
(iv) By (i) $\left|\lambda_{i}\right| \leq\left|\left(\sigma+\rho_{k}\right)_{i}\right| \forall i$, so

$$
\|\lambda\|^{2}=\sum \lambda_{i}^{2} \leq \sum\left(\sigma+\rho_{k}\right)_{i}^{2}=\left\|\sigma+\rho_{k}\right\|^{2}
$$

and the equality holds if and only if $\lambda=\sigma+\rho_{k}$.

$$
\text { 6. } G=S p(2, \mathbb{R})
$$

In the cases $G=S U(n, 1)$ and $G=\operatorname{Spin}(2 n, 1)$ we proved that the multiplicity n_{λ} of the discrete series H_{λ} of parameter λ which occurs in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ is a power of 2 with exponent less than or equal n. For the $G=S p(2, \mathbb{R})$ we will show that there exist parameters λ 's such that n_{λ} is nonzero and is not a power of 2 . By (3.7) we know that

$$
n_{\lambda}=\sum_{\gamma \in P(S)} \operatorname{dim} \operatorname{Hom}_{K}\left(H_{\lambda}, V_{\sigma+\gamma}\right) .
$$

We will give some examples where the number of elements $\gamma \in P(S)$ such that $H_{\lambda}[\sigma+\gamma] \neq 0$ is not a power of 2.

Let $G=S p(2, \mathbb{R})$. The Lie algebra is

$$
g_{0}=\left\{\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{3} & { }^{-}-X_{1}
\end{array}\right): \quad X_{1}, X_{2}, X_{3} \in \mathbb{R}^{2 \times 2}, X_{2}, X_{3} \text { symmetric }\right\}
$$

Let $g_{0}=k_{0}+p_{0}$ be the Cartan decomposition of g_{0}, where

$$
\begin{aligned}
& k_{0}=\left\{\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right): \quad X_{1}=-^{t} X_{1}, X_{2}=^{t} X_{2}\right\}, \\
& p_{0}=\left\{\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{2} & -X_{1}
\end{array}\right): \quad X_{1}={ }^{t} X_{1}, X_{2}=^{t} X_{2}\right\} .
\end{aligned}
$$

There is an algebra isomorphism $k_{0}=g_{0} \cap u(4) \cong u(2)$ given by

$$
k_{0} \rightarrow u(2), \quad\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right) \rightarrow X_{1}+i X_{2}
$$

A Cartan subalgebra of k_{0} and g_{0} is

$$
h_{0}=\mathbb{R}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \oplus \mathbb{R}\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

where the first summand is the center z_{0} of k_{0}. Let g, k, p, h, z be the complexifications of $g_{0}, k_{0}, p_{0}, h_{0}, z_{0}$ respectively. The root system of (g, h) is

$$
\begin{equation*}
\Phi(h, g)=\left\{ \pm e_{1} \pm e_{2}\right\} \cup\left\{ \pm 2 e_{1}, \pm 2 e_{2}\right\} \tag{6.1}
\end{equation*}
$$

where

$$
e_{j}\left(\begin{array}{cccc}
0 & 0 & i h_{1} & 0 \\
0 & 0 & 0 & i h_{2} \\
-i h_{1} & 0 & 0 & 0 \\
0 & -i h_{2} & 0 & 0
\end{array}\right)=h_{j}, \quad j=1,2
$$

Let

$$
\Phi_{k}=\left\{ \pm\left(e_{1}-e_{2}\right)\right\}, \quad \Phi_{n}=\left\{ \pm\left(e_{1}+e_{2}\right), \pm 2 e_{1}, \pm 2 e_{2}\right\}
$$

and fix

$$
\begin{equation*}
\Phi_{k}^{+}=\left\{e_{1}-e_{2}\right\}, \quad \Phi_{n}^{+}=\left\{e_{1}+e_{2}, 2 e_{1}, 2 e_{2}\right\}, \quad \Phi^{+}=\Phi_{k}^{+} \cup \Phi_{n}^{+} \tag{6.2}
\end{equation*}
$$

