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CONNECTIONS WITH EXOTIC HOLONOMY

LORENZ J. SCHWACHHÖFER

Abstract. Berger [Ber] partially classified the possible irreducible holonomy

representations of torsion free connections on the tangent bundle of a mani-

fold. However, it was shown by Bryant [Bry] that Berger's list is incomplete.

Connections whose holonomy is not contained on Berger's list are called exotic.

We investigate a certain 4-dimensional exotic holonomy representation of

5/(2, R). We show that connections with this holonomy are never complete

and do not exist on compact manifolds. We give explicit descriptions of these

connections on an open dense set and compute their groups of symmetry.

1. Introduction

Let M" be a smooth connected «-dimensional manifold. Let 3s\M) denote

the set of piecewise smooth paths y : [0, 1] —> M, and for x £ M, let 2CX{M) ç

3°{M) denote the set of x-based loops, i.e. paths for which y{0) = y{l) - x.

Let V be a torsion free affine connection on the tangent bundle of M. For

each y £ 3Ö{M), the connection V defines a linear isomorphism Py : Ty^)M ->

Ty(i)M, called parallel translation along y. For each x £ M, we define the

holonomy group of V at x to be Hx := {Py \ y £ J¿?x} ç Gl{TxM).
It is well known that 77c is a Lie subgroup of Gl{TxM), and that for any y £

3°{M), Py induces an isomorphism of Ty^M with T7^)M which identifies

Hm with Hm [KN].
Choose an x0 £ M and an isomorphism i : Í^M -» R". Then, because

M is connected, the conjugacy class of the subgroup H ç Gl{n, R) which

corresponds under i to HXo ç Gl{TXoM) is independent of the choice of Xo or

i. By abuse of language, we speak of H as the holonomy group and of the Lie

algebra h of H as the holonomy algebra of {M, V ).
The following is a basic question in the theory:

Which {conjugacy classes o/) subgroups H ç Gl{n, R) can occur as the holon-
omy of some torsion free connection V on some n-manifold M ?

The condition of torsion freeness makes this problem nontrivial. In fact, it is

not hard to see that any representation of a connected Lie group can be realized

as the holonomy of some connection (with torsion) on some manifold.

A necessary condition on the holonomy algebra of a torsion free connection

was derived by M. Berger [Ber] in his thesis as follows.
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Let F be a vector space and define for a given Lie algebra 9 ç qI{V) :

K(fl) :=l(p£ A2{V*) ®q\52 P(M<x(i). "«t(2))"«t(3) = 0 for «i, M2, M3 e K ^ ,
( <r&Ai

and

K'(fl) := I ¥ € V* ® K(g)| ]T !f7(«<T(i))("ff(2), "<r(3)) = 0 for ux, w2 , w3 £ V

Given {M, V) as above and x0 £ M, the curvature tensor of V at x0,

i.e. the map JRXo : A^T^Af) -► qI{TXoM) defined by RXo{u, v)w = VuVvw -

VvVuw - V[u,v]W, is known to have its values in the holonomy algebra bXo Q

%l{TXoM), and to satisfy the first and second Bianchi identities. This is equiva-

lent to saying

RXo£K{t,Xo),    and   V^oeK'(l),0).

In this notation, Berger's criterion is:

If fl' S 0 is a proper subalgebra, and K(g' ) = K(g), then g
cannot be the holonomy algebra of any torsion free connection

on any «-manifold M.

This criterion is a consequence of the Ambrose-Singer Holonomy Theorem,
which states that the holonomy algebra tyXo is generated by the image of the

curvature map RXQ and its parallel translations [KN, II.8.1].

The study of locally symmetric connections, i.e. connections with Vi? = 0,

can be reduced to certain problems in the theory of Lie algebras. We therefore

wish to exclude this case from our discussion. A second necessary condition for

0 to be the holonomy of a torsion free connection which is not locally symmetric
is therefore K1 (g) ^ 0.

These two criteria are also referred to as Berger's first and second criterion.
Using these, Berger [Ber] was able to partially classify the possible Lie algebras

of holonomy groups of torsion free connections which are not locally symmetric.

His classification falls into three parts:

(1) The first part classifies all possible Riemannian holonomies, i.e. con-
nections with holonomy group H ç 0{n, R). It turns out that the

possible holonomy groups of nonsymmetric connections are those sub-

groups which act transitively on the unit sphere in R" . In fact, it is

by now well known which elements in Berger's list actually do occur

as holonomies of Riemannian metrics. We mention in this context the

work of Simons [S], Calabi [C], Alekseevskii [A] and Bryant [Brl].
(2) The second part classifies all possible irreducible pseudo-Riemannian

holonomies, i.e. connections with holonomy group H ç 0{p, q). In

this case, the question whether or not these candidates actually do oc-

cur as holonomies has been resolved except for the group SO*{2n) ç
G7(4«, R) for « > 3 .

(3) The third part classifies the possible irreducibly acting holonomy groups

of affine torsion free connections, i.e. holonomy groups which do not

leave invariant any nondegenerate symmetric bilinear form. These con-

nections are the least understood. In fact, Berger's list in this case is
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incomplete, conceivably omitting a finite number of possibilities. The

holonomies which are not contained in Berger's list are referred to as

exotic holonomies.

R. Bryant [Br2] showed that exotic holonomies do, in fact, exist. He inves-

tigated the irreducible representations of 5/(2, R) which can be described as
follows:

For « £ N, let Vn := { homogeneous polynomials in x and y of degree n }

which is an « + 1-dimensional vector space. There is an 5/(2, Reaction on

V„ induced by the transposed action of 5/(2, R) on R2, i.e. if p £ V„ and
A £ 5/(2, R) then

{A -p){x, y) := p{u,v)     with {u, v){x, y)A .

It is well known that this action is irreducible for every « and moreover

that—up to equivalence—this is the only irreducible « + 1-dimensional repre-
sentation of 5/(2, R) [BD].

Let Hn ç Gl{Vn) be the image of this representation and let h„ c qI{V„) be

the Lie algebra of H„ . Bryant showed that hn does not satisfy Berger's first
and second criterion if « > 4.

For « = 3, however, he proved the existence of torsion free connections

on 4-manifolds whose holonomy group is H^, even though this group does not

appear on Berger's list. We shall refer to these connections as Hyconnections.

Note that for « odd, there is no nondegenerate symmetric bilinear form

which is invariant under the 5/(2, Reaction on V„. There is, however, an
invariant 2-form and hence we conclude that any H^ -connection must admit a
parallel symplectic form.

A diffeomorphism tp : M —> M preserving the connection will be called a

symmetry of V.
It turns out that locally there are very few examples of H} -connections. In

fact, the local classification given by Bryant can be summarized as follows:

( 1 ) There is one example of a homogeneous Hyconnection whose symmetry
group is ^-dimensional.

(2) There is a finite set of //3-connections with a ^-dimensional symmetry
group.

(3) There is a 1-parameter family of //3-connections with a l-dimensional

symmetry group.

//3-connections with a l-dimensional symmetry group will be called regular,

all others will be called singular Hyconnections.

Bryant's classification is obtained by the methods of Exterior Differential

Systems. This approach, however, makes a concrete description of these con-

nections very difficult. In this article, we will describe the //3-connections more

explicitly and will also investigate their global behavior.

(1) The homogeneous Hyconnection can be described globally.

(2) The singular Hyconnections can be described on the dense open subsets

on which the action of their symmetry groups is locally free.

(3) For the regular Hyconnections we can only give a description on some

open subset which will not be dense in general.

A global description of the homogeneous //3-connection was given in

[Br2]. However, our description includes the symmetry group and presents the
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connection in a somewhat more explicit way. In fact, we will compute the Lie

algebras of the symmetry groups of all H$ -connections.

Furthermore, in the case of some singular //? -connections we can conclude
that the parallel symplectic form must be exact.

Following this introduction, we will first give the descriptions of the singular
H-i-connections (§2).

In §3, we derive the structure equations for Ht,-connections, following closely
[Br2].

As a first global result we will show in §4 the

Theorem 4.1. Hyconnections are never complete.

In §5, we then solve the structure equations for the singular H3-connections

under the generic assumption that the group action of the symmetry group is
locally free, as well as the structure equations for the regular H3 -connections

on some open subset. This will show that the examples given in §2 form in fact

a complete list of singular #3-connections under these restrictions.
Finally, in §6 we shall be concerned with //3-connections on compact mani-

folds, and we will prove

Theorem 6.1. There are no Hyconnections on compact manifolds.

Note that Theorem 6.1 is not a consequence of Theorem 4.1 since affine

connections on compact manifolds are not necessarily complete.
The main part of this article represents the author's thesis and he wishes to

thank his advisor Wolfgang Ziller for his encouragement and support.

2. Examples of singular //3-coNNECTiONS

We first introduce some notational conventions. Recall that V-¡ is the vector
space of homogeneous polynomials of degree 3 in the variables x and y, and

the action of 5/(2, R) on F3 is induced by the transposed action of 5/(2, R)

on R2 = span{x, y}.

