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SEMIGROUPS AND STABILITY OF NONAUTONOMOUS
DIFFERENTIAL EQUATIONS IN BANACH SPACES

NGUYEN VAN MINH

Abstract. This paper is concerned with nonautonomous differential equations

in Banach spaces. Using the theory of semigroups of linear and nonlinear opera-

tors one investigates the semigroups of weighted translation operators associated

with the underlying equations. Necessary and sufficient conditions for differ-

ent types of stability are given in terms of spectral properties of the translation

operators and the differential operators associated with the equations.

I. Introduction

Let us consider the equation

(1) J¡=A^X'

where t e J, J = [0, +00) or (-00, +00), x e X, X is a given complex

Banach space, A(-) is an operator valued function taking t into a bounded

linear operator A{t) acting on X. It is known that in the autonomous case, i.e.

A(t) = A for all iel, the theory of linear autonomous differential equations

is based on the investigation of spectral properties of the operator A (see e.g.

[4]). In this case, the Dunford Theorem plays a key role which allows one to
establish the relationship between the spectrum of the operator A and that

of the one-parameter group exp[L4], t e K. A higher level of difficulty occurs

when one is concerned with nonautonomous equations, i.e. A(t) depends on t.

Many of the classical results concerning the asymptotic behavior of solutions of
equation ( 1 ) are characterized in terms of the existence of bounded solutions to
this equation (see e.g. [4, 6]). From the point of view of the operator theory the

above characterization is in fact in terms of spectral properties of the differential

operator J2? = -d/dt + A(t) acting on suitable function spaces. It turns out

that the operator ¿2? constitutes the infinitesimal generator of the semigroup
&~ = {Th,h>0} defined as follows

(2) (Thv)(t) = X(t,t-h)v(t-h),        (teR),

acting on suitable subspace of the space of bounded and continuous functions.

In [1], [10] the authors considered individual operators of the above semi-
group acting on the space of bounded functions.  It was shown that one can
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investigate the asymptotic behavior of solutions of equation (1) by studying

spectral properties of the operator Th for some given positive h . In [10] it

was announced that one could relate the spectral properties of the semigroup
&~ to those of differential operator S? in the context of the theory of linear

semigroups. The main purpose of this paper is to investigate different types

of stability by studying the relationship between the operators 3? and E7~ by

means of the theory of semigroups of linear and nonlinear operators. More con-

cretely, one will consider the action of the semigroup 3~ on different suitable

function spaces and then prove the spectral mapping theorems, i.e. the following

equality

(3) a(rA) = exp[M^)],

where cr(') denotes the spectrum of linear operator. Our investigation is also

carried over nonlinear equations

(4) dx/dt = f(t,x),

by means of the theory of nonlinear operators. Part of the paper's result was

announced in [7-8].

We now give an outline of the contents of the paper. In §11 we will recall

some notions and notations which will be used throughout the paper. Section

III is devoted to the study of equations (1) and (4) on the whole line. Lemma

1 shows that the differential operator J? = -d/dt + f(t, •) is the infinitesimal

generator of the nonlinear semigroup !T. This assertion will be used through-

out the paper. The main result concerning the stability of nonlinear equations is

Theorem 2 in which a sufficient condition for the existence and global exponen-

tial stability of a solution to the nonlinearly perturbed equation of (4) is stated

in terms of the accretiveness of the operator S? - -d/dt + f(t, •). In this

section we study equation ( 1 ) by establishing the relation between the spectrum

of ¿¿f = -d/dt-\-A(t) and that of the semigroup &~. We shall prove (3) for the

case dim X < oo from which we deduce necessary and sufficient conditions for

the exponential dichotomy of equation (1). In the case dimX = oo a sufficient

condition for the asymptotic stability of individual solutions of equation (1) is

given by applying a recent result due to Batty and Vu [2]. Necessary and suf-

ficient conditions for the exponential and uniform stabilities are also obtained

and stated in terms of spectral properties of the operators 2f and Th . In §IV

we shall investigate equation (1) defined on the half line [0, +oc). A detailed

study of the spectra of the semigroups ET and X = {T~h, h > 0} acting

on suitable function spaces is carried out. From this we deduce necessary and

sufficient conditions for the upper and lower Bohl exponents of equation (1)

to be negative and positive respectively. Similarly to the case where equation

(1) is defined on the whole line, in this case we give necessary and sufficient

conditions for different types of stability in terms of spectral properties of the

operator SC and the semigroups !3~ and X .

II. Notations and definitions

In the paper X always denotes a given complex Banach space with norm || • ||.

We shall denote by CU(J, X) the Banach space of all bounded and uniformly

continuous functions from / to X with norm

||v||=sup||v(*)||,
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where v is any element of CU(J, X). For a linear operator A acting on a

Banach space Y we shall denote by 3¡{Á) and âZ(A) the domain and range of

^respectively. If A is bounded then \\A\\ will stand for its norm. a(A), p(A)
and ra(A) denote the spectrum, resolvent and spectral radius of A, respectively.

Throughout the paper the operator valued function A(') is always assumed

to be continuous on /. So from the Existence and Uniqueness Theorem it

follows that the evolutionary operator X(t,s) of equation (1) exists for all

t, S £ J .

Definition 1 [4, 6]. Equation (1) is said to have an exponential dichotomy on

/ if there exist positive constants K, a and a continuous projection P in X

such that the following inequalities hold

\\X{t)PX-l{s)\\ < Kexp[-a{t -s)], for t > s,

\\X(t)(I-P)X-lX(s)\\ <Kexp[-a{s-t)], fors>t,

where X{t) denotes X(t, 0).

