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BRAID GROUPS AND LEFT DISTRIBUTIVE OPERATIONS

PATRICK DEHORNOY

Abstract. The decidability of the word problem for the free left distributive

law is proved by introducing a structure group which describes the underlying

identities. This group is closely connected with Artin's braid group Bx,. Braid

colourings associated with free left distributive structures are used to show the

existence of a unique ordering on the braids which is compatible with left trans-

lation and such that every generator cr, is preponderant over all ak with k > i.

This ordering is a linear ordering.

The first goal of the present paper is to give a proof of the following result,

which had been conjectured for several years:

Theorem. There is an effective algorithm for deciding whether a given identity is

or is not a consequence of the left distributivity identity x(yz) = (jcv)(jcz) .

Until recently this question has had a rather unusual status. Conditional

solutions were given independently in [6] and [24], where the decision problem

was reduced to a specific algebraic hypothesis, one which had been shown by

Richard Laver to be a consequence of a very strong set-theoretical axiom, of

a type which certainly cannot be derived from the usual axioms of set theory,
namely, a large cardinal axiom. The question as to whether a strong axiom of
this type was actually needed remained open. Opinions were in fact divided: a

connection between large cardinals and a purely finitistic problem of this caliber

would seem paradoxical, but it is well known that problems of a combinatorial

type can embody surprisingly strong proof principles (see for instance [28]),
and some work on free distributive structures has shown that they do give rise
to intrinsically complex objects, typically nonprimitive recursive ones (cf. [12,
13]).

We will show that in the present case a solution which is purely algebraic

in terms of the methods employed and the spirit of the argument can in fact
be given. In particular, no unusual set-theoretical axioms are required for this

argument. The decision method described in [6] was fully effective, but the

proof of the correctness of the algorithm amounted to a direct invocation of

this specific algebraic hypothesis which followed from a large cardinal axiom,

with no hint of a direct proof. We shall refine this decision method below,

introducing uniqueness at each step of the process, and the correctness will

then be seen to follow very naturally.
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The main tools we use are "witnesses" for the left distributivity equiva-

lences. These objects live in a big partial monoid ^ld which is reminiscent of

groupoids introduced in category theory (cf. [27, 3, 8]). The crucial point will be

to guess a presentation of J^yd , and then to work with the group 5» admitting

the same presentation. The main idea is that the relations used to define B^

should capture the essence of left distributivity, and hence Boo should resem-

ble Jf\jo. In particular, the results proved for ^D using the geometry of left

distributivity should have purely algebraic counterparts in B^ ; this happens to
be true.

The group Bx is an extension of the infinite braid group B^ , a fact which

reflects a deep connection between braids and distributive operations. Actually

Boo may be considered a 'ramified' version of Boo in which the linearly ordered

sequence j)f integers is replaced by an infinite tree. The kernel of the natural

map of Boo onto Boo is large, but both groups share very similar properties.

In particular, the algebraic analysis developed by Garside for Boo in [17] can

be extended to Boo ■

After applying properties of the group B^ to our decision algorithm for left
distributivity equivalence, we will derive some consequences for its quotient
Boo using convenient braid colourings. This leads to a new and more efficient

algorithm for left distributivity equivalence and also to the realization of the
free left distributive structure on one generator as a subset of Boo ■ Braid colour-

ings can also be used to transfer some order properties of free left distributive

structures to Boo, yielding

Theorem. There is a unique partial ordering on the group B^ which is compat-

ible with left translation and is such that every generator er, ¿s infinitely large

relative to all ak with k > i. This partial ordering is in fact a linear ordering

which extends the partial ordering given by left divisibility. It is also effective, in
the sense that there is an algorithm for comparing two braid words with respect
to this ordering.

After the first draft of this paper was circulated in the spring of 1992, David
Larue gave a direct combinatorial argument in [22] for the property of braids
which we use in our second algorithm and which we derive from an analysis

of the group Boo ■ Larue's argument gives a shorter proof for the decidability

of left distributivity equivalence, but we would argue that the present proof

is more natural. In particular, it seems difficult to justify the introduction of

the "braid bracket", as well as the second algorithm itself, without reference

to Boo ■ Other results which use the methods and intuitions associated with

Boo , although their statements do not involve this group, are the existence of

the linear ordering on B^ and the description in [11] of a quick algorithm for
comparison of braid words.

The paper is organized as follows. The first comparison algorithm for left
distributivity equivalence is presented in §1, and its correctness is reduced to
obtaining an effective version for three basic properties of left distributivity.

Sections 2, 3, and 4 successively treat the case of these three properties. Sec-

tion 5 states some corollaries of the decidability result concerning the free left
distributive structures. Section 6 studies the projection to Boo of the previous
results and goes from braids to left distributive structures in order to define the
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second algorithm for left distributivity equivalence. Section 7 finally goes from

left distributive structures to braids and constructs the linear ordering on Boo ■

1. The comparison method

We consider terms constructed using variables from a set X and a binary
operator and ask whether two terms P, Q become equivalent when the left

distributivity identity is assumed. The product of P and Q will be denoted
by P[Q], so that left distributivity is expressed as the identity

x[y[z]] = x[v][x[z]].

The set of all terms constructed using the elements of Z and bracket is denoted
^. We also fix an element a of I and write 777 for the set of all terms involv-

ing only a . The question we investigate is the decidability of the congruence

=ld on 3Í generated by the pairs (P[Q[R]], P[Q][P[R]]). Two terms P, Q
satisfying P -LD Q will be called LD-equivalent. Since the quotient structure

$zl =ld is the free left distributive structure generated by X, the above ques-
tion is simply the word problem for free left-distributive structures. We shall

at first consider the special case of one variable, i.e. the restriction of =ld to

In order to sketch the term comparison process we need some notation. The
right powers of the term a are the terms aw inductively defined by a[1l = a

and al"+1l = a[aw]. Then we introduce a refinement of the relation =Ld as
follows. Two terms P, Q are LD-equivalent if P can be transformed into Q

by applying a finite sequence of elementary transformations, each of which con-

sists either in replacing some subterm i?[5[r]] by the corresponding subterm

i?[S][.R[7']] or in replacing some subterm -R[S'][.R[7']] by the corresponding

subterm .RfSTr]]. We say that Q is an expansion of P if only the first type
of elementary transformations is used in some sequence leading from P to Q.

Finally for any term P which is not the atomic term a we denote by l(P) the

left subterm of P. The following results about the equivalence relation =Ld

are established in [5] and [6].

Property A. For any term P in 777, the terms aln+xx and P[a[nX] and LD-

equivalent for « large enough.

Property B. Two LD-equivalent terms have a common expansion.

Property C. If R is an expansion of P and P is not a, then for some integer
r the term lr(R) is an expansion of l(P).

The following three facts immediately follow. Let P, Q be arbitrary terms
in 7%.

Fact A. For some integer «, the terms P[a["]] and o[a["]] are LD-equivalent.

Fact B. For some integer n and some term R, the terms P[aw] and Ota'"1]
admit R as a common expansion.

Fact C. For some term R and some integers p, q the term l"(R) is an expan-

sion of P and the term lq(R) is an expansion of Q.

The idea is to decide the LD-equivalence of the terms P and Q by compar-

ing the integers p and q obtained in Fact C. One direction is trivial. Indeed,
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if p and q are equal, then P and Q must be LD-equivalent since both of

them are LD-equivalent to lp(R).
There are now two ways for completing the scheme in order to obtain an ef-

fective decision method. In the first approach we observe that objects R, p, q

satisfying the conclusion of Fact C can always be found by an exhaustive enu-

meration of all expansion of the initial terms P and Q. (Of course, these

objects need not be unique.) Write R n S if the term R is an iterated left
subterm of the term S, i.e., if R is lr(S) for some r > 1, and denote by Cld

the =LD-saturation of the relation c . If the integers p, q in the conclusion

of Fact C are not equal, then either P(R) n ¡«(R) or l«(R) c lp(R) holds,

and therefore P Cld Q or Q Cld P holds. Assume that the relation Cld is
known to be antireflexive, i.e., that P Cld P never holds; then we can conclude

that P and Q are not LD-equivalent. So we have the following partial result:

Proposition 1 [6]. If the relation Cld is antireflexive, the relation =ld is decid-

able in the case of one variable.

It is remarkable that Richard Laver in [24] obtains the same result using a

completely different method. A major argument in favor of the antireflexivity

of the relation Cld is another result of Laver in [24]:

Theorem 2 [24]. Assume the existence of an n-huge cardinal for every integer

n. Then the relation Cld on 77~a is antireflexive.

Let us say that a set endowed with a left distributive bracket is an ITD-system
and that an LD-system g is antireflexive if no equality of the form

x = x\yi]-'\yk]

may hold in g. Laver constructs from the elementary embeddings associated
with the large cardinals whose existence is assumed an antireflexive LD-system.

It then follows that the free LD-system with one generator is itself antiflexive,

which exactly means that the relation Cld is antireflexive on 7Ta . This is the

way a very strong logical assumption was connected with the decidability of the

relation =ld •

A second approach for comparing terms by means of the scheme above is to
show by a direct computation that the final integers p, q must be equal if the

initial terms P, Q are LD-equivalent. Such a computation is made difficult by

the lack of uniqueness at each step of the process. Our natural idea therefore

will be to refine the method by selecting at each step canonical witnesses so that
the effective computation can be carried out. The final algorithm will therefore
keep the general structure described above and look like the following:

Comparison algorithm. Let P, Q be two terms in %.
Step A. Determine a witness tp(P, Q) for the LD-equivalence of the terms

P[a[nX] and Qta'"1] for « large enough.

Step B. Deduce witnesses F(P, Q) and G(P, Q) for the existence of a

common expansion R for the terms P[at"l] and <2[a["]] ■

Step C. Deduce integers f(P, Q) and g(P, Q) such that the term lHp<°-\R)
is an expansion of P and the term lg{-p'°7>(R) is an expansion of Q. Then

P and Q are LD-equivalent if and only if the integers f(P, Q) and g(P, Q)

are equal.
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Since each step in the comparison originates in the corresponding Property
A, B, or C, our task will be to establish an effective version of these proper-

ties comprising an existence result (to be used in order to define the canonical

objects) and a uniqueness result (to be used in order to propagate the initial

assumption P =ld Q toward the final equality f(P, Q) - g(P, Q)).

2. Effective version of Property A: The group 5m

The point is to introduce adequate "witnesses" for describing LD-equivalence

of terms. These witnesses will live in some big structure endowed with a par-

tial associative operation. This structure can also be described as the set of
all consequences of the left distributivity identity endowed with a convenient

product.
As we already observed, two terms P, Q are LD-equivalent if and only if

there exists a composition of finitely many elementary transformations which
maps P to Ô, each elementary transformation consisting in applying the left
distributivity identity to some subterm. Let us denote by Q the partial operator
on TTi which maps any term of the form .RfS^r]] to the corresponding term

^[5'][^[^]] • We also have to introduce the translated copies of Q associated

with the various points where Q could be applied. First we need notation for
the subterms of a given term. We use the geometrical intuition of binary trees

for representing terms and finite sequences of O's and l's for addressing the

points in such trees.

