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A HOMOTOPY INVARIANCE THEOREM
IN COARSE COHOMOLOGY AND ^-THEORY

NIGEL HIGSON AND JOHN ROE

Abstract. We introduce a notion of homotopy which is appropriate to the

coarse geometry and topology studied by the second author in [7]. We prove

the homotopy invariance of coarse cohomology, and of the if-theory of the

C*-algebra associated to a coarse structure on a space. We apply our homotopy

invariance results to show that if Af is a Hadamard manifold then the inverse

of the exponential map at any point 0 induces an isomorphism between the

K-theory groups of the C*-algebras associated to M and its tangent space at

0 (see Theorem 7.9). This result is consistent with a coarse version of the

Baum-Connes conjecture.

Let M be a complete Riemannian manifold. The second author has intro-

duced in [7] a C*-algebra (we shall denote it by C*{M) in this article) whose

ÄVtheory groups are the receivers for analytic indices of Dirac type operators on

M. One can ask whether every class in the AT-theory of C*{M) is the index
of some elliptic operator on M. The conjecture that this is so, for suitable
M, is a nonequivariant version of a very well-known conjecture of P. Baum
and A. Connes in the AMheory of group C*-algebras. In this paper we shall
answer the question affirmatively in the case where M is simply connected and

nonpositively curved.

In Section 1 we shall introduce a notion of coarse homotopy appropriate to

the coarse geometry introduced in [7]. Our main result, proved in Section 6,
asserts that the AT-theory of C*{M) is a coarse homotopy invariant. The key

step in the argument is adapted from G. Kasparov's proof of the homotopy
invariance of his analytic AMiomology groups [5]. We shall also prove the
analogous result for the coarse cohomology groups of M (see Section 2), using

the basic techniques introduced in [7].
If M is a simply connected, nonpositively curved, complete Riemannian

manifold then a simple calculation (performed in Section 7) shows that the

inverse of the exponential map at any point 0 in M is a coarse homotopy
equivalence. This reduces the calculation of K*{C*{M)) to the case of the
Euclidean space T0M, which was worked out in [3].
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Our homotopy invariance principle may be applied to more general calcula-
tions. These will be given elsewhere [4].

1. Coarse homotopy

We recall from [7] that a proper metric space is one in which closed and
bounded sets are compact. For this article we adopt the following terminology:

(1.1) Definition. Let X and Y be proper metric spaces. A coarse map from

X to Y is a proper Borel map /: X -» Y such that for every R > 0 there

exists S > 0 with

d{x,x')<R    =*    d{f{x),f{x'))<S.

The composition of two coarse maps is a coarse map, and we obtain the

category of coarse spaces. It is the category UBB of [7]. For the greater part of

this paper we will in fact be working in the subcategory UBC of proper metric

spaces and continuous coarse maps; for our purposes this is not a significant

restriction, as will be explained at the end of this section.

(1.2) Definition. Let X and Y be proper metric spaces. A coarse homotopy

from X to Y is a continuous and proper map

h:Xx[0, l]^Y

such that for every R > 0 there exists S > 0 with

d{x,x')<R    =>    d{h{x,t),h{x',t))<S,    for all t e [0, 1].

Two coarse maps fo, fx: X —► Y are coarsely homotopic if there is a coarse
homotopy A:lx[0, I]-»!" such that

fo{x)-h{x,0)   and   fx{x) = h{x, I),    for all x e X.

A coarse map /: X —> Y is a coarse homotopy equivalence if there is a coarse

map g: Y —» X such that fog and gof are coarsely homotopic to the identity

maps on Y and X, respectively.

Coarse homotopy is not the same as the "bornotopy" of [7], Definition 2.5.
For example, the spaces K and Z are bornotopy equivalent, but not coarsely

homotopy equivalent, and the euclidean and hyperbolic planes are coarsely ho-

motopy equivalent (see Section 7) but not bornotopy equivalent.

(1.3) Definition. Let h: X x [0, 1] —> Y be a coarse homotopy. Equip X x

[0,1] with the metric

dh{{x, t) , {x', t')) = dx{x,x') + \t-t'\+ sup dY{h{x,st) , h{x',st')).
0<s<l

We shall write Xxh[0, 1] in place of Xx [0, 1] to indicate that this particular

metric has been chosen.

It is clear that h:Xxh[0, 1] —» Y is a coarse map, as is the projection map

n:X xn[0, 1]-+X.

Thanks to the definition of coarse homotopy, so are the maps

e':X^Xxh[0, l]      (re [0,1]),

defined by e'{x) = {x, t).
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(1.4) Lemma. The projection map n:X xh [0, 1] -> X is a coarse homotopy
equivalence.

Proof. We shall show that e°:X^Xxh[0, 1] is a coarse homotopy inverse.

The composition n o e°: X —> X is the identity map. The composition

e°on:Xxh[0, 1]-A"x4[0, 1]

is homotopic to the identity via the coarse homotopy

h{{x,t), s) = (x, st).   D

(1.5) Lemma. Let F be a functor on the category of coarse spaces. The follow-
ing are equivalent:

(1) F is coarse homotopy invariant, meaning that

F{fo) = F{fx):F{X)^F{Y),

whenever fo, fx : X —> Y are coarsely homotopic maps.
(2) For every coarse homotopy h: X x [0, 1] —► Y we have

F{e°) = F{ex):F{X) ^ F{X xh[0, I]).