Definition 2 [4, 6]. Equation (1) is said to be uniformly stable if there exists a

positive constant N such that

\\X(t,s)x\\<N

for all t > s, x £ X.

Definition 3. For an arbitrary Banach space Y, a nonlinear operator A from

Y to Y is said to be accretive if the following inequality holds

\\{I + U)x-(I + XA)y\\>\\x-y\\

for all x,y£&(A), A>0.
Suppose that equation (4) satisfies all conditions of the Existence and Unique-

ness Theorem and all its solutions are continuable on the whole line.

Definition 4. A solution xç>(t) to equation (4) is said to be globally exponentially
stable if there exist positive constants N, a such that the inequality

||*(0 - *o(OII < Nexp[-a(t - s)]\\x(s) - x0{s)\\

holds for all t > s and any solution x(t) of equation (4). For linear equations

the exponential stability means the global exponential stability.

III. Equations on the whole line

In this section we shall consider linear and nonlinear equations defined on

the whole line. Using the spectral theory of linear semigroups we shall prove

the spectral mapping theorem, and then give necessary and sufficient conditions

for equation ( 1 ) to have an exponential dichotomy in the case dim X < oo. In

the general case we obtain necessary and sufficient conditions for the uniform

and asymptotic uniform stability of solutions as well as a sufficient condition

for the asymptotic stability of individual solutions. For nonlinear equations we

shall apply a general theory on the generation of nonlinear semigroups due to

Crandall-Liggett [3] to give a sufficient condition for the existence of a globally
exponentially stable solution of nonlinearly perturbed equations. In order to

organize the paper optimally we first deal with the nonlinear equation (4).
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Definition 5. A mapping / from R x X to X is said to be admissible if it

satisfies the following conditions:

(i) f(t, x) is continuous with respect to (t, x),

(ii) f(t, x) satisfies the Lipschitz condition with respect to x with coefficient

independent of t, i.e. there is a positive constant L such that

(5) \\f(t,x)-f(t,y)\\<L\\x-y\\

for all t £ R and x, v £ X,
(iii) There is a positive constant N such that

(6) 11/(7, x)||<JV(l + ||x||)

for all t £ R and x £ X.

Definition 6. We say that a mapping / from R x X to X satisfies condition H

if it is admissible and satisfies the following condition: for every îi e C„(R, X)

the function taking t into f{t,v(t)) belongs to CU(R, X) as well.

If / is admissible, then equation (4) satisfies all conditions of the Existence
and Uniqueness Theorem [4]. Furthermore all its solutions are continuable on

the whole line. Denoting by X(t, s)x the solution to the Cauchy problem

Jt~n ,Xh
x(s) = X.

We shall use the formula (2) to define the group of weighted nonlinear trans-

lation operators Th, h £ R, associated with equation (4). In what follows

in order to apply the theory of nonlinear semigroups we shall deal with the

semigroups 3~ = {Th, h > 0}.

Lemma 1. Assume that f is admissible. Then every operator Th of the semi-

group ^associated with equation (4) acts on CU(R, X) with 2{Th) = CU(R, X).

In addition the semigroup 3~ is strongly continuous, i.e. for every given v e

C„(R,X)

(8) lim Thv = v.

Proof. From the definition of X(t, s) and the admissibility of / (see (5) and

(6)) we have

(9) ||*(/, s)x\\ < ||x|| + J'n(1 + ||*(i, s)x\\)dt

for all t > s,  t, s £ R, x £ X. Applying the Gronwall inequality we get the

following estimate

(10) \\X(t,s)x\\<(\\x\\ + N(t-s))eN{t-s),

for all t > s, x £ X. By definition we have

||(7*t;)(/)|| = ||A-(i,i-A)t;(/-Ä)||

<IK<-A)II+ /'   N{l + \\X(Ç,t-h)v(t-h)\\)dt.
Jt-h
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Substituting the estimate (10) into (11) we obtain

„,,    \\(Thv)(t)\\<\\v\\+ f  N[l + {\\v{t-h)\\ + N{i-t + h))eN^-t+^]di
(12) Jt-h

< {\\v\\ + Nh + \\v\\[eNh - 1] + NheNh - [eNh - 1]}.

From(12) we deduce the boundedness of Thv.   We are going to prove the

uniform continuity of Thv . From the admissibility of / we get

(13) \\X{t,s)x-X{t,s)y\\<\\x-y\\+ f L\\x(i,s)x-X(t,s)y\\dÇ
Js

for all t > s,  x, y £ X.   Applying the Gronwall inequality we obtain the

estimate

(14) \\X(t, s)x - X(t, s)y\\ < eL^\\x -y\\

for all t > s, x, y £ X. We have

\\(Thv)(t) - (Thv)(s)\\ = \\X(t, t - h)v(t -h)-X(s,s- h)v(s - h)\\

(15) < \\X(t, t-h)v(t-h)-X(t,t-h)v(s-h)\\

+ \\X(t, t - h)v(s -h)-X(s,s- h)v{s - h)\\.