Let E_{α} be the root vectors such that $B\left(E_{\alpha}, E_{-\alpha}\right)=2\|\alpha\|^{2}$, where B is the Killing form. Define $H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right]$, so H_{α} satisfies $\alpha\left(H_{\alpha}\right)=2$. Thus

$$
h=z \oplus \mathbb{C} H_{e_{1}-e_{2}}=\mathbb{C} H_{e_{1}+e_{2}} \oplus \mathbb{C} H_{e_{1}-e_{2}} .
$$

Let $\left(i h_{0}\right)^{\prime}$ be the dual space of $i h_{0}$; if $\mu \in\left(i h_{0}\right)^{\prime}$, then

$$
\mu=\mu_{1}\left(e_{1}+e_{2}\right)+\mu_{2}\left(e_{1}-e_{2}\right)
$$

Denote

$$
p^{+}=\sum_{\alpha \in \Phi_{n}^{+}} g_{\alpha}, \quad p^{-}=\sum_{\alpha \in \Phi_{n}^{+}} g_{-\alpha} .
$$

It is known that if λ is Φ^{+}-dominant with Φ^{+}as in (6.2), H_{λ} is a holomorphic discrete series of $S p(2, \mathbb{R})$. Then (see [S]) the restriction of the representation to K of the K-finite elements of H_{λ} is equivalent to the representation $S\left(p^{+}\right) \otimes V_{\Lambda}$, where $S\left(p^{+}\right)$is the symmetric algebra of p^{+}and $\Lambda=\lambda+\rho_{n}-\rho_{k}$. To obtain the irreducible representations of K that occur at $S\left(p^{+}\right)$we will need the fact that $S\left(p^{+}\right)$is the dual of $S\left(p^{-}\right)$and the result of [S]. Select the maximal ordered subset $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ of p^{-}selected such that α_{1} is the small root of p^{-}, and if $\alpha_{1}, \ldots, \alpha_{s}$ has been chosen, α_{s+1} is the small root of p^{-}strongly orthogonal to $\alpha_{1}, \ldots, \alpha_{s} \quad\left(\alpha_{s+1} \pm \alpha_{i} \notin \Phi, i=1, \ldots, s\right)$. Then, the results of $[\mathrm{S}]$ says any irreducible representation of K which occurs in $S\left(p^{+}\right)$has multiplicity one and its maximal weight is $k_{1} \gamma_{1}+\cdots+k_{r} \gamma_{r} ; k_{i} \in$ $\mathbb{Z}_{\geq 0} ; \gamma_{i}=-\alpha_{1}-\cdots-\alpha_{i}$. Moreover, this representation occurs in polynomials of degree at most $k_{1}+2 k_{2}+\cdots+r k_{r}$. In our case $\Delta=\left\{-2 e_{1},-2 e_{2}\right\}$, so

$$
\gamma_{1}=2 e_{1}, \quad \gamma_{2}=2 e_{1}+2 e_{2}
$$

and the highest weight of the irreducible representations of $S\left(p^{+}\right)$is

$$
\begin{aligned}
\mu & =k_{1} 2 e_{1}+k_{2}\left(2 e_{1}+2 e_{2}\right) \\
& =\left(k_{1}+2 k_{2}\right)\left(e_{1}+e_{2}\right)+k_{1}\left(e_{1}-e_{2}\right), \quad k_{i} \in \mathbb{Z}_{\geq 0}
\end{aligned}
$$