Definition, (i) The monoid S is the set of all finite sequences of O's and l's

endowed with concatenation. The empty sequence of S is denote by A.
(ii) For P in ^ and w in S short enough, P^ is the subterm of P "with

root at w", i.e., P(W) is determined by the inductive clauses: P(A) is P is any

case, and if P is Q[R], then P(oW) is Q{W) and P(Xw) is R(W).

We denote by Qw the ^-translated copy of Í2 : applying Qw to P consists

of replacing the subterm P{w), which is P(Wo)[P(wio)[P(wii)]], by

P(wO) [P(w 10) ] [P(w0) [P(w 11 ) ]] •

We consider the monoid generated by all (partial) operators Q„, and Q"1 under

reverse composition and denote by J7\x> the subset of this monoid made by
excluding the empty operator. It should be clear that two terms P, Q are LD-

equivalent if and only if some operator in ^u) maps P to Q. So the elements

of J?u> are witnesses for LD-equivalences. For effective computations we shall

use the following notation.

Definition, (i) The monoid 77+ is the free monoid generated by S, and the

monoid 3" is the free monoid generated by S and a disjoint copy S of S.

The empty sequence of S* is denoted by e.
(ii) For w in S, fl^r is ¿l~x and the notation Q¿ is extended to ¿; in 7?

so that ßf,.{2 is ß{2 o íííi.

For instance, if a, b, c, d are any variables in X, the operator i2y#A maps

the term a[e[c][¿)[í/]]] to the (LD-equivalent) term a[¿][a[c[í/]]]. Observe that
if we extend the "bar" notation so that for £ in 5? the sequence ¿; is obtained

from c; by reversing the ordering of the factors and exchanging w and w,
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then Qt is exactly the inverse mapping of Q¿ . Also observe that Q¿ may be

empty: for geometrical reasons no term in the image of Qa.i may belong to
the image of QA and therefore ßA#1#A- is empty. We have immediately

Lemma 1. (i) Two terms P, Q in 7¿ are LD-equivalent if and only if there

exists a sequence Ç in 77 such that Q¿ maps P to Q.

(ii) The term Q is an expansion of the term P if and only if there exists a
sequence X in 77+ such that Qx maps P to Q.

We turn to Property A, which is proved in [6] by induction on the size of the

term P in 7Ta . Indeed, if P is a, the equivalence is an equality for every « .

Now assume P - Q[R], and

f a[n+1] =ld Q[a[n]]   for n>q,

\ dn+xx =ld R[aW]   for n > r.

If « iá greater than q + 1 and r + 1, the sequence of equivalences

aln+l] =ld Q[a[n]] =ld Q[R[a[n-l]]) =LD Q[R][Q[a[n~l])] =ld Q[R][a[n]]

gives a["+1l =LD ,P[a["]] and the induction goes on. So the equivalence

a[n+i] =LD p[a[n]] holds for « > h(P), where h(P) is the geometrical pa-

rameter defined by

f 1 if Pis a,

(  ) " I sup(«(Q), h(R)) + 1   if P is Q[R]

(h(P) is the height of P viewed as a tree).

In order to obtain an effective witness for the above equivalences, we just

have to translate in the language of the Q-operators the inductive argument.

Assume again P = Q[R] and

J Q, : a["+'] ►-+ Q[fl["]]   for « > h(Q),

l Çlr : a["+1] i-» R[aW]    for « > h(R).

If lc; is the sequence obtained from £, by adding a 1 at the beginning of each
factor and if « is at least h(R) + 1, the operator Qif maps the term ö[a[nl]

to the term ß[Ä[aI"-1l]] (as well as any term S[a["]] to the corresponding term

S[R[ax-n'xx]\). Similarly the operator Qlf, maps the term ß[/?][a[nl] to the term

ßt-Rltot0'"-1']]. Hence the above sequence of equivalence translates into the
following sequence:

aln+i) °ï ß[fl[n]] <& Q[R[al"-X]]] & Q[R][Q[a[n-X]]] Sf Q[R][a[n]],

and we conclude that if £ is the sequence n. 1C»A. 1« , the operator Q^ maps
a[n+l) to P[a["l].

Definition. A bracket operation is defined on 7? by

n[C] = «.lw.A.T^.

Then x is the bracket-preserving homomorphism of 77a to 77 which maps a

to the empty sequence e .

We have obtained



BRAID GROUPS AND LEFT DISTRIBUTIVE OPERATIONS 121

Proposition 2 (Effective Property A, existence part). For any term P in 77a and

any integer n > h(P) the operator ilX{p) maps a\n+xx to P[aM].

It follows that for any two terms P, Q in 7a , the operator ^-t=:  (ß) maps

the term P[a["]] to the term Q[a["l] provided that « is at least the supremum

of h(P) and h(Q). Assume that P and Q are LD-equivalent. By Lemma 1

there must exist a sequence ¿f such that the operator Q^ maps P to Q, and

therefore the operator Qqí maps the term P[a["l] to the term ö[aw] for any

integer « , as well as the operator fi-^  (ß,.

Definition. For c;, « in 77, the operators Qç and Cl„ are compatible (resp.

strongly compatible) if there exists a term P such that the images of P under

Q,r and Q„ exist and coincide (resp. if for any term P which belongs to the

domains of fí¿ and £l„ the images of P under Q,* and Sl„ coincide).

So if the terms P and Q are equivalent, there exists a sequence £' in

S" such that the operators ¡7lX(p)»X(Q) andQoí' are compatible. Both notions
of compatibility and strong compatibility are strong properties which will be

seen in §5 to coincide nearly with equality. But presently it is very uneasy to

work directly with them for the double reason that compatibility is not clearly

a transitive relation and no exhaustive set of generating pairs is known. The

strategy will consist in introducing some refinement = of the compatibility

relations and using it instead of compatibility. The definition of = will be

made by using some pairs (¿;, n) such that the corresponding operators Q¿
and Q„ are known to be strongly compatible and even equal.

Definition, (i) The LD-pairs are all pairs in 77+ x 77+ of the following five

types:

(«• u\ • u, u\ • u»u\ • wO),

(u»u\\w , u\\w • u),

(«• uOlw, ulOw • u),

(u • \0w • uOOw , uOw • u),

(uOv • u\w, ulw • uOv),

where u, v , and w range over S.

(ii) The relation =+ is the congruence on the monoid 77+ generated by all
LD-pairs. The relation = is the congruence on the monoid 77 generated by

all LD-pairs together with all pairs (w«w,e) and (H»u,e) for u in S. The

monoid 7?+ / =+ is denoted by 5¿ , and the group S*/ = is denoted by Boo •

An easy verification gives

Lemma 3. (i) For X, Y in 77+, X =+ Y implies Q* = Qy .
(ii) For c;, n in 77, c; = » implies that the operators Q¿ and Çln are strongly

compatible.

Geometrical intuition suggests that any equality or compatibility relation be-

tween the operators Qç follows from the relations given by LD-pairs, i.e., that

LD-pairs give to some extent a complete description of the geometry of left

distributivity. If this intuition is true, all geometric features arising from the

action of the operators Q¿ on terms should have a purely algebraic counterpart
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involving only the relation = . This approach consists of replacing the "bad"

structure ^LD (bad because the product is not defined everywhere and because

the exact presentation is not known) by the "good" structure B^ (a true group

with a perfectly known presentation).

There exists a close connection between the group Boo and Artin's braid

group Boo (whence our notation). Its existence is connected with a deep rela-

tion between left distributivity and braids. For the moment this connection is

important because it suggests to extend to B^ the algebraic tools which have

been developed for Boo , in particular by Garside in [17]. Recall that Boo is the

group generated by an infinite sequence of generators ax, a2, ... submitted to

the relations
OiOj■■ = OjOi if|/-;'|>2,

OiOi+xOi - ai+xOiOi+x.

Lemma 4. The mapping y/ of S to Boo which maps w to 1 if there is at least

one 0 in w and maps 1' to a¡+x induces a surjective homomorphism of Boo

onto Boo ■

Proof. The existence of the morphism is immediate from the particular form

of the LD-pairs.   D

By construction y/(0w) is 1 for any w in S, so the normal subgroup N0

of Boo generated by all length 1 sequences Ou; is included in the kernel of

y/ . Actually the results of §3 could be applied to prove that the kernel of y/ is

exactly the subgroup No.
Now the following result is natural if the conjecture that the congruence =

resembles the compatibility relation is true.

Proposition 5 (Effective version of Property A, uniqueness part). Assume that
the operator fy maps the term P to the term Q. Then one has

xJP)'X(Q) = oi
Proof. An explicit computation using the definition of the bracket on 77 shows

the following equivalences for any sequences £, £', n, »', C in 77 :

(i) ÍWK[Cl]sflií[C]].o,
(2) («. Of'^-O^] = {[»/]. 00Í'. 01 f/'.

Now for proving the proposition, we may assume that the sequence £ has length

1, i.e., reduces to a unique factor w or w . An induction will then finish the

proof. Now by symmetry we may assume that £ is w . We now use induction of

the length of w (as a sequence of O's and 1 's). If w is A, the hypothesis that

ßA maps the term P to the term Q means that Q is P(o)[^(io)][^(0)[-P(ii)]]>
and therefore one has

X(P)=ZMC]]   and   z(ß) = ÉMtëlC]]

where £ = x(P(0)), n = X(P(io)), and Ç = x(P(ii)) ■ Formula (1) gives the
conclusion. Now assume that w is On/. Since Qow' maps P to Q, P cannot

be a, so P isP'[P"] for some terms P', P" . Then Q must be Q'[P"] where

Q' is the image of P' under Qw-. By induction hypothesis, one has

Z(Ö') = *(£)• Ou/,
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and therefore using (2) one obtains

X(Q) = X(Q')[X(P")\ = (X(P')*0w')[x(P")] = x(P')[x(P")]'00w' = *(P).0u;.

The argument is similar if w is lu/ for some w'.   D

Definition. For P, Q in 7a, <p(P, Q) is the sequence x(P) • X(Q) ■

The effective version of Property A yields at once

Fact A (Effective version). Let P, Q be two terms in 777 and « be any integer

at least equal to sup(«(P), h(Q)).
(i) The operator Q^p.q) maps P[a[n]] to Q[a[n]].

(ii) If P and Q are LD-equivalent, then <p(P, Q) = 0<f holds for some £'
in &.

So according to the scheme of § 1 it is natural to take the

Comparison algorithm. (Input: two terms P, ß in 77a 7)

Step A. Determine tp(P, Q).

Example. Let P be the term a[a][ß[a[a]]] and ß be the term ß[tf[a][<z[a]]].

Applying the inductive construction of x , °ne obtains

*(P) = A.11.1.A.Ï

and

*(ß) = l.ll.l.TT.A

and therefore

9>(P,ß) = Z(P).Z(ß) = l.Ä.T.TT.X. 1.11.1. U.A.