From (14) and the uniform continuity of v it follows that

(16) lim \\X(t,t-h)v(t-h)-X(t,t-h)v{s-h)\\ = 0.
t-s—*0

On the other hand, without loss of generality, assuming that t > s and \t - s\
is sufficiently small we have

(17)
||*(i ,t-h)v{s-h)-X{s,s- h)v(s - h)\\

<f'\\AÇ,X(i,t-h)v(s-h)\\dÇ

+ f  \\m,X(Z,t- h)v(s - ft)) - /(Í ,X(£,s- h)v(s - h))\\dit
Jt-h

f    \\f{£,X(Z,s-h)v{s-h))\\dt.
Js-h

rt-h

+

Js-h

To show that the right-hand side of ( 17) tends to zero as t - s tends to zero it
suffices to show that

(18) lim      sup   \\X{C,t-h)v{s-h)-X(t,s-h)v(s-h)\\ = 0.
l-s->0 t-l,<(<s

We have

sup   \\X(Ç, t - h)v(s -h)-X(£,s- h)v(s - ft)||
t-h<i<s

(19) < eLh\\v/s _h)-X{t-h,s-h)v(s-h)\\

< eLh{N(t -s) + \\v\\{eN{'-s) -l) + N(t- s)eN^'-^ - [<?*<'-*> - 1]}.

Now (19) implies (18) and then the the uniform continuity of Thv . To prove

(8) it suffices to show that

(20) lim sup\\X[t,t-h)v{t-h)-v{t-h)\\ = 0
h—»0+    t
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In fact, we havefor every given v £CU(R,

X(t,t- h)v{t -h)-v{t-h)= [   /(i ,X{Ç,t- h)v(t - ft))d(.
Jt-h

Thus from (10) we get

(21) sup \\X(t, t - h)v{t - A) - v(t - ft)|| < Nh{l + (||v|| + Nh)eNh}.
t

(21) implies (20) and completes the proof of the lemma.

It is natural to consider the semigroup F in the context of the theory

of nonlinear semigroups. It turns out that the differential operator S? —
-d/dt + f(t, •) constitutes the infinitesimal generator of the semigroup ST.
More precisely we have the following lemma.

Lemma 2. Assume that f satisfies condition H. Then the infinitesimal genera-
tor of the semigroup ST associated with equation (4) is the differential operator

& = -d/dt + f(t,-) with 2í{S?) = C¿(R,X) consisting of all functions v
belonging together with the derivative dv/dt to CU(R, X).

Proof. First we show that

In fact, we have

ft

(22) lim sup 111/"   f(Ç,X(Ç,t-h)v(t-h))dÇ-f(t,v(t))
a-»o+  t  || n jt_h

have

sup II /' [/(Í ,Xß,t- h)v(t - ft) - /(/, v(t))]dt,
t    \\Jt-h

(23) <isup/'   \\f{Z,X{£,t-h)v{t-h)-m,v{Ç))\\dS
h   t Jt-h

+ isup/'   \\f(Ç,v(Z))-f(t,v(t))\\dÇ.
n    t   Jt-h

From the uniform continuity of v and / it follows that

(24) lim i sup /'   \\m,v{H))-f{t,v{t))\\dc: = Q.
A-»0+ n    t   Jt-h

On the other hand we have

isupir [f(t:,x(c:,t-hMt-h)-Aç,v(mdç
n    t    \\Jt-h

< I sup f  L\\X(Z, t - h)v(t - ft) - v(i)\\ d£
n   t Jt-h

< \ sup /'   ||A-(i, t - h)v(t - ft) - v(t - h)\\ dÇ
n   t  Jt-h

up/'   \\v(t-h)-v(t)\\di.
t   Jt-h

= 0.

(25)

+ ftSup

Since v is uniformly continuous the following equality is valid

(26) lim £ sup/    ||u(í-A)-ü(í)||</<: = 0.
A-»0+ ft     t   Jt-h
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We have the estimate

L
sup/    \\X{Ç,t-h)v{t-h)-v{t

t   Jt-h
h)\\dt

(27) - ft S'Jp /       /t    Jt-h \\Jt-
f{n,X{n,t-h)v{t-h))dn dt

<^sup/   [Nh{l + {\\v\\ + Nh)eNh)]dÇ.
"    '   Jt-h

From (27) it follows that (22) holds. Let us now denote by sf the infinitesimal

generator of the semigroup 0T. By definition, v £ 3{sf) if and only if the

limit lim(Thv - v)/h exists as ft —> 0+ . In other words, v £ 3{s/) if and

only if

lX{t,t-h)v{t-h)-v{t)_{j,v){t)   =0
(28) lim sup

A—0+    t

Let us now rewrite (28) in another form

\\(X{t,t-h)v{t-h)-v{t-h)
hm sup k —-——,—-

(29) '   '

f{t,v{t))

{'<
+ {f{t,v{t)) +

v(t-h)-v(t)
-{sfv){t)

}|"
0.

Taking into account (22) we see that (29) is equivalent to the following inequal-

ity

(30) lim sup
A^0+    /

vit- ft) -vit)     .   .  ., ,
fit, V(t)) + -i-i-K-J- - (j/t>)(0 = 0.

Since / satisfies condition H the function taking t into f{t,v{t)) belongs to

CU(R, X). Thus 31 {si) consists of all functions v £ CU{R, X) such that

^_   ,,> def ..       V{t-h)-v{t)
D v{t) = hm —--.-—

A-0+ -A

belongs to C„(R, X). Using the well-known results concerning such functions

for the case dimX = 1 we can easily prove (see e.g. [9, Chapter IX]) that in

this case D~v{t) = dv{t)/dt, i.e. 3{sf) = C¿(R, X). From (30) it is clear
that s/ = ¿¿?. this completes the proof of the lemma.