(3) For every coarse homotopy h:X x [0, 1] -» Y the morphism

F{n):F{Xxh[0,l])^F{X)

is an isomorphism.

Proof. Clear.   G

Some important examples of coarse homotopies are given in Section 7.

Remark. In order to have a notion of equivalence that includes both coarse
homotopy and bornotopy, we may relax Definition 1.2 as follows. A general-

ized coarse homotopy is a map h:X x [0, 1] —> Y, satisfying the estimate in

Definition 1.2, but which is required only to be pseudocontinuous and not nec-

essarily continuous. This means that there is some constant T > 0 such that,
for all <J g X x [0, 1], { is an interior point of f~x{B{f{i) ; T)). It is easy
to check that both coarse homotopies and bornotopies are generalized coarse
homotopies.

One can show that if Y is a path metric space and h:X x [0, 1] -» Y is a
generalized coarse homotopy, then there exist another path metric space Y', a
bornotopy-equivalence i: Y —> Y', and a coarse homotopy h':X x [0, 1] -> Y'

such that the obvious diagram is bornotopy commutative (see [8, Section 3]).

Thus any functor F which is both coarse homotopy invariant and bornotopy

invariant will be invariant under generalized coarse homotopies, at least on the

subcategory of path spaces.

For the remainder of this paper all coarse maps and homotopies are assumed

to be continuous.

2. Homotopy invariance of coarse cohomology

Let y be a proper metric space and form the coarse cohomology HX*{Y)
as in [7]. It is contravariantly functorial on the category of coarse spaces. Our
objective in this section is to prove the following result.
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(2.1) Theorem. If fo, fx:X -» Y are coarsely homotopic then

J0* = fí:HX*{Y)-+HX*{X).

We recall some definitions from [7]. A good cover of y is a locally finite

open cover by relatively compact sets. An anti-Cech system on y is a sequence
{%?„} of good covers on Y for which there exists a sequence of real numbers

Rn -> oo such that:

( 1 ) the diameter of each member of %n is no more than R„ ; and

(2) each subset of X of diameter Rn-i or less is contained in some member

of Vn.

If {%} is an anti-Cech system then each %n is a refinement of f/n+x ■ Forming

the Cech cohomology with compact supports H*{%; R) we obtain an inverse

system1

h;{%) «- h*c{%) «- wc{%) - • • •.

Suppose that {^,„} is a subsequence of {^4} . It is an anti-Cech system in its
own right. We make note of the following fact.

(2.2) Lemma. The commuting diagram

H*c{Wh) <- HWh) <- H*{%}) «-

/ç(»i) <-H-m <-#cw <— •••
g/'ve rwe to isomorphisms

limH?^ ; R) = limH?{%„ ; R),    lim '//«(^ ; R) =Tmi 1Jr7«(^„ ; R).

{As usual,  lim1 denotes the derived functor of lim .)     D

We now recall an important result which reduces many questions about

HX*{Y) to problems in Cech theory.

(2.3)   Theorem. (See [7, Theorem 3.14].) Let {%?„} be an anti-Cech system on

Y. There is a short exact sequence

0 -> lim lH*-li&n ; R) -* HX"{Y) -» lim //«(^ ; R) -» 0

/i is natural, in the sense that if f:X —► Y is a coarse map, and if {%,} is any

anti-Cech system on X which refines {f*%?„}, then the diagram

0 -► lim^r'^BíR) -► HXi{Y) -► limH¡!{&n;R) -► 0

f'[                             f'\                              ir

0 -► lim'/tf-'^-.R) -► HX"{X) -► limH^{'V„; R) -► 0

commutes.     D

'Strictly speaking, here and below we must choose refining maps to obtain induced maps on

cohomology.
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(2.4) Lemma.
(a) Let h:X x[0, 1] -» Y be a coarse homotopy and let ft{x) = h{x, t). Let

y be any good cover of Y and let 'V be any good cover of X which refines

f^ for all t. Then

/0* = /r://;(^;R)-//;(^;R).

(b) Let h and ft be as in part (a). Let {%} be an anti-Cech system on Y

and let {%} be an anti-Cech system on X. There is a subsequence {%„} such

that {%} is a refinement of {ft*%„}, for all t.

Proof. Part (a) is Lemma 3.12 in [7]. For part (b), according to Definition 1.2,

for every R > 0 there is some S > 0 such that if V is any set of diameter R

or less then for all t, the set ft[V] has diameter S or less. So for each fixed

n the sets ft[V] {t e [0, 1] and V e %, ), have uniformly bounded diameter.
Consequently they are all contained within the members of some %fjn.     G

(2.5) Lemma. Let f:X -> Y be a coarse homotopy equivalence. There is an

anti-Cech system {%} on Y andan anti-Cech system {%,} on X, which

refines {f*%f„}, such that the induced maps

/*: lim H¡!{% ; 1) -> lim H^{%, ; R)

and

/*: lim xHqc{%n ; R) -» lim XH¡{%, ; R)

are isomorphisms.