We let p3 : 5/(2, R) -+ H3 ç Gl{Vy] and (¿>3). : sl{2, R) -+ h3 ç a/(F3)
denote the representation homomorphisms, and define a basis {Ei, E2, £3} of

h3 by E¡ := {pi)t,{É¡) where the basis {Êx, Ê2, £3} of s/(2, R) is given by

(Ï -*) aÊi + bÊ2 + cËy.

Furthermore, we let {eo, ... , e^} with e¡ = x3~'y' be a basis of V$, and

{e,I 0 < i < 3} be the standard basis of R4 .
We fix once and for all a linear isomorphism

X:    Vi   —>   R4
e,      r—>      £..

Then f)3 := X\)yX~x Ç 0/(4, R) has {£,, E2, E3} with E¡ = XE¡X-X  as a

basis, and one sees that

aE{ + bE2 + cE3
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We shall from now on use X to identify h3 with h, .

Recall that if M is a manifold with an H¿ -connection V then a difteomor-

phism <p : M -+ M preserving the connection V, i.e. satisfying

(1) 9.iVxY) = V,,(X)q>.iY)

for all vector fields X and Y on M, will be called a symmetry of V . We shall

call a vector field 5 on M an infinitesimal symmetry iff £SV = 0, i.e.

(2) [S,VXY] = V[S,X]Y + VX[S,Y]

for all vector fields X and Y on M. Note that the flow along an infinitesimal

symmetry is a 1-parameter family of (local) symmetries.

In order to describe a connection on a manifold M, we shall in each case

give a frame on M and the connection form <j> w.r.t. this frame which takes

values in f)3. This form is the pullback of the connection form on the coframe
bundle of M under the section given by the frame.

Let Xo, ... , X-i be the given frame and let a>o, ... , «3 denote the dual
coframe. We define the F3-valued 1-form co by

= 52 œ'ei »CO

which establishes an isomorphism between TPM and I3 for all p e M.

Then we can describe the covariant derivative associated to the connection by

(3) co{VXiXj) := -4>{Xi) ■ co{Xj) = -</»(X;) ■ *,.

The connection being torsion free is equivalent to the condition that

(4) <j,{Xi) • ej - <f>{Xj) • ei = dœ{Xi, X¡)     for all i,j.

The holonomy algebra of these connections is contained in 1)3 by the Ambrose-
Singer-Holonomy Theorem mentioned earlier. In fact, we will show (Corollary

3.2) that the holonomy algebra of any such connection is actually equal to h3,

provided the connection is not flat.
As we shall see in §3, to every //3-connection we can associate a pair of homo-

geneous polynomials a e V2 and b £ V-$ as well as a constant c e R. For future
reference we shall give these polynomials, called the structure polynomials, and
this constant in each particular case.

The description of these examples will be motivated in §5.

2.1    Example I : The homogeneous case (type 1$ ).   Let

G = ASl{2,R) = \ I    A       y
IV 0 0   1

A£Sl{2,R), x,y eR

be the group of unimodular affine motions of R2 and let g be the Lie algebra
of G. Let Aij stand for the 3 x 3-matrix with (/', ;')th entry 1 and all other
entries 0. Then we define a basis of the Lie algebra 0 of G by

Z0 =        !    ^23 ,

Zx = -\ {Au- A21),
Z2 = —3 (v4n — ̂ 22),

Z3 = -18  An,
Y  = Au + 2A2i
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and the subgroup H <G as H = {exp(íF) | t £ R} . Furthermore, we decom-

pose 0 as g = h ® m with h = span(7) and m = span(Zo, ... , Z3).

One checks that [h, m] ç m, i.e. the homogeneous space G/H is reductive.

Moreover, if we define
1 :    m    —>    V-i

Zt   1—»    f?,

then ad(F) = (/)-' o£3o¡.

We wish to define an #3-connection on G/H such that the canonical action

of G on G/H is an action by symmetries. To do this, we need to define a map

A:nwh3C0/(K3)

such that

X{[Y,Zi])[E,,X{Zi)]     for i = 0,... ,3

and

X{Zj) • ej - X{Zj) • e¡ = i(\Z,, Z/]m)

with the isomorphism 1 defined above [KN, X 2.1, 2.3, 4.2]. The covariant
derivatives are then defined by i{^Jz¡Zj) = X(Z¡) • e¡, where TPM is identified

with m.

One then checks that the following map satisfies these two conditions and

thus defines an //3-connection on M.

X{Zo) = 0,    X{Zi) = -E3,    X{Z2) = EX,    X{Z3) = 3E2.

The structure polynomials and the structure constant in this case are a = x2 ,
b = |x3,and c=0.

Clearly, G acts transitively on the set of parabolas in R2 . Also, one sees that

H is the group of unimodular affine motions which leave the standard parabola

y = x2 invariant. Therefore, we can naturally identify M = G/H with the

space of parabolas in R2.
Let coo, ■ ■ ■ , C03, (f> be the coframe on G dual to the vector fields Zo, ... ,

Z3, Y. Let T, :— co,; A • • • A 0)3 for 0 < 1 < 3. t, is invariant under the isotropy

representation of H, and therefore there are induced forms on G/H which we

also denote by t0 , ... , T3.

One checks that these forms satisfy the Frobenius condition

dx, = a, A t¡     for some 1-form a,,

and hence the flag of distributions 3¡o ç • • • ç 3t, on the tangent space of G/H

given by x-,{3¡i) = 0 is integrable [EDS, II. 1.1].
Let L : ,45/(2, R) —> 5/(2, R) be the homomorphism which maps an affine

motion to its linear part. Then we can define an angle function

6:   G/H   —► 51

gH

L{g)

L{g)
(?)

This function assigns to each parabola its direction, and it is straightforward

to check that 6 is afibration over 51 whose fibers are the maximal connected

integral leaves (m.c.i.l.'s) of ^3, and that the fibers are totally geodesic. Also,
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since these fibers are all parabolas with a given direction it is easy to see that

they are diffeomorphic to R3.
Now let us investigate the level sets of 0 . By homogeneity all level sets are

equivalent. Thus, let

Y3 := {(y = eax2 + bx + c) \ a, b, c £ R}.

Then the function r3 : 73 —» R which assigns the size to a parabola, i.e.

riiy = e"x2 + bx + c) = a, satisfies dr3 = cú2\y} ■ Again, one can check that r3

is afibration of Y3 over R whose fibers are totally geodesic and diffeomorphic

to R2.

Next, let Y2 be a level set of r3, e.g.

y2 := r~'(0) = {(y = x2 + bx + c) \ b, c £ R},

i.e. a set of parabolas with given direction and size. We compute the con-

nection on 72 and obtain that Y2 is flat. Note that a curve y in Y2 can be

described by the curve of the vertices of y{t). Then we compute that—up to

parametrization—the vertices of a geodesic in Y2 either move along a parabola

of size -2 or along a vertical line.

Also, the restriction o>i |y2 is closed, hence there exists a function r2 : I2 —► ^
such that dr2cox\Yl. One finds that the level sets of r2 are the parabolas in Y2
whose vertices lie on a fixed vertical line. By the previous, these level sets are

geodesies.
Finally, if Yx is a level set of r2 , i.e. a geodesic, we find some parametrization

ri : 7i -» R such that drx = coo\y, •
Therefore, on every m.c.i.l. Y¿ of 2,, i < 3, we have a function r, : T, —» R

satisfying dr¡ - C0í-X\y, , and all these functions are totally geodesic fibrations

of Yi.

2.2 Example II : Types X^ and X¿. Let c £ R be a given constant and define

the Lie algebra $f = span(Z[, Z2, Z3) with the bracket relations

[Zi, Z2] = Z3,
c

[Zx, Z3] = -- Z2,

[Z2,Z3] = ±2cZ,.

One computes that q^ =1x3, the Lie algebra of the three-dimensional Heisen-

berg group JV3, 0+ = su{2) if c > 0 and 0^ = s/(2, R) in the remaining

cases. We let Gf be a Lie group corresponding to 0^ such that G* = N¡,

Gf = 5/(2, R) or G+ = 5*7(2) if c> 0.
Let Mf := R+ x Gf and let t0 : Mf- -> R+ be the projection onto the first

factor. Regarding Mf as a subset of the Lie group Rx Gf we can define left

invariant vector fields Zo, ... , Z3 such that

for 1 < i, j < 3, [Z,, Zj] is given by the equations of $f ,
[Z0, Zj] = 0 for ¿=1,2,3,
Z0(i0) = 1, and Z,(i0) = 0, 1= 1,2, 3.
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We then define a frame on Mf by

*o= -M^Z, -4Z3
'o

Xi = Z-{2t\±c)Zo -2Z2

X2 T £ Zi

Xi = t3 Zo

Now we give a connection w.r.t. this frame by the f)3-valued 1-form

^ = «^i£i + 4>2E2 + faEi

where

<pi = - 2t0 coi,

2t2±c 4/2 ±c
^2=c-VWo --tïT"2'  and

. 6i2 ± c 1
</>3 =-^- Wo ± —    &>2-

ZiO ¿o

The covariant derivative is defined by (3). Moreover, one checks that (4) is

satisfied, i.e. V is torsion free. Also, V is not flat, thus by Corollary 3.2 we

conclude that V is an //3-connection.
The natural left action of Gf on Mf is an action by symmetries as it leaves

all Zi and the function to invariant, hence preserves the frame Xo, ...X3 and

therefore satisfies condition (1).