Remark 1. Suppose that f{t, x) = A{t)x , where A{t) is a bounded linear op-

erator for every fixed /. Suppose in addition that the operator valued function

A{') is continuous and bounded with respect to t on the whole line. Then F

is a strongly continuous semigroup of linear operators. In this case one has no

difficulty in showing that the differential operator S? = -d/dt + A{t) is the

infinitesimal generator of 3~ with 3{2') ç C¿(R, X). From the general the-

ory of linear semigroups [5] it follows that Sf is closed and 3{Sf) is dense

in CM(R, X). If A{-) is uniformly continuous and bounded on R, then from

Lemma 2 3{Sf) = CW'(R, X).

In what follows we are concerned with the nonlinearly perturbed equation of

(4)

(31) ^=f{t,x) + g{t,x).
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Note that if g and / satisfy condition H, then g + f satisfies condition H
as well.

Theorem 1. Assume that g and f satisfy condition 77, and there is some real

a such that ai - J¿? is accretive, where S? = -d/dt + f{t, •). In addition

assume that, for all sufficiently small positive X,3Z{I - X¿¿?) = C„(R, X). Then
the operator yl -sf is accretive with y - a + ß, where s/ = -d/dt + f{t, •) +

g{t, •), ß is the Lipschitz coefficient of g with respect to x. Furthermore, for

all sufficiently small positive X, M {I - Xsf ) = CU(R, X).

Proof. First we show that (7 - Xsf) is one-to-one and onto for all sufficiently

small positive X. In fact, for every «eC„(K,X) we have to show that there is

a unique v £ CU{R, X) such that (7 - Xsf )v = u for a given sufficiently small
positive X. To this end, we write

(32) {I-Xsf)v = {I-XS?)v-Xgv = u,

def
where {gv){t) = g{t, v{t)). It is easy to see that equation (32) is equivalent to
the following one

(33) v = {I-XS?)-\u + Xgv).

Setting

(34) F{v) = {I-X5?)-l{u + Xgv)

we see that F is an operator acting on CU(R, X) for a given sufficiently small

positive X. From [3, Lemma 1.2] we have

(35) ||(/ - X&)-lu -{I- XJ?ylv\\ < y^-\\u - v\\

for all u, v £ CU{R, X), X > 0, such that Xa < 1. From (35) we get the
estimate

(36)
||.F(u) - F{w)\\ <    _¿   II" + Hv - « - Hw\

Xß
1 — ka.

Hence, for X < I/{a + ß) and Xa < 1, F is a contraction in CU(R, X). From

the Banach Fixed Point Principle it follows that F has a unique fixed point
which solves equation (33) and (32). Now we show that {yl — sf) is accretive.
In fact, we have

||(7 + X{yl -&- g))u - (7 + X{yl -5?- g)v\\

= ||[(1 + Xß)I + X{al - S?)\u - [( 1 + Xß)I + X{al - £?)v] + Xgu - Xgv\\

>{l+Xß)\\u-v\\-Xß\\u-v\\ = \\u-v\\

for all u, v £ CU{R,X), X > 0. This completes the proof of the theorem.

Theorem 2. Suppose that all conditions of Theorem 1 are satisfied with a < 0.

Then for 0 < ß < -a the perturbed equation (31) has a unique bounded solution

which is globally exponentially stable.

Proof. First we show that the operator ¿¿f defined in Theorem 1 is closed, i.e.

if u„ £ CU{R, X), n = 1,2,... , limun — u and lim¿¿?u„ = v as n —> oo,

then v = Sfu. In fact, since / satisfies condition H we have

(37) ||/(/, uH{t)) - f{t, «(0)11 < K\\un{t) - M(0||,
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where K is the Lipschitz coefficient of / with respect to x from this it follows

that the operator taking u into /(•,«(•)) is continuous. From Remark 1 it
follows that -d/dt is closed. Hence the operator Sf — -d/dt + f{t, •) is
closed. Similarly, the operator sf = -d/dt + f{t, •) + g{t, •) is closed. Let us

denote by Sh , ft > 0, the semigroup associated with equation (31), i.e.

(38) {Shv){t) = Y{t,t-h)v{t-h),

where Y{t, s)y is the solution to the Cauchy problem

,w (dy/dt = f{t,y) + g{t,y),
{   } \y{s) = y.

Now we are in a position to apply Theorems I, II in [3] to get the following

assertions
(i) lim(7 - \sf)~nu = Shu as n -» oo,

(ii) For all u, v £ CU{R, X) the following inequality holds

(40) \\Shu - Shv\\ < exp[(a + ß)h]\\u - v\\.

From Theorem 1 one sees easily that for sufficiently small positive X the opera-

tor {I-Xsf)~x is a contraction. Thus it has a unique fixed point xq . This fixed

point is a bounded solution to equation (31). For every y £ X put u{t) = y

for all t £ R. From (40) we have

\\{Shu){h) - {Shxo){h)\\ < exp[(a + 0)A]sup||M(O -Xo(OII-
t

In other words

(41) ||T(A, 0)y - Y{h, 0)x0{0)\\ < exp[(a + ß)h]sup \\y - x0{t)\\.
t

Since *o(0 is bounded (41) shows that x0{') is a globally exponentially stable

solution of equation (31). From the definition of Sh it is clear that every

bounded solution of equation (31) is a fixed point of Sh , ft > 0. Now (40)
shows that such fixed points are unique and equal to xq • This completes the

proof of the theorem.
As a particular case of Theorem 2 we consider the case where f{t,x) =

A{t)x, here A{t) is assumed to be a bounded linear operator for every fixed t.