Remark. The introduction of the monoid ^#Ld (and therefore of its "improved

version" Boo) can be seen as the construction of a product on the left dis-

tributivity identities themselves. An identity, i.e. a pair of terms (P, Q), is a

consequence of left distributivity just if P =ld ß holds. Let us say that a term
P' is a substitute of the term P if there exists a substitution X, i.e., a mapping
of X to 7i, such that P' is the term P" obtained from P by replacing every

variable x by its image under a . Similarly say that an identity (P', Q') is an

instance of the identity (P, Q) if for some a as above P' is P" and Q' is

Q" . Assuming that X is an infinite set and a sequence ax, a2, ... in X, has

been fixed, we can define the canonical terms to be those terms P such that the

leftmost occurrences of the variables occurring in P make an initial segment

of (ax,a2,...).
By an inductive argument one verifies that for every ¿; in S" suchjhat the

mapping Q¿ is not empty, there exist unique canonical terms K( and Kç such

that the domain of Q{ is exactly the set of all substitutes of K¿, the image

of fí¿ is exactly the set of all substitutes of K(^), and for any substitution

a, Q¿ maps (K¿)a to (Kç)a. For instance, the term KA is ai[a2[<Z3]] while

the term KA is <2i[a2][ßi[ii3]] • The term K$ coincides with the term Kj. So

Lemma 1 means that every consequence of left distributivity is an instance of

some (nonunique) canonical identity of the form (K^, K¿), and the monoid
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J?\jo can be seen as being associated with a product on (canonical) identities.
This product can easily be described in terms of substitutions by means of the
unification formalism (see [8] for some remarks on this approach, which is

essentially equivalent to the categorical point of view of [27]).

3. Effective version of Property B:

DECOMPOSITION AS FRACTIONS IN   Boo

In terms of the operators Q¿ , the fact that two LD-equivalent terms must

have a common extension implies that for any sequence t, in T' (such that the

domain of £2¿ is not empty), there exist positive sequences X, Y in S** such

that the operators Q¿ and ß^.y are compatible. So it is natural to conjecture

that any sequence <* is =-equivalent to a "(right) fraction" of the form X • Y

with X, Y positive sequences (i.e., sequences in 77+). This would clearly be

a convenient version of Property B.

We are thus led to study the expression of the elements of the group Boo as

quotients of positive elements. The proof of the above conjecture will be a little

long, but it is very natural because it refines and extends classical constructions

used for the braid group Boo • The details are given in [11] in a general setting

and in the particular case of braids, so we shall be a little sketchy here and

only emphasize the really specific points. The proof of Property B given in [5]

cannot be transferred directly because it makes a crucial use of the terms and
of the meaning of Q¿ as operators on terms. Here we need a purely syntactic

proof using only the particular form of the LD-pairs.

The starting point is the observation that for any distinct u, v in S there

exists exactly one LD-pair (X, Y) such that X begins with u and Y begins
with v or conversely. Precisely, let C be the mapping of S x S into 3*+

defined by

v is not a prefix of « 1 or v 11 is a prefix of u,

u\ = V ,

u-v,

u - vOw,

u - vlOw,

( U»V if u = vl

(say that x is a prefix of y if y is xz for some z). Then all pairs (u»C(v , u),

v • C(u, v)) are LD-pairs, and therefore one has, for any u, v in S,

u»v = C(v , u) • C(u, v).

This is enough to transform any length 2 sequence into an =-equivalent (right)

quotient of positive sequences. For transforming similarly sequences with arbi-
trary length, we can easily iterate the previous method.

Definition. The sequence t, reduces to the sequence « (with respect to the
mapping C ) if one can transform ¡t, to » by a finite composition of elementary

transformations, each of which consists in replacing some subsequence ïï.u by

the corresponding subsequence C(v , u) »C(u, v).

C(u, v) = <

v i

u • v . mO i

£ i

uIOuj.dOOu; i

vOlw i
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The irreducible sequences are the sequences X» Y with X, Y positive. It is

not obvious that any sequence should reduce to such an irreducible sequence,

but an easy argument shows that if some reduction of Ç leads to X • Y, then

any reduction of £ leads to X • Y and uses the same number of elementary

steps. So the following notions make sense.

Definition, (i) For £ in 77, the numerator JV(£) and the denominator D(£)

of x are the unique positive sequences X, Y such that Ç reduces to X • Y,

if they exist.
(ii) For X, Y in 77+ , the complement C(X, Y) of X in Y is the numer-

ator of the sequence Y • X, if it exists.

There is no problem in the above notation for the complement: for u, v in

S, the numerator of v • u exists and is C(u, v) in any case. Reduction can

be adequately illustrated in the Cayley graph of the group B^ . It consists in

"closing" the patterns made of two arrows which have the same origin but are
not yet the initial segments of convergent paths. The number of elementary

transformations used in the reduction is exactly the number of closed domains

in the associated graph. Figure 1 illustrates the reduction of the sequence

1.X.T.ÏÏ.X.1.11.1.ÏT.A

(the one obtained in the example at the end of §2) and shows that the numerator

and denominator of this sequence do exist and respectively are

1.11.01.1.0

By construction, we have

and   11.1.0.11.01.10.00.

Lemma 1. Assume that the numerator and the denominator of the sequence Ç
exist. Then the equivalence _

É = JV(í)./>(í)

holds, and moreover the operator Q

of pairs).
N(i),D(i)

includes the operator fy (as a set
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So C-reduction gives (in an effective way) the wished decomposition when
it terminates. The latter point, however, is quite problematic because the ele-

mentary complements C(u, v) for u, v in S have length strictly greater than
1 in some cases.

In order to solve the problem, the idea is to introduce a subset S of S"+

which strictly includes S and to construct a new complement mapping C so

that for X, Y in S the complement C(X, Y) still lies in S. It will then be

clear that the reductions using C have to terminate and more precisely that the

determination of the C-numerator and denominator of a sequence £ which is

written as a product of p sequences in S and q inverses of sequences in S

will require at most pq calls to the C mapping.

For the definition of a convenient set S, we use the geometry of left distribu-

tivity and the proof of Property B in [5]. We can also use the intuition given by

the projection on braids (see the remark at the end of this section). The main
point in the proof of Property B is the existence, for every term P in ^, of

a "big" term dP such that dP is an expansion of every 1-expansion of P,

where ß is said to be a 1-expansion of P when some operator £2«, maps P

to ß, i.e., ß is obtained from P by exactly one step of distribution. A close

examination of the positive sequences X such that the operator Q.x maps a
term P to a term of which dP is an expansion suggests the following inductive

construction.

Definition, (i) For w in S and k a nonnegative integer, W(k) is the empty

sequence e if k is 0 and is the sequence w\k~x »w\k~2»- •■•w\»w otherwise.

(ii) The set S is the closure of {e} under all operations

(X, Y)*A(k).lX»0Y.

An easy induction shows that any sequence in § has a unique decomposition

as Y["weS w(kw) where (kw ; w e S) is a sequence of integers with only finitely

many positive values and > is the linear ordering on S such that u > v holds if

and only if either « is a strict prefix of v or there exists w such that w 1 is a

prefix of u and wO is a prefix of v . Indeed it suffices to show the uniqueness

of the initial factor A(itA).  To this end observe that A occurs at most once

in any element of § and that kA is the rank of this unique occurrence in the

sequence (where rank 0 means no occurrence). The integer ky, will be called

the index of w in X and will be denoted by ind(u;, X). Notice that S is

included in S, for A clearly belongs to S, and for every w in S the sequence

wX is in S if (and only if) X is in S.

Lemma 2. Assume that X belongs to S and that the inequality

I + ind(l', X) < i + ind(V , X)

holds for every I < i. Then the sequence X • A(,) is =+-equivalent to a sequence

X' in S such that ind(A, X') is i + ind(l', X).

Proof. The result is easily deduced from the following formulas, which hold for

any integer p, k, i and any sequence Y in «5^+
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*V)«A(/)S

ipoy.A(,)=+ <

' =+ A(l). \P(k) ifi<P,

= Atk+i) ifi = P,

. =+A(i). ir+\k).0lP,k) if i>p + k.

' A(l) . VOY ifi<P,

A(;).opy ifi = p,

, A(,).K+1 OY.0\P0Y   ifi>p.

The first two cases in the first formula are easy, as well as the particular case

k = 0. For the third case, denote by 77(p, k, i) the formula

lV)»A(i)=+A(0.F+1(fc).0F(fc).

One proves 77(p, k, i) for p > 0, k > 1, and i > p + k inductively on p .

First i^(0, k, i) is proved inductively on k > 1, and to this end, J?~(0, 1, /')

is proved inductively on / starting from y(0,1,2) which corresponds to

the first LD-pair. The second formula is proved similarly using induction on
i > 0.   D

Proposition 3. There exists an effective mapping C ofSxS into S such that,

for every X, Y in S, the equivalence

X.C(Y,X)=+ Y.C(X, Y)

holds.

Proof. We shall construct the mapping C by defining the values C(X, Y) in-

ductively on the minimal size of a term both in the domain of Q.x and fiy (a

parameter which would probably be hard to introduce by purely combinatorial

means). It has been said at the end of §2 that, for any sequence £ such that

the operator Q,* is not empty, the domain of Q,* is the set of all substitutes of

some canonical term Kç . In the case of a positive sequence X, the operator
Six cannot be empty. Moreover, if X, Y are two positive sequences, then the

intersection of the domains of Qx and Qy is not empty and is the set of all
substitutes of a (unique) canonical term Kx, y . Then the minimal size of a

term both in the domains of Clx and of Qy is the size of the term Kx,y ■

The result is clearly true if Kx, y has size 1, for in this case X and Y must
be empty.

Now let X, Y be arbitrary positive sequences. Say that the integer k is

accessible to X if k is 1 + ind( 1 ', X) for some integer / satisfying the hy-

pothesis of Lemma 2. Because the integers ind(l', X) and ind(l', Y) must

be 0 for i large enough, every integer which is large enough is accessible to X

and Y. Let k be the minimal number which is accessible both to X and Y,
and let i and j be the least integers satisfying

k = i + ind( 1' ,X)=j + ind( V , Y).

By Lemma 2, the sequences X»A^ and Y»A^ are =+-equivalent to sequences

in 77+ such that k is the index of A in both of them. So for e = 0, 1 there
exist sequences Xe, Ye in S satisfying

f A-.A(/)=+A(/t). Lr,.0*0,

I Y,A(j)=+ A(k).\Yx.QYo.
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Claim 1. If k is not 0, at least one of i, j is strictly smaller than k.

Proof. Assume that / is equal to k . By construction, we must have

k-ï+md(lk~x,X)<k,

and therefore the index of \k~x in X is 0. Let V be the least integer satisfying

j' + ind(l'', X) = k-1. For / smaller than i', / + ind(l/, X) cannot be greater

than k, since k is accessible to X, and cannot be k - 1 by definition of i'.

So k -1 must be accessible to X. Now if both i and j were equal to k, k - 1

would be accessible to X and Y, contradicting the definition of k.   D

Claim 2. The terms Kx,y and Kx»a{¡),y»a(j) coincide.