Therefore,

$$
S\left(p^{+}\right)=\bigoplus_{k_{1}, k_{2} \geq 0} \mathbb{C}_{\left(k_{1}+2 k_{2}\right)\left(e_{1}+e_{2}\right)} \otimes V_{k_{1}\left(e_{1}-e_{2}\right)}^{\prime}
$$

where $V_{k_{1}\left(e_{1}-e_{2}\right)}^{\prime}$ is an $S U(2)$-module of maximal weight $k_{1}\left(e_{1}-e_{2}\right)$, and $\mathbb{C}_{\left(k_{1}+2 k_{2}\right)\left(e_{1}+e_{2}\right)}$ is the one-dimensional representation of the center of $U(2)$ given by $\operatorname{det}()^{k_{1}+2 k_{2}}$. The $U(2)$-module V_{Λ} is equivalent to $\mathbf{C}_{a\left(e_{1}+e_{2}\right)} \otimes V_{b\left(e_{1}-e_{2}\right)}^{\prime}$ if $\Lambda=a\left(e_{1}+e_{2}\right)+b\left(e_{1}-e_{2}\right)$, so using the Clebsh-Gordon formula for the tensor product of two $S U(2)$-modules,

$$
\begin{aligned}
S\left(p^{+}\right) \otimes V_{\Lambda} & =\bigoplus_{k_{1}, k_{2} \geq 0}\left(\mathbb{C}_{\left(k_{1}+2 k_{2}\right)\left(e_{1}+e_{2}\right)} V_{k_{1}\left(e_{1}-e_{2}\right)}^{\prime} \otimes \mathbb{C}_{a\left(e_{1}+e_{2}\right)} V_{b\left(e_{1}-e_{2}\right)}^{\prime}\right) \\
& =\bigoplus_{k_{1}, k_{2} \geq 0} \mathbb{C}_{\left(k_{1}+2 k_{2}+a\right)\left(e_{1}+e_{2}\right)}\left(V_{k_{1}\left(e_{1}-e_{2}\right)}^{\prime} \otimes V_{b\left(e_{1}-e_{2}\right)}^{\prime}\right) \\
& =\bigoplus_{k_{1}, k_{2} \geq 0}\left(\bigoplus_{t=0}^{\min \left(2 k_{1}, 2 b\right)} \mathbb{C}_{\left(k_{1}+2 k_{2}+a\right)\left(e_{1}+e_{2}\right)} V_{\left(k_{1}+b-t\right)\left(e_{1}-e_{2}\right)}^{\prime}\right) .
\end{aligned}
$$

If the discrete series H_{λ} occurs in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$ where V_{σ} is the irreducible representation of K of maximal weight $\sigma=\sigma_{1} e_{1}+\sigma_{2} e_{2}$, where σ is sufficiently far from the walls as in (3.5); then the K-type $H_{\lambda}[\sigma+\gamma]$ is nonzero for some $\gamma \in P(S)$.

Denote the noncompact roots by

$$
\begin{aligned}
& \alpha_{1}=2 e_{1}=\left(e_{1}+e_{2}\right)+\left(e_{1}-e_{2}\right), \\
& \alpha_{2}=2 e_{2}=\left(e_{1}+e_{2}\right)-\left(e_{1}-e_{2}\right), \\
& \alpha_{3}=e_{1}+e_{2}
\end{aligned}
$$

Then $P(S)=\left\{\rho_{n}-\sum m_{i} \alpha_{i}: m_{i}=0,1\right\}$.
We will give one example of a parameter λ such that n_{λ} is not a power of 2. In the cases of $\operatorname{Spin}(2 n, 1)$ and $S U(2 n, 1)$ it happens that

$$
n_{\lambda}=\left|\left\{\gamma \in P(S): H_{\lambda}[\sigma+\gamma] \neq 0\right\}\right|
$$

but for $\operatorname{Sp}(2, \mathbb{R})$ this is not true.
Take $\lambda=\sigma+\rho_{k}-\alpha_{1}-\alpha_{2}$ with σ chosen so that λ is Φ^{+}-dominant.
The highest weight of the minimal K-type of H_{λ} is

$$
\Lambda=\lambda+\rho_{n}-\rho_{k}=\sigma+\rho_{n}-\alpha_{1}-\alpha_{2}
$$

Since $\rho_{n}-\alpha_{1}-\alpha_{2} \in P(S), H_{\lambda}$ occurs in $L^{2}\left(G / K, V_{\sigma} \otimes S\right)$. The multiplicity of each K-type is equal to the number of expressions of its maximal weight in the form