Suppose that the operator valued function A{-) is uniformly continuous and

bounded on the whole line. In addition suppose that the evolutionary operator

X{t, s), t, s £ R, of equation (4) in this case satisfies the following condition

(42) \\X{t,s)\\<exp[-a{t-s)],

for all t > s, where a is a given positive constant. A straightforward verifica-

tion shows that in this case the operator {-ai - Sf) is accretive.
Now let us return to the linear equation (1). As shown above the class of

linear equations satisfying the accretiveness mentioned in Theorems 1, 2 does
not cover the class of linear equations having an exponential dichotomy or being

exponentially stable. In what follows we shall make use of the spectral theory of

linear semigroups to give necessary and sufficient conditions for different types

of stability as well as for the existence of exponential dichotomy in terms of

spectral properties of the differential operator Sf = -d/dt + A{t).
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Hereafter we assume that the operator valued function A{-) is continuous

and bounded on R. From Lemma 1 it follows that !7~ is a strongly continuous

semigroup of linear operators whose infinitesimal generator is the differential

operator Sf with 3{Sf) consisting of all v e C„(R, X) such that the following

limit
Tnv — v

(43) lim        ,
A^0+ ft

exists.

In the case where dim X < +oo most of the classical results concerning the

exponential dichotomy are stated in terms of the invertibility of the operator

Sf (see e.g., [4, 6]). The following theorem allows one to state them in terms

of spectral properties of the operator Sf .

Theorem 3. Assume that dimX < oo and A{-) is continuous and bounded on

R. Then the following assertions are true.

(i) X £ p{Sf) {with 3{Sf) defined by (43)) if and only if the equation

dx
(44) ^ = {A{t)-kI)x

has an exponential dichotomy on R.
(ii) If X £ p{Sf), then (Re A + ¿Ç) e p{Sf) for every Ç e R.

Proof. If X £ p{Sf), then from the theory of linear semigroups it follows that

Sf acting on 3{Sf) defined by (43) is closed. So, we have 3{{XI-Sf)~x) =
C„(R, X) (see [9, Chapter VIII]). Modifying the proof of the classical result
concerning the exponential dichotomy (see e.g. [4, Chapter IV]) one can eas-

ily prove that the above claim implies the exponential dichotomy of equation

(44). Conversely, suppose that equation (44) has an exponential dichotomy

with projection P and positive constants K, a. For simplicity we assume that
X = 0. In this case, for every / e CU(R, X) there is a unique bounded solution

Xf to equation (44). Clearly Xf is uniformly continuous and bounded on R.

Now we have to prove that Xf £ 3{Sf) and Sf~x is bounded. In fact, since

dxf/dt = A{t)Xf - f{t) we have
/•+oo /•(

(45) xf{t)= X{t){I-P)X-\s)f{s)ds-        X{t)PX-\s)f{s)ds.
Jt J -oo

A straightforward verification shows that

(46) (T^iO-MO _m_ , i^x{t s)mds_m

To prove Xf £ 3{Sf) it suffices to show that

111   f'
(47) lim sup h- /    [X{t,s)-I]f{s)ds   =0.

II" Jt-h
In fact applying the Gronwall inequality we get the estimate

(48) ||*(a, b) - I\\ < cxp[M]\a -b\]-l,

where M stands for sup, ||^(0ll • From (48) we get (47), proving that Xf £
3>{Sf). On the other hand we have

/+oo
*exp[-a|i-s|]rfjsup||/(i)|| < (2^/a)||/||.

-oo s
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This completes the proof of the first assertion.

(ii) The second assertion is an immediate consequence of the first one.

Note that in the case where dim X = oo the invertibility of the operator Sf

is not enough to guarantee the exponential dichotomy of equation (1) (see [4,

6]). However, we can find sufficient conditions for the asymptotic stability of

individual solutions by using the recent results in [2]. Recall that the approxi-

mate point spectrum of Sf which we denote by aav{Sf) consists of all X £C

such that for every e > 0 there is an element z £ 3{Sf), ||z|| = 1 such that

(50) \\Xz-Sfz\\<e.

Theorem 4. Assume that the operator valued function A{-) is continuous and

bounded on R. In addition, suppose that o~zp{Sf) is disjoint from the imaginary

axis. Then every solution x{t) bounded on [0,+oo) is asymptotically stable,
i.e. limx(0 = 0 as t —► +00.

Proof. Suppose that the solution x{t) = X{t)x for some x £ X is bounded on

[0, +00). We can choose a continuous function p{t) such that p{t) = 0 for

all \t\ > 1 and p{0) = 1. It is clear that the function taking t into p{t)x{t)

belongs to CU(R, X). By definition, for k, ft > 0 we have

||(7*t;)(0 - (7^)(0H = \\P{t - k)X{t)x - p{t - h)X{t)x\\

(51) = \\[p{t-k)-p{t-h)]X{t)x\\

<\p{t-k)-p{t-h)\mi>\\X{t)x\\.
t>-\

From the definition of the function p (51) implies that

(52) lim   ||7*t;-:r*t;|| = 0.
|/fc-A|—0

We are now in a position to apply Theorem 1 in [2] to get

(53) lim  Thv = 0.
A—»+oo

Thus

lim {T'v){t)=  lim X(t)x = 0.
I—» + 0O t—»+00

This completes the proof of the theorem.

Now we are going to make use of the spectral theory of linear semigroups to
relate a{Th) to a{Sf).