Proof. The result is trivial if k is 0 since i and j are 0 as well. Assume
k > 1. By Claim 1 we know that at least one of i or j is strictly below k.
We assume i < k in the sequel. This implies that the index of 1' in X is not

0. Now observe that a term P belongs to the domain of ßiJ>(9) if and only if

its right height, defined as the length of its rightmost branch when viewed as
a binary tree, is at least p + q + 2 and that the right height is invariant under
any transformation Q¿ . So assume that P lies in the domain of Q.x '■ because

of the factor iLn in the sequence X, the right height of P must be at least

i + (k - i) + 2, i.e., k + 2. Therefore, the term P must lie in the domain of

£lA(k) and therefore, in the domain of ß^.A(0 and Qy.A(J) since i < k and

j < k hold.   D

Claim 3. For e — 0, 1, the size of KXe, ye is strictly less than the size of Kx,y ■

Proof. Let P be the term Kx,y ■ By Claim 2, P lies in the domain of Qy.a,,, ;

then by (1) it lies in the domain of £l\{k),Xx{»oxa • Hence, if ßo[ßi] is the

image of P under QA{k), the term Qe lies in the domain of Xe for e = 0, 1.

Similarly ß? lies in the domains of Ye for e = 0, 1. So size of Kxe, ye is at

most the size of Qe , and by construction the latter one is strictly below the size

of P,i.e.,of Kx,y-   ö

We may therefore apply the induction hypothesis to the sequences Xe and

Ye for e = 0 and e = 1. We obtain

X.A{i).lC(Yx,Xx).OC(Yo,X0)

=+ A{k). IX,. 0X0 . 1C(7,, Xx) . 0C(70, Xo)

=+ A{k) . IXx . 1C(T, ,Xx).0X0.0C(Y0, X0)

=+ A(fc) .17,. \C(XX, Yx). 0F0 . 0C(X0, Y0)

=+ A{k). iyx .oy0. \C(xx, y,).oc(x0, r0)

=+ Y . AU}. \C(XX ,YX). 0C(Yo, Xo).

If we define C(Y, X) to be the sequence

A(,).ic(y,,x,).oc(y0,Xo),

the symmetry of the construction shows that C(X, Y) is A(;). 1C(X,, Yx) •

0C(Y0, X0), and the desired properties are satisfied.   D
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Corollary 4. The monoid B^ is right regular: for any positive sequences X, Y

in 7'+, there exist positive sequences X', Y' satisfying X • X' =+ Y • Y'.

Let ;V and D be the numerator and denominator mappings associated with

C-reduction (and any parsing convention about expressing any sequence as a

product of sequences in S and of inverses of sequences in S). Since C is

effective, the mappings yV and D are effective as well, and by the preceding

result they are everywhere defined on 77, and the equivalence

Z=+N(Ç).D(£)
holds for any sequence £ in S*.

This could suggest to use from now on the reduction associated with C.
The problem is that beyond the existence result we also need some uniqueness

property. Typically we would like to compare the numerators and denominators

of =-sequences with respect to the relation =+ . This seems very uneasy in the

case of C-reduction, while this will prove to be rather easy in the case of C-

reduction. Since the transfer of properties from one complement to the other

one is possible, we finally obtain optimal results.

Lemma 5. (i) The pairs (u • C(v ,u),v» C(u, v)) with u,v in S generate the

congruence =+.

(ii) For any u, v, w in S, the sequences

C(C(u,v),C(w,v))   and   C(C(u, w), C(v , w))

exist and are =+-equivalent.

(iii) For any positive sequence X, the lengths of the sequences X' satisfying

X' =+ X are bounded.

Proof. Point (i) is trivial. Point (ii) is just a (long) verification by examination
of all possible mutual positions of the points u,v,w in S. For point (iii) we
observe that if Qx maps the term P to the term ß, so does every operator Q,x•

with X' =+ X, and it follows that the length of X' is certainly bounded by the
difference between the sizes of ß and P, since every elementary transformation
Q«, strictly increases the size of any term to which it is applied.    D

Lemma 6. For any positive sequences X, X', Y, Y' in 77+ the following are

equivalent.
(i) X . X' =+ Y . Y' holds,
(ii) the sequences C(X, Y) and C(Y, X) exist, and for some Z in 77+ the

equivalences
X' =+ C(Y,X),Z,        Y' =+ C(X,Y),Z

are satisfied.

Proof. ForX in 77+ let us denote by v(X) the supremum of the lengths of

the sequences of X' satisfying X' =+ X and let us write X =\ Y if Y is equal
to X or is obtained from X by replacing exactly one subsequence u • C(v , u)

by the corresponding sequence v • C(u, v). For p < oo let =p be the pth

power of = J" and let &>k p be the following statement:

"Assume X.X'=+y'.Y', v(X ,X')<n, v(X) < k and v(Y) < k. Then
C(X, Y) and C(Y, X) exist and some Z in ^+ satisfies

X'=+ C(Y,X).Z   and   Y' =+ C(X, Y).Z."
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The statement £7kp if proved for any k, «, p < oo by a triple induction, first

on p (using Lemma 5(ii)), then on « , and finally on k (more details appear

in [11]). So T^iS oo is true, which exactly means that point (ii) follows from

point (i). The converse implication is obvious by definition of the complement

mapping C.   D

It follows that the monoid ¿?¿, admits left cancellation. Indeed for every

positive sequence X the complement C(X, X) exists and is obviously empty,

so X . X' =+ X. Y' implies X' =+Y'.

By the previous lemma the existence of the complement C(X, Y) implies

the existence of the complement C(X, Y) for any positive sequences X, Y.

So we have (use Lemma 1 for the remark about the operators)

Proposition 7 (Effective version of Property B, existence part). The (effective)

mappings N and D are defined everywhere on 777. For any sequence a in 77,

the equivalence

^=+N(^).Dm
holds, and moreover the operator Qç is included in the operator Q/^.otk ■

The advantage of coming back to C-reduction is that Lemma 6 gives an

additional uniqueness result.

Definition. For X, Y, X', Y' in 77+, (X, Y) ee+<2> (X', Y') stands for

(3Z , Z')(X. Z =+X'. Z'   and   Y,Z=+Y'.Z').

Proposition 8 (Effective version of Property B, uniqueness part). For any se-

quences Ç, £' in 77, Ç = £,' is equivalent to

(N(C),D(c;))=+W(N(0, Dis-

proof Write f =' {' for (JV({), Z>(£)) =+^ (/V(f'), DO • By right regularity
of the monoid fi¿, the relation =+(2) on S*+ x 77+ is transitive and so is the

relation =' on 77. So in order to prove that Ç = ^ implies £ =' £' it suffices

to establish £, =' £,' for a particular family of pairs (£, £') which generate the

equivalence = . We choose the pairs (¿f, • n • £2, £, • n' • £2), where (w, «') is

either an LD-pair or a pair (w»w , e), two cases where the result is obvious, or

a pair (w • w, e). In this case the result follows from the compatibility of the

operation C with respect to the congruence =+ , which in turn follows from
Lemma 6.   G

Definition. For P, Q in 7a, F(P, Q) and G(P, Q) are the numerator and

the denominator of <p(P, Q).

(By construction G(P, Q) is F(Q, P) 7) The effective version of Property
B yields

Fact B (effective version). Let P, Q be two terms in % and « be any integer

at least equal to sup(h(P), h(Q)).
(i) The operators £iF(PQ) and ÇlG(pyQ) respectively map P^"}] and ß[a[nl]

to a common expansion.
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(ii) // P and Q are LD-equivalent, then (F(P, Q), G(P, ß)) =+<2> (OX',
07') holds for some positive sequences X' and 7'.

According to the scheme of § 1 we shall take the
Comparison algorithm. (Input: two terms P, Q in 77.)
Step B. Determine F(P, Q) and G(P, Q).

Example. Let again P be the term a[a][a[a[a]]] and ß be the term
a[a[a][a[a]]]. We had

y>(P, Q)= 1.X.Ï.TT.X.1.11.1.TT.A,
and, as was computed above (Figure 1), we obtain

F(P,Q) = 1.11.01.1.0   and   G(P, Q) = 11.1 .0.11.01. 10.00.

Remark. The projection to Boo of the elements of § gives canonical represen-

tatives for the positive braids with the property that no two strands may cross

each other twice (a similar geometrical characterization of the sequences of 71

which are =-equivalent to an element of S exists). When only the generators
up to a„-x are used, such positive braids turn out to be exactly the «! left di-

visors of Garside's universal word A„ (see [29] or [15]). Right regularity of the

monoid 5¿ , when projected, gives a new proof for the right regularity of the
braid monoid B^ ■ When the present proof is compared with Garside's original

argument, the role of the words A„ is more or less played by the sequences A/.

in S such that the operator Q~   maps the term P to the term dP.
Ap

4. Effective version of Property C: The sign of Boo

In order to complete the scheme proposed in §1 it remains to extract an

effective version of Property C which deals with the behaviour of left subterms

in term expansions. This will be very easy.

Definition. For X a positive sequence in 7P+ and p a nonnegative integer,

the dilatation of p by X and the pth trace of X are the integer Y)i\(p, X)
and the positive sequence Tr^ (X) inductively defined by the following rules:

Di\(p,e)=p,    Tr"(e) = e,

f p + 1    if w is 0' for some i < p,
Dû(p,w  = ^

I, p otherwise,

(v  ifw = (yv,
Tr*(u,) = |fi    .fif 0^ is not a prefix of w,

Dil(/> ,X,,v) = Dil(Dil(/>, X), v),    Tr^X . v) = Tr"(X) . TrDil(p'*V)-

An immediate induction shows that for every sequence X the successive

values of Dil(/>, X) make a strictly increasing sequence.

Proposition 1 (Effective version of Property C, existence part). Assume that X

is a positive sequence and that Qx maps P to Q. Assume moreover that the
subterm lp(P) exists, or that /Dil(^*)(ß) exists, or that Tr^X) is nonempty.

Then QTr,w maps l"(P) to lm(p>x\Q).

Proof. Use induction on the length of X, and distinguish the various possible

cases when X is just a point in S.   D
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Using induction on the length of the positive sequence 7, one extends the

product formula of the definition, obtaining for any X, 7 in 7'+ the equalities

Dil(p, X . 7) = Dil(Dil(p, X), 7),    Tr^X . 7) = Tr*(X) . Yrx>ú{p'X)(Y).

A similar induction shows that Tr*" is the pth iterate of Tr1 (henceforth de-

noted by Tr) and that the following equalities hold:

Dil(p + q, X) = Dilf>, X) + Dil(9 , Tr"(X)),     Tr"+«(X) = Tr*(Tr*(X)).

The main result about dilatation and trace is the following compatibility with

the congruence =+.

Lemma 2. Assume that X, 7 are positive sequences and X =+ 7 holds. Then

Dil(p, X) = Dil(p, 7)   and   Tr^X) =+ Tr"(7)

hold for every p>0.