The structure polynomials are

1 f 2t2 ±c    \
a = ±x2 + -{2tl±c)y2,    and     b = t0y Itx2 + -^—y2J .

We shall see later that M£¡ and Ml] with e, £ {±} are equivalent iff ex =

£2 and sign(ci)sign(c2). Thus the Mf give six different examples of Hy

connections.

2.3   Example III : Type S2.   Let k £ R\{0} be a given constant and define

the Lie algebra $f = span(Z], Z2, Z3) with the bracket relations

[Zi, Z2] = Z3,
[Z,, Z3] =      =f Z2,

[Z2,Z3] = T3Ä:Z1.

One computes that qI — su{2) if k > 0 and gf = s/(2, R) in the remaining

cases. We let Gf be a Lie group corresponding to 0^ such that Gf = 5/(2, R)

or Gf = SU{2).
Let Mf := R+ x Gf and let i0 : Mf -» R+ be the projection onto the first

factor. Define the vector fields Z0,... Z3 on Mf as in the previous section,

i.e. the relations of gf determine [Z,, Zj\ for 1 < 1, / < 3, Zo(io) =. 1,
Z/(/0) = 0, and [Z0, Z,] = 0 for / = 1, 2, 3 .
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We then define a frame on Mf by

X0= yiktl±l)   Z, + 12 Z3,

Xi = {3kt2Tl) Z0   ' -4Z2,

X2 = — Z\,
to

X$ = —3 Zo.

Now we give a connection w.r.t. this frame by the ^-valued 1-form

4>f = (¡>iEi + <f>2E2 + foE3

where

4>i = - 2A:í0 coi,
3                                                   1

</>2 = -{±3ktl -l)coo -{2ktl± 1) co2,    and
¿0 ¿0

3 1
h =   --(fc^Tl) coo + -  «2-

¿0 ¿0

Again, the covariant derivative is defined by (3). Moreover, one checks that
(4) is satisfied, i.e. V is torsion free. Also, V is not flat for k ^ 0, thus by

Corollary 3.2 we conclude that V is an //3-connection.
The natural left action of Gf on Mf is an action by symmetries for similar

reasons as in the previous section.

The structure polynomials and the structure constant are

a{kt0y)2 + k{x2 ± y2), b = ^kt0y{{ktoy)2 - 3k{x2 ± y2))     and     c = ±6k2.

We shall see later that Mp and M^ with e¡ £ {±} are equivalent iff £1 = £2

and sign(fci) = sign(A:2). Thus the Mf give four different examples of Hy

connections, and we will also show that they are indeed different from the

connections given in the previous section.

3. The structure equations

In this section we will mainly recall the results of Bryant [Br2] on Hy

connections and introduce a notation convenient for our purposes.

First, we shall define the bilinear parings

( ,  )p : Vn ® Vm -» K„+m_2p

by

^-¿B-1)*®^
dpu dPy

QkxQp-ky Qp-kxQky
k=0

It can be shown that these pairing are 5/(2, R)-equivariant and therefore are
the projections onto the summands of the Clebsch-Gordan formula.

We can establish an 5/(2, R)-equivariant isomorphism p : fo -> V2 by the
equation

A • v = {p{A), v)x      with A £ f)3, v £ V},

and we will from now on use p to identify h3 and V2 .
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Now we describe the spaces K(h3) and K'(f)3) defined in §1. Straightforward

calculation yields that we can define 5/(2, R)-equivariant isomorphisms

i:K{b3)^V2     and     ix:Kl{fo)->V3

by the equations

<p{u, v) = (i{<p), {u,v)i)0-j^{i{<p), {u,v)l)2

and

i{y/{u)) = {ix{y/),u)2

where tp £ K(f)3), y/ £ K1^) and u, v £ V-¡, and we will from now on use

these to identify K and K1^) with V2 and Vi resp.
The following lemma is very simple but will be useful later on.

Lemma 3.1. Every <p £ K(h3)\0 is surjective.

Proof. Let tp - üqX2 + axxy + ^y2 £ V2 = K(h3), and suppose ao # 0. Then

Ç>{^2, £3) = -36aoy2, thus y2 £ im{<p). Also, <p{ex, e3) = -36a0*y + 18aiy2,
thus xy £ im(ç>). Finally, cp{eo,ei) = -18ao*2 + 36«ixy - 18út2y2, thus
x2 £ im{<p). Therefore, <p is surjective if «o ¥" 0 • Similar arguments show that

g> is surjective whenever tp ̂  0.   D

Corollary 3.2. If the holonomy group of a torsion free connection V on a mani-
fold M is contained in Hi, then either the holonomy group of V is equal to H3

or V is flat.

Proof. Suppose V is not flat. Then there is a p £ M at which the curvature

map Qp : A2TPM -> h3 is not 0. By Lemma 3.1, Clp is surjective and thus by
the Ambrose-Singer-Holonomy Theorem, the holonomy group of V is equal to
H3.   D

Suppose M is equipped with a torsion free //? -connection V . Let n : 5 —>
M denote the total coframe bundle of M which is a principal Gl{4, R)-bundle.

On #, the tautological 1-form co takes values in R4 , the connection 1-form <p

takes values in g/(4, R) and both are Gl{4, R)-equivariant [KN].

Then there exists a reduction F of 5 whose structure group is isomorphic

to 5/(2, R) [KN, II.7.1] and such that (p\F takes values in f)3 ç g/(4, R). Such

a reduction will be called an i)yreduction of 5-

By abuse of notation we will denote the restrictions co\f , (¡>\f and n\p also

by co, (f> and n resp.
Of course, h,3-reductions are not unique. In fact, one sees that F, F' are

h.3-reductions iff there is some g £ Norm(b,3) ç Gl{4, R) with F' = Lg{F),

where Lg denotes the principal action of g on 5 • Now one computes that

Norm(h ) = //3 x N\'±3

with

N =

r (l        \
et

t

. V et)

reR\{0},£ = ±l



CONNECTIONS WITH EXOTIC HOLONOMY 303

It follows that any two f)3-reductions F, F' satisfy F = Lg{F') for some

g £ N, and two such structures are called homothetic to each other.

Clearly, homothety is an equivalence relation on the set of h 3-reductions of
#, and it is not hard to see that there is in fact a 1-1 correspondence between

Ht,-connections and homothety classes of (^-reductions with a torsion free con-
nection [Br2, 2.1].

Let M be as above and fix an ^-reduction F of the total coframe bundle

£. On F, we have the 1-form co + 0 with values in R4 ® b_ = V¡® V2 and

may hence regard co + 0 as an 5/(2, R)-equivariant V¡ © 1^-valued 1-form. It

is well known that this form gives a coframe on F, i.e. the real-valued 1-forms

coo, ... , coi, 0O, 0i, 02 given by

co{x) = 52°>i(x)ei  and  <t>(x) = 52<t>'Wx2~iyi  for a11 x e TF
i i

are linearly independent.

The frame of F dual to the coframe coo, ... , co-¡, cpo, <f*i, <t>2 will be de-

noted by Xo,... , X}, Yo, Yi, Y2 and will be called the canonical frame on
F.

A tangent vector X £ TF will be called vertical if co{X) = 0 and horizontal

if tf>{X) = 0. Thus, Xj is horizontal and Y, is vertical for all 1.
The curvature 2-form Q on F takes values in h3 = V2 and vanishes in

vertical directions which means that for every u £ F, there is a unique linear

map cpu : A2F3 —> h 3 such that

Çï{X, Y) = cpu{co{X), co{Y))     for all X, Y £ TUF.

Furthermore, the first Bianchi identity implies that cpu £ K(f)3), and this

defines an 5/(2, R)-equivariant map

a:   F   —»    V2

u    1—»   cpu.

For u £ F, we define a linear map y/u : V$ —» Hom(A213, h3) by the equation

^foXeair), co{Z)) = {2XiCl){Y, Z) - <pu{<t>{Y) • et, co{Z))

-y>u{co{Y),(j>{Z).ei)   for all  Y,Z£TUF.

To see that this is well defined note that the right-hand side is tensorial in Y
and Z and vanishes if either Y or Z are vertical. Moreover, the first Bianchi

identity implies that y/u{ei) £ K(h3), and finally, the second Bianchi identity

implies that y/u £ K'(h3) = F3. Therefore, we get a map

b:   F   —»    F3

Now we can describe the structure equations on F .