Proof. This follows from Lemmas 2.2 and 2.4.   G

Proof of Theorem 2.1. By Lemma 1.5 it is enough to show that the map

n*:HX"{X) -» HX<I{X xh [0, 1])

is an isomorphism. Using Theorem 2.2, along with the Five Lemma, the proof

follows from (2.5).     G

3. The C*-algebra of a coarse space

We review some ideas developed in [3] and [7].

(3.1) Definition. Let X be a proper metric space. An X-module is a Hubert
space ß? equipped with a faithful and nondegenerate representation of the

C*-algebra Co{X) whose image contains no nonzero compact operator.

Our definition of X-module corresponds to the notion of "standard X-

module" in [7, Definition 4.2], except that we have included the extra condition

of nondegeneracy.

(3.2) Definition. Let ^ and Jy be I and T-modules, respectively, and

let T: %x -* ^y be a bounded linear operator. The support of T, denoted

Supp(F), is the complement of the set of all points (x, y) e X x Y for which
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there exist continuous, compactly supported functions </> and y/ on X and Y,

respectively, with:

ipT<l> = 0,    0(x) ¿ 0,    and   y/{y) ¿ 0.

For example, if T is an integral operator

Tf{y)= I k{y,x)f{x)dx
Jx

(mapping L2{X) to L2{Y)), then Supp(F) = Supp(fc).

(3.3) Definition. Let J* be an X-module. The propagation of a bounded

linear operator T:%?x -* <%x is the quantity

Prop(F) = sup{ d{x, y) | (x, y) e Supp(F)}.

We say that T Was finite propagation if Prop(F) < oo.

(3.4) Definition. A bounded operator T:%?x —► ^x is locally compact if y/T

and 7y are compact operators, for every yi e Co{X).

(3.5) Definition. The set of locally compact, finite propagation operators on

<%x is a *-subalgebra of the algebra of all bounded operators on %?x ■ Denote

by C*{X,%'x) the C*-algebra obtained by closing this *-subalgebra in the

operator norm.

This is the same as the C*-algebra 38& in [7, Lemma 4.12].
If X is a complete Riemannian manifold and D is a Dirac-type operator

on X, then for every / G C0(R) the operator f{D) lies in C*{X, %x) (where

^x is the Hilbert space of L2-spinors on X ). It follows that D possesses an
"index" in the A^-theory of C*{X, %x) (see [7]), which explains our interest

in this C* -algebra.
We shall need the following three lemmas in the coming sections.

(3.6) Lemma. Every finite propagation operator T:%?x —» %x is a multiplier

ofC*{X,%>x).

Proof. Suppose that 5 is a locally compact, finite propagation operator on

%?x ■ The compositions TS and ST have finite propagation (at most the sum

of the propagations of S and T). We must show that ST and TS are locally

compact. If (j> g CC{X) then there is some 4>' e CC{X) such that <j>T(f>' = <t>T.
(It suffices to choose </>' so that <f>' = 1 within a distance Prop(F) of Supp(</>).)

Then
(pTS = (j)T'<j)'S,

which, being a product of a bounded and a compact operator, is compact. Ob-
viously TS<p is compact since S<j> is. This shows that TS is locally compact.

The case of ST is similar.     G

(3.7) Lemma. Let <f> G C0{X) and let

Lip(0) = inf{ K :  \cp{x) - <f>{x')\ < Kd{x, x'), for all x, x' G X }.

Then for any bounded operator T: <%x —> <%x.

\\T<t> - <t>T\\ < constant • ||F|| • Prop(F) • Lip(0).
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Proof. See Proposition 5.18 of [7].   G

(3.8) Lemma. The C*-algebra C*{X,ft) has an approximate identity con-
sisting of projections.

Proof. By Spectral Theory the representation of Co{X) on ft extends to a rep-
resentation on ft of the algebra of bounded Borel functions on X. Partition

X into uniformly bounded Borel pieces X¡ in such a way that each bounded

set in X intersects only finitely many of the X¡. There is a corresponding de-

composition ft = 0; ft., and the operators formed by taking direct sums of

finite rank projection operators on each ftx¡ constitute an approximate identity

for C*{X,ft).     ö

As already indicated, we are interested in the groups K*{C*{X, ft)) ■ They
may be made functorial on the coarse category in the following way.

(3.9) Proposition. Let ft and ft be X and Y-modules, respectively, and let

f:X -* Y be a coarse map. There is an isometry of Hubert spaces V: ft —* ft

such that for some R > 0,

Supp(F) ç {(x, y) G X x Y : d{f{x) ,y)<R}.

We have that

VC*{X, ft)V* c C*{Y, ft),

and the induced map on K-theory,

Ad{V)*:K*{C*{X, ft)) - K.{C*{Y, ft)),

is independent of the choice of V.

Proof. See Section 4 of [3].   G

We shall denote the map Ad(F)» in Proposition 3.9 by /».
It follows from the proposition that K*{C*{X, ft)) does not depend on

the choice of ft, up to canonical isomorphism (in fact, up to noncanonical
isomorphism, the C* -algebra itself does not depend on the choice of ft ).
Associating to each proper metric space X a module ft we obtain a functor

on the coarse category.

4. Some remarks on AT-theory

Let B be a C*-algebra and let M{B) be the multiplier algebra of B [6].
Let

D{B) = {{dx, d2) G M{B) x M{B) : dx-d2eB}.