Theorem 5. Assume that the operator valued function A{-) is continuous and

bounded on R. Then the following assertions are true.

(i) The exponential dichotomy of equation (1) implies the hyperbolicity of Th

for any A ̂  0,
(ii) The hyperbolicity of Th for some ft ^ 0 implies the invertibility of the

operator Sf,

(iii) If dim X < 00, the hyperbolicity of Th for some ft # 0 is equivalent to
the exponential dichotomy of equation (1) and

(54) o{Th) = exv[ho{Sf)].
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Proof. Without loss of generality we can assume that ft = 1 and equation (1)

has exponential dichotomy with projection P and positive constants K, a.

Then, setting

C+ = {V £ CU{R, X) | v{t) £ lm{X{t)P) {t £ R)},

C_ = {v £ CU{R, X) | v{t) £ Ker(X(0P) (r £ R)}.

A straightforward verification shows that C+ and C_ are left invariant by Tl.

In addition

CU(R,X) = C+©C_,

ra{Tl\c+)<\,    ra{T-l\C-)<l.

Thus Tl is hyperbolic.
(ii) Applying the spectral theory of linear semigroups [5] we have

(55) a{Th) D exp[ha{Sf)]

provided that the integral

(56) / || r* || ¿A
Jo

exists. To prove (56) it suffices to show that the function taking A into ||7'A||

is continuous. In fact, by definition we have

(57) ||rA||= sup \\Thv\\= sup sap\\X{i,i-h)v{i-h)\\.
IMI<i IMI<i   í

From(57) a simple computation shows that

(58) ||rA|| = suPpr(£,£-A)||
{

From (18) we can easily show that

= 0.(59) lim
A—>fc

supp-(r,r-A)||-suppr(i,/-fc)||
t t

This implies the continuity of the function taking A into \\Th\\. Hence (55)

holds. Now if Th is hyperbolic then the unit circle is contained in p{Th). The

invertibility of Sf follows immediately from (55).
(iii) If dim X < oo from Theorem 3 and assertions (i) and (ii) it follows that

the invertibility of Sf is equivalent to the hyperbolicity of Th . Applying once

again Theorem 3 and taking into account (55) we get (54). The proof of the

theorem is completed.
In the case dimX = oo from the hyperbolicity of Th we do not know if

equation (1) has an exponential dichotomy or not. However, we can apply The-

orem 4 to find individual solutions which are asymptotically stable on [0, +oo)

or (-oo, 0].

Corollary 1. Assume that the operator valued function A{-) is continuous and

bounded on R and dimX < oo. Then the following assertions are true.

(i) a{Th), A ̂  0, is rotationally invariant,

(ii) Equation (1) has an exponential dichotomy if and only if the functional

equation

(60) jc(0 = X{t,t- h)x{t - A) + f{t),
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where A ¿ 0 is a given constant, has a unique solution x £ CU{R, X) for every

f£Cu{R,X).

Proof, (i) From Theorem 3 we get the first assertion.

(ii) From the first assertion we get the second one taking into account the fact

that 1 £ o{Th) for some ft # 0 is equivalent to the exponential dichotomy of

equation (1).

We now give an application of Corollary 1. Consider the functional equation

(61) x{t) = Bx{t-l) + f{t),

where B is a nondegenerate matrix, f £ CU{R,X). Suppose that B = exp[A]

for some complex matrix A (such a matrix always exists [4]). From Corollary

1 it follows that equation (61) has a unique solution in CM(R, X) for every

/ £ CU{R, X) if and only if equation x' - Ax has an exponential dichotomy.

In turn, this is equivalent to the hyperbolicity of B.

In the case dim X = oo the above claim is still true if there is an operator A

such that B = exp[^4]. Note that in this case the invertibility of Sf implies the

exponential dichotomy of equation (1) (see [4, Chapter II]). Thus (54) is valid.

So we can apply the above argument for this case.

Recall that k+ {k~) is said to be the upper (lower) Bohl exponent of equation

(1) defined on J if it is the exact infimum (supremum) of the real numbers a

such that

\\X{t,s)\\<Nexp[a{t-s)], fori>5,  {t,s£j),

{\\X{t,s)\\>Nzxv[a{t-s)], for t>s,  {t,s£j),)

where N does not depend on t, s.

Proposition 1. Assume that the operator valued function A{-) is continuous and

bounded on R. Then one has

(62) K

(63) K~

where ft > 0.

Proof. This proposition is easily proved by using the Spectral Radius Theorem.
So the details are omitted.

Theorem 6. Assume that the operator valued function A{-) is continuous and
bounded on R. Then the following assertions are true.

(i) Equation {I) is uniformly stable if and only if the semigroup ST = {Th, ft >

0} is stable, i.e.

(64) sup || Th || < oo.
A>0

(ii) Equation {1 ) is exponentially stable if and only if the semigroup ET is

also, or equivalently,

(65) lim(l/01n||r'||<0.
t—>+oo

Proof, (i) Applying the Banach-Steinhaus Theorem we get the first assertion.

= y\nra{Th)=  lim (l/01n||7*||,
n /-»+oo

=-I In ra(r-A)=   lim(l/01n||7*||,
n /-»-oo
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(ii) The second assertion is a consequence of Proposition 1.

Note that a necessary condition for equation (1) to be uniformly stable is
k+ < 0. Without any additional condition, this is not sufficient for the uniform

stability. However, we can apply the generalized Hille-Yosida Theorem (see [8])

to get a necessary and sufficient condition for the uniform stability in terms of

spectral properties of the differential operator Sf.