$$
\left(k_{1}+2 k_{2}+a\right)\left(e_{1}+e_{2}\right)+\left(k_{1}+b-t\right)\left(e_{1}-e_{2}\right)
$$

with $k_{i} \geq 0$ and $0 \leq t \leq \min \left(2 k_{1}, 2 b\right)$. Since σ is nonsingular and Φ^{+}dominant, $b=\sigma_{1}-\sigma_{2}>0$. To obtain n_{λ} we need the multiplicity of each K-type $\sigma+\gamma$ in H_{λ} with $\gamma \in P(S)$.

$$
\begin{gathered}
\sigma+\rho_{n}-\alpha_{1}-\alpha_{2}=a\left(e_{1}+e_{2}\right)+b\left(e_{1}-e_{2}\right), \\
k_{1}=0, \quad k_{2}=0, \quad t=0, \\
\text { multiplicity }=1,
\end{gathered}
$$

$$
\begin{gathered}
\sigma+\rho_{n}=(2+a)\left(e_{1}+e_{2}\right)+b\left(e_{1}-e_{2}\right), \\
k_{1}=0, \quad k_{2}=1, \quad t=0, \\
k_{1}=2, \quad k_{2}=0, \quad t=2, \\
\text { multiplicity }=2, \\
\sigma+\rho_{n}-\alpha_{1}=(1+a)\left(e_{1}+e_{2}\right)+(-1+b)\left(e_{1}-e_{2}\right), \\
k_{1}=1, \quad k_{2}=0, \quad t=2, \\
\text { multiplicity }=1, \\
\sigma+\rho_{n}-\alpha_{2}=(1+a)\left(e_{1}+e_{2}\right)+(1+b)\left(e_{1}-e_{2}\right), \\
k_{1}=1, \quad k_{2}=0, \quad t=0, \\
\text { multiplicity }=1, \\
\sigma+\rho_{n}-\alpha_{3}=(1+a)\left(e_{1}+e_{2}\right)+b\left(e_{1}-e_{2}\right) \\
k_{1}=1, \quad k_{2}=0, \quad t=1, \\
\text { multiplicity }=1, \\
\sigma+\rho_{n}-\alpha_{2}-\alpha_{3}=a\left(e_{1}+e_{2}\right)+(1+b)\left(e_{1}-e_{2}\right), \\
\text { multiplicity }=0, \\
\sigma+\rho_{n}-\alpha_{1}-\alpha_{3}=a\left(e_{1}+e_{2}\right)+(-1+b)\left(e_{1}-e_{2}\right), \\
\text { multiplicity }=0, \\
\text { multiplicity }=0,
\end{gathered}
$$

Then $n_{\lambda}=6 \neq 2^{m}$ and $\left|\left\{\gamma \in P(S): H_{\lambda}[\sigma+\gamma] \neq 0\right\}\right|=5 \neq 2^{m}$.
The authors wish to thank the referee for pointing out serious grammatical mistakes in the paper.

References

[A] M. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Asterisque 32-33 (1976).
[A-S] M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977).
[C-M] A. Connes and H. Moscovici, The L^{2}-index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2) 115 (1982).
[S] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitsch symmetrichen Raumen, Invent. Math. 9 (1969-1970).
[W] J. A. Wolf, Essential self adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1973).
[Wa] N. R. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973.

[^0]: Received by the editors September 11, 1991 and, in revised form, November 6, 1992.
 1991 Mathematics Subject Classification. Primary 22E30; Secondary 22E45.
 Key words and phrases. Eigenvalues and eigenvectors for Dirac operator over $S U(n, 1)$ and over $\operatorname{Spin}(2 n, 1)$, discrete series, Blattner formula.

 Supported by CONICET, CONICOR, FAMAF (Argentina), ICTP (Italy).