Proof. Using the product formulas above, it suffices to prove the result when

(X, 7) is an LD-pair. One then reduces to the case where the greatest common
prefix of the points in X and 7 is A using the following rules:

Dil(p-k,Z) + k   if u is 0k with k >p,
Dil(p,uZ)

p otherwise;

{Tr"-* Z   if « is 0* with k<p,

vZ if u is QPv,

e otherwise.

A direct computation in the finitely many remaining cases completes the proof.

D

Let us write from now on dil(X) for Dil(l, X).

Proposition 3 (Effective version of Property C, uniqueness part). Assume that

the positive sequences X, 7,X', 7' satisfy (X, 7) =+<2> (X', 7'). Then the
integers

dil(X)-dil(7)   and   dil(X')-dil(7')

have the same sign (> 0, < 0, or = 0).

Proof. Assume X.Z =+ X'.Z' and Y»Z =+ Y'»Z'. By Lemma 2 the integers
dil(X.Z) and dil(X'.Z') are equal. Now dil(X.Z) is Dil(dil(X), Z), and
one obtains

Dil(dil(X), Z) = Dil(dil(X'), Z'),

Dil(dil(7), Z) = Dil(dil(7'), Z').

Because the mappings p i-> Y)il(p, Z) and/? i-> Dil(p, Z') are strictly increas-
ing, the order between dil(X) and dil(7) has to be the same as the order

between dil(X') anddil(7').   D

Definition. For P, Q in ¿7a, f(P,Q) is dil(F(P, Q)) and g(P, Q) is
dil(G(P,ß)).

(Again g(P, Q) is equal to f(Q, P) 7) By the effective version of Property

C we have
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Fact C (Effective version). Let P, Q be two terms in 7a.

(i) For some term R, the term lf(p'®(R) is an extension of P and the term

¡s(p>Q)(R) is an extension of Q (more precisely the operator SItT(F(p,q)) maps

P to lHp'®(R) and the operator QTr(G(/\Q)) maps Q to l«(p-°-\R)).

(ii) If P and Q are LD-equivalent, then the integers f(P, Q) and g(P, Q)
are equal.

According to the scheme of § 1 we take the

Comparison algorithm. (Input: two terms P, Q in 7a 7)

Step C. Compute the integers f(P, Q) and g(P, Q).

Example. Let P be the term a[a][a[a[a]]] and ß be the term a[<z[a][a [a]]].
We had

f(P,ß) = A.11.01.1.0   and   G(P, Q) = 11 . 1.0.11.01.10.00.

We find now

f(P,Q) = g(P,Q)=\,
and we can verify that the operator Qti(f{p,Q)) , which is Q,.A, and the oper-

ator £Itt{G(p,q)) , which is i2A.,#o, map respectively P and ß to a common
extension a[û][a[<2]][a[tf][a[a]]].

As we noted in the beginning the converse of implication (ii) in Fact C is

obvious by construction. So finally we have obtained that the terms P and

ß are LD-equivalent if and only if the integers f(P, Q) and g(P, Q) (i.e.,

f(Q, P)) are equal. Since the mappings x, N, D, and dil are effective, so are
the mappings / and g, and we have completed a proof of

Theorem 4. The word problem for the relation =ld in the case of one variable
is decidable.

Remark. Proposition 3 claims the existence of a well-defined sign for the el-

ements of Boo '■ if the sign of a sequence £ in S* is defined as the sign

(> 0, > 0, or =0) of the integer

dil(tf(í))-dil(D(í)),

then Proposition 3 together with Proposition 3.8 shows that =-equivalent se-

quences have the same sign.

We finish this section with an evaluation of the algorithmic complexity of
the comparison process defined above. We shall only sketch the proof.

Proposition 5. Let exp* be the iterated exponential function defined by

exp*(0) = 1 and exp*(« + 1) = 2exp*(n). Then the space complexity of the

above comparison method for the terms P, Q is bounded by exp*(0(2")) where

« is the sum of the sizes of P and Q.

Proof. Let us say that a sequence £ in 77 has degree at most n if it can be

written as the product of « sequences which are elements of S or inverses of

such elements. It is easy to show that the length, and therefore the degree, of

the sequence <p(P, Q) is bounded by 2" where « is as above. Assume that X

and 7 are simple sequences, and the term P lies in the domain of the operator

Qy.x. The term P lies in the domain of the operator Q£(X n , and because

C(X, 7) belongs to S, the term dP is an extension of the image of P under
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Q~        . It follows that the length of the sequence C(X, 7) is bounded by

the size of dP, which is itself bounded by 2m where m is the size of P. By

Lemma 3.6 the same bound holds for C(X, 7). By iterating the process one

shows that if Ç has degree « and the term P lies in the domain of Í2¿ , then the

lengths of the numerator and denominator of £ are bounded by the size of the

term d"P and, actually, that the whole computation of these sequences can be

made inside this space bound. Determination of the sign does not require any

additional space, thus one obtains the above bound for the whole process.   D

Observe that the previous bound, even if too high for a really practical use,

is very low in the hierarchy of fast-growing functions. The determination of the

normal form of a term described in [10] has essentially the same complexity.

On the other hand, it is not clear that the comparison process associated with
Laver's normal forms in [24] or [25] is primitive recursive.

5. Free left distributive structures

Once the construction of §§2-4 is complete, it becomes very easy to deduce

several previously conjectured properties for the free left distributive systems
and the partial monoid ^ld • We begin with

Proposition 1. The relation Cld is antireflexive on 77a.

Proof. We show that P c ß implies that the sequence <p(P, Q) has positive

sign: this implies that P and ß are not LD-equivalent since the effective ver-

sion of Fact C claims that <p(P, Q) has sign 0 if P and ß are LD-equivalent.

So assume that ß is equal to P[ßi]-[ßk] for some k > 1. The explicit

computation of the sequence <p(P, Q) shows that it has the form

lÉo»A.l£i.--.A.l&,

and we claim that any such sequence is strictly positive. Indeed let £ be any se-

quence and w be a point of S. Let X be C(w, D(Ç)) and 7 be C(D(£), w).
Then N(Ç . w) is N(Ç) . X and D(£ .w) is 7.

If w is not A, dil(u;) is 1, and one obtains

dil(D(i .«;))= Dil(l, 7) = Dil(dih», 7) = dil(w . 7)

= dil(D)(i) . X) = Dil((dil(Z>(0), X)),

dû(N(i.w)) = DÛ(âïl(N(Ç)),X),

which show that £ • w and £ always have the same sign.

Now if w is A, the second formula remains true; but because dil(A) is 2,

the first one becomes

dil(Z)({. A)) = Dil(l, 7) < Dil(2, 7) = Dil(dil(A), 7)

= dil(A . 7) = dil(D(£) . X) = Dil(dil(D(£)), X)),

and this shows that the sign of £ • A is strictly positive whenever the sign of £

is nonnegative. The claim follows: the sequence lío has sign 0, hence l£o • A
is strictly positive, and the subsequent products by sequences 1& or A will not

modify the sign.   G

The antireflexivity of the relation Cld gives several corollaries. In the sequel

we denote by f the free left distributive system with one generator, i.e., the

structure 7á/ =ld • By the results of [6] or [23] we have
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Theorem 2. The relation Cld induces a linear ordering < on f which is com-

patible with left translations and satisfies x < x[y] for every x, y. In particular,
f admits left cancellation.

It was shown in [5] that the existence of distinct LD-equivalent terms in 77^

having the same projection on 77 (when every element of X is projected onto

a) contradicts the antireflexivity of the relation Cld • We deduce now

Theorem 3. The word problem for the relation =ld in the case of any number

of variables is decidable.

Proof. Let P, ß be arbitrary terms in 77a , and let PT, Qx be their projections

onto 7a. If PT and Qx are not LD-equivalent, clearly P and ß cannot be

LD-equivalent. Let X be the sequence Tr(F(Px, Qx)) and 7 be the sequence

Tr(G(PT, ßT)). By Fact C, if PT and ßT are LD-equivalent, the operators

Qx and Qy map respectively Px and Qx to a common extension R. Let

R\ be the image of P under Qx and R2 be the image of ß under Qy. By

construction the term R is both R\ and R2 . If Rx and R2 are equal, we may
conclude at once that P and ß are LD-equivalent. Conversely if P and ß

are LD-equivalent, so are Rx and R2 ■ By the remark above this implies that

Rx and R2 must be equal.   G

The relation Cld is still antireflexive in the case of any number of variables

because any counterexample in 77í would project to a counterexample in 7a .
It follows that any linear ordering on the variables generates, together with the

projection of Cld , a well-defined linear ordering on the free left distributive
system generated by these variables (see [9] for details).

Among other properties, one also obtains that the normal forms for terms of

7a modulo LD-equivalence which are defined by Richard Laver in [24] and [25]

under the assumption that the relation Cld is antireflexive (and therefore under

the strong set-theoretical assumption) always exist. Similarly [10] introduces

a new normal form, and the antireflexivity of Cld directly corresponds to

the uniqueness of this form. Finally one also obtains the correctness of the
conjectural comparison algorithm presented in [7] (but the termination problem

remains open).

From the point of view of the description of the free left distributive systems,
we can now answer two natural questions, namely, the one of giving a precise

description of the connection between the structural monoid Jim and the group

Boo and the one of defining a realization of the structure f by embedding it

into some "usual" structure. The following result shows the correctness of the

intuition that the LD-pairs generate all left-distributivity identities.

Theorem 4. (i) The compatibility relation on J£\x> is a congruence; if Q¿ and

Q, are nonempty, they are compatible if and only if they are strongly compatible

if and only if \ = r\ holds.
(ii) The quotient structure of ^ld under compatibility is isomorphic to the

subset of the group Boo made by the elements x~xy where x and y are images

of sequences of the form ¿o » l^i » 11& • • • • • l"£n with £0, ... , Ç„ in the image

of %.
Proof. Assume that Q¿ and Q, both map the term P (in 77a) to the term ß.

By Proposition 2.5 we have
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0^ = X(P)'X(Q) = 0n.

By Proposition 3.8 we deduce

(tf(Oi), Dm) =+{2) (N(0ri), D(0n)),

hence

(0A(£),0D(£))=+(2>(0A(«),0D(h)).

So there exist positive sequences Z , Z' satisfying

0N(i) . Z =+ 0N(n) . Z'   and   0Z>(£). Z =+ 0D(n). Z'.

By applying the trace operation Tr defined in §4 we deduce

yV(£) • Tr(Z) =+ A(«).Tr(Z')   and   Z)({) .Tr(Z) =+ D(n) .Tr(Z')

because Tr(OX) is always X. This shows (N(c¡), D(£)) =+(2) (#(«), D(n)),

and therefore £ = w.

Point (ii) follows from the fact that if the operator Qf maps the term

Pi[Pi[- • • MJ • • •]] to the term ß,[ß2[- • • [Qh] •••]], so does the operator Q^,

where { is n? l*-1*^*) and « is Y[hx l*_1*(ûfc).   □

Remark. Define an LD-category to be a category equipped with a bifunctor

which is left distributive up to natural isomorphisms. Then the above pre-

sentation of ^ld modulo compatibility gives a full solution to the coherence

problem associated with LD-categories. The analogue of Mac Lanes's pentagon
in the case of associativity [27] is here the heptagon associated with the first

LD-pair.
As a corollary to the latter theorem we have

Propostion 5. The relation = on 77 (i.e., the word problem for the group Boo

as presented above) is decidable.