This C* -algebra fits into a short exact sequence

(4.1) 0^B^D{B)^M{B)^0,

where n is the projection onto the second factor and j{b) — (6,0). The

sequence is split by the *-homomorphism

s:M{B)->D{B)
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given by the formula s{d) = {d, d), and so it gives rise to the following split

short exact sequence of AMheory groups:

(4.2) 0 -* K,{B) -±+ K*{D{B)) -^ K,{M{B)) -> 0.

(4.3) Definition. Let e, f be a pair of idempotents in M{B) (that is, e2 — e

and f2 = f) such that
e-feB.

In other words, let {e, f) be an idempotent in D{B). We define a class

[e]e[f]eK0{B)

by the requirement that

j*{[e]e[f]) = [(e,e)]-[{f,e)]

in KQ{D{B)).

(4.4) Lemma.
(a) // {e, f) is an idempotent in D{B) and e > f, meaning that ef = fe =

/, then e - f is an idempotent in B and

[e]e[f] = [e-f\.

(b) If {et, fi) (0 < t < 1) is a norm continuous family of idempotents in
D{B) then

[eo]e[fo] = [ex]e[fil
Proof. Straightforward.     G

We shall be interested in idempotents in D{B) which are constructed as

follows. Fix an idempotent e in M{B). Let p and q be idempotents in
M{B) such that

(4.5a) \\ep-pe\\<

and

(4.5b) \\eq-qe\\<

4IHIMI

1

4|klllMI '
and also

(4.5c) e{p -q)eB.

The estimates imply that

? 1 ,1
\\{ep)2 - ep\\ < -   and   \\{eq)¿ - eq\\ < -,

which in turn implies that the spectra of ep and eq are each disjoint from
the line Re(z) = 1/2 in the complex plane C. Let y be any contour in C

surrounding the components of Spec{ep) and Spec(¿<7) to the right of this line.

As is well known, the elements

^ = ¿7 i«"'-«"'<"
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and

are then idempotents in M{B). It follows from (4.5c) that ëp -ëq G B, and

so we can define a class

mem* k0{b).

(4.6) Lemma.
(a) The class [ëq] e [ëp] e K0{B) depends only on the norm homotopy class

of the pair p, q satisfying (4.5).
(b) If e commutes with p and q then

[ëq\e\êp] = [eq]O[ep] e K0{B),

and if in addition q >p then

m\e{m = [e{q-p)]eKo{B)
Proof. Part (a) follows from (4.4b). Part (b) follows from (4.4a), together with

the observation that if e commutes with p and q then the elements ep and
eq are already idempotents, so that ëp - ep and ëq — eq .   G

Finally, it will simplify our arguments to make note of the following remarks
concerning generators for Ko and Kx.

(4.7) Lemma.
(a) Suppose that a C*-algebra B has an approximate identity consisting of

projections. Then K0{B) is generated by the K-theory classes of projections in

matrix algebras over B {so it is not necessary to adjoin a unit to B).

(b) Suppose, in addition that for every n there is a *-homomorphism Mn{B)

-» B whose composition with the standard inclusion B -» Mn{B) induces the
identity map on the K-theory of B. Then K0{B) is generated by equivalence

classes of projections in B {it is not necessary to pass to matrices over B).    G

Denote by C{SX) the C*-algebra of continuous functions on the circle. For

any C*-algebra A there is a natural isomorphism

K0{C{SX) ®A)9ê K0{A) © Ki{A).

(4.8) Lemma. The group

K0{C{Sx)®C*{X,ft))

is generated by the K-theory classes of projections in C{SX) ® C*{X, ft).

Proof. It follows from Lemma 3.8 that C*{X, ft), and hence C{SX)®C*{X),
has an approximate identity consisting of projections. Since

M„{C{SX) ® C*{X,ft)) = C{SX) ® C*{X,ft®---®ft)

n times

it follows from Proposition 3.9 that the hypothesis in (4.7b) is satisfied for

B = C{Sx)®C*{X,ft).     G

5. Coarse homotopy invariance in A-theory

In this section and the next we shall omit the module ft from our notation,

writing C*{X) in place of C*{X, ft). Our objective is the following result.
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(5.1) Theorem. If f°, fx:X —> Y are coarsely homotopic coarse maps then

/? = fx:K.{C*{X)) - K.{C*{Y)).

Fix a coarse homotopy A:lx[0, l]-»y. We shall prove (5.1) by showing

that

(5.2) e°t = el:K0{C{Sx) ® C*{X))^ K0{C{SX) ® C*{X xh [0, 1])).

In this section we will lay the groundwork for the proof by giving a general

procedure for mapping elements2 of K0{ C{SX) ® C*{X) ) to elements of the

group Kq{ C{Sx) ® C*{X xh [0, 1]) ), using as auxiliary data suitable families

of operators on L2(R). In the following section we will exhibit such families

which implement a 'homotopy' between e° and e\, following an argument

given by Kasparov [5] to establish the homotopy invariance of AMiomology.
Choose a fully supported Borel measure on X and form the Hubert space

L2{X). As long as X has no isolated points this is an X-module. (If there are

isolated points we should take an infinite direct sum of copies of L2{X), but in

order to keep things simple we shall not mention this point further.) We shall

take L2{X) as the space on which C*{X) acts:

ft = L2{X).