The ^ríí structure equation—using that V is torsion free—yields

(5) dco = -(f> Aco = -{<p,co)l.

The second structure equation is

úf0 = -0A0 + Q
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Next, we compute the exterior derivatives of a . For this, let X¡, Xj and Xk

be horizontal vector fields of the canonical frame on F . Then, at some point

U£F ,

Xi{Cl{Xj, Xk)) = {Zxmxj > xk) + "([*/, xj] > Xk) + Cl{Xj, [Xi, Xk])

= yiu{el){ei,ek)

= ((Hu), e¡)2 , {ej, ek)3)Q - — ({b{u), e¡)2 , {e¡, ek)i)2.

Here we used the fact that the Lie bracket of two canonical horizontal vector

fields is always vertical since the connection is torsion free.

On the other hand,

Xi{a{Xj, Xk)) = ((Xi{a), e,)2 , {e}, ek)3)Q - ^ (Xt{a), {e}, ek)l)2.

Setting these two equal, we get the horizontal derivatives of a. The vertical

derivatives follow from the 5/(2, R)-equivariance of a, and we obtain

(7) da = {b,co)2 + {a,(p)l.

Taking the exterior derivative of this equation and solving for db, we can

compute that there exists some function c such that

(8) db = {b, <t>)l + {c- {a, a)2)co + j^({a, a)0 ,co)2.

Taking exterior derivatives once again, we find that

(9) dc = 0,

i.e. c is a constant.

Definition 3.3. Let n : F —> M be a principal 5/(2, R)-bundle over a four-
dimensional manifold M. Suppose there exist 1-forms co and 0 on F with

values in V^ and h3 resp. and functions a and b with values in V2, F3 resp.

such that the structure equations (5)-(9) are satisfied for some constant c.

Moreover, assume that <y(ker(^»)) s 0 and 0((Ê,)*) = £, where {£,} is the

basis of s/(2, R) described earlier and (is,-)* denotes the fundamental vector

field corresponding to Ë, [KN, Vol I, p. 51]. Then {n, F, M, co, 0, a, b, c)
is called a solution structure over M.

By the previous discussion we know that any f)3-reduction of an /^-connec-

tion on M gives rise to a solution structure over M.
Now suppose that F' = Lg{F) with g £ N is an h3-reduction homothetic

to F . Then if we let ä = Lgoa,b = Lgob and c = Lg o c where Lg denotes

the action of g on V2, V$ resp., then {F', {Lg-i)*{co), {Lg-\)*{<p), ä,b,c) is

also a solution structure.
If we define the components of the polynomials a and b by a = 53,- a,-jc2—'.y'

and ¿> = 52,- biX3~'y' then we compute that if

g
£/

V £i/

e iv



CONNECTIONS WITH EXOTIC HOLONOMY 305

then

at2 = {aox2 + eaxxy + aiy2),

(10) b = t\eb0y3 + bxx2y + eb2xy2 + ¿>3y3),

c = t4c.

Definition 3.4. Two solution structures {n, F, M, co, 0, a, b, c) and {ñ, F,

M, co, 0, ä, b, c) over the same manifold M are called homothetic if there

exists a bundle isomorphism L : F -» F such that co = L*{co), 0 = L*(0),

and moreover {a, b, c) and {à, b, c) satisfy ( 10) for some t ^ 0, £ = ± 1.

Clearly, homothety is an equivalence relation of solution structures and ho-

mothetic (^-reductions give rise to homothetic solution structures. Therefore,
by our discussion earlier, to any Z/3-connection on a manifold M we can as-

sociate a homothety class of solution structures over M.

We will now show that this correspondence is in fact bijective. In particular,
we need to show the sufficiency of the structure equations (5)-(9).

Proposition 3.5. Let M be a 4-dimensional manifold and let n : $ —> M de-

note the total coframe_ bundle of M. Suppose there exists a solution structure

(W, F, M, œ, 0, ä, b, c) over M.
Then there exists a unique Hyconnection V on M and a unique embedding

1: F <-► # such that

(1) F := i{F) is an tyyreduction of $,
(2) the diagram

commutes and

(3)   i*{co + (j>) - öJ + 0,   where co and 0 denote the restrictions of the
tautological form and the connection form to F.

Proof. Let F ,W, 0,5 and b be as above. By hypothesis, X oœ with the

identification X : I3 -» R4 as before (§2) is a coframe of Tniu)M for all u £ F,

hence a point in £. Therefore, we define the map

1:   F   —      d_
U     1—►    Xo CO

By construction, we have i*{co) = W. Moreover, the structure equations and

the condition 0((is/)*) = is, imply that co and 0 are 5/(2, R)-equivariant

w.r.t. the actions of 5/(2, R) on F3 and 1)3 induced by pi. This means that

• 1 is an embedding whose image F is an h3-reduction of £ w.r.t. the

connection defined by 0.

• if we define on F :- i(F) the fo-valued 1-form 0' := {rl )*{</>) then
there exists a unique a/(4, Revalued Gl{4, R)-equivariant connection
1-form 0 on # such that 0' = </>\f ,

It is then straightforward that the map 1 satisfies the desired properties and

is uniquely determined by them.   D
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From the construction above it is clear that the images of the embeddings ix

and i2 associated to two homothetic solution structures {ñ¡, F¡, M, ïOj, 0,,

ä,, b¡, c¡) over M are in fact homothetic ^-structures. In particular, the con-

nection V on M only depends on the homothety class of the solution structure.

We summarize the discussion so far, including Corollary 3.2, in the

Corollary 3.6. There is a 1-1 correspondence between Hyconnections on a 4-

manifold M and homothety classes of solution structures over M for which

a, b do not vanish identically.

For the rest of this section, let F be an h 3-reduction of an //3-connection

V on a connected 4-manifold M. If we let V :- V2 © F3, we get a map

K:   F   —> V
u    1—»   a{u) + b{u)

The structure equations (5)-(9) imply that w.r.t. the canonical frame X0, ...,

X-¡, Y0, Yi, Y2 on F and the components a0, ax, a2 and bo, ... , ¿3 of the

polynomials a and b resp. we can write the differential of K

K+-.TF -» TV

as

K* =

Í 6/>2
I8Ô3

0

P\
3<2iÛ2

3a2

V    0

-4bi
-2b2
663

-a0ai

P2

0
a2

6*0

-2bi
-4b2

0

P2

-axa2

0

18io
6bi
0

3ooai

Pi

2ai
4a2

0
2bi
4b2

6ft3

0

-2a0

0
2a2

-3¿o
-bx
b2

3*3

0   \
-4a0

-2ai
0

-6*0

-2*2/

where pi - c + \a2 1aoa2 and p2 = c-\-\a\- 5aoa2.
We compute that det(Ä^„) = 0, i.e.   rank(Ä») < 6. Let L be the cofactor

matrix of K*, consisting of the 6x6 minors of K*. L has the property that

LK» = K*L = 0, and L has rank at most  1.  Thus, there are polynomials

ro, ... , r^, So, ... , Í6 in the variables ao, ai, Ü2, bo, ... , b3 such that

L =

'r0'

-r6,

{s0, ... ,s6).

Furthermore, if we define the polynomial

1 1
Rr =  ~{Dr, Dr)-, + ■='"= ^{Pc,Pc)2 + ^(a,Q2)2

with

Pc = {2c-{a, a)2)a-{b, b)2

then it turns out that

dRc

and     q = {a,b)2,

Si =
da¡

for   0 < / < 2, and
dRc

db¡-
for   3 < 1< 6,

and

r, = kjS^-i     where   {ko, , k6) = -(1, -3,  3, 1,  3,-6,3)
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This means that

• d{Rc o K) = 0, hence K maps F into some level set of Rc,

• for u £ F , rank{K*{u)) = 6 iff L{u) ̂  0 iff {r0{u),... , r6{u)) ± 0 iff
{so{u), ... , S(,{u)) t¿ 0 iff Ä"(w) is a regular point of JRC.

We now turn our attention to the set Zc ç V of critical points of Z?c. Using

the 5/(2, R)-invariance of Zc, we compute that

• for c ^ 0, Zc = Z¿ U Z2 , where

Z¿ = {(a,*)6F|pc = 9 = 0}

and

Z2 = {{v + u2, \u{u2 - 3v)) £ V | u £ Vi, v £ V2   with {v , v)2 = \c] .

• for c = 0, Z0 = Zq U Iq , where

lf = {{±v2 + u2, \u{^3v2 + U2)) £ V\U,V£ Vi}

We also define

Z^= z+n Z0-= {(m2 , it/3) e F | M e F,}.