Proof. For any sequence 4 in S*, Ç = e holds if and only if N(Ç) = £>(£) holds

and therefore, if and only if the operators Q#({) and SId{() (which cannot be

empty since N(Ç) and £>(£) are positive sequences) agree on the intersection of

their domains. This can be decided by finding a term P which belongs to both
domains and comparing its images. Because the construction of the canonical

term Kx for X a positive sequence is effective, the whole process is effective

and even is primitive recursive.   G

Using the group B^ we now describe a realization of the free left distributive

system f. Observe that since Boo represents to some extent the left distribu-

tive identities, we thus construct a model of left distributivity whose elements
are left distributivity identities themselves, a situation which is reminiscent of
the proof of Gödel's completeness theorem for first-order logic by means of

Henkin's constants. We recall Laver's criterion for freeness.

Lemma 6 [24]. If g is an antireflexive LD-system, then every substructure of g

with one generator is free.

Proof. Let n be the projection of 77a onto a singly generated substructure g'

of g. The antireflexivity of g implies that the projection of the relation Cld
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on g' is a strict order < . If P, ß are LD-inequivalent terms, either P Cld ß
or ß Cld P holds, which implies 7t(P) < n(Q) or 7t(ß) < n(P), and in both
cases n(P) ^ n(Q).   G

Theorem 7. Lei 72b be the subgroup of Boo generated by the images of the

length 1 sequences Ow . The bracket on 7* induces a well-defined left distributive

operation on the right cosets set Boo/H0. Moreover, the closure of any element

of Boo/Hq under this bracket is a free left distributive system.

Proof. The compatibility of bracket with the congruence =, i.e., with the pro-

jection of 77 onto Boo, is obvious. Then the compatibility with the right

equivalence relation associated with 72o follows from formula (2) in the proof

of Proposition 2.5. Formula (1) of the same proof shows that collapsing 720 is

exactly what is needed to drop the obstruction to left distributivity. By Laver's

criterion it suffices to show that the left distributive structure Boo/Ho is antire-
flexive. The point is to show that the images of two terms P and P[ßi] • ■ • [Qk]

in Tioo cannot be equivalent modulo 720 . By construction these images are the

projections of the sequences x(P) and x(P[Qi] • • • [Qk]), and we have to show

that the quotient x(P)x(P[Qi]- [Qk\) cannot belong to 72o. But we just have
seen above in the proof of Proposition 1 that the elements of 72o have sign 0,

while any sequence as above is strictly positive.   G

6. Braid colourings

In this section we project the previous constructions involving the group Boo

to similar constructions involving the braid group Tioo (which is a quotient of

the group Tioo)- The main technical tool is the use of the elements of the free

left distributive structure f for colouring the strings in braids. We obtain a new
comparison algorithm for deciding LD-equivalence of terms and a realization

of the free left distributive structure f inside the braid group Tioo •

The existence of an action of the braids on left distributive structures is well
known: see for instance [2]. This action can be considered here as the projection

to Tioo of an action of Tioo associated with the operators Q^ .

Notation for braids will be similar to those used for Tioo : the elements of

Tioo are represented by braid words which are treated as finite sequences of

factors of the form i or i with i a positive integer. The free monoid of all

such braid words is denoted by W, while the submonoid of all positive braid

words (the ones involving no factor z) is denoted by W+ . We write =+ for

the congruence on W+ generated by all pairs (i*j,j»i) with \i — j\>2 and

all pairs (i*• i +1. i, i +1 * /• i +1 ), and = for the congruence on W generated

by =+ and the pairs (z .7, e), (i . i, e). Then the group T?oo is W/ = . The

monoid W+/=+ is denoted by Ti¿,. One knows [17] that =+ is the restriction
of = to W+ , and therefore Ti¿, may be identified with a submonoid of Ti^ .

The projection of W onto Ti^ is denoted a , so a(i) is exactly the braid <r,.
Let us assume first that g is any set endowed with a bracket. For / a positive

integer, let 6^ be the operator defined on the set gN of all infinite sequences

from g by

6' : (xx, x2,...)>-► (xx, x2,..., x,[x,+i], x,, xi+2, ...).
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We extend this definition to positive braid words for obtaining an action on
the right; i.e., we require that for A, B in W+, 0^,s be the composition

of &B and QA . Now a simple verification shows that the congruence =+ is

compatible with this action if (and only if) the bracket on g is left distributive.
In this case we obtain a well-defined action of Ti¿ on gN .

The natural hypothesis for extending this action to Tioo is to assume that

the left translations in g are bijective, so that g is an automorphic set (in [2]),
a rack (in [16]), or, in a different formulation, a crystal (in [18]). Actually, if

we only assume that left translations in g are injective, i.e., that g is a left

cancellative LD-system, we obtain a partial but well-defined action of arbitrary

sequences by

Q'g: (xi, x2,...)•-* (xx, x2,..., Xi+X, z, Xi+2,...)

where z is the unique element of g satisfying x,+,[z] = x¡ if such an element

exists.
The geometrical meaning of the action 0ß is clear: we colour the strings

of the braids using elements of g, and the colours change at each crossing

according to the following rules.

Definition. The sequences in gN are called ^-colourings, and a g-colouring x
is permitted for the braid word a if x belongs to the domain of the operator
0g. The image of x under 0£ is then denoted by xa .

If the LD-system g is not a rack, the action 6e is only a partial action,
which means that it can be impossible to propagate along a given braid a given
initial choice of g-colours for the strings. But the main technical point is that
there always exists for a given braid a convenient choice of initial g-colours

which can be propagated throughout the braid.

Let us first observe that the tools used in §3 for sequences in S* project to

braid words. In particular, the complement mapping C on ^+ immediately
projects to a similar complement mapping Cr on positive braid words. This
complement gives rise to a reduction of braid words, and all results available

for reduction in 77 project without modification. In particular, we obtain two

mappings NR, DR of W to W^ such that every braid word a reduces (with

respect to Cr) to the =-equivalent braid word NR(a)»DR(a) (see [11] for more

details).
But we also observe that the braid relations are symmetric (in contradis-

tinction with the relations used on 77). Therefore we can also define a left

complement for braid words and, using the symmetric notion of a left reduc-
tion, show the existence of two mappings NL, DL of W to W+ such that

every braid word a, using left reduction, gives an =-equivalent braid word

DL(a).NL(a).
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Lemma 1. Assume that g is a left-cancellative LD-system.
(i) For every finite family of braid words a,, ... , ap, there exists a ^-colouring

which is permitted for a,, ... , ap .

(ii) If a and a' are —equivalent, then xa = xa' holds for every ^-colouring

x which is both a- and a'-permitted.

Proof, (i) If A, B are positive words, then 0a and O8 are defined everywhere

on gN . By construction the domain of QA includes the image of QA and so

does the domain of QA'B since by construction (xA)A is x .

Claim. If a is left reducible to ß, then 0£ includes 0^ (as a set of pairs).

Proof. We may assume that a is left reducible to ß in one step and even that

a is i»j for some nonnegative integers i, j . The critical case is for \i—j\ = 1.

Assume, for example, a — 1 • 2, so that ß is 2.1.2.1. The hypothesis that

(xi, x2,...) is permitted for 2.1 implies that there exist z, and Z2 in g

satisfying x2 = x3[z2] and xx = x3[zx]. It follows that (xife]. xx, x3, ... ) is

permitted for 2, and one has

(X\ , X2 , X3 , X4 , . . . )       = (X\ [X2] , X3 , Z, , X4 , . .. )

= (Xx, X2, X3, X4, ...) '      '   ,

which proves the claim.   G

We deduce that 0£ includes e^'^^ and therefore, that the domain of

0g includes the image of 0g a). So the result is proved in the case of one

braid word.
For the extension to several words a,, ... , ap , we just have to verify that the

images of 0g a'', ... , Ofl " cannot be disjoint. But the intersection of these

images includes the image of 0a , where A is the left least common multiple

of DL(ax),..., DL(ap), which exists by left regularity of the monoid B^ .
(ii) A similar argument shows that if a is right-reducible to ß, then 0£

is included in 0^. Now assume that a and a' are =-equivalent and x is

permitted for a and a'. By (the projection to 2?oo of) Proposition 3.8 there

must exist positive braid words C, C satisfying

NR(a).C=+NR(a').C,

DR(a) . C =+ DR(a') . C.

Now x is permitted for a, hence for NR(a)»DR(a), and for JVj¡(a)»CiC.Dj[(a)

as well. We then obtain

j¿oc _ £NR(a)»DR(a) _ ¿NR(a)»C»C»DR(a) _ /¿NR(a)»C\DR(a)»C

_ ^VÄ(a').C^DR(a').C _  ~NR(a')»DR(a') _ £a'_

Observe that the previous argument is needed because if one uses an arbitrary

sequence of words witnessing for the equivalence of a and a', one cannot

assume that x is permitted for the intermediate terms.   G

Thus the image of a g-colouring under a braid is well defined when it exists.

The Burau representation and therefore the Alexander polynomial of a braid
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can be constructed using the colourings associated with the bracket defined by

x[y] = (l -t)x + ty,

while the Wirtinger presentation for the fundamental group of the complement

of the closure of the braid is associated with the conjugacy bracket in a free

group.
By the results of §5 the free LD-systems, and in particular the structure f, are

left cancellative. We can therefore consider colourings of braids by elements of
f. The existence of the linear ordering < on f will give a powerful criterion
for separating braids.

Definition. A braid is orpositive if it has a decomposition (with respect to the

generators ak) where cr¡ occurs but a~x does not.

Proposition 2. The generator a¡ occurs in every decomposition of a a ¡-positive

braid; in particular, a a ¡-positive braid cannot be trivial.

Proof. Assume that a is a braid word where i does not occur. Let (xx , x2 ,... )

be any a-permitted f-colouring. Consider the sequences (x[,xP, ... ,) induc-

tively defined by

(YP+l    YP+l \ — lyP    YP \ep+i

where ex, ... , en are the successive factors of a (of the form k or k), i.e.,

follow the successive transformations of the colours. Let à denote the class of

a in f. By left distributivity one has

<'[•■
[l    [U     J     \xpx[-[xf[xf+x][à]

ifep¿i,i,

]]•••]   ifep = i.

For any x,, ... , xi+i in f, one has

x¡ <f x,[x,+,]

by definition of the ordering <t, which implies

x¡[a] <f Xi[xi+x][ä]

because x[à] is easily proved to be an immediate successor of x for <f and

xx[• ■ ■ [Xi[à]]• •• ] <f x,[• • • [x/ta+ip]]• •■ ]

because  <j  is compatible with bracket on the left.   So the sequence of all

xx [■ ■ ■ [xf [à]] •••] is nondecreasing, and if i occurs at least once in a, we have

x?[x2°[. • • [xf[à]} •••]]<( xftxtt- ■ ■ WW] ••]]•

By Lemma 1, a = e would imply x% = x£ for every k , and therefore

*?[x2°[- • ■ [xf[à]] •••]] = xf [*f[. • • [xf [à]] •••]].