Equip R with Lebesgue measure and form the Hubert space L2(R). If 0 is

a continuous function on [0, 1 ] then extend it to a continuous function <j> on

R by
>(0)   if í < 0,

fa) = \ 4>{t)   if 0 < t < 1,
>(1)   if/>l.

View <f> as acting on L2(R) via pointwise multiplication by <j>. In this way

L2(R) becomes a [0, l]-module.
The tensor product L2{X) ® L2(R) = L2{X x R) becomes an X xh[0, l]-

module, in the evident manner. We shall take the direct sum of two copies of

this space as the module on which C*{X xh [0, 1]) acts:

ft*h\o, i] = L2{X x R) © L2{X x R).

Choose norm-one functions

^0€L2(-oo, 0) cL2(R)   and    y/x G L2(l, oo) c L2(R),

and define isometries

F0, Vx:L2{X)^L2{XxR)®L2{XxR)

by
Vo<t> = (0, <f>® y/o)   and   Vx<p = (0, <¡>® y/x)      {<peL2{X)).

Then, according to Proposition 3.9, el = Ad(F¿)* ( /' = 0, 1 ). We note that

(5.3) Ad(^-)(F)=    "       "n 0 = 0,1),
(0       0    \

\0   T®Pi)

where po and px are projection operators onto the one-dimensional subspaces

of L2(R) spanned by y/o and yii, respectively.

2One might expect this procedure to define a homomorphism, but this does not seem to be

immediate from our argument and is not required by it.
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(5.4) Definition. Let e > 0. An e-flat partition of unity a on X is a partition

of unity ffi, Ö2, • • • on X consisting of compactly supported functions such

that:

(5.4a)   OiOj = 0 if \i - j\>2; and
(5.4b)   |<T,(x) - Oi{x')\ < e2~id{x, x') for all i, and all x, x' € X.

Such a partition of unity may for example be defined by starting with a

partition of unity Si,S2, ... on [0, oo) with the above properties, and then

forming a¡{x) = s¡{d{0, x)), where 0 is some fixed point in X.

We shall be interested in operators on L2{X xh [0, 1]) of the form

(5.5) F = 52oi®Fi,
i

where a is an e-flat partition of unity and Fx, F2,... are operators on L2(R)

with the following properties:

(5.6a)   sup,-||F/|| <oo;
(5.6b) the operators F, and F, are compact perturbations of one another, for

all i and j ;
(5.6c) the operators FiF* - 1 and F*Fi - 1 are compact, for all i ; and

(5.6d) viewing L2(R) as a [0, l]-module as above, the propagation of F, is

so small that

\t-t'\< Prop(F,)    =*■    dh{{x,t),{x, t')) < 1,    for all x G Supp(rr,).

Such a family F = (F,) of operators will be referred to as a good family,

and the set of such familes will be topologized by the supremum norm. The

operator F defined by (5.5) will be called the sum of the good family F (with
respect to a ), and may be denoted by a • F. It follows from (5.4a) and (5.6a)

that the sum (5.5) does converge in the strong operator topology, and

\\a • F|| < constant • sup \\F¡\\
i

where the constant does not depend on the choice of a . Thus, the map F •-► cr-F

is continuous.

(5.7) Lemma. Let F = a • F be the sum of a good family. Then, viewing

L2{X x R) as an X xn [0, l]-module, the operator F has finite propagation.

Proof. Viewing L2{X x R) as an X xh[0, l]-module, it follows from the last

condition that the operator ct, ® F¡ has propagation at most one. Since the sup-
port of ¿~li °~i ® Ft< is contained within the closure of the union of the supports

of the er, <g> Ft., the lemma follows from this.     G

Given F as above, form the operator

({2-FF*)F   FF*- 1\

\   l-F*F F*     )

on L2{X xR)®L2(IxR). It is an invertible operator, with inverse

,_/     F* l-F*F   \

\FF*-l    {2-FF*)FJ-
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These formulas are taken from [2]. Let Q be the projection

(5.8) Q=(J   °),

on L2{X x R) © L2{X x R) and form the idempotent

(5.9) P = RQR~X.

We note that all these operators depend continuously on the initial choice of

good family F. When we want to make this choice explicit we will write P as

P{a • F), and so on.

(5.10) Lemma. The operators R, R~x and P have finite propagation, and

hence are multipliers of C*{X xh[0, I]).

Proof. This is a consequence of Lemma 5.7.   G

We begin the construction of certain classes in K0{ C{SX)®C*{X xh [0, 1]) ).

View C{SX)®C*{X) as the algebra of continuous functions from the circle into
C*{X), and view C{SX) ® C*{X xh [0, 1]) similarly. For each e G C{Sl) ®

C*{X) let
F_(e®l      0   \

\   0      e® i)'

It is a norm-continuous function on the circle with values in the bounded op-

erators on L2{X x R) © L\X x R).

(5.11) Lemma.

(a) E is a multiplier of C{SX) ® C*{X xh [0, 1]).
(b) Fix an e-flat partition of unity a on X and view the projections Q and

P — P{a • F) defined by (5.8) (5.9) as constant functions from the circle into the
bounded operators on ftxh[o, i] • Then

E{P - Q) G C{SX) ® C*{X xh [0, 1]).