We wish to determine the topology of the Z 's. Of special interest for us
is the number of connected components in each case. To determine this we

introduce the 5/(2, R)-equivariant maps

<P2:    VixV2tC   —♦ Z2

{u,v)     i—»       {v + u2, \u{u2 - 3v)),

9o-     Fi*Fi     — ïo
{u,v)     i—►   {±v2 + u2, \u{t3v2 + u2)),

<PI- Vi — Z°

where F¿,c := {w £ V2 \ {v, v)2 = |c} .

One computes that ç?2 is a diffeomorphism for all c. It follows that Z2 is

smooth 4-dimensional and has one or two connected components depending on

the sign of c. In the case c > 0 we let Vfc = V2^c n {±{u2 + v2) \ u, v £ Vi}

be the connected components of V2,c> a°d therefore Z2'* := <p2{Vi x Vff) are

the two connected components of Z2 . On the other hand, if c < 0 then F2iC

and therefore Z2 are connected.

<pf is a branched double cover: in fact, let

5+ := (ç?+)-'(Zg) = {{u, v) £ Vi x Vi \v = 0 or v2 = 3w2}, and

5" := {cpö)-l{^°o) = {{u,v)£VixVi\v = 0}.

Then ^k^x^OVs* *s a double cover of Zq \Z°, whose nontrivial deck transfor-
mation in either case is given by {u, v) >-> {u, -v).

It follows that Z0\Zg is 4-dimensional and smooth and has two connected

components, namely Z^Zg.

Next, c?oVi\{0} is a diffeomorphism onto Zg\{0} , thus Zg\{0} is a smooth
connected surface.
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Note that Z¿ is smooth by the implicit function theorem. Let {a, b) £

Z¿ with {a, a)2 > 0. By the 5/(2, R)-invariance we may assume that a =

ao{x2 + y2) for some a0 £ R\{0}. We compute that * = *.y(3x2 - y2) +

*2*(3y2 - x2) with *, G R and that a0{2al - c) = 18(*2 + b2). Therefore if

c> 0, then either -yj\ < «o < 0 or yf\ < a0 . Thus, aÇLx) and hence Z¿ is
disconnected for c > 0.

One can show that these are the only components, i.e. Z¿ is connected if

c < 0 and has two components Z¿ •± if c > 0 where ± stands for the sign of

ao in the notation above.
We will refer to the regular parts of the level sets of Rc and to the manifold

parts of the sets Zc as strata.

For the ranks of K* we have:

• rank{Kt{u)) = 4 for all u £ F with K{u) £ Zc and c ¿ 0.

• ranlriX(w)) = 4 for all u £ F with K{u) £ Z0\Zg ,

• rank(tf,(u)) = 2 for all u£F with K{u) £ Zg\{0} ,
• rank(/C»(w)) = 0 for all u £ F with K{u) = 0.

Theorem 3.7. The image of the map K : F —» V lies always in a single stra-

tum. In particular, the differential K* has constant rank on F, and rank{Kt) £

{0,2,4,6}.

We start with the following lemma whose proof is left to the reader:

Lemma 3.8. Any two points in F can be joined by a piecewise differentiable path

y such that y'{t) = ±X¡ or y'{t) = ±Y¡ for some i, wherever y' is defined.

Proof of theorem. We define vector fields X0, ... , X3, 7i, Y 2, F3 on F by

íx0,...,x3,yx,y2,y3)' = k.(J^,^,^,^,...,^) •

Thus if y is an integral curve of X¡ { Y¡ resp.) in F then the curve K{y) is

an integral curve of X¡ { Y¡ resp.) in V. Now one observes that these integral
curves always stay inside the same stratum in V. This together with Lemma

3.8 finishes the proof.   D

Of course, if K{F) = {0} then the connection form 0 is flat, i.e. the

holonomy group is not equal to //?.
Note that the stratum containing K{F) is an invariant of the homothety

class of F, hence indeed an invariant of the //3-connection. Therefore, we will

refer to this stratum as the type of the //3-connection. E.g. we will talk about

connections of type Z¿'+ etc.

4. NONCOMPLETENESS

The purpose of this section is to prove the

Theorem 4.1.  Hyconnections are never complete.

Proof. Let M be a manifold with an //3-connection V, and let {n, F, M, co,

0, a, b, c) be an associated solution structure over M. By [KN, III.6.3.], the
geodesies on M are precisely those curves y in M with the property that if y

is a horizontal lift of y then co{y') £ V$ is constant.
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Now suppose that V is complete. Let y be an integral curve of the vector

field Xx in F which projects down to the geodesic y = n{y) in M and
therefore by hypothesis is defined on all of R. From the structure equations

we get that Xi{a2) = 6*3 and Xx{b^) = a2, hence 6a2 satisfies on y the

differential equation

(*) y" = y2-

We shall see that the only solution of (*) which is defined on all of R is

y = 0 and therefore «2 = 0 along y.
Since y was an arbitrary integral curve of Xx we conclude that ú¡2 = 0

on F. But then the structure equations easily imply that a = b = 0 on F

which means that the connection is flat, hence not an //3-connection, and this
contradiction will finish the proof.

It remains to show that (*) has no nontriyial solution. Note that any global
solution y is convex and hence either constant or unbounded. Suppose that y

is a global nonconstant solution, i.e. y'{to) ^ 0 for some t0. Replacing y{t) by

y{—t) if necessary, we may assume that y'{to) > 0 and hence y'{t) > y'{to) > 0
for all t>t0.

We get

£ (</>'-H=o,
hence

{y')2 = c + ly3

for some constant C.

As y is unbounded, i.e. lim^^y = 00, we may assume that y(i)3 > 3|C|

for all t > to by increasing to if necessary. Then we get for all / > to

(y')2 > \y2

which implies

Thus we get for all t > to

for some constant Ci . But this is a contradiction as the left-hand side of this

inequality is always positive whereas the right-hand side is negative for large t,

and this finishes the proof.   D

5. The singular //3-connections

5.1    Immersions of solution structures.   We will begin with the following

Definition 5.1. We call {F, co, 0, a, b, c) a pseudo solution structure if

( 1 )   F is a 7-dimensional connected manifold, co + 0 is a coframe on F

with values in F3 e h 3, a, b are functions on F with values in V2 , F3
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resp. and the structure equations (5)-(9) are satisfied for some constant

eel.
(2) there is a locally free 5/(2, Reaction on F such that if we define vector

fields E*¡   by {E*)p := j-t\t=o{etEi{p)) with the basis {£,} of h3 as
before, then <p{E*) — E¡ for all /.

Consider the canonical projection n : F —> si(2,s.)\T —'■ M. In general, M

will not be a manifold. We shall call a pseudo solution structure holonomic over

M if the 5/(2, Reaction is globally free and M is a manifold. In this case,
{n, F, M, co, 0, a, b, c) is a solution structure.

Definition 5.2. Let {F, co, 0, a, b, c) a pseudo solution structure. A (local)

vector field 5 on F is called a (local) infinitesimal symmetry of F if £s{<*>) —

£s(0) = O.

Proposition 5.3. The local infinitesimal symmetries on F form a Lie algebra

0 ç X{F) whose dimension equals the corank of K* where K := a + b : F —» V.

In fact, they span ker(ÄT,) at each point p £ F.

Proof. It is immediate that infinitesimal symmetries are closed under Lie brack-

ets and hence form a Lie algebra. Next, any 5 £ q vanishes either everywhere

or nowhere. To see this note that along an integral curve y of X¡ { Y¡ resp.),

[5, y'] = 0, hence 5 vanishes either everywhere or nowhere along y. Then

apply Lemma 3.8.
Moreover, it is obvious from the structure equations that K*{S) = 0 for all

5 £ 0, hence dim(o) < corank(.K»,).
It remains to show that any tangent vector Sp £ ker(Ä*) at some point p £ F

extends to an infinitesimal symmetry. This follows essentially from the unique-
ness result of solutions to the structure equations (cf. [Br2] for details).    D

Of course this means that every i/3-connection admits at least one 1-param-

eter family of (local) symmetries. In fact, the (local) symmetry group G of M
is a Lie group whose dimension equals the corank of K.

Definition 5.4. Let {F, co, 0, a, b, c) be a pseudo solution structure.

(1) F is called saturated if the map K : F ^ K{F) C.V is a principal G-
fibration where G denotes the symmetry group of F . This is equivalent

to saying that every local symmetry of F extends to a global symmetry.
(2) F is called maximal if it is saturated and K{F) is an entire stratum.

The following proposition can be shown using the standard techniques to

prove generalizations of the second Cartan lemma (cf. e.g. [Br2]). We will leave

the proof to the reader.

Proposition 5.5. Let {n, F, M, co, 0, a, b, c) be a solution structure over some

manifold M and suppose that F is saturated. Let {n1, F', M', co', 0', a', b', c')
be another solution structure over a simply connected manifold M' such that

K{F') c K{F). Then there exist immersions 3 : F' -» F and 1 : M' -» M such
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that j *{co' + 0') = co + 0, a' + b' = {a + b)o j and such that the diagram

F' -^—> F

M1 ——► M

commutes. In particular, i is connection preserving, i.e. i*{VxY) = Vi,(X)i*{Y)

for all vector fields X and Y on M', where V, V denote the covariant deriva-
tives on M, M' resp.