Hence a = e cannot hold if z occurs in a but z does not.   G

The closure of a a,-positive braid is a link diagram K with the property that

some closed curve intersects K only at positive crossings. Since no conjugate of

a (T,-positive braid may be trivial, we may state that any link diagram with the
above property cannot be regularly isotopic to the unknot. (The corresponding

property for ambient isotopy is trivially false: take the closure of <r,.)
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Because the group Tioo is the quotient of Tioo under the normal subgroup

generated by the subgroup Hq and the explicit definition of the bracket on

77 is compatible with the projection onto Tioo , one obtains a well-defined left

distributive bracket. A simple translation of the definition yields

Lemma 3. Let s be the shift endomorphism of the group Boo which for every i

maps a i to <t,+, . Then the bracket on Boo defined by

x[y] = x. s(y) » a, • s(x)~x

is left distributive.

A direct verification of left distributivity, however, is straightforward, but
guessing the definition without the approach of § 1 seems difficult. By Proposi-
tion 2 we easily obtain

Theorem 4. The bracket on Boo is antireflexive, and therefore the closure of any

braid under bracket is a free left distributive system.

Proof. An immediate computation (which is parallel to the one in the proof of

Proposition 5.1) shows that for any x, yx, ... ,yk in Ti^ the braid

*-Wi]-D'*])
is <r,-positive, and therefore it cannot be trivial. Then apply Lemma 5.6.   G

We may identify from now on the structure f with the closure of the trivial

braid 1 in Tioo • With this convention the class à of a in f is identified with
the braid 1.

Definition. The mapping x' of 7a into W is inductively defined by

*{ '   \x'('(Q)*s(x'(R))*l.s(x'(Q))   ifPisß[T?]

where s is the morphism of W such that s(i) is i+\ and s(i) is i + 1.

Lemma 5. For any P in 77a, the braid a(x'(P)) is the class of P in f, the
^-colouring (1,1,1,...)« permitted for braid a(x'(P)), and one has

(1, 1, 1..., >*'<'> = <P,1, 1,...).

The proof is immediate from the inductive definition of x'(P) and is illus-
trated in the figure. Observe that the braid word x'(P) is nothing but an exact
transcription of the sequence x(P) since by construction all factors in x(P)
have the form 1 '.

!■    I-    I-   I'   I
x'(P)

I-    !■    I-    I
s(x'(Q))

■<x'(P))

\P[Q\ F"TT~7
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By Theorem 6.4 we have a new comparison algorithm for deciding LD-
equivalence:

Proposition 6. Two terms P ,Q in 7a are LD-equivalent if and only if the braid

words x'(P) and x'(Q) are =-equivalent.

Example. As in the first sections let P be the term a[a][a[a[a]]] and ß be the

term a[a[a][a[a]]]. The braids words x'(P) and x'(Q) are respectively

1.3.2.1.2   and   2.3.2.3.1,

which are =-equivalent.

This new comparison process is more efficient than that described in §5 and
we lower the complexity bound for =Ld down to

Theorem 7. The word problem for the relation =ld in the case of one variable

has at most an exponential complexity.

Proof. The length of the sequence x'(P) is bounded by an exponential with

respect to the size of P since the inductive definition gives

length(x'(ß[T?])) = 2.1ength(/'(ß)) + length^T?)) + 1.

The braid words comparison has a polynomial complexity, so the algorithm of

Proposition 6 has an exponential complexity.   G

Remarks. 1. The quotients of Ti^ inherit the left distributive structure when-

ever the projection is compatible with the shift endomorphism. When projecting

onto the permutations of the integers, the quotient bracket happens to be iso-

morphic to the bracket on the injections of the positive integers constructed in

[4]. It is known that the corresponding monogenic LD-systems o are not free.

Extension to the case of Hecke algebras could give rise to new examples. When

collapsing as far as the integers using the exponent sum, the associated bracket

is the 'trivial' bracket on 1 defined by a[b] = b + 1.
2. The property of braids stated as Proposition 6.2 is a topological coun-

terpart to the antireflexivity of the relation Cld • Indeed it implies the above

construction of an antireflexive LD-system and therefore, the antireflexivity of

f itself. In the present paper the property is deduced from the previously es-

tablished antireflexivity of Cld (observe that the proof of Proposition 6.2 is

especially easy if one restricts to the case of ax-positive braids). But conversely

a direct argument for Proposition 6.2 shows the existence of an antireflexive

LD-system and therefore can replace the study of the group Tioo for proving

the antireflexivity of Cld • David Larue in [22] has obtained such a direct proof

using a free group endowed with conjugacy to colour the strings in a braid.

7. A LINEAR ORDERING ON THE BRAID GROUPS

In the previous section we have used the braid colourings to define inside

the braid group Ti^ a realization of the free LD-system f. We shall now use

these colourings to transfer order properties from f to T?oo • What makes such

a transfer possible is the fact that, because f is the most general left distributive

structure, any f-colouring of a braid word completely captures the underlying

braid—a property which could not hold with other colourings.
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In Theorem 6.4 we have realized the elements of the free LD-system f as

braids. We turn now to the converse direction and investigate the representation

of any braid in terms of the elements of f.

Definition. A f-colouring is finite if it has only finitely many components not

equal to 1. The constant f-colouring (1, 1, ... ) is denoted by 1. For (a,, a2,
... ) a finite f-colouring, one sets

oo

YI((ax,a2,...)) = l[sk-x(ak)
k=l

(where s is the shift endomorphism).

Lemma 1. (i) For every finite ¡-colouring x, there exists a braid word a satis-

fying
a(a) = Yl(x)   and   Ia = x.

(ii) The equality
U(xa) = U(x) • a(a)

holds for every braid word a and every a-permitted finite ¡-colouring x.

Proof, (i) Assume that x is (Px, P2,...), where P denotes the class of the

term P in f.   By Lemma 6.5 the colouring 1 is permitted for x'(Pk) and

\x'(Pk) is (pk> i j i,.. ). So we successively obtain

1™ = <P,,1,1,...>,

P^lHii.^l,..),

and the formula with a = Ylksk~x(x'(Pk)) follows using an easy induction.
(ii) It suffices to prove the equality in the case of a single factor, say i. We

have

n((x,, x2,...)') = n((x,, x2,..., Xi[xi+X], x¡, xi+2,...))

= X, • s(x2) •  •Si~l(Xi[Xi+X] • s'(Xi) • j'+1(x,+2) • • •

= X, • S(X2) ■ • • J'_1(X,) • S\xi+X) • Oi • s'(xj) • s'(Xi) • si+x(xi+2) ■ ■ ■

= X, • S(X2) • • • S'~l(Xi) • i'(X,+i) • <7; -,+1 (X;+2) • • •

= n((x,,x2, ...))• a¡,

because the factor a, commutes with all sk~x(ck) for k > i + 2.   G

We deduce that the action 0( is strongly faithful in the following sense:

Proposition 2. For any two braid words a, ß, the following are equivalent:

(i) there exists a finite ^-colouring x such that xa and xP exist and are

equal;
(ii) for every ¡-colouring x which is a- and ß-permitted the values xa and

xP are equal;

(Hi) a = ß holds.

Proof. Owing to Lemma 6.1 we have only to show that (i) implies (iii). Now

by Lemma 1 (ii), when (i) is satisfied, we obtain

a(a) = U(x)-xU(xa) = n^r'n^) = a(ß).   G
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We can also express every braid in terms of the elements of f and their

translated images.

Proposition 3. (i) The mapping n is an injection of the set of all finite f-

colourings into B^.
(ii) Every positive braid has a unique expression as U(x) where x is a finite

¡-colouring.
(Hi) Every braid a(a) is equal to (il(x))_1ri(xa) where x is any a-permitted

finite ¡-labelling.

Proof. For (i) assume that x and y are finite f-colourings. By Lemma l(i)

there exist braid words a and ß satisfying

a(a) = YI(x)   and   la = x,

a(ß) = U(y)   and   P = y.

If n(x) and Yl(y) are equal, the braid words a and ß are —equivalent, and

by Lemma 6.1 the colourings Ia and 1B are equal.
Point (iii) follows from Lemma 1 (ii), and point (ii) is a particular case: if A

is a positive braid word, the colouring 1 is certainly ^4-permitted, and a (A) =

n(P) holds.   G

We turn to the construction of a linear ordering on Tioo. We begin two

auxiliary results about LD-equivalence.

Definition. Two terms P, ß in 77¿ are strongly LD-inequivalent if ß is ob-
tained from P by modifying its last variable (and this one only).

Because the rightmost variable in a term is invariant under LD-equivalence,
strongly LD-inequivalent terms must be LD-inequivalent.

Lemma 4. Assume that P', Q' are strongly LD-inequivalent terms and that

P' Eld P and Q' Cld ß hold. Then P and Q are not LD-equivalent.

Proof. Assume P =ld ß ■ By three calls to Property Ti there exists a common

extension R of P and ß and integers p and q suchthat lp(R) is an extension
P' and lg(R) is an extension of Q'. Let b (resp. c ) be the rightmost variable
of P' (resp. Q'). The integers p and q cannot be equal since the rightmost

variable of lp(R) must be b while the rightmost variable of lq(R) must be
c. Assume p > q , and let P" be the term obtained from l9(R) by replacing

the rightmost occurrence of c by b. Now P" is LD-equivalent to the term
obtained from Q' by replacing the rightmost occurrence of c by b, which is
P' by hypothesis. So P" must be LD-equivalent to P' and therefore, to its

own prefix lp(R), contradicting the antireflexivity of Cld •   G

For R a binary relation on the set X, we denote by TÎ* the lexicographical

extension of R to XN . Thus for any two f-colourings x, y , x <^ y holds if

there exists an integer i such that x*. = yk holds for k < i and x, <f y¡ holds.

The relation <jf is a strict linear ordering on f-colourings.

Lemma 5. For any two positive braid words A, B, the following are equivalent:

(i) there exists a finite ¡-colouring x and xA <jf xB ;

(ii) every finite ¡-colouring x satisfies xA <1¡ xB ;

(iii) \A <* \B holds.
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Proof. We first show that (iii) implies (ii). Assume (1)A <j (\)B. We fix an

infinite set X and a sequence ax, a2, ... of distinct elements of X. The free

LD-system ̂ /=ld is denoted by fe. The relation Cld induces on fe a (strict)
partial ordering denoted <h . We claim that

(1) (àx,à2,...)A<*h(àx,à2,...)B

holds, where P denotes the class P in fe. Then any mapping of X into f
extends to a projection of fe into f which is compatible with the orderings
<fj. and <f, so for every f-colouring x the inequality (1) implies xA <1¡ xB ,

which establishes point (ii).
In order to prove the claim, choose n large enough so that no factor greater

than « - 1 occurs in A or Ti. Denote by P and ß respectively the images of

the term ax[a2[- -[a,,]-]] under Q^» and Qfii where f denotes the morphism

of W to S9 which map i to 1!_1. Let Pk (resp. Qk) denote the subterm
^V-'O) (resp. ß(i*-in))- For each term T? in 7¿ we denote by Rx the term

in 7a obtained from 7? by replacing any element of X by a. The hypothesis

lA <*f 1B is Px cLD Qx, and inequality (1) is P c£D ß.