(c) Let e G C{SX) ® C*{X), let ô > 0, and let F be a bounded set of good
families. There is a constant e > 0 such that

\\EP{a • F) - P{o • F)F|| < ô   VF G F,

for every e-flat partition of unity a on X.

Proof. Suppose first that e has finite propagation, meaning that e takes values
in the dense subalgebra of C*{X) consisting of the locally compact operators

with finite propagation, with the propagation uniformly bounded on 51. Such

functions e constitute a dense subalgebra of C{SX) ® C*{X). It follows from

the definition of the metric dn on X xh [0, 1], and the definition of coarse
homotopy, that e ® 1 has finite propagation as well. This observation and an
approximation argument prove (a).

It suffices to prove (b) for operators e with finite propagation. It follows from
Lemma 5.10 that E{P - Q) has finite propagation, so it suffices to prove that
it is locally compact (i.e. that it takes values in the locally compact operators

on ft*h[o,i]). Since
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it suffices to show that for any y/ G CC{X) the functions

(5 12) i¥ ® l){e ® 1)(1 " FF*] '    (* ® 1)(1 " FF*){y/ ® 1} '

j (yr® 1)(é>®1)(1-F*F),    and   (e ® 1)(1 - F*F)(^ ® 1)

on L2(X x R) are compact-operator valued. Since e has finite propagation
there is some y/' G CC{X) with yieyi' = y/e. Then

(5.13) {y/ ®l){e® 1)(1 - FF*) = (^e ® 1)(^' ® 1)(1 - FF*)

and

{y/' ® 1)(1 - FF*) = |/ ® 1 - 5] ^'ff/ ® Fft 52 ai ® Fo

^^•»(l-F,,^).
i',7

There are finitely many nonzero terms in this last double sum; each is a tensor
product of a bounded-operator-valued function with a compact-operator-valued
function. Since y/e®l is the tensor product of a compact-operator-valued func-

tion with a bounded-operator-valued function we see that the overall product

(5.13) is compact. The various other products in (5.12) are treated similarly.
To prove part (c) it suffices to show that for every n > 0, if e > 0 is chosen

small enough then \\[e ® 1, F]\\ < n. We compute:

{e ® 1)F - F{e ® 1) = 52^e<7i ~ a^ ® F'. •
¡'

so that

||[e O 1, -F]|| < «up H^fH - 53 ||[e, «r/]||.

So the result follows from Lemma 3.7.     G

Now let e be a projection in C{SX)®C*{X). It follows from the remarks in

the preceding section that, given a good family F and a e-flat partition of unity
a with e > 0 sufficiently small, we may form a AT-theory class

[F, a, e] = [ËP] G [ËQ] G K0{C{SX) ® C*{X xh [0, 1])).

We should point out that we are not asserting that this class is independent of
the choice of e > 0 or a. In all that follows we shall be working with a fixed

value of e which is sufficiently small for our purposes, and any fixed e-flat a .

(5.14) Lemma.
(a) Let ihF, be a continuous map of [0, 1] to the set of good families.

Then
[F0, a, e] = [Fi, a, e],

provided that a is e-flat and e is sufficiently small.
(b) Let ¥ = Fi, F2,... be a good family and suppose that there is a zero

propagation operator F0 on L2(R) {viewing L2(R) as a [0, l]-module), such

that each F, is a compact perturbation of F0. Suppose further that F0 is a
co-isometry, meaning that F0F0* = 1. Then

[¥,a,e] = (°      °   1
\0   e®p)
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where p is the projection operator 1 -F0*F0 on L2(R).

Proof. Part (a) is a consequence of Lemma 4.6a.

For part (b), let Fo = Fo, Fq , ... and apply part (a) to the family of operators

Ft = (1-t)F0 + tF

connecting F to Fo . We note that the idempotent associated to the constant

family F0 is
1       0
0    l®pj '

which exactly commutes with E. Since Fo > Q we can apply Lemma 4.6b to

complete the proof.     G

6. Proof of Theorem 5.1

Consider the operator -id/dx on L2(R), with domain consisting of all

smooth compactly supported functions. It is an essentially selfadjoint operator.

Let /: R —> R be a continuous function such that

lim/(0 = 1   and     lim f{t) = -l,
/—»oo i—>-oo

and such that

Supp(/)ç[-l, 1]

(/ denotes the Fourier transform of /). Using the functional calculus, form

the bounded selfadjoint operator

fi-itd/dx): L2{R) - L2(R)       {t > 0).

Let g:R —► [-1, 1] be a continuous function such that

g{—s) = -1    and   g{s) = 1,     for s > 0 large enough.

Consider it as a bounded operator on L2(R), acting by pointwise multiplication.

Form the operator

Ft{g) = g + i{l- g2)1/2f{-itd/dx)       (i > 0),

acting on L2(R). The following facts concerning Ft{g) are well known.

(6.1)   Lemma.
(a) The operators Ft{g) are Fredholm, of index one, and Ft{g)* is inverse to

Ft{g), modulo compact operators.
(b) For fixed g and varying t, the operators Ft{g) are compact perturbations

of one another.

(c) Prop{Ft{g)) < t.