Theorem 7. Assume that the operator valued function A{-) is continuous and

bounded on R. Then equation (1) is uniformly stable if and only if for every
n = 1,2,... {I- n~xSf)'x exists and

(66) ||(7-/T1.ST1<C,

for n = 1,2,... , m = 1, 2, ... , where C is a constant not depending on

n, m.

Proof. Since A{t) is continuous and bounded on R, the semigroup S*~ is

strongly continuous. Thus 31 {Sf) is dense in CU(R,X). Suppose now that

equation (1) is uniformly stable. From the above remark, Proposition 1, and

the inclusion (55) it follows that (7 - n~xSf)~x exists for all n = 1, 2, ... .

From Theorem 6 and the generalized Hille-Yosida [9] we get (66). The inverse

assertion is clear from the generalized Hille-Yosida Theorem. The proof of the

theorem is completed.

IV. Equations on the half-line

In this section we shall deal with equation (1) defined on R+ = [0, +00).

We shall give necessary and sufficient conditions for the uniform, asymptotic

uniform stability, and unstability of equation ( 1 ) by investigating spectral prop-

erties of the semigroups 9~ = {Th , ft > 0} and 3lf - {T~h, ft > 0} acting on
suitable function spaces. Namely, we introduce the following space

Co = {v £ CU{R, X) I v{t) = 0 for all t < 0}.

In order to define the action of the semigroup ET on Co we consider the

equation

dx
(67) ^j = B{t)x,        {t£R),

where B{t) = A{t) for t > 0, B{t) = A{0) for t < 0.
From now on by semigroup associated with equation ( 1 ) defined on the half-

line we mean the semigroup S7' associated with equation (67). Without any

difficulty we can show the following results for the half-line case.

Theorem 8. Assume that the operator valued function A{-) is continuous and

bounded on [0, +00). Then the following assertions are true.

(i) The semigroup 5*~ associated with equation (1) acting on Co is strongly

continuous.
(ii) Equation ( 1 ) is uniformly stable on [0, +00) if and only if the semigroup

S7' is stable in Co, i.e.

(68) sup||ThII, < 00,
A>0

where \\ • ||, denotes the norm of operators acting on Co.
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(iii) Denoting by k+ the upper Bohl exponent of equation {I) on the half-line

one has the formula

(69) K+ = ^lnrff(r") = lim(l/01n||r'||.,

where ft is a given positive constant.

Note that under the assumptions of Theorem 8 the differential operator Sf
is the infinitesimal generator of the semigroup Sr.

Theorem 9. Assume that the operator valued function A{-) is continuous and
bounded on [0, +00). Then the following assertions are valid.

(i) X £ p{Sf) if and only if the Cauchy problem

j dx/dt = {A{t)-XI)x + f{t)..f dx/dt=

{ x{0) = 0

has a bounded solution on [0, +00) for every f £ Co .

Proof, (i) Suppose that X £ p{Sf). Then the assertion is clear from the closed-

ness of the operator Sf (see [9]). Conversely, suppose that the Cauchy problem

(70) has a bounded solution on [0, +00) for every f £ Co. Then from the

uniqueness of the solution it follows that for every f £ Co there is a unique

solution y e Co to the equation

dx
(71) dt

(5(0 - XI)x + f{t).

To prove the existence of {XI - Sf)~x we have to show that y £ 3 {XI - Sf).

Without loss of generality we assume that X — 0. Thus we have to show

(72) lim
A->0+

Thy-y

-f = 0

which we write in another form

(73) lim sup m
A^0+    t    || ft

\j'_hX{t,s)f{s)ds-f{t) = 0.

To prove (73) it suffices to show that

(74) lim    sup    \\X{t,Ç)
A-*0+ t-h<(<h

711 = 0.

In turn (74) follows immediately from (18). Now we have to show that Sf~x

is bounded. To this purpose, we need a minor modification of Theorem 5.2 [4,

Chapter III] which says that in this case k+ < 0. This implies the boundedness

of Sf~x, completing the proof of the first assertion.

(ii) The second assertion follows immediately from the first one and the

above-mentioned fact that if X £ p{Sf) then k+ < ReX.

Theorem 10. Assume that the operator valued function A{-) is bounded and

continuous on [0, +00). Then the spectral mapping theorem is valid for the

semigroup associated with equation (1), i.e.

(75) o-{Th) = exp[ho{Sf)],       (A>0).
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Proof. A simple computation shows that

(76) ||r*||. = suPpr(i,f-A)||.
t>h

From (76) we have no difficulty in showing that the function taking A into

||rA||* is continuous. Thus we are in a position to apply the spectral theory of

linear semigroups [5], to get the inclusion

(78) a{Th) 2 exp[ho{Sf)],        (A > 0).

We now prove the inverse inclusion. In fact, clearly, 0 £ a{Th). In addition,

from Theorem 9 it follows that

(79) <j{Sf) = {z£C\Rez<K+}.

From (78), (79), and Theorem 8 we get the assertion. The proof is completed.

Corollary 2. Assume that the operator valued function A{-) is continuous and

bounded on [0, +oo). Then for every given positive number h the following

assertions are true.

(i) a{Th) is the closed disk {z e C| |z| < exp[A/c+]} . In particular, a{Th) is

rotationally invariant.

(ii) Equation (1) is asymptotically uniformly stable if and only if the following

functional equation

(x{t) = X{t,t-h) + f{t),        {t>0),
(    } U(í) = 0,-A<í<0.

has a unique solution which is bounded and uniformly continuous on [0, +00)

for every f £ C0.