Consider the least i such that P, =ld Qi fails. Such an i must exist, since

otherwise one would have

(àx, a2,... )A = (àx, a2,... )B

which projects onto Px =Ld ßT, contradicting the hypothesis. For k < i

the equivalence Pk =ld Qk projects onto Pk = LDß£. Because two LD-

inequivalent terms of 77a must be LLD-comparable, three cases may occur.

Case 1. Q] nLD Px holds. Then Qx c£D Px holds, which contradicts the
hypothesis Px cLD Qx.

Case 2. P¡ =LD Q] holds. Choose positive sequences Z ,Z' in 7'+ such that
Qz and Qz- map P¡ and Q] respectively to a common expansion R. Assume

that Qz maps P, to P' and QZ' maps ß, to Q'. The term 7? is P'x and
Q'x, so because P' and ß' are not LD-equivalent, they must have a 'variable

disagreement', i.e., there exist terms Rx, ... , Rp and distinct variables b, c

such that the patterns Rx[--- [Rp[b and T?,[- • • [Rp[c are prefixes of the words

P' and Q'. Using easy left distributivity transformations one deduces

Ri[-[RP[b]]-]tzLDP' and Rx[-RP[c]]-]nLDQ',

whence

Ail- ■ [Rp[b] • • • ] Cld Pi and Tí,[• • • [Rp[c]] • • • ] cLD ft.

By distributivity again one obtains

Pil-[Pi-i[Ri[- ••[*,[*]]•• ■]]]•■ ICldP

and

Pi[-[P,-i[Ti,[-[T?p[c]]-]]]-]LDcß,

which shows that the terms P and ß are strongly LD-inequivalent. By Lemma

4, this contradicts the equivalence P =ld ß which holds since the terms P and

ß are extensions of the term ax [a2[- ■ ■ [a„] ■■ ■ ]].
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Case 3. Qx Cld P¡ holds. As above, choose positive sequences Z, Z' such

that Qz and QZ' map Px and Q] respectively to terms R, S such that one

is a strict prefix of the other one. Assume R \z S. Assume that Qz maps P,

to P' and Qz' maps ß, to Q'. Then either P' is a strict prefix of Q' or they
have a 'variable disagreement'. As in Case 2 the latter situation is impossible.

So P¡ Gld Qi holds, which implies P cLD ß. Since Case 3 was the only
possible case, this proves inequality (1), and therefore (ii) follows from (iii).

It follows that for any pair of positive sequences A, B , either (x)A <î (x)B

holds for every x, or (x)A = (x)B holds for every x, or (x)B <jf (x)A holds

for every x . So if (x)A <î (x)B holds for at least one x , necessarily it holds

for every x and in particular, for 1. So the proof of the lemma is complete.   G

We are ready to define a linear ordering on Tioo using the lexicographical

extension of <t. This ordering is constructed so that every generator a¡ is

preponderant over all ak with k> i.

Definition. Assume that -< is an ordering on a group G. For a in G and X

a subset of 07, we say that a is infinitely large with respect to X if x x yay~x

holds for every x, y in the subgroup generated by X.

Theorem 6. (i) There exists a unique ordering < on the braid group Boo which

is compatible with left translations and is such that, for every i, the generator 07

is infinitely large with respect to the family of all ak with k > i.
(ii) This ordering is linear and compatible with the shift endomorphism. It

extends the left-divisibility ordering on Boo and the linear ordering <f on f.

(iii) For any braid words a, ß, the inequality a (a) < a(ß) holds if and only

if (x)a <( (x)B holds for every finite ¡-colouring x which is permitted for a and

ß if and only if this inequality holds for at least one such ¡-colouring.
(iv) There exists a primitive recursive algorithm for comparing braid words

with respect to <.

Proof. Say that a braid is positive if it can be written as a(A* B) where A, B

are positive words satisfying (\)A <« (1)B. We denote by Ti¿+ the set of

all positive braids and construct our ordering consistently with this notion of

positivity. Clearly Ti¿, is included in Ti¿+ , and because <ï is antireflexive, 1

does not belong to T?¿+ .

Claim 1. The braid x belongs to Ti++ if and only if (\)A <* (l)B holds for

every expression of x as a(A • Ti) with A, B positive braid words.

Proof. If A • Ti and A' • B' are =-equivalent, there exist positive words C, C

satisfying

C.A = C'.A',     C,B = C'.B',

and by Lemma 5 we have the equivalences

ïA <; \B «*■ (\C)A <j (\C)B «• (îcV <; (îcy <*• \A' <; \B'. a

Claim 2. The set B^ is stable under product.

Proof. Assume that a(A . Ti) and a (A' • Ti') belong to Ti¿+ . Choose positive

words A" and Ti" satisfying A"*B = B"• A'. Using Lemma 5 again, we have

ja".a = {Îa")A <. {Îa")B = (jj>'y K, (p-y = ja-.*' j
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which shows that a(A • B »A1 »B') belongs to B^ .   G

Now define the relation < on Ti^o by

x <y &x~xy €Ti++.

Claim 3. The relation < is a strict ordering which is compatible with left trans-
lations and extends the left-divisibility partial ordering. This ordering is linear
on Boo and invariant under the shift endomorphism.

Proof. The first part is obvious from Claim 2 and the definition of < . The or-
dering < is linear because <j is a linear ordering and every braid can be written

as a(A • Ti) for some positive words A, B . And because Ia = (ax, a2,...)

implies l*(a> = (1, a,, a2, ... ), the set Ti¿,+ is stable under 5 and x < y is

equivalent to s(x) < s(y).   G

Claim 4. If o(a) belongs to Ti¿+ , there exists at least one a-permitted colour-
ing x satisfying x <j xa .

Proof. Let x be 1°^°) : the colouring x is permitted for Di(a) • NL(a), and
one has _

X = l^te) <* ÎNl^ = fÖL(«)«^L(a)_

But a is left-reducible to DL(a)*NL(a), so by the claim in the proof of Lemma

6.1 we know that x is a-permitted and that xa is equal to x^M^M _   □

Claim 5. The inequality s(x) < s(y)axs(z) holds for every x, y, z in T?oo .

Proof. It suffices to show that any er, -positive braid belongs to T?¿+ . Assume

that a(y) is cr,-positive. By Proposition 6.2 we know that a(y) is not 1.
Assume that a(y) is not in B^ . Then a(y) belongs to T?^+ , and by Claim

4 there exists a 7-permitted colouring y satisfying y <* y*, and therefore (by

taking x = y*) there exists a y-permitted colouring x satisfying xy <|i. Now

the proof of Proposition 6.2 gives the inequality $ <î x? for every y-permitted

colouring x, a contradiction. Hence a(y) belongs to Ti¿,+ .   G

This shows that er, is infinitely large with respect to the image of 5 and

therefore, with respect to the family of all ak with k > 2. Because < is

compatible with s, this implies the similar property for the other generators

and finishes the proof of the existence of the ordering.
In order to prove the uniqueness, assume that <' is any ordering on T?oo

satisfying the conditions of (i).

Claim 6. Assume that k occurs in the braid word y but neither 1, 2, ... , k-1

nor 1, 2, ... , k occurs in y . Then 1 <' a(y) holds.

Proof. Assume that no integer < k occurs in the braid words yo,yx,... . We
prove inductively on n > 1 the inequality

1 <' o(y0»k»yx»---»k»y„).

If « is 1, the hypothesis that ak is infinitely large for <' with respect to the
a i with i > k gives

o(Ti»yo)<' o(Ti)oka(yx)
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which implies, since <' is compatible with left translations,

1 <' o(yo)oka(yx).

For the induction we have 1 <' oka(yn) which implies

o(y0)ok ■ • ■ o(yn-x) <' o(y0)ok ■ ■ ■ a(yn-x)oka(yn)

and therefore 1 <' o(yo)ok ■■■a(yn-x) implies 1 <' o(y)ak ■■■o(y„).   G

Claim 1. For every f-colourings x, y, x <* y implies Yi(x) <' Yl(y).

Proof. Assume x, = y, for i < k and xk <f yk. By construction the braid

n(x)-1n(y) has an expression a(y) where y satisfies the hypothesis of Claim

6. So the relation 1 <' n(x)_1n(y) holds. Since <' is compatible with left
translations, this implies ri(x) <' II(y ).   G

Claim 8. The orderings <' and < coincide.

Proof. Assume that z belongs to B^ . By definition there exist positive braid

words A,B such that z is a(A»B) and Ia <* \B holds. By Lemma 1,

a(A) is U(\A) and a(ß) is n(\B). By Claim 7 one obtains a(A) <' a(B),

which implies 1 <' a(A . Ti) since <' is compatible with left translations. So

1 < z implies 1 <' z, and then x < y implies x <' y. Because < is a linear

ordering and <' is an ordering, this is enough to conclude.   G

Claim 9. If a(a) < a(ß) holds, then xa <* xB holds for every finite f-

colouring x which is a- and /^-permitted.

Proof. Assume that x is a finite f-colouring which is permitted both for a and
ß . By Claim 7 (and the fact that < and <* are linear orderings) the inequality

xa <^ xB is equivalent to n(£a) < n(x^), therefore by the formula of Lemma

1 (ii) to
YI(x)a(a) <YI(x)a(ß),

and finally to a(a) < a(b).   G

Point (iii) of the theorem clearly follows. For point (iv), observe that, accord-

ing to the definition of T?£,+ , the comparison of a (a) to 1 consists of reducing

a on the left, determining \N^a) and 1°^°), and comparing these colourings

with respect to <j . The last two steps respectively correspond to applying the

transformations Qatl(q)# and Qd^«)« to a term aw with « large enough and

comparing with respect to Cld the successive subterms P(,/o) and ß(,/o) of the

images P and ß using the reduction in Tioo of the associated ^-sequences.

By Proposition 4.5 the complexity of this method is bounded by a tower of

exponentials, and therefore the relation < on Tioo is primitive recursive. This

finishes the proof of the theorem.   G

With the present construction, the order type of < on arbitrary braids is n,

while the order type of its restriction to positive braids is (to(\ + t]))w' where

to, to*, and w respectively denote the order types of the natural numbers, the

negative integers, and the rationals. Subsequently Richard Laver proved in [26]
that, the restriction of < to T?+  is (for every «) a well ordering and that
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it extends the partial ordering defined in [14]. Actually it is easy to modify

slightly the definition to obtain a well ordering on 7i¿ , thus associating with
every positive braid a well-defined ordinal rank. We conjecture that the order
type of B^ endowed with this well ordering is to0>a .

As Larue has noted, the existence of the linear ordering < on Tioo immedi-

ately implies that the group B^ is torsionfree. We hope for new applications
in the future.
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