Therefore, if we have a maximal solution structure then every other simply

connected //3-manifold of the same type can be immersed into M by a con-

nection preserving map. It also illustrates the significance of the examples given

in §2 which will be discussed now.

Let us first determine the subset of an H-¡ -manifold on which the symmetry

group of the connection acts locally free.

Lemma 5.6. Let M be an Hymanifold and let U ç M be the set on which
the local symmetries of M act fixed point free or—equivalently—where the in-

finitesimal symmetries of M do not vanish. Let WK% ç V be the points in
V = V2 © F3 on which the group 5/(2, R) acts locally free, i.e. Wie& is the
union of all regular 5/(2, R) orbits of V. Then

U = n{K-x{WTet)).

In particular, U is an open dense subset of M.

Proof. For p £ M, the infinitesimal symmetries on M do not vanish at p
iff the infinitesimal symmetries on F do not lie in the kernel of 7t* at all

points x £ n~x{p). If we let Yx, Y2, Y3 denote the vertical vector fields of the

canonical frame of F, then this is equivalent to saying that K*{Yi)x ¿ 0 for

all x £ n~x{p). Finally, the 5/(2, R)-equivariance of K implies that this is
satisfied iff K{x) £ WTf% for all x £n~x{p). Now WTe* is open dense in V,

hence so is U in M.   D

We now consider the examples from §2. For each one of them, the structure

polynomials a, b as well as the constant c were given. These polynomials

gave the restriction of the map K : F —> V to the section of F given by the
particular (co)frame. Therefore, the image set K{F) equals the 5/(2, R)-orbit

of the structure polynomials in each example.

(1) In Example 2.1, we have the structure polynomials a = x2, b — |x3

and c = 0. Thus,

K{F) = 5/(2, R)(fl, b) = {{u2, i«3) I u Í 0} = ZgUO}.

Also, it is not hard to show that the map K is a principal ,45/(2, R)-

fibration and hence F is maximal. Thus, we have a maximal solution

structure of type Zq and from Proposition 5.5 we get

Corollary 5.7. Let M be a connected 4-manifold with an Hyconnection V of
type Zq and let M denote its universal cover with the induced connection V.

Then there exists a connection preserving immersion

1 : M - G/H
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with G/H as in §2.1, i.e. it{VxY) = V,,wí»(T) for ail vector fields X, Y on

M, where V denotes the connection on G/H.

(2) Consider the connections on Mf described in §2.2. The structure poly-

nomials in these cases are {a, b)cpf{toy, x) and hence

K{F) = Sl{2, R){a,b) = cpf{{u, v) G Vx x Vx \ {u,v)l ¿ 0.}

which is precisely (Z^Zq) n WKt. Again, we can show that the map K

is a principal G-fibration where G = N^ is the 3-dimensional Heisen-

berg group which acts via symmetries on Mf . Hence F is saturated.

We will show that there exist maximal solution structures of types Zq

and they therefore contain Mf as the dense open subset on which the

symmetry group acts locally free.
(3) Consider the connections on Mf described in §2.2 and suppose that

c t¿ 0. The structure polynomials in these cases are

(u,*)=(±x2 + i(2í2±c)y2,í0y(^2 + ^£y2))

which is seen to lie in Zc. We find that

zZ\ n W* = {{a,b)eZc\ {{b, b)2 , {b, b)2)2 ¿ 0}.

Consider first the case c > 0. Then recall that Zc has two compo-

nents, and we check that Mf is of type Z' '± if c > 0. Moreover,

in each case K{Ff) = Zc,:t n WTeg where Ff is the solution structure

associated to Mf . We also check that Ff is saturated and therefore,

as a consequence of Proposition 5.5 we have

Corollary 5.8. Let M be a connected 4-manifold with an Hyconnection V of

type Zc '± with c > 0. Let U ç M be the subset on which the symmetry

group of M acts locally free and let U - |J, U¡ be the decomposition of U into
its connected components. Then there exist connection preserving immersions

i: Ü¡ —» Mf with Mf from §2.2, where Ü¡ denotes the universal cover of U¡.

Now assume c < 0. In this case, both examples Mf have type Z'.

One checks that Zc n lFreg has two connected components, and they

equal K{Ff)uK{F~) with Ff as above. Again, we check that Ff is
saturated, hence Proposition 5.5 yields

Corollary 5.9. Let M be a connected 4-manifold with an Hyconnection V of

type Zc with c < 0. Let U ç M be the subset on which the symmetry group

of M acts locally free and let U = |_l, Ui be the decomposition of U into its

connected components. Then there exist connection preserving immersions

i:Ü¡-* Mf u M-

with Mf from §2.2, where C/, denotes the universal cover of U¡.

The difference between these two results is that in the case c > 0 an

//3-connection of type Zc,:fc on M is either locally equivalent to Mf

or locally equivalent to M~ since these connections are of different

type.
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In the case c < 0, however, it is very well possible that an Hy

connection is locally equivalent to Mf in some neighborhood, but

equivalent to M~ in some other neighborhood on the same manifold

M. In fact, this will happen if a maximal solution structure of type Zc

exists.

Also, we can conclude that connections of type Zc '+ with c > 0

have (local) symmetry group SU{2), and connections of type Zc'~

with c > 0 or of type Zc with c < 0 have (local) symmetry group

5/(2, R).
(4) Consider the connections on Mf described in §2.3 for k ^ 0. The

structure polynomials in these cases are

{a, b) = I u2 + v , -ru{u2 - 3v) )

where u = ktoy and v — k{x2 ±y2). Also, the structure constant c =

±6k2. Thus, Mf is of type Z2. Note that Z2 n W"% = {cp2c{u, v) | u
does not divide v }.

By an analysis similar to the previous case, we obtain from Proposi-

tion 5.5

Corollary 5.10. Let M be a connected 4-manifold with an Hyconnection V of

type Z2'* with c > 0 and let k such that sign(/c) = ± and c = 6k2. Let
U ç M be the subset on which the symmetry group of M acts locally free and

let U = |_|, Uj be the decomposition of U into its connected components. Then

there exist connection preserving immersions i : Ü¡■ —► Mf with Mf from §2.3,

where Ü¡ denotes the universal cover of U,.

Corollary 5.11. Let M be a connected 4-manifold with an Hyconnection V of

type Z2 with c < 0 and let k such that c = -6k2. Let U ç M be the subset
on which the symmetry group of M acts locally free and let U = |_|t U¡ be the

decomposition of U into its connected components. Then there exist connection
preserving immersions

i : Üi -» Mf U MZk

with M~k from §2.3, where C, denotes the universal cover of U¡.

The difference between these two results is as in the previous case.

Also, we can conclude that connections of type Z2 '+ with c > 0 have (local)

symmetry group SU{2), and connections of type Z2'- with c > 0 or of type

Z2 with c < 0 have (local) symmetry group 5/(2, R).

Of course, these corollaries are not ideal statements. The main question

which they answer only partially is

For which {connected) strata do maximal pseudo solution structures exist? If

they do, are they holonomic ?

We already answered these questions affirmatively for //3-connections of type

Zq and will also obtain an affirmative answer for the types Zq . In the remaining

cases, however, the above statements are the best we can do.

5.2   Reductions of /Y3-connections.   We will now construct further reductions

of the ()3-reductions of singular //3-connections. These reductions are equipped
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with another connection with a 1-dimensional Holonomy group. However, these

connections will have torsion.

5.2.1 Hyconnections of type Z^. Let M be a connected 4-manifold with an

//3-connection V of type Z0,. This means that we have an b 3-reduction F of

the total coframe bundle 5 of M and an 5/(2, R)-equivariant map K : F -»

Zg\{0}ÇF.
We define functions rx and r2 by K{u) = y>Q{ri{u)x + r2{u)y) where tp^ is

the map defined in §3. Then the structure equations imply that

drx = 3r| co0 - 2rxr2 coi +     r\ co2 + 2r2 0O - rx <px,

dr2 = r\ cox - 2rxr2 co2 + 3r2 CO3 + r2   <px - 2rx <p2.

rank(Ä«) = 2, and therefore K is a submersion. Since 5/(2, R) acts tran-

sitively on Zq\{0} it follows that K is surjective. F :— K~x{cp\]{x)) is a 5-

dimensional submanifold of F which intersects all fibers n~x{p), p £ M, and

the intersection with each fiber is connected; for n{ux) = n{u2) iff ux = Lh{u2)

for some « e // where

ff:= j/>3(5   J) t£R^CH

which is connected. It follows that F is a principal H-bundle.