Proof. By Fourier analysis, the action of operator f{-itd/dx) (on, say, the
smooth compactly supported functions), is given by convolution with the Fourier

transform of f{t£). This Fourier transform is a distribution supported in
[-t, t]. Therefore the propagation of f{-itd/dx), and hence of Ft{g), is

no more than /.
It follows from this, along with our assumptions on g, that for large K > 0

the operator Ft{g) decomposes as a direct sum of three operators according to

the decomposition L2(-oo, K) © L2{-K, K) © L2{K, oo) of L2(R). The first
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operator is -1, the last is 1, and for large enough K the middle one identifies

with the operator g + i{l - g)x/2f{-itd/dx) on L2{-K, K), where now we

take the domain of -id/dx to be the smooth functions of period 2K. The
remaining parts of the lemma are proved by noting the corresponding facts for

the middle operator. This is done by Kasparov in [5, Section 2].     G

For each i = 1,2, ... choose t¡ > 0 such that

\t-t'\<ti    =>•    dh{{x, t), {x, t')) < 1,    for all x G Supp(cr,)

(the existence of such ¿, follows from the continuity of h:X x [0, 1] —► Y ).

Then F{g) = {F^g))^ is a good family, depending continuously on g, and

we may define an operator F{g) on L2{X x R) to be its sum with respect to a

suitable e-flat partition of unity; that is,

oo

F{g) = 52°i®Fti{g).
1=1

Let e be a projection in C{SX) ® C*{X) and choose e > 0 sufficiently small
that we can form the A>theory class

[F(g), a, e] G Ko{C{Sx) ® C*{X xh [0, 1])).

(6.2) Lemma. Let g0 and gi be two functions satisfying the conditions im-
posed on g above. Then

[F{g0),o,e] = [F{gi),a,e],

so long as e > 0 has been chosen to be small enough.

Proof. The functions gz = {l-x)go + xgx all satisfy the given conditions on g,
and the family F(gT) varies continuously with x, so the lemma follows from
Lemma 5.14a.   G

Choose go so that go = 1 on [0, oo). All the operators Ft{g0) are compact
perturbations of the operator

go 4-/(1- g$y/*fi-id/dx)il - go2)1'4,

which decomposes as a direct sum of an index one operator on L2(-oo, 0)

and the identity operator on L2(0, oo). The index one operator is in turn a

compact perturbation of an index one co-isometry W on L2(-oo, 0), and so

all the Ft{g) are compact perturbations of

(6.3) F0 = W © 1: L2(-oo, 0) © L2(0, oo) -> L2(-oo, 0) © L2(0, oo).

(6.4) Lemma. The operator F0 in (6.3) has zero propagation {viewing L2(R)

as a [0, l]-module).

Proof. This follows from the fact that F0 commutes with our action of C[0, 1]

on L2(R).     G

It follows from Lemma 5.14b that

[F(g0), o, e] =
0       0    Y
0   e®po)
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where p0 = I - W0* Wo. Since Wq has index one, the range of the projection

Po is a one-dimensional subspace of L2(-oo, 0). So it follows from (5.3) that

[F{g0),o,e] =
(0       0    \1
\0   e®poJ

= e°Ae].

We now choose gx so that gi = -1 on (-oo, 1]. An argument similar to

the one above shows that all the operators Ft{gi) are compact perturbations of

a zero propagation operator

F0= 1©1F1:L2(-oo, l)©L2(l,oo)^L2(-oo, 1) ©L2(l, oo),

where Wi is an index-one co-isometry. Thus

[EPigx)]e[EQ] =
(0       0    \

\0   e®pij

where pi = 1 - W* Wi is the projection operator onto a one dimensional sub-

space of L2(l, oo). It follows that

(0       0    \

\0   e®pi)
= e¡[e].[EP{gi)]e[EQ] =

Putting this together with Lemma 6.2 we get

e°[e] = el[e).

This completes the proof of Theorem 5.1.

7. Had am ARD manifolds

In this section we shall exhibit some coarse homotopy equivalences.

A Hadamard manifold is a simply connected, complete Riemannian manifold
with nonpositive sectional curvatures.

Let X be a Hadamard manifold and fix a point 0 in X. Denote by T the
tangent space to X at 0. Since X is complete, for every v g T there is a

geodesic yv{t) (defined for all t) such that

yv{0) = 0   and    ^ yv{t) = v.
1=0

Recall that the exponential map

exp: T —> X

is defined by the formula
exp(t7) = y„(l).

Using the exponential map, the basic geometric properties of X can be sum-

marized as follows (see [1]).

(7.1)   Proposition. Let X be a Hadamard manifold and 0 any point in X.

(a) The exponential map exp: T —> X is a diffeomorphism.

(b) If we give T its euclidean metric then the inverse transformation log:X ->

T is a nonexpansive map. That is, úí(logxi, logX2) < d{xx, X2), for all Xi, X2 G
X.

Denote by [x, y] the set of points on the geodesic between x,y e X.
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(7.2) Lemma.
(a) (Negative Curvature Inequality.) Let xq and xx be points in X and for

0 < t < 1 let xt G [x0, xi] be the point such that d{xo, xt) = td{xo ,xx). Then
for any y G X,

d{x, ,y)2<{l-t)d{x0,y)2 + td{xx,y)2-t{l-t)d{xo,xx)2.