Proof. The corollary is an immediate consequence of Theorem 10.

Note that in the case o{Th) contains the unit circle, or equivalently, a{Sf) D

/R. From Corollary 2 we cannot deduce any claim concerning the exponential

stability of equation (1). If equation (1) has a nontrivial exponential dichotomy

on the half line it is not hard to show that a{Sf) D z'R but aap{Sf) n iR = 0 .
For this reason we state here the half-line version of Theorem 4 which is not a

trivial sufficient condition for the asymptotic stability of individual solutions.

Theorem 11. Assume that A{-) is bounded and continuous on the half-line. In

addition, suppose that azv{Sf) is disjoint from the imaginary axis. Then every

bounded solution of equation (1) is asymptotically stable.

Proof. The proof is carried out in the same way as in Theorem 4.

We now derive the half-line version of Theorem 7 which can be similarly

proved.

Theorem 12. Assume that the operator valued function A{-) is continuous and

bounded on the half-line. Then equation ( 1 ) is uniformly stable if and only if
{I - n~xSf)~x exists for every « = 1,2,... and there is a positive constant C

not depending on n, m such that

\\{I-n-xSf)-m\U<C

for all n = 1, 2, ... , m = 1, 2, ... .
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Now let us consider the unstability of equation (1). To do this we introduce

a new space CU{R+ , X) consisting of all X-valued bounded and uniformly con-

tinuous function on R+ = [0, +00). It is clear that CU(R+, X) is a complex Ba-

nach space. Consider the semigroup X = {T~h , ft > 0} acting on CU(R+ , X)

as follows

(81) {T~hv){t) = X{t,t + h)v{t + h),        (r>0),

for all v £ C(R+,X).

Lemma 3. Assume that A{-) is bounded and continuous on the half-line. Then
the semigroup X is strongly continuous. In addition, its infinitesimal generator

is the differential operator —Sf — d/dt - A{t).

Proof. The lemma is proved in the same way as Lemma 1.

Proposition 2. Assume that A{-) is continuous and bounded on the half-line.
Then, denoting by k~ the lower Bohl exponent of equation {I) on the half-line,
one has

(82) K- = -iln||r-A||#,        (A>0).

where \\T~h\\# denotes the norm of the operator T~h acting on CU{R+, X).

Proof. The proposition follows immediately from the definition of the lower

Bohl exponent and the Spectral Radius Theorem.

Theorem 13. Assume that A{') is continuous and bounded on the half-line. Then
the following assertions are valid.

(i) X £ p{-Sf) if and only if for every f continuous and bounded on R+ the
equation

dx
(83) _ = {A{t) + Ál)x + f{t)

has a unique bounded solution on R+ .

(ii) If X £ p{-Sf), then n £ p{-Sf) for every n satisfying Re n > ReX.

Proof, (i) Suppose that Xep{-Sf). Since Sf is closed we get 3{{XI+Sf)~x)
= CU{R+, X). A minor modification of Theorem 3.3, in [4, Chapter IV] shows

that equation (83) has an exponential dichotomy with trivial projection P = 0.

Thus for every / continuous and bounded on R+ equation (83) has a unique

bounded solution on R+ . Conversely, suppose that equation (83) has a unique

bounded solution on R+ for every / bounded and continuous on R+. We

have to show that {XI + Sf)~x exists and bounded. Without loss of generality

we assume that X = 0. From our assumptions it follows that equation (83) has

an exponential dichotomy with trivial projection. Thus the unique bounded
solution Xf of equation (83) has the form

(84)
/oo X{t,s)f{s)ds.

It is clear that Xf £ CM(R+, X). To prove the existence of Sf~x as a mapping

from CM(R+, X) to 3{Sf) we have to show that for every / € C„(R+, X)

(85) lim
A-0+

~hXf - Xf
L. J

= 0.



240 NGUYEN VAN MINH

We write (85) in another form

i     rt+h

(86) lim sup
A^0+    /

/i+n X{t,s)f{s)ds-f{t) = 0.

From the uniform continuity of / it suffices to show that

rt+h

(87) lim sup  i /    [X{t, s) - I]f{s) ds
h->o+   t   \\n j,

= 0.

In turn, (87) follows immediately from a result similar to (18). Thus Sf~x

takes / into Xf £ 3{Sf). The boundedness of Sf~x follows from (84).
(ii) The second assertion follows from the exponential dichotomy with trivial

projection of equation (83).

Theorem 13. Assume that A{-) is continuous and bounded on the half-line. Then

the spectral mapping theorem is valid for the semigroup X, i.e.

(88) o{T~h) = exp[ha{-Sf)].

Proof. First note that 0 6 a{T~h). Similarly to Theorem 10, applying the
spectral theory of linear semigroups we get

(89) a{T~h) 2 exp[ha{-Sf)].

Applying Theorem 12 we can show that the inverse inclusion is also true. The

proof of the theorem is completed.

Corollary 3. Assume that the operator valued function A{-) is continuous and

bounded on the half-line. Then for every given positive constant A the following

assertions are true:
(i) a{T~h) is rotationally invariant.

(ii) The lower Bohl exponent of equation ( 1 ) is positive if and only if 1  £

o{T~h), or equivalently, the following functional equation

(90) x{t) = X{t,t + h)x{t + h) + fit),        {t > 0)

is uniquely solvable in CU{R+ , X) for every f e CU(R+, X).
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