Let 1 : F «-» F be the inclusion map. We compute that the 1-forms côo, ... ,

ÛJ3, 0 with co, := »*(<y,) and 0 := /*(03+3<üi) yield a coframeoî F , satisfying

dWo = 3û>oAW2 -2<yiA0,
dcô~i = 9äJ0AftJ3   + 3 0J1 A0J2 - 4 ßj2 A0,

Í/0J2 = 9Wi A W3 - 6 ÛJ3 A 0,

i/ö?3 = 6ûJ2 A £03 ,

í/0 = -j { 3cöo A ÛJ3    -     u?iAcÖ2).

Let er be the (up to multiples) unique parallel symplectic form on M. One

computes that
2    -

n*{o) = 3 coo heos- coi f\co2 = --ç- d<t>,

and—using that the restriction % : F —► M is a homotopy equivalence—we

arrive at the

Proposition 5.12. Let M bean Hy manifold of type Zq, and let a be the parallel

symplectic form on M. Then a is exact.

We denote the frame dual to the coframe on F by Xq , ... , X$,Y. We have

£y(0) = 0, and this implies that 0 is the connection form of a connection on

the principal bundle n : F —> Af. Its curvature is given by the symplectic form

a . However, this connection has torsion.

5.2.2 Hyconnections of type Z^ . Let M be a connected 4-manifold with an

//3-connection V of type Zj . This means that we have an h3-reduction F of

the total coframe bundle 5 of M and an 5/(2, R)-equivariant map K : F —»

Recall the double covering tpf : P* -+ Zq \Zg defined in §3. Here, P+ =
{{u, v) £ Vi x Vi I v ¿ 0 and v2 ¿ 3m2} and F" = {(m, t>) e Fi x Fi 11; ̂  0} .
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Let Pf := {u £ Vi | {u, x) £ />=■=}, i.e. P+ = F,\{±^x} and P~ = Vx. Let

F:=K-x{{tpf{u,x)\u£Pf})CF.
Since ç?^ is a double cover and K has constant maximal rank it follows

that F is a smooth 5-dimensional submanifold of F . Moreover, the 5/(2, R)-

equivariance of K implies that F is a reduction of F with structure group

{(!    i") ieRk5/(2'R)-

In particular, F is connected. We then define a function r : F ^ Pf by the

equation

K{u) = cpf{r{u), x)     for all u£ F .

Let i : F <-^> F be the inclusion map. We compute that the 1-forms Wo, ... ,

5J3, 0 with (ïï, := /*(«,-) and 0 := i*(03 - 3r2<wo + ''i<yi) yield a coframe of F,
satisfying

dWo =     12r2 ûJo A cïïi - 6/"i    ftJo A ft)2                             -2gJiA0,

i/ûJi =     18r2 ftJo A GJ2 - 18ri   GJ0AGJ3 -   6ri &Ji A W2 - 4 ö>2 A 0,

(11)    dco~2=     18r2 ftJo A 0J3 + 6r*2   01AW2 - 18n côx A ZÖ3 - 6 W3 A 0,

¿«3 =      6r2 gJi A CÖ3 - I2ri to2 A «3,

i/0 = T6 ( 3 Wo A ÖJ3 - Wi A «2 ),

where r = rjx -)- r2y, and the functions /^ and r2 satisfy

dri =9r2œ0 - 6rir2Wi -       s œ2 +2r2~4>,

dr2 = 3r2 ûJi - 6rxr2 cd~2 - 3j ÛJ3,

with s = -3r2 ± 1. Note that r e Pf implies that r2 and s cannot vanish

simultaneously.
Like in the previous section—using that the restriction it : F —» M is a

homotopy equivalence—we obtain the

Proposition 5.13. Let M be an Hymanifold of type Z^, and let a be the
parallel symplectic form on M. Then a is exact.

Again, we_see that 0 is the connection form of a connection on the principal

bundle n : F —» M whose curvature is given by the symplectic form a. As

before, this connection has torsion.

We will now show the existence of maximal saturated holonomic solution

structures of types if which we mentioned earlier. Note that if such a struc-

ture exists then r : F —> Pf must be a principal G-fibration where G is the

symmetry group of the connection.

Recall Example Mf from §2.2. Performing the construction above we obtain

a solution to equations (11) on the set G x Uf —» Uf where G is the 3-

dimensional Heisenberg group and Uf = {u £ Pf \ r2 ¿ 0}. In this case,

r : G x Uf —> Iff is simply projection onto the second factor.
We will now give a second explicit solution to the equations (11). This time,

we will consider the set G x Iff with G as before and Iff = {u £ Pf \ s ^ 0} .

Let 0 be the Lie algebra of G. On G x Uf we define the 0-valued 1-form
a := p*{cog) where coq is the left invariant Maurer-Cartan form on G, and

p : G x Uf —» G is the projection map. We can decompose a into three real

valued 1-forms ai, a2, aj satisfying dai = da2 = 0 and da^ = dax A da2 .
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Then one can check that the following forms are a solution to the structure

equations (11) on G x Uf :

cd~o = —       6sai,
_ l±6r2-3r4 24ri
coi = -!-Lai- -a2+36rir2o:3,

s s
—             2 j                    6rir2(/-2T 1) 12r2 ,„ ,
cu2= -drx -1 a i -r   i —i I8r2a3,

5 S S ¿

w3=—p- drx+  ^dr2+ r2ax,

■2 6rx{l±r2)       6(9r2±l)
0= —--x-ax—K—^--a2±     36r2a3.

s s

G acts on G x Uf in a canonical way from the left, and this action preserves

co and r, i.e. is an action by symmetries.
It follows now that these two solutions of (l l) can be regarded as local triv-

ializations of a principal G-bundle over Pf . Of course, since U2 — Pf the

second solution is already the entire bundle. On the other hand, for F0+ we

know that the bundle is oriented by the volume element ~co~o A • • • A 0. There-

fore, the bundle must be trivial as well, hence in either case we conclude that

there exists a solution to equations (l l) on G x Pf =: F   .

It is not hard to see that a solution to (ll) completely determines a solution

structure on F± := G x (Zq\Z§) , i.e.  we can 'reverse' the reduction to F

described before. It remains to show that these solution structure are holonomic,
i.e. the quotient space M± := 5/(2, R)\F± is a manifold.

This can be seen as follows. Let us denote the frame dual to Wo, ... , W$, 0

by X0, ... X-}, Y.  Then the R-action on F    defined by the flow along the

vector field Y is proper. Thus, R\F    is a manifold, and clearly M± = R\F
as desired.

As a result of our discussion we conclude:

Corollary 5.14. Let M be a simply connected connected 4-manifold with an Hy

connection V of type Zq and let M± be the manifolds described above. Then

there exists a connection preserving immersion 1: M —» M± .

5.2.3 Hyconnections of type Z2. Let M be a connected 4-manifold with an

//3-connection V of type Z2 where c £ R\{0}. This means that we have an h3-

reduction F of the total coframe bundle j of M and an 5/(2, R)-equivariant

map K : F -> Z2 ç V.
Recall the diffeomorphism q>2 from §3. Recall also that V2yC has one or two

connected components depending on the sign of c.

V2rC contains a polynomial k{x2±y2), where " ±" = sign(c) and k2 = ¿|c|.

In the case c > 0 the choice of sign of k determines the component Vfc.

If we let Fk := K.-X{{cp2c{u, k{x2±y2)) \ u £ V{\) ç F then Fk is a smooth
5-dimensional submanifold of F and moreover a reduction of F with structure

group

50(2)C5/(2,R)   ifc>0,

and

50(1, 1)C5/(2,R)   ifc<0.
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We then define a function r : Fk -» Fi by the equation

K{u) = cp2{r{u), k{x2 ± y2))     for all u £ Fk .

Let  i : Fkj-^ F  be the inclusion map.   We compute that the 1-forms

Wo, ... , w3, 0 with <y, := i*(o),) and 0 := j»*(02 T 03 - >ï(3a)3 ± coi) +

r2{±3a>o + (02)) yield a coframe of F¿., satisfying

dWo =     l2r2W0AWi-   6rxWoAW2 ±                 2gJiA0,
dctJ 1 =     18r2 Wo A ö>2 - 18ri W0AW3 -   6ri Wi AW2+ (-6ctJ0 ± 4ûJ2) A 0,

i/w2 =     18r2 c5o A «3 +   6r2 oJi A 5)2 - 18^ gJi A Wy\- {-4Wi ± 60)3) A 0,

i/feJ3 = 6r2 Wi A ÖJ3 - 12ri <y2 A W3 - 2â72 A 0,

i/0   = ±6k{3 ctJo ActJ3 -         ôJiAft^),

where r - rix + r2y, and the functions rx and ri satisfy

drx = 3(3r2 =p fc) ctJ0 -       6/-ir2 ftJi + (3/f - k) â72

í/r2 = (3r2 T ^) öJi -        6^7-2 ä72 + 3(3r2

As before, we get the

Proposition 5.15. Let M bean Hy manifold of type l,c2, and let a be the parallel

symplectic form on M.