(b) Let x and y be points in X with d{0, x) < d{0, y). Denote by x' the
point in [0, y] such that d{0, x') = d{0, x). Then d{x, x') < d{x, y).

(c) Let x and z be points in X. For 0 < t < 1 denote by tx the point in
[0, x] such that d(0, tx) = td{0, x). Define tz similarly. Then

d{tx, tz) < td{x, z).

Proof. Part (a) follows from part (b) of Proposition 7.1. The remaining parts
are elementary applications of the negative curvature inequality.   G

We shall prove the following result:

(7.3) Theorem. The map log:X —> T is a coarse homotopy equivalence.

Let /:[0, oo) -♦ [0, oo) be a continuous function such that f{0) < 1, f{r)

is nonincreasing, rf{r) is nondecreasing, and

lim rf{r) — oo.
r—»oo

Define a map /: X —> X by the formula

f{x) = exp(/(|| log x ||) logx),

or, to use the notation of (7.2c),

f{x) = f{d{0,x))x.

It is clear that / is continuous and proper.

(7.4) Proposition. Let f be as above. Then

min{d{0,x),d{0,y)}<r    =>    d{f{x),f{y))<f{r)d{x,y).

In particular,

d{f{x), f{y)) < f{0)d{x, y)    for all x, y g X.

Proof. Let x, y G X and suppose that d{0, x) < d{0, y). Denote by x' the
point on [0, y] such that d{0, x') = d{0, x). According to (7.2b),

d{x, x') < d{x, y).

Let tx = f{d{0, x)) and ty = f{d{0, y)). In the notation of (7.2c),

f{x) = txx   and   f{y) = tyy.

It follows from (7.2c) that

d{txx, txy) < txd{x, y),

and

d{txx, txx') < txd{x, x') < txd{x, y).

It follows from the hypotheses on / that the point tyy lies between txx' and

txy on the line [0, y] (of course it might coincide with txx' or txy ). So by
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the negative curvature inequality d{txx, tyy) is no more than the maximum of

d{txx, txx') and d{txx, txy).    G

(7.5) Lemma. Let f be as in Proposition 7.4. Then the map f:X —► X is
coarsely homotopic to the identity map.

Proof. Given / let

ft{r) = {l-t)r + tf{r)   (i€[0, 1]).

Define h:X x [0, 1] -» X by h{x, t) = ft{x). This is a coarse homotopy

between / and the identity map.    a

Proof of Theorem 7.3. Let oq = 0, and for n > 0 let a„ be the maximum of
the norm of the derivative of exp on the ball of radius n + 2 about 0 e T.
Define a piecewise linear function F: [0, oo) -» [0, oo) by linear interpolation

between the values

F(2%) = 0,    F(21a,)=l,    F(22a2) = 2,     F(23ü3) = 3, ... .

We obtain an increasing function, and lim,--.,» F{r) = oo . Let f{r) = F{r)/r.

It is easily checked that f{0) < 1 and that / is nonincreasing (the powers of

2 were introduced for this purpose). Consider now the map

(7.6) tMt-^^X,

from r to I. We shall show that this is a coarse map by proving that

d{v,w)<l    =>    d(exp(/(||t;||)t;), exp(/(|M|)ti;)) < 1

(this implies that the map (7.6) is a contraction). Suppose that d{v, w) <
1 and that ||u|| < ||u;||. Since F is a Hadamard manifold it follows from

Proposition 7.4 that

(7.7) d{f{v),f{w)) < f{\\v\\)d{v , w) < /(H).

If we choose n so that

2"a„ < H < 2"+1a„+1

then

\\f{v)\\ = F{\\v\\)<n,

and since / is contractive,

H/(«OII<ll/(tOII + i<» + i.
It follows from the definition of a„ that

(7.8) d{expf{v), exp f{w)) < and{f{v), /(to)).

Combining (7.7) with (7.8) we get

¿(exp f{v), exp f{w)) < anf{\\v\\) < anf{2nan) = ^- < 1.

This completes the proof that (7.6) is a contraction. Composing (7.6) with the

map log: X —* T, on either side, we obtain the maps f:T —> T and /: X -> X.
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According to Lemma 7.5 these are homotopic to the identity maps on T and
X.     G

(7.9)   Theorem. Let X be a Hadamard manifold and let T be its tangent space
at some point. The coarse map log: X —► T induces isomorphisms

log*:HX*{T)^HX*{X)

and
log,:K,{C*{X))^Kt{C*{T)).   G

The assertion about coarse cohomology is already proved in [7] (using an

argument which is essentially the same as our proof of Theorem 2.1). The

assertion about the ÄMheory of C*{X) is new, and amounts to a verification
of the 'coarse' Baum-Connes conjecture in the case of Hadamard manifolds.

The K-theory of C*{T) may be calculated using, for example, a Mayer-Vietoris
argument [3]. It is

if; = dim(F), mod 2,

0   otherwise.
*,(C*(F)) = {

It follows from the pairings developed in [7] that the ^-theory is generated by
the index of the Dirac operator on T. Using Theorem 7.9 we obtain similar

results about X :

(7.10) Theorem. The index class of the Dirac operator on a Hadamard manifold

X freely generates Kt{C*{X))    a

The precise relation between our results and the Baum-Connes conjecture

will be given elsewhere [4].
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