(1) If 0 0 then the element of H2{M, R) represented by a is a multiple
of the Euler class of a circle bundle over M.

(2) If c < 0 then a is exact.

Proof. The first case follows from the Gysin sequence for circle bundles.

In the second case, we may assume that Fk has two components by passing

to a double cover of M if necessary. The restriction of n to one connected
component of Fk is then a homotopy equivalence. Finally, one can show that
for a double cover a : M -> M, the induced map a* :H*{M,R)-> H*{M, R)
is injective.   D

Again, we see that 0 is the connection form of a connection on the principal

bundle n : F —► M whose curvature is given by the symplectic form a. As

before, this connection has torsion.

Remark. Since the description of 1}C does not give a parametrization by an
5/(2, R)-equivariant map as in the other cases, we cannot get a reduction of it
as easily. Therefore, it seems more difficult to make any statement about its
symplectic form.

Remark. We will now give a hint how we obtained the examples in §2. Given a

stratum Z, it is not hard to find a smooth curve in Z n Wreg which intersects

every orbit exactly once. These curves are the parametrized structure polyno-

mials {a, b) given for each example. Once we have this curve, say a{t), we

consider 5 := K~x{a) which is a smooth submanifold of F and intersects

every fiber of n : F —> M at most once. This means that 5 is the image of a
smooth section on some subset U ç M. Then we let W¡ : i*{coj) for 0 < /' < 3
where 1: S '-> F is the inclusion map. The structure equations yield equations

for dW¡ and these can be solved explicitly.

=F 2r2 0_,

-k)W-¡ + 2rx  (p.
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5.2.4 Regular Hyconnections. In this section we will discuss those Hy

connections on M for which the map K : F —► V has maximal rank 6.

Unfortunately, in this case the structure equations involved are so complex

that they cannot be solved explicitly on an dense open subset of M. A (not

very illuminating) description of the connection on some open subset, however,

can be obtained.
Let U := {peM|(fl,a)2<0, and a does not divide * on n~x{p) } . For

p £ U there is a unique coframe u £ n~x{p) such that

bi{u) = 1,    a{u) = f{u)xy     with f{u)2 — - {a{u), a{u))2 > 0.

Using this section, we can describe the connection w.r.t.  some coordinate

system on U as follows where the constants c and Rc are given.

Let xo, ... , xj be local coordinates and define the functions

1 Xi X,        X2 , X,        -XiX2 -) 1
k = — ,    h = -^,    t2 = ^ + ^f,   and    i3 = -^ + 3-^± - x2 + c + — r ,_ •*!        t*-1-*-2 2-   -1    T"   •>-T~   _  -*0

Xo ' Xrt ' X¿      Xo XI Xft Xo

where

Furthermore, let

r = ±2a/x3 - x\ + cxix2 + Rc.

Si := -—{xoti)     for all i.
oxo

Then we define a frame as follows:

d
X°=    *Xotodx0'

v ® ~v
XX =        Xoti     —-h    toXi,

OXo

X2 =     ~Xot2      Q-r- 2ti     Xi  + X2,
OXo

Xy = -7>Xoh-r- 3?2    Xi + 3xoii    X2 + X-},
OXo

with

— d        du    d
1 ~ r   dx2 + dx2 ÔJC3'

X — du    d

2~ r dxi dxi dXi '

X3 = 2(3x2 - cxx) — + 2(3x2 + cx2) -^,

and where u = u{xx, X2) is some function satisfying X${u) = 1.

This frame is defined on {{xo, ■■■ , x3) | xo ^ 0, x3 -x2 + cxxx2 + Rc > 0}

for the given constants c and Rc.

The connection form is then given as

<p = <pXEX + 02F2 + 03^3
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where

SiCOi ,h =-52
;=0
3

4>2=~52        iU-Xtoi,
i=0

3

03=    5^(3-l)Î/+lÛ>/
i=0

and where co0,... , coy denotes the dual basis of X0, ... , X3.

One can check that this connection is indeed torsion free and is a regular

Ht, -connection. Note in particular that the 1-dimensional symmetry group is

given as the flow along the vector field d/dx^.

6.   //3-CONNECTIONS ON COMPACT MANIFOLDS

The purpose of this section is to show the

Theorem 6.1. There are no Hyconnections on compact 4-manifolds.

Proof. We will show that any compact 4-manifold M with an #3 -connection

must be of type Zq . This together with Proposition 5.12 will finish the proof

since symplectic forms on compact manifolds cannot be exact.

Suppose M is compact and has an #3-connection, and let {n, F, M, a,

b, c) be an associated solution structure. Consider the function

/: F
u ■*   {a{u), a{u))2   =   -discr{a{u))

Since / is constant along the fibers of F there is a unique function / :

M -» R such that fon = f.
We shall now use that / must have both a maximum and a minimum on

M. Therefore, we shall investigate the critical points of /.
Using the structure equations (5)-(9) we find that

df= -4(3*3, -*2,*i, 3*o)

' 3tfi    — 2iZo

6û2      d\      -4ao
4a2      -ai

2a2

\

-6a0

-3fli/

'Wo'

,6)3,

The determinant of the matrix in this equation is 9/2. So if « € F is a

critical point of / and f{u) ^ 0 then b{u) = 0. We wish to compute the
Hessian of / at a critical point p £ M w.r.t. some appropriate coframe.

If fip) < 0 at a critical point p £ M then there is a coframe u £ n~x{p)

with ao{u) = 'ai{u) = 0 and ai{u) ^ 0. We compute the Hessian w.r.t. this

coframe as

/

V-9al(2c + 3a2)

ai{2c + a2)

a{{2c + a2)

-9ai{2c + 3a2)\
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We see easily that this matrix has some negative eigenvalue regardless of the

values of ax and c. Therefore, / cannot have a negative minimum, and we

conclude that / > 0.

Let W := {a £ V2 \ {a, a)2 > 0}. We find that % = W+ U 81 with 8± =
{±{v2 + v2) | Vi, v2 £ Vx} , and W+ n 81 = {0} . Moreover, 8± is invariant

under the 5/(2, Reaction on V2.
If f{p) > 0 at a critical point p e M then there is a coframe « £ n~x(p)

with ai (m) = 0 and ao{u) = a2{u). We compute the Hessian w.r.t. this coframe

as

/        H3 0 -3a0(5a2-c) 0 \

- 0 ao{l3al~2c) 0 -3ao{5al~c)
-3ao{5a^-c) 0 ao(13ajj-2c) 0

V 0 -3a0(5fl2-c) 0 9a03        /

The characteristic polynomial of this matrix is r{X)2 , where

r{X) =X2- 16oo(llflg - c)X - 576a¡{2a¡ - c){6a¡ - c).

If a{u) £ 81\{0} , i.e. ao{u) > 0, then r has at least one positive root since

either r(0) < 0 or r'(0) < 0. Therefore, / cannot have a positive maximum

in n{a-x{W+\{0})).
Similarly, if a{u) £ 81\{0} , i.e. a0{u) < 0, then r has at least one negative

root since either r(0) < 0 or r'(0) > 0. Therefore, / cannot have a positive

minimum in 7i(/-1(81\{0})).
Suppose that f{p) = 0 for some p £ M and a ^ 0 on n~x{p). Since

/ > 0, p is critical. There is a coframe u £ n~x{p) with a{u) = ±x2. From

df{u) =0 we conclude that b{u) = *x3 for some * e R. Computing the
Hessian of / at u we get

/°     „ *        \
8 ° ±3C
8 T2c

V      ±3c -9(9*2t1)/

The characteristic polynomial of this matrix is

X{X ± l6c){X2 + 72(9*2 T 1)A - 576c2)

The Hessian must be positive semidefinite, i.e. this polynomial cannot have

any negative root. It is easily seen that this is satisfied only if a{u) — x2, c = 0

and *2 < c.
We conclude that f{u) - 0 implies a{u) £ W+ .
Suppose now that a{U) Ç 81\{0} for some open set U ç F. From the

above we conclude that f{U) = 0. It follows that K{U) ç {{v2, bv3) \ v £

Fi\{0}, * £ R} . Since this set is 3-dimensional we get rank(Ä») < 3 on U. But

then Theorem 3.7 implies that M is of type Z0,. In particular, a{F) ç 81\{0} .

Thus, either M is of type Z0, or a{F) ç 81.
But in the latter case we conclude that a{u) = 0 for some u £ F. Since

a{F) ç 81, hence Oq , ü2 < 0, this means that « is a maximum for both ao
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and Ü2, hence dao{u) = da2{u) = 0 and therefore b{u) = 0. Computing the
Hessian of «o at u yields the matrix

0 6c     \
-4c

6c 0
0/

This matrix must be negative semidefinite which is satisfied iff c = 0. Thus,

a{u) = *(«) = c = 0, i.e. K*{u) — 0, and again Theorem 3.7 implies that the

connection is flat, violating our assumption. This contradiction shows that M
is of type Zq , and this finishes the proof.   